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We show how the classical action, an adiabatic invariant, can be preserved under nonadiabatic conditions.
Specifically, for a time-dependent Hamiltonian H = p2/2m + U (q,t) in one degree of freedom, and for an
arbitrary choice of action I0, we construct a so-called fast-forward potential energy function VFF(q,t) that, when
added to H , guides all trajectories with initial action I0 to end with the same value of action. We use this result
to construct a local dynamical invariant J (q,p,t) whose value remains constant along these trajectories. We
illustrate our results with numerical simulations. Finally, we sketch how our classical results may be used to
design approximate quantum shortcuts to adiabaticity.
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For a classical system in one degree of freedom, the
action variable I = ∮

pdq is an adiabatic invariant [1]. As
an example, when the length of a pendulum is slowly varied,
both its energy E and frequency of oscillation ω change with
time, but their ratio E/ω, which is proportional to the action,
remains constant. The adiabatic invariant can be visualized in
phase space by imagining a collection of trajectories evolving
under a slowly time-dependent Hamiltonian, H . If all initial
conditions are sampled from a single energy shell (that is, a
level curve) of H (q,p,0), then a snapshot of these trajectories
at a later time t will find them located on a single energy shell
of H (q,p,t), with the same action as the initial shell, as shown
in Fig. 1.

In this paper we pose and answer the following ques-
tion: How can the adiabatic invariant be preserved under
nonadiabatic driving conditions? We consider a Hamiltonian
H (q,p,t) = p2/2m + U (q,t) that varies at an arbitrary rate.
Under the evolution generated by this Hamiltonian, the action
I (q,p,t) does not remain constant: If at time t = 0 we
launch a collection of trajectories, each with the same initial
action I0, then at later times their actions will generally
differ from one another and from the initial action. Thus
under nonadiabatic driving, trajectories wander away from
the energy shell associated with the action I0. But suppose
we want these trajectories to “return home” at a specified
later time τ , i.e., we demand that the action of each trajectory
be equal to I0 at t = τ , given that its action had this value
at t = 0. In this paper we solve for the additional forces
that are required to steer the trajectories back to the action
I0 at t = τ . More precisely, we show how to construct an

auxiliary fast-forward potential VFF(q,t) with the following
property. Under the dynamics generated by the Hamiltonian
HFF = H + VFF, all trajectories that begin with action I0 at
t = 0 will end with the same action, I0, at t = τ . Throughout
this paper, the action I (q,p,t) is defined with respect to the
original Hamiltonian H (q,p,t).

We were led to this topic through our interest in quantum
shortcuts to adiabaticity [2], and (as we briefly discuss later)
we expect our results will prove useful in the design of such
shortcuts for guiding a quantum system to a desired energy
eigenstate. The primary focus of this paper, however, is a self-
contained problem of general theoretical interest in elementary
classical dynamics, for which we obtain a simple and appealing
solution [Eq. (10)].

Consider a classical system in one degree of freedom,
described by a kinetic-plus-potential Hamiltonian

H (z,t) = p2

2m
+ U (q,t), z = (q,p). (1)

H varies with time during the interval 0 � t � τ , but is
constant outside this interval. We assume that H is twice
continuously differentiable with respect to time, and hence
both ∂H/∂t and ∂2H/∂t2 vanish at t = 0 and t = τ . In
Appendix A, we discuss how this assumption can be relaxed.

The term energy shell will denote a level curve of H (z,t);
that is, the set of all points where H takes on a particular value,
E, at time t . We will assume that each energy shell forms a
simple, closed loop in phase space. The function

�(E,t) =
∫

dz θ [E − H (z,t)] =
∮

E

pdq (2)
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FIG. 1. Illustration of the classical adiabatic invariant. Fifty trajectories evolving under a slowly varying Hamiltonian are shown at an initial
time and a later time. The closed curves are instantaneous energy shells—level curves of H—with identical values of the action I = ∮

pdq.
Trajectories were generated using H (q,p,t) given by Eq. (22), setting τ = 10.0 to achieve slow driving.

is the volume of phase space enclosed by the energy shell E

of H (z,t), and the action,

I (z,t) = �[H (z,t),t], (3)

is the volume enclosed by the energy shell that contains the
point z. Equation (3) implies

{I,H } ≡ ∂I

∂q

∂H

∂p
− ∂I

∂p

∂H

∂q
= 0, (4)

which will prove useful.
Let us choose an arbitrary action value I0 > 0 and define

the adiabatic energy Ē(t) by the condition

�[Ē(t),t] = I0. (5)

The adiabatic energy shell E(t) = {z|H (z,t) = Ē(t)} is the
level curve of H (z,t) with the value Ē(t), enclosing a phase
space volume I0. Hence, I (z,t) = I0 for all z ∈ E(t).

At t = 0, the adiabatic energy shell E(0) defines a set of
initial conditions that form a closed loop in phase space. As
trajectories evolve under H (z,t) from these initial conditions,
this loop evolves in time,

L(t) = {z = zt (z0)|z0 ∈ E(0)}, (6)

where zt (z0) indicates the trajectory that evolves under H (z,t)
from initial conditions z0. If H varies slowly with time, then
these trajectories remain close to the adiabatic energy shell,
but under more general conditions the loop L(t) strays away
from E(t) for t > 0.

Now consider an auxiliary potential VFF(q,t), let zFF
t (z0)

indicate evolution under HFF = H + VFF, and consider the
loop

LFF(t) = {
z = zFF

t (z0)|z0 ∈ E(0)
}

(7)

that evolves under HFF from the initial conditions defined by
E(0). Our aim is to construct VFF(q,t) such thatLFF(τ ) = E(τ ):
We want the auxiliary potential to guide trajectories faithfully
back to the adiabatic energy shell at the final time t = τ . The
notation FF, for “fast-forward” [3–10], indicates that VFF drives
the system rapidly to a destination that it would otherwise
have reached during a slow process. We now describe how to
construct a potential VFF(q,t) with this property.

Imagine a set of line segments at locations
q1(t), . . . ,qN−1(t) that divide the region of phase space
enclosed by the adiabatic energy shell E(t) into N � 1
narrow strips of equal phase space volume; see Fig. 2. Let
q0(t) and qN (t) denote the left and right turning points of the
adiabatic energy shell. In the limit N → ∞, the parametric
time dependence of these line segments defines a velocity
field v(q,t) and an acceleration field a(q,t):

dqn

dt
= v(qn,t),

d2qn

dt2
= a(qn,t) = ∂v

∂q
v + ∂v

∂t
. (8)

Since ∂H/∂t = ∂2H/∂t2 = 0 at t = 0 and t = τ [see com-
ments following Eq. (1)] we have

v(q,0) = v(q,τ ) = 0, a(q,0) = a(q,τ ) = 0. (9)

We now claim that the desired fast-forward potential satisfies

−∂VFF

∂q
= ma (10a)

FIG. 2. The region of phase space enclosed by the adiabatic
energy shell E(t) is divided by line segments at {qn(t)} into vertical
strips of equal phase space volume. The motion of these lines is
described by velocity and acceleration fields v(q,t) and a(q,t).
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and therefore it is given by1

VFF(q,t) = −
∫ q

q0(t)
dq ′ ma(q ′,t). (10b)

By Eq. (9), VFF(q,t) vanishes at the start and end of the
process. Since v(q,t) and a(q,t) depend on the value I0,
different choices of I0 generally produce different fast-forward
potentials VFF(q,t). We now show that an auxiliary potential
given by Eq. (10) will indeed produce the desired result, for
an arbitrary but fixed I0.

We begin by solving for the velocity field v(q,t). The
volume of the region of phase space that is enclosed by the
energy shell, and is located to the left of a point q ∈ [q0,qN ],
is given by

S(q,t) = 2
∫ q

q0(t)
dq ′ p̄(q ′,t), (11)

where p̄(q,t) = [2m(Ē − U )]1/2 specifies the upper branch
of the adiabatic energy shell. By construction, v[qn(t),t] is
the velocity of a line segment qn(t) that evolves at fixed S:
(d/dt)S[qn(t),t] = 0. Hence

v(q,t) = dq

dt

∣∣∣∣
S

= − ∂tS

∂qS
. (12)

Now consider a point in phase space, [qn(t),pn(t)], attached
to the top of the nth line segment: pn = p̄(qn,t) (see Fig. 2).
As the shape of the energy shell and the locations of the line
segments vary parametrically with time, this point (qn,pn)
moves in phase space, surfing the upper branch of the energy
shell. This motion is described by the equations

q̇n = v(qn,t), ṗn = −pnv
′(qn,t), (13)

where the equation for ṗn is obtained by demanding that the
phase space volume of the strip between neighboring vertical
lines, δSn ≡ 2pn(qn+1 − qn), remain constant. In Eq. (13) and
throughout the paper, dots and primes denote derivatives with
respect to t and q, respectively. Equation (13) also describes
the motion of a point attached to the bottom of one of the
vertical lines. We easily verify that Eq. (13) is generated by a
Hamiltonian

K(q,p,t) = pv(q,t). (14)

Therefore, if we start with initial conditions distributed over
the energy shell E(0), and we evolve trajectories from these
initial conditions under the Hamiltonian K(q,p,t), then these
trajectories cling to the evolving adiabatic energy shell, with
each trajectory attached to the upper or lower end of one of
the vertical line segments. Hence, the flow generated by K

preserves the adiabatic energy shell, in the following sense:
For each time step δt , this flow maps points on E(t) to points
on E(t + δt). This implies that the action I (z,t) is conserved
under this flow, for those trajectories with action I0. Therefore,

1The choice of setting the lower bound of integration at q0(t) is
arbitrary. A different choice would modify VFF(q,t) by an additive
function φ(t), having no effect on the dynamics.

we have

0 = ∂I

∂t
+ ∂I

∂q
q̇ + ∂I

∂p
ṗ = ∂I

∂t
+ {I,K} ∀ z ∈ E(t). (15)

Next, we construct a Hamiltonian G(z,t) ≡ H + K , which
generates equations of motion

q̇ = p

m
+ v(q,t), ṗ = −U ′(q,t) − pv′(q,t). (16)

Along a trajectory z(t) obeying these dynamics, we have

İ = d

dt
I [z(t),t] = ∂I

∂t
+ {I,H } + {I,K}. (17)

Equations (4), (15), and (17) imply that İ = 0 for all z ∈
E(t). Thus the flow generated by G = H + K preserves the
adiabatic energy shell. This is easily understood: With each
time step δt , the term K(z,t) generates a flow that maps E(t)
onto E(t + δt) while the term H (z,t) generates flow parallel
to the adiabatic energy shell. As a consistency check, we
can verify directly from Hamilton’s equations that the flow
generated by G preserves the adiabatic energy shell (see
Appendix B).

To this point, we have constructed a Hamiltonian G =
H + K that generates trajectories which cling to the adiabatic
energy shell E(t). Along these trajectories, I (z,t) remains
constant. We now introduce a change of variables that
effectively transforms K(z,t) into the potential energy function
VFF(q,t) that we seek.

Consider the evolution of the observables

Q(q,p,t) = q, P (q,p,t) = p + mv(q,t), (18)

along a trajectory that evolves under Eq. (16). By direct
substitution we get

dQ

dt
= P

m
,

dP

dt
= −U ′(Q,t) + ma(Q,t), (19)

using Eq. (8). Equation (19) is generated by the Hamiltonian

HFF(Z,t) = H (Z,t) + VFF(Q,t), (20)

where Z = (Q,P ) and VFF satisfies Eq. (10). Thus Eq. (18)
defines a time-dependent transformation Mt : z → Z, which
maps any trajectory z(t) evolving under G(z,t) to a counter-
part trajectory Z(t) evolving under HFF(Z,t). Now consider
specifically a trajectory z(t) that evolves, under G, from initial
conditions on the adiabatic energy shell E(0). As we have
already seen, this trajectory remains on the adiabatic energy
shell E(t) for all times t ∈ [0,τ ]. Under the mapping Mt ,
its image Z(t) (which evolves under HFF) is displaced along
the momentum axis by an amount mv(q,t) [Eq. (18)]. By
Eq. (9), Z(t) begins and ends on the adiabatic energy shell:
Z(0) ∈ E(0), Z(τ ) ∈ E(τ ). This is precisely the behavior we
desired to generate, which concludes our proof.

In Eq. (7) we used LFF(t) to denote a loop in phase space
evolving under HFF. The results of the previous paragraph can
be written compactly as follows:

Mt : E(t) → LFF(t). (21)

At any time t , LFF(t) is the image of E(t) under the trans-
formation defined by Eq. (18) (see Fig. 4 below). This result
implies that the function J (q,p,t) ≡ I [q,p − mv(q,t),t] is
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FIG. 3. Initial (a) and final [(b), (c)] conditions for trajectories launched from a single energy shell E(0). The trajectories in panel (b) evolved
under H (z,t) [Eq. (22)], while those in panel (c) evolved under HFF = H + VFF, with τ = 1.0. The solid black curves show the adiabatic
energy shell E(t) at initial and final times.

a local dynamical invariant. That is, if a trajectory z(t) is
launched from the energy shell E(0) and then evolves under
HFF, then the value of J is conserved along this trajectory:
J (z(t),t) = I0. For consistency, we can verify directly from
Hamilton’s equations that dJ/dt = 0 for any point z ∈ LFF

(see Appendix C).
To illustrate our results, we chose the dimensionless

Hamiltonian

H (z,t) = p2

2
+ q4 − 16q2 + α(t)q (22a)

with

α(t) = 4 cos(πt/τ )[5 − cos(2πt/τ )]. (22b)

This Hamiltonian describes a particle in a double-well
potential, with a linear contribution whose slope α(t) evolves
from +16 at t = 0, to −16 at t = τ , with α̇ = α̈ = 0 at initial
and final times. As illustrated in Fig. 1, when τ = 10.0 the
driving is sufficiently slow for the adiabatic invariant to be
conserved with high accuracy. For the simulations described in
the following paragraph, we set τ = 1.0 to obtain nonadiabatic
driving.

We considered an initial adiabatic energy shell E(0) with
energy Ē(0) = 50.0, which corresponds to I0 = 214.035.
We numerically determined the fields v(q,t) and a(q,t) and
constructed VFF(q,t) according to Eq. (10). We then generated
50 initial conditions on the energy shell E(0), shown in
Fig. 3(a), and we performed two sets of simulations. In the
first set, trajectories were evolved from these initial conditions
under H (z,t). In the second set, trajectories were evolved
from the same initial conditions under the Hamiltonian HFF =
H + VFF. In the absence of the fast-forward potential VFF, the
trajectories belonging to the first set have final actions I (z,τ )
that span a range of values, as seen in Fig. 3(b). By contrast,
the addition of VFF guides the second set of trajectories back
to the adiabatic energy shell E(τ ), where each trajectory ends
with I (z,τ ) = I0; see Fig. 3(c). Note, however, that while the
initial conditions in Fig. 3(a) are spaced uniformly with respect
to the microcanonical measure, this is not the case for the final
conditions in Fig. 3(c). As discussed in the Appendix D, this
nonuniformity is due to the fact that VFF(q,t) depends on the
choice of I0.

We also performed simulations with a shorter duration,
τ = 0.2. After constructing VFF(q,t) for this faster protocol,
we simulated 50 trajectories evolving under HFF = H + VFF,
using the initial conditions in Fig. 3(a). Figure 4 depicts a
snapshot of these trajectories at t = τ/2. The two closed curves
show the adiabatic energy shell E(t) and its image under the
mapping p → p + v(q,t) [see Eq. (18)]. This figure confirms
Eq. (21): The trajectories evolving under HFF = H + VFF are
located on a loop LFF(t) that is obtained by shearing the
instantaneous energy shell E(t) along the momentum axis,
by an amount mv(q,t).

For so-called scale-invariant driving [11], the time de-
pendence of U (q,t) is described by scaling and translation
parameters γ (t) and f (t):

U (q,t) = 1

γ 2
U0

(
q − f

γ

)
. (23)

We then obtain v(q,t) = (γ̇ /γ )(q − f ) + ḟ and

VFF(q,t) = −m

2

γ̈

γ
(q − f )2 − mf̈ q, (24)
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FIG. 4. A snapshot, at t = τ/2, of 50 trajectories evolving under
HFF(z,t) using a rapid protocol, with τ = 0.2 (see text). The closed
black loop is the adiabatic energy shell E(t), and the red loop above
it is constructed by displacing each point on the lower loop by an
amount mv(q,t) along the p axis. As predicted by Eq. (21), the
trajectories coincide with the red loop.
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which does not depend on I0. [11] In this rather special case,
every trajectory evolving under HFF returns to its adiabatic
energy shell at t = τ , J (z,t) is a global dynamical invariant—it
is the Lewis-Riesenfeld invariant [12,13]—and microcanoni-
cal initial distributions are mapped to microcanonical final
distributions.

The problem that we have studied has a quantum analog,
introduced by Masuda and Nakamura [3,4]: Given a Hamilto-
nian

Ĥ (t) = − h̄2

2m

∂2

∂q2
+ U (q,t), (25)

construct V
(n)

FF (q,t) such that evolution under Ĥ + V
(n)

FF causes
a selected eigenstate ϕn(q,0) ≡ 〈q|n(0)〉 of Ĥ (0) to evolve to
the corresponding eigenstate ϕn(q,τ ) of Ĥ (τ ). This problem
has been solved for both Schrödinger [3–9] and Dirac [10]
dynamics, but the solution generically becomes singular at the
nodes of ϕn(q,t) (see, e.g., Eq. (5) of Ref. [5]), and hence
a well-behaved V

(n)
FF (q,t) cannot generally be constructed for

n > 0.2 Our result offers an alternative approach: For the cor-
responding classical Hamiltonian H (z,t) = p2/2m + U (q,t),
choose I0 = 2πh̄[n + (1/2)] and construct the fast-forward
potential V

(n)
FF (q,t) using the method developed in this paper.

This potential is free from singularities, and for large n

the correspondence principle suggests that evolution under
Ĥ + V

(n)
FF will cause the initial eigenstate ϕn(q,0) to evolve

approximately to the final eigenstate ϕn(q,τ ). Preliminary
numerical results support this expectation [14].

It is also interesting to compare our analysis with the
counterdiabatic approach, where the quantum eigenstate |n(t)〉
[15,16] or the classical action I (z,t) [17–19] is preserved along
the entire trajectory. In the classical case this is achieved at
the cost of adding a momentum-dependent term HCD(z,t)
rather than a potential VFF(q,t), to the Hamiltonian. For
scale-invariant driving [11], HCD coincides with our term K

[Eq. (14)], but more generally HCD is a nonlinear function of
both q and p, which may be complicated [19] and difficult to
implement experimentally.

It is natural to ask whether our results can be applied to
systems with d > 1 degrees of freedom. In certain situations
of experimental relevance, such as ultracold gases in optical
lattices, a separation of variables reduces a three-dimensional
problem to an effectively one-dimensional one [7,20], provid-
ing a potential platform to test our predictions. More generally,
the distinction between integrable, chaotic, and mixed-phase
space systems becomes crucial for d-dimensional systems
[21]. For integrable systems, the transformation to action-angle
variables [1] may provide a useful first step to extending our
results, but for chaotic or mixed systems the task is likely to
be more challenging.

Adiabatic invariants enjoy a distinguished history in quan-
tum and classical mechanics [22], but the problem of how
to achieve adiabatic invariance under nonadiabatic conditions
has gained attention only recently. Here we have shown how to
construct a potential VFF(q,t) that guides trajectories launched

2The special case of scale-invariant driving is an exception to this
statement.

from a given energy shell of an initial Hamiltonian to the
corresponding energy shell of the final Hamiltonian, so that
the initial and final values of action are identical for every
trajectory.
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APPENDIX A: CONTINUITY CONDITIONS ON H(z,t)

In the main text, we specified that H (z,t) is constant in
time for t < 0, then varies between t = 0 and t = τ , and then
remains constant in time for t > τ . As a result, H cannot
be an entirely smooth function of time: For some n � 0,
the derivative ∂nH/∂tn must be discontinuous. We explicitly
assumed that this discontinuity occurs at n � 3, giving us

∂H

∂t
(z,0) = ∂H

∂t
(z,τ ) = 0, (A1a)

∂2H

∂t2
(z,0) = ∂2H

∂t2
(z,τ ) = 0, (A1b)

leading to Eq. (9) of the main text.
The assumption that H is twice continuously differentiable

was made both for clarity of presentation and because it arises
in proofs of the adiabatic invariance of the action [23]. In our
context, however, the assumption is not necessary; therefore
in the following we will discuss how Eq. (A1) can be relaxed.
We will continue to require that H itself is a continuous
function of time. Without loss of generality, we will assume
that discontinuities in ∂H/∂t and ∂2H/∂t2 occur only at t = 0
and t = τ , and not within the time interval 0 < t < τ .

We first consider the simpler case, in which the above-
mentioned discontinuity occurs at n = 2, i.e., Eq. (A1a) holds
but Eq. (A1b) is violated. Then v(q,0) = v(q,τ ) = 0, but
a(q,t) changes abruptly at t = 0 and/or t = τ . In this situation
the fast-forward potential will also be discontinuous at these
times [see Eq. (10)] but otherwise the analysis in the main
text remains valid. Thus the violation of Eq. (A1b) simply
implies that VFF(q,t) is turned on and/or off suddenly rather
than continuously.

Now consider the case in which the discontinuity occurs
at n = 1; hence Eq. (A1a) is violated. Specifically, suppose
the time dependence of the Hamiltonian is turned on abruptly:
∂H/∂t �= 0 at t = 0+, and hence

v0(q) ≡ v(q,0+) �= 0. (A2)

The velocity field changes suddenly from v(q,0−) = 0 to
v(q,0+) = v0(q). The term ∂v/∂t in Eq. (9) then leads to a
singular term v0(q)δ(t) in the acceleration field a(q,t). By
Eq. (10), this term leads to a contribution to VFF that is
proportional to δ(t), which produces an impulsive force field

032122-5
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at t = 0:

−∂VFF

∂q
(q,t) = mv0(q)δ(t) + [other terms]. (A3)

The effect of this impulse is simple to state: A trajectory located
at (q,p) at time t = 0− is instantaneously boosted to [q,p +
mv0(q)] at time t = 0+ as it evolves under HFF.

Similar comments apply if ∂H/∂t �= 0 at t = τ−. Then

vτ (q) ≡ v(q,τ−) �= 0, (A4)

and we get a singular term in VFF that produces an impulsive
force

−mvτ (q)δ(t − τ ). (A5)

Now consider a collection of trajectories that, for t < 0,
are found on the adiabatic energy shell E(0). As in the
main text, let the loop LFF(t) describe the evolution of these
trajectories, under HFF(z,t). At t = 0, the impulsive force
in Eq. (A3) boosts these trajectories from LFF(0−) = E(0)
to a loop LFF(0+) that is displaced along the momentum
axis by an amount mv0(q). Subsequently, this loop evolves
exactly as described in the main text: For 0 < t < τ , LFF(t) is
displaced from the adiabatic energy shell E(t) by an amount
mv(q,t) [Eq. (21)]. In particular, at t = τ− this loop is
displaced from E(τ ) by mvτ (q). The final impulse at t = τ

[Eq. (A5)] instantaneously brings the collection of trajectories
from LFF(τ−) to LFF(τ+) = E(τ ).

Thus, nonvanishing derivatives ∂H/∂t at initial and final
times can be accommodated by impulse-like terms in VFF(q,t).
See Sec. III A of Ref. [11] for an example that illustrates this
point in the context of scale-invariant driving.

APPENDIX B: FLOW UNDER G PRESERVES
THE ADIABATIC ENERGY SHELL

The Hamiltonian G(z,t) = H + K generates the flow
[Eq. (16)]

q̇ = p

m
+ v(q,t), ṗ = −∂U

∂q
(q,t) − p

∂v

∂q
(q,t). (B1)

Let Ḣ (q,p,t) denote the instantaneous rate of change of H ,
along a trajectory that passes through the point (q,p) at time t

as it evolves under these dynamics:

Ḣ (q,p,t) ≡ ∂H

∂q
q̇ + ∂H

∂p
ṗ + ∂H

∂t

= ∂U

∂q
v − p2

m

∂v

∂q
+ ∂U

∂t
. (B2)

To establish that the flow given by Eq. (B1) preserves the
adiabatic energy shell, we must show that

Ḣ (q,p,t) = d

dt
Ē(t) when (q,p) ∈ E(t). (B3)

We evaluate Ḣ at a point (q,p) ∈ E(t), by setting p =
±p̄(q,t) = ±[2m(Ē − U )]1/2:

Ḣ (q, ± p̄,t) = ∂U

∂q
v − 2(Ē − U )

∂v

∂q
+ ∂U

∂t

= −1

v

∂

∂q
[(Ē − U )v2] + ∂U

∂t

= ∂qS

∂tS

∂

∂q

[
p̄2

2m

(
∂tS

∂qS

)2
]

+ ∂U

∂t

= p̄

2m
∂q∂tS + ∂U

∂t
= p̄

m

∂p̄

∂t
+ ∂U

∂t

= ∂

∂t

[
p̄2(q,t)

2m
+ U (q,t)

]
= d

dt
Ē(t), (B4)

which is the desired result. In obtaining Eq. (B4) we have made
repeated use of the identities ∂qS = 2p̄ and v = −∂tS/∂qS

[Eqs. (11) and (12)].

APPENDIX C: LOCAL DYNAMICAL INVARIANCE
OF J(q, p,t)

HFF(z,t) generates the equations of motion

q̇ = p

m
, ṗ = −U ′ + ma = −U ′ + mv′v + m

∂v

∂t
. (C1)

Consider the quantity

J (q,p,t) = I [q,p − mv(q,t),t] (C2)

and let J̇ (z,t) denote the instantaneous rate of change of J

along a trajectory that passes through the point z = (q,p) at
time t . We have, by direct substitution,

J̇ (z,t) = ∂I

∂q
q̇ + ∂I

∂p

(
ṗ − mv′q̇ − m

∂v

∂t

)
+ ∂I

∂t

= ∂I

∂q

p

m
− ∂I

∂p
U ′ − ∂I

∂p
v′(p − mv) + ∂I

∂t
, (C3)

where the derivatives of I are evaluated at [q,p − mv(q,t),t].
In general J̇ (z,t) �= 0. However, let us now restrict our

attention to a point z that satisfies J (z,t) = I0 at a particular
time t . At such a point, we have

p = ± p̄(q,t) + mv(q,t) (C4)

with p̄ = [2m(Ē − U )]1/2 as in the main text. Taking p =
p̄ + mv for specificity (the case p = −p̄ + mv gives the same
result) we get

J̇ (z,t) = ∂I

∂q

(
p̄

m
+ v

)
− ∂I

∂p
U ′ − ∂I

∂p
v′p̄ + ∂I

∂t

= {I,H } + {I,K} + ∂I

∂t
, (C5)

where all quantities on the right side are evaluated at (q,p̄) ∈
E(t). From Eqs. (4) and (15) we conclude that the right side of
the above equation is zero, and hence

J (z,t) = I0 ⇒ J̇ (z,t) = 0, (C6)

where the symbol ⇒ is short for “implies that.”
Equation (C6) establishes that J (z,t) is a local dynamical

invariant, in the following sense. Along trajectories zt evolving
under HFF(z,t) from initial conditions z0 ∈ E(0), the value of
J remains constant:

J (zt ,t) = I0. (C7)
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APPENDIX D: EVOLUTION OF THE MICROCANONICAL
MEASURE UNDER HFF

As mentioned in the main text, initial conditions that are
sampled from a microcanonical distribution on E(0) generally
evolve (under HFF) to final conditions that are not distributed
microcanonically on E(τ ), as illustrated in Figs. 2(a) and 2(c).
To understand this point, let


FF : z0 → zτ (D1)

denote evolution under HFF(z,t) from t = 0 to t = τ . 
FF

maps initial points z0 ∈ E(0) to final points zτ ∈ E(τ ). Now
consider an initial phase space distribution ρ(z,0) that is

uniform in the thin annular region R between the energy shells
E(0) and

EdE(0) ≡ {z|H (z,0) = Ē(0) + dE} (D2)

and zero elsewhere. In the limit dE → 0, this distribution
converges to a microcanonical distribution on E(0).

For finite dE, ρ(z,0) evolves to a distribution ρ(z,τ ) that is
uniform (by Liouville’s theorem) in the region R′ = 
FF(R)
between the images of E(0) and EdE(0) under 
FF. Although

FF maps E(0) to E(τ ), in general it does not map EdE(0) to an
energy shell of H (z,t). As a result, in the limit dE → 0, ρ(z,τ )
converges to a distribution on E(τ ) that is not microcanonical.
Thus the clustering of points in Fig. 2(c) traces back to the fact
that VFF(q,t) depends on the choice of I0.
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