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Abstract: Hyperspectral remote sensing across multiple spatio-temporal scales allows for mapping
and monitoring mangrove habitats to support urgent conservation efforts. The use of hyperspectral
imagery for assessing mangroves is less common than for terrestrial forest ecosystems. In this study,
two well-known measures in statistical physics, Mean Information Gain (MIG) and Marginal Entropy
(ME), have been adapted to high spatial resolution (2.5 m) full range (Visible-Shortwave-Infrared)
airborne hyperspectral imagery. These two spectral complexity metrics describe the spatial hetero-
geneity and the aspatial heterogeneity of the reflectance. In this study, we compare MIG and ME
with surface reflectance for mapping mangrove extent and species composition in the Sierpe man-
groves in Costa Rica. The highest accuracy for separating mangroves from forest was achieved with
visible-near infrared (VNIR) reflectance (98.8% overall accuracy), following by shortwave infrared
(SWIR) MIG and ME (98%). Our results also show that MIG and ME can discriminate dominant
mangrove species with higher accuracy than surface reflectance alone (e.g., MIG–VNIR = 93.6% vs.
VNIR Reflectance = 89.7%).

Keywords: aspatial heterogeneity; spatial heterogeneity; species discrimination; airborne; mean
information gain; marginal entropy; CASI; SASI

1. Introduction

Mangroves are considered to be among the most threatened ecosystems on Earth [1],
despite their ecological and economical importance. Globally, mangroves cover 137,760 km2 [2]
and are estimated to be disappearing at a rate of approximately 1% annually, primar-
ily caused by human alteration to the landscape [1,3]. Conversion of mangrove habitats to
agriculture, aquaculture, urbanization, and their over-exploitation are among the leading
causes for their loss and there is an urgent need for conservation and restoration [1,4,5].
Structurally, mangroves are characterized by a unique composition of tree and shrub
species capable of thriving in saline conditions [4]. They are primarily found in coastal
environments in the tropical and subtropical regions of the world, forming an interface
between the sea and terrestrial environment [6,7]. They serve as an important ecological
and economic resource providing many ecosystem services [8–10]. For instance, mangroves
serve both as a barrier that protects coastlines and as significant carbon sinks (blue car-
bon) [11], thus serving as a key natural climate solution to mitigate global warming [4,12].
The structural complexity of mangrove forests makes them highly efficient in trapping
laterally imported carbon from riverine and oceanic sources [11]. It has therefore become
increasingly important to monitor the periodic changes of their extent and distribution
to assist in conservation planning [13]. However, the inundation and inaccessibility that

Remote Sens. 2021, 13, 2604. https://doi.org/10.3390/rs13132604 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6928-3462
https://orcid.org/0000-0002-1676-481X
https://orcid.org/0000-0003-0287-8960
https://doi.org/10.3390/rs13132604
https://doi.org/10.3390/rs13132604
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13132604
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13132604?type=check_update&version=2


Remote Sens. 2021, 13, 2604 2 of 28

regularly characterizes mangroves makes it extremely challenging to conduct field obser-
vations using conventional survey methods [9]. The cost, logistics, and time investment
required for such field observations are often deemed impractical and a major concern to
ecologists, particularly when considering data collection over a large spatial extent [14].
Remote sensing has shown great promise in overcoming these constraints (e.g., [2,15]).

Until recently, the primary utility of remote sensing has been to map mangrove extent
at different scales [6,9,16], predominantly from moderate spatial resolution (i.e., ≥10 m)
satellite imagery such as Sentinel-2 [17,18]. The Global Mangrove Distribution map was de-
veloped based on Landsat imagery [2], and, subsequently, Global Mangrove Watch (GMW)
produced an updated global baseline map of mangrove extent using a combination of
Synthetic Aperture Radar (SAR) data acquired by the Advanced Land Observing Satellite
(ALOS) Phased-Array L-band Synthetic Aperture Radar (PALSAR) and a composite of
Landsat imagery [19]. Despite the promising results attained by the ALOS PALSAR prod-
ucts, they depend on flooding of mangrove habitats for optimal performance. Seasonally
flooded mangroves may result in sub-optimal mangrove classification performance and the
1 ha spatial constraints of ALOS PALSAR products makes it difficult to accurately detect
smaller fragmented areas of mangroves [19]. Therefore, a high spatial resolution optical
image mapping approach is still needed to delineate fragmented mangrove areas.

Mangrove species have also been mapped using data from Earth observation satellites
and manned and unmanned aerial systems across multiple spatio-temporal scales. For in-
stance, multispectral imagery acquired from the Landsat series, Sentinel-2, and SPOT have
been used for mapping species composition [6,9]. Mangrove species were also mapped
successfully by extracting image texture and spectral statistics from IKONOS and Quick-
bird multispectral imagery, with IKONOS showing superior results [20]. However, due to
limitations in spectral resolution, conventional satellite imagery is somewhat restricted in
its ability to effectively separate mangrove species [15].

The limitations of multispectral satellite imagery can impact mangrove classification
accuracy [6,15]. Hyperspectral imagery (HSI) can overcome these constraints and po-
tentially attain better classification results. HSI is characterized by substantially higher
spectral resolution compared to conventional multispectral sensors. The predominant
features often used to discriminate mangrove communities using HSI are mainly spectral
characteristics (both at canopy and leaf levels) as well as texture [21,22]. Pixel based super-
vised classification methods and machine learning techniques (e.g., maximum likelihood,
support vector machine, random forest classification, etc.) that utilize the spectral charac-
teristics of materials have dominated studies involving mangrove classification [9,23]. For
instance, mangrove species mapping based on the spectral angle from Hyperion imagery
attained an overall classification accuracy of 76.4% [24]. Mangrove habitats have also
been mapped with airborne HSI using three different methods (i.e., band ratio, supervised
and unsupervised classification) with resultant accuracies between 70–85%, higher than
the classification accuracy attained with SPOT and Landsat multispectral imagery of the
same study area [15]. Additionally, the use of object-based image analysis more accu-
rately discriminated species (Overall Accuracy (OA) = 76%) than a pixel-based approach
(OA = 56%) from airborne HSI (spatial resolution = 4 m) [25]. By incorporating a digital
surface model with object-based analysis of UAV-HSI (spatial resolution = 2 cm), the classi-
fication accuracy of mangrove species improved by approximately 6% (OA = 82.09% vs.
88.66%) [22]. Nonetheless, virtually all classification methods are affected by the spectral
variability in HSI [26]. Therefore, for optimal classification performance or target detection,
an understanding of the spectral variability is required to ensure the approach chosen is
robust to the inherent spectral variability captured by HSI [26].

Although HSI has been shown to be very promising, the development of methods
that advance HSI analysis to assist in mapping mangrove extent and species composition is
in the initial stages [9]. Continued development of more reliable and robust techniques for
rapid assessment of vegetation at multiple spatial scales has been encouraged for conser-
vation planning [27]. Recently, there have been substantial research efforts concentrating
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on the development of methods for quantifying ecosystem structural complexity [28]. For
instance, spatial and aspatial measures of complexity known as the Mean Information Gain
(MIG) and Marginal Entropy (ME) derived from a single band of RGB photographs (from
digital cameras) have been developed for rapid assessments of ecosystems [28,29]. MIG
is a measure of the randomness of a given landscape, considering the spatial variation
in reflected radiation across the landscape. In other words, MIG provides an estimate of
the spatial heterogeneity of the reflectance in the landscape being studied. In contrast,
ME (i.e., Shannon Entropy) provides an estimate of aspatial spectral heterogeneity, which
is the probability of observing a pixel value independent of its location in the scene [30].
Several studies have demonstrated the utility of these metrics for biodiversity assessments,
with promising results. For instance, an empirical relationship was established between
MIG estimated from digital photographs and benthic epibiota richness and evenness [27],
and MIG computed from digital photographs and satellite imagery has been linked to
habitat complexity of a coral reef [31]. Similarly, a positive relationship was established
between biodiversity metrics of understory vegetation in a temperate forest and MIG and
ME derived from digital RGB photographs [30,32]. Despite the promising results attained
in these studies, MIG and ME metrics have not yet been applied to HSI for mangrove forest
extent and species mapping. The MIG and ME adapted to HSI are referred to as spectral
complexity metrics (SCM), where MIG is the spectral reflectance spatial heterogeneity
(spectro-spatial heterogeneity) and ME is the spectral reflectance aspatial heterogeneity
(aspatial spectral complexity) [28,33].

In this study, MIG and ME are applied to high spatial resolution (2.5 m) full range
(Visible-Shortwave-Infrared) airborne hyperspectral imagery acquired over the Sierpe
mangroves in southern Costa Rica. The three main objectives of our study are: (1) To
determine the utility of the spectral complexity metrics (MIG and ME) for discriminating
mangrove extent from terrestrial forest, (2) To compare the separability of predominant
mangrove species using spectral complexity metrics and surface reflectance, and (3) To
examine the spectral variability of the predominant mangrove species across the visible
to shortwave infrared regions. It is expected that the results from this study will support
landscape mapping of mangrove forest extent and species distribution to complement
global mangrove conservation efforts.

2. Materials and Methods
2.1. Study Site

Our study focused on approximately 18,000 ha of mangrove forest in Sierpe, along the
southwest Pacific coast of Costa Rica (Figure 1). The Térraba-Sierpe mangroves, as they
are known in Costa Rica, are found in the estuary of the Rio Grande de Térraba and Rio
Sierpe rivers [34]. This large mangrove ecosystem constitutes approximately 40% of all
mangroves in the country. The adjacent old-growth tropical wet forest on the Osa peninsula
is known for its high biodiversity. It is part of a large conservation area known as the Área
de Conservación de Osa (ACOSA) [35,36] (Figure 2). Although the study area is considered
to have undergone minimal disturbance compared to other similar habitats in Costa Rica,
it is threatened due to anthropogenic activities and economic factors [37].

Despite these ongoing threats, very few studies have attempted to map the recent
status and extent of the mangroves on a landscape scale. Apart from global efforts to
map overall mangrove extent [2,38], some large-scale mapping of mangrove extent was
conducted two decades ago using moderate resolution (30 m) Landsat TM satellite imagery
and SPOT-2 Imagery (60 m resolution) [39]. Although some recent landscape scale species
distribution mapping efforts have also been conducted with RapidEye satellite imagery
(e.g., [40]) and a combination of field surveys, aerial photographs from the Costa Rican
Airborne Research and Technology Applications (CARTA) mission along with Quickbird
imagery [41], continued temporal monitoring of mangrove extent and species distribution
on a landscape scale is needed for conservation planning and decision making. The predom-
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inant species in Sierpe include Rhizophora racemosa (mangrove tree), Pelliciera rhizophorae
(mangrove tree), Rhizophora mangle (mangrove tree) and Acrostichum aureum (fern) [40].
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Figure 2. (A) Ground photograph from the Sierpe mangroves, (B) Subset of the CARTA 2005 aerial
photographs from the mangroves, (C) Subset of a CASI 1500 HSI (R: 748 nm G: 550 nm B: 519 nm)
flight line acquired in 2013 illustrating the same subset of mangroves as seen in B. The delimitation
of terrestrial forest and mangroves is more apparent from the HSI than from the aerial photograph.
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2.2. Airborne Hyperspectral Imagery (HSI)

We used airborne HSI acquired by Mission Airborne Carbon 2013 (MAC13) [42]. The
imagery consists of data from two distinct pushbroom sensors, the Compact Airborne
Spectrographic Imager 1500 (CASI) and the Shortwave Airborne Spectrographic Imager
644 (SASI). The CASI-1500 acquired 199 spectral bands across the 375 nm to 1050 nm
wavelength range, while the SASI acquired 160 spectral bands across the 883 nm to 2523 nm
range. Characteristics of the sensors and sample flight planning parameters are outlined in
Tables 1 and 2.

Table 1. Characteristics of CASI-1500 and SASI-644 Sensors used in the Mission Airborne Carbon
2013 (MAC13) project for collecting HSI over the study area.

Sensor Characteristic CASI-1500 SASI-644

Field of view (FOV) (◦) 39.9◦ 39.7◦

No. across-track pixels (image) 1493 640
Maximum number of spectral channels 288 (programmable) 160 (nonprogrammable)

Spectral range (nm) 375–1050 883–2523
Spectral resolution (nm) 3.2 16 nm @ 883 nm

12 nm @ 2523 nm

Table 2. Sample flight planning parameters for the study region for both CASI and SASI modified
from [42].

ACOSA Mission Parameter CASI SASI

Flight Planning
Parameter

Ground Speed (kn) 120 120
Flight line side overlap 15% 15%

Planned maximum roll (◦) 5 5
Avg. flight line length (km) 28.1 28.1

Number of flight lines 16 16
Integration time (ms) 32 2.88–5.06

Calculated
Parameter

Altitude (m AGL) 2570 2570
Flight line spacing (m) 1350 1350

Across-track pixel resolution (m) * 1.5 3.4
Along-track pixel resolution (m) * 2.0 3.5

Average coverage per flight line (km2) 45.2 45.0
* Values calculated according to [43] considering the FWHM of a Gaussian point spread function (PSF) in the
determination of the pixel resolution as acquired.

2.3. Pre-Processing

The raw images were preprocessed to radiance following the standard methodology
described in [42,44]. The Atmospheric and Topographic correction module implemented in
ATCOR-4 (rugged terrain) (Version 7.3.0 2019) was used to account for the influence of the
atmosphere, terrain, solar illumination geometry, and viewing geometry of the sensor to
derive surface reflectance. Although our study was focused on the mangroves, surrounding
terrestrial forests were characterized by highly variable topographic complexity, with a
mean elevation and standard deviation of 100 m and 119 m, representing an elevation range
of 0–669 m [42]. Topographic differences are known to cause variability in the incident
radiation [45]; as a result, bidirectional reflectance effects are inevitable, with potential
implications on the quality of the spectral information [46]. This topographic influence
traceable to individual pixels must be accounted for during the preprocessing stage to
ensure consistency in the spectra [45,46]. The incident angle topographic BRDF effect was
corrected using the Modified Minnaert (MM) topographic correction routine available in
ATCOR-4 [46].

The low signal and noisy regions of the CASI (<400 nm and >900 nm) were excluded
from further analysis. For the SASI, bands in the wavelength ranges between 1367 nm–
1492 nm and 1800 nm–2200 nm were excluded from the analysis due to atmospheric water
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absorption and known low signal-to-noise ratio. Finally, because spectral artefacts tend to
remain after atmospheric correction, particularly for high spectral resolution datasets [47],
spectral polishing was applied in ATCOR-4 to reduce these residual artefacts. The final
number of bands that remained for the CASI and SASI were 174 and 65, respectively. The
parameters used for the atmospheric correction are shown in Table S1 (Supplementary Material).

After atmospheric correction, the flight lines were geocorrected following [42,44],
using the NASADEM [48] digital elevation model. Typically, airborne HSI over large
geographic areas requires multiple flight lines. These images are characterized by dis-
tinct acquisition times, and thus, differing illumination geometry, which usually results
in variable illumination effects. Therefore, to map on a landscape scale the extent and
distribution of mangrove species, it was important to have spectrally consistent datasets
covering the landscape. Hence, after atmospheric correction, it was necessary to normalize
the illumination differences observed between individual flight lines to ensure spectral
consistency across entire image scene.

During data acquisition, the last flight line on the 29 April was repeated on the
30 April. Pixels from these repeated flight lines were used to compute scaling constants
for normalizing the illumination effects before applying them to the other flight lines.
Over 100,000 cloud free pixels were selected from same areas in both images. Pearson’s
correlation coefficient was computed for each pixel pair to determine the correlation of
their reflectance spectra. Differences in reflectance were estimated between pixel pairs for
each band and the results averaged for use as scaling constants to account for the variable
illumination effects.

The CASI and SASI sensors have different along and across track pixel resolutions in
the original acquisition geometry (Table 1), because they have different point spread func-
tions (PSF), FOVs, sensor characteristics, and integration times. Considering the FWHM of
the PSF in the determination of the pixel resolution, with the acquisition parameters (i.e.,
altitude, speed, integration time, frame time) following the methodology described by [43],
approximately only 58% of the spectrum from a given pixel originates from materials that
fall within the area of the raw pixel resolution in both across and along track directions.
This emphasizes that there are differences in the material contributions to the pixels from
the two sensors. Therefore, all analyses were performed on the two datasets separately.

2.4. Non-Overlapping Window Size Determination

The implementation of SCM is based on a non-overlapping window (i.e., edges of
a square blocks or tiles of imagery) approach. Before its calculation, determining the
optimal window size for the computation was a key consideration in our analysis. First, we
explored different window sizes to ensure appropriate pixel pairs are captured that could
depict both the spatial and aspatial heterogeneity within a unit area [49]. To determine
the suitable window size for both CASI and SASI imagery for separating mangrove from
forest, three window sizes were explored, starting from a 25 × 25 pixel window, which
represents 0.4 ha, to 100 × 100 pixels (6.25 ha) and 200 × 200 pixels (25 ha). To discriminate
mangrove species, we examined two additional smaller windows sizes 10 × 10 pixels
(0.063 ha) and 5 × 5 pixels (0.016 ha). Since, the predominant mangrove species in the
study area occur in stands > 1 ha (40 × 40 pixels), the above-mentioned window sizes were
deemed suitable for species classification. Next, the SCM were computed for both the CASI
and SASI imagery (Figure 3). As seen in Figure 3, windows that span the NoData region
outside the flight line boundaries will have an influence on the SCM estimates at the edges
of the images. We consider this influence to be minimal in this analysis considering the
landscape scale at which the implementation was done (HSI mosaic > 18,000 ha).
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lines show an active processing window with a diagram showing an example of the MIG (k = 2) computation reprinted from
Ecological Indicators, 9/1248–1256, Raphaël Proulx, Lael Parrott, Structural complexity in digital images as an ecological
indicator for monitoring forest dynamics across scale, space and time, page 1251, Copyright (2009), with permission
from Elsevier.

Spectral Complexity Metrics (SCM)

The SCM were computed in MATLAB v2018b for each spectral band of the CASI
(VNIR = 174 bands) and SASI (SWIR = 65 bands) imagery. The methods proposed by [30,32]
were followed to compute MIG and ME as described below.

The MIG (Equation (1)) computes the spectro-spatial heterogeneity (p(Xi)) for a given
image that is exclusive of the portion of aspatial spectral heterogeneity (p(Yi)) [32].

MIG =

[
−∑Nk

i=1 p(Xi)logp(Xi)
]
−
[
−∑N

i=1 p(Yi)logp(Yi)
]

log
(

Nk

N

) (1)

where:

k = 4 (i.e., the observed 2 × 2-pixel neighborhood; when k = 4, it means the combination of
positions (x, y), (x + 1, y), (x, y + 1) and (x + 1, y + 1) in the image);
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Nk signifies the maximum number of possible reflectance combinations, given a set number
of reflectance values (bins), N;
log (Nk⁄N) is used to normalize MIG values between 0 and 1;
p(Xi) is the probability of locating a specific 2 × 2 combination of pixel reflectance; and
p(Yi) is the relative frequency or probability of locating reflectance value (Yi) in the image
irrespective of its location.

To avoid biasing due to undersampling of the 2 × 2 reflectance combination in the
image, it is generally recommended that the ratio of the total number of pixels in the image
to Nk should be greater than 100. Based on this, we chose a bin value (classes of reflectance
values), N = 18. We chose the highest theoretically feasible 2 × 2 reflectance combination
to preserve as much information as possible [32].

The ME was computed according to Equation (2):

ME =

[
−

N

∑
i=1

p(Yi)logp(Yi)

]
(2)

where p(Yi) is the probability of locating a specific pixel reflectance value in a 2-dimensional
image independent of the position of that pixel in the image.

The MIG and ME values ranges from 0 to 1 with the 0 corresponding to patterns
with uniform spectral composition whilst high values close to 1 depict random or highly
differentiable patterns (Figure 4).
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Indicators, 8/270–84, Raphaël Proulx, Lael Parrott, ‘Measures of structural complexity in digital images
for monitoring the ecological signature of an old-growth forest ecosystem’, page 15, Copyright (2008),
with permission from Elsevier.

2.5. Mangrove-Forest Classification

A forward feature selection (FFS) [50] was implemented on all three versions of the
data (i.e., spectral reflectance, ME, and MIG) with the PRTools toolbox version 5.4.2 [51,52]
in Matlab v2018b to reduce the dimensions of the data while identifying the optimal bands
that best separates the classes. For the mangrove extent classification, 500 pixels of SCM and
6000 pixels of reflectance at the native spatial resolution (2.5 m) representing both terrestrial
forest and mangroves were selected from one of the flight lines. We then implemented
the FFS on these data based using the nearest neighbor (NN) criterion. The FFS algorithm
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selects the features (i.e., bands) by first identifying the most distinct, sequentially adding
bands to the set in the order that they improve the separability of the classes [50].

Theoretically, to avoid overfitting, the maximum number of bands (F) necessary for
separation of the number of classes can be determined from Equation (3) [53].

F =
(n − g)

3
(3)

where n is the number of samples and g is the number of classes.
Next, we extracted the optimal bands from the FFS to train and evaluate the classi-

fication performance of selected machine learning (ML) algorithms in MATLAB R2018b.
Four ML classifiers frequently used in the literature, namely, k-nearest neighbor (KNN),
quadratic support vector machine (Q-SVM), linear and quadratic discriminant (LDA and
QDA) classifiers were tested. The classification performance of each ML algorithm was
assessed using a 20% hold-out equivalent to minimum of 50 samples per class (i.e., using
80% of the dataset for training and 20% for testing).

2.6. Mangrove Species Classification

We used ArcGIS 10.7.1 to georeference published ground data of mangrove species
distribution over the study area [41]. This reference map from [43] was produced using a
combination of aerial photographs, Quickbird satellite imagery, and 1127 sample points
from 77 field plots (60 m × 10 m) distributed across the study area. We overlaid the reference
map on the HSI and extracted 181 ground truth regions of interest randomly distributed
across the study area (Figure S1). Each region covered approximately 1.6 ha and represented
the six predominant classes (five mangrove species classes and a forest class). The mangrove
species classes included 3 pure stands: Acrostichum aureum (ACAU), Pelliciera rhizophorae
(PERH), Rhizophora racemosa (RHRA); two mixed stands: Acrostichum aureum–Rhizophora
racemosa (ACAU–RHRA), Rhizophora racemosa–Pelliciera rhizophorae (RHRA–PERH); and
a forest class. To compare the separability of these predominant mangrove species, the
spectral reflectance data were re-sampled to the same spatial resolution as the SCM (nearest
neighbor resampling). Next, an FFS was run separately on the reflectance data (both
native resolution and spatially resampled) and the SCM using pixels within the ground
truth target areas. Table 3 provides a summary of the number of training pixels used for
the analysis per metric. We increased the total sample size to 30,000 pixels to constitute
5000 pixels per class to capture spectral variability of the reflectance for classification, due
to the small pixel size of the reflectance data at the native spatial resolution.

Table 3. Total number of training pixels used for FFS and classification for each metric at different
spatial resolutions.

Metric Spatial
Resolution No. of Training Pixels

SCM/Reflectance 62.5 m 700
SCM/Reflectance 25 m 1500
SCM/Reflectance 12.5 m 3000

Reflectance 2.5 m 5000

Using the optimal bands selected from the FFS, we trained KMM, LDA, and Q-SVM
classifiers in MATLAB v2018b.

Next, the accuracy of each classifier was assessed using a confusion matrix. The
sample size (i.e., >150 pixels) used for the calculation of the error matrix was consistent
with the minimum sample requirement, as determined using a multinomial distribution
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equation [54]. For the six predominant species classes (k = 6) and a desired confidence level
(α) of 90%, the minimum sample size can be calculated (Equation (4)):

n =
B ∏i(1 − ∏i)

b2
i

(4)

where:

B = Upper (α/k) × 100th percentile determined from an χ2 distribution table with 1 degree
of freedom
∏
i

= Proportion of area occupied by class (i)

bi = precision for each class (i.e., 0.1)

2.7. Computation of Spectral Beta (β) Diversity

Finally, to determine the spectral variability of the predominant mangrove species, we
calculated a measure of spectral β diversity for each mangrove class. For the reflectance data
(2.5 m) from within each of the ground truth regions of interest for each class, 500 randomly
sampled pixels were used (n = 83,500). For the SCM (25 m) and spatially resampled
reflectance, (25 m), approximately 2000 pixels representing all 6 classes were used for the
computation of β diversity. The spectral β diversity is a measure of the spectral variation
of each mangrove class. Following [55], we calculated the spectral β diversity of the
predominant mangrove species classes using MIG and ME at a spatial resolution of 25 m,
and spectral reflectance at both 2.5 and 25 m. For the sum-of-squares partitioning approach
to calculating the spectral β diversity it is imperative that all communities (regions of
interest: ROI) have an equal number of pixels [55]. To achieve this, we sampled a constant
(m) number of pixels in each ROI selected for each input data (i.e., SCM and reflectance). By
extracting the mean of the (m) pixels in each ROI (k) and grouping per class, we computed
β diversity (SSβ,k) using Equations (5) and (6).

Skj =
(

ŷkj − ŷj

)2
(5)

SSβ,k =
p

∑
j=1

mskj (6)

where:

Skj = Squared deviation of the kth community (ROI) and jth band.
ŷkj = The mean of m pixels of ROI (k) per class corresponding to the jth band.
ŷj = The mean of each class (column) and corresponding to the jth band.

A Shapiro–Wilk test of normality was conducted for SSβ,k of all classes. Based on
the outcome of the normality test, either a Tukey post-hoc test or Kruskal–Wallis test was
implemented to examine the differences in spectral variability between each pair of the
mangrove species at a 95% confidence level.

3. Results
3.1. Spectral Consistency

An example of the mean and standard deviation of vegetation spectra representing
the same mangrove vegetation covering 41.8 ha (~67,000 pixels) from two neighboring
flight lines before and after illumination normalization is shown in Figure 5. Prior to the
illumination normalization, the spectra were quite dissimilar with differences of up to
30% for the VNIR and up to 20% for the SWIR. After normalization, the spectral similarity
improved with differences < 5% across the spectral range indicating an improvement in
the spectral consistency (Figure 5c,d) across the two flight lines.
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Figure 5. Mean and standard deviation of reflectance of mangrove vegetation covering 41.8 ha
(67,000 pixels) from the CASI and SASI imagery before (black dashed line) and after (red dashed
line) applying the BRDF correction. Plots a and b show the difference in reflectance spectra before
correction for the CASI (a) and SASI (b). Plots c and d show the reflectance spectra for the CASI (c)
and SASI (d) after correction. Error bars illustrate one standard deviation.

3.2. Spectral Reflectance and Spectral Complexity Metrics

The mean and standard deviation of the spectral reflectance, ME, and MIG represent-
ing forest and mangrove, are shown in Figure 6. For the reflectance data, across the blue
through red-edge wavelength range, the mean spectra of mangrove and forest are very
similar (<1% difference). The difference increased to 1–4% difference in the NIR and up to
7% in the SWIR (Figure 6).

3.3. Mangrove Extent Classification

The summaries of the results for the FFS (reflectance and SCM) are presented in
Figure 7 and Figure S2. With the reflectance data at the native spatial resolution, 33 bands
were optimal in the VNIR, corresponding to a separability value of 0.97, while 26 bands
were optimal (separability value = 0.90) in the SWIR. Figure 8 shows the respective positions
of the optimal bands in the electromagnetic spectrum for both VNIR and SWIR reflectance
(2.5 m). After the transformation of VNIR reflectance to the SCM, the best separability was
achieved with a window size of 250 m (100 × 100 pixels). The optimal bands reduced to 18
for MIG, and 15 for ME, with separability values of 0.99 and 0.97, respectively (Figure 9a).
For the SCM–SWIR, the best separability was achieved at the 62.5 m scale (Figure 7 and
Figure S2). Six bands were optimal for MIG–SWIR with a separability value of 0.99, while
20 optimal bands corresponding to a separability value of 0.99 were selected for ME–SWIR.
The position of the optimal spectral bands for MIG–SWIR is shown in Figure 9b. Figure S2
presents the results for the FFS from the other windows sizes.

The overall best mangrove extent classification accuracy using the optimal bands
(Figures 7–9) is shown in Figure 10. The overall best mangrove classification accuracy
attainable with the reflectance data at the native spatial resolution was 98.8% and 95.3% for
CASI (VNIR) and SASI (SWIR), respectively (Q-SVM classifier). However, the SCM–SWIR
(both MIG and ME) had a classification accuracy 2.7% higher than reflectance (i.e., 98%)
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(Figure 10) for both MIG (KNN classifier) and ME (Q-SVM classifier) The overall best
classification accuracy for MIG (VNIR) and ME (VNIR) was 98% (KNN classifier for both).
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Figure 6. Comparison of mangrove and forest reflectance (%) (mean and standard deviation of
250 pixels), Marginal Entropy (ME), and Mean Information Gain (MIG): (a) spectral reflectance in
the VNIR (2.5 m); (b) spectral reflectance in the SWIR (2.5 m); (c) ME -VNIR (250 m); (d) ME -SWIR
(62.5 m); (e) MIG -VNIR (250 m); (f) MIG-SWIR (62.5 m). Scales with the best separability between
forest and mangrove for the SCM are shown (see Section 3.3). The MIG and ME values of forest were
larger than that of mangrove from the VNIR to the SWIR region of the electromagnetic spectrum
except at 1516 nm and 1792 nm. In the VNIR portion of the spectrum, the difference between forest
and mangrove ranged between 0.03–0.1 for MIG and 0.02–0.08 for ME. In the SWIR portion of the
electromagnetic spectrum, the difference between forest and mangrove ranged between 0.01 to 0.13
for MIG and 0.02–0.18 for ME. The greatest differences between both mean MIG and ME of forest and
mangrove were recorded in the NIR (>765 nm) and between the wavelength ranges 1553 nm–1738 nm
for SWIR (Figure 6).
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Figure 7. Results from the forward feature selection (FFS) implemented on reflectance and SCM
data with the highest NN criterion values: (a) VNIR reflectance (2.5 m), MIG–VNIR (250 m), and
ME–VNIR (250 m); (b) SWIR reflectance (2.5 m), MIG–SWIR (62.5 m), and ME–SWIR (62.5 m).
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Figure 8. Spectral reflectance of mangrove and terrestrial forest with vertical lines showing the
positions of the optimal bands selected by the forward feature selection (FFS). (a) 33 bands selected
from the VNIR reflectance (2.5 m), (b) 26 bands selected from the SWIR reflectance (2.5 m) data.
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Figure 9. SCM of mangrove and terrestrial forest with vertical lines showing the positions of the
optimal bands selected by the forward feature selection (FFS). (a) Eighteen bands selected from the
MIG–VNIR (250 m), (b) 6 bands selected from the MIG–SWIR (250 m) data. Because separability was
higher for MIG, positions of optimal ME bands not shown.
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Figure 10. The mean classification accuracy for mangrove and forest achieved for each of the input
datasets assessed in this study (i.e., Reflectance, MIG, and ME) for both VNIR and SWIR imagery.
The error bars illustrate the minimum and maximum overall classification accuracy achieved for
each dataset.

The overall classification performance was comparable for reflectance (VNIR) and
SCM (VNIR). However, with the SCM (SWIR) data, the overall classification was more
accurate compared to reflectance (SWIR). The summary of classification performance of
the different metrics is presented in Figure 10.
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3.4. Feature Selection for Species Discrimination

Based on the FFS at the native spatial resolution of 2.5 m, for the spectral reflectance,
52 optimal bands (VNIR) were needed to separate the six classes resulting in a nearest-
neighbor (NN) criterion value of 0.81 (Figure 11a). For the SWIR reflectance data at 2.5 m,
34 bands were optimal (NN Criterion = 0.89) for the six classes (Figure 11b). This shows
a better separability in the SWIR between the six predominant species classes compared
to VNIR reflectance. It is important to note that due to the small pixel size of the imagery,
different sets of randomly selected representative pixels will result in different sets of
optimal bands. At the coarsest SCM scale (62.5 m), a maximum criterion value of 0.92
(38 optimal bands) was achieved for MIG–VNIR (Figure 12), while for ME–VNIR, 30 bands
were optimal with a criterion value of 0.90. For MIG–SWIR, (62.5 m), 26 optimal bands
achieved the highest overall separability value of 0.85. For ME (62.5 m), 21 optimal bands
resulted in a separability of 0.81.
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Figure 11. Optimal bands from the FFS for discriminating the six predominant species classes from
(a) VNIR reflectance (2.5 m), (b) SWIR reflectance (2.5 m), (c) VNIR reflectance resampled to the
coarsest SCM spatial (62.5 m), (d) SWIR reflectance resampled to the coarsest SCM spatial resolution
(62.5 m).

The greatest separability between the species classes was found for an SCM window
size of 25 m with 0.94 for both ME–VNIR (39 optimal bands) and MIG–VNIR (57 optimal
bands) (Figure 13). At the smallest SCM window size of 12.5 m, the separability of the
six classes was the lowest at 0.85 for both ME–VNIR and MIG–VNIR. For SCM–SWIR,
a separability of 0.82 was recorded for both ME and MIG (25 m spatial resolution). The
lowest separability was recorded for the SWIR at the 12.5 m resolution: 0.68 for MIG and
0.72 for ME.
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Figure 12. Results of the forward feature selection to determine the separability and optimal bands
necessary for discriminating the six predominant species using SCM at the coarsest scale (62.5 m):
(a) MIG–VNIR (b) MIG–SWIR, (c) ME–VNIR and (d) ME–SWIR.
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Additionally, the results of the FFS for only the pure classes made up of PERH, ACAU,
and RHRA show that at 2.5 m, 54 bands in the VNIR and 30 bands in the SWIR reflectance
could attain a high NN criterion of 0.92 and 0.95, respectively. With 22 optimal bands,
MIG–VNIR (25 m) and ME–VNIR (25 m) recorded criterion values of 1 to constitute the
best separability for the pure classes. In contrast, the SCM–VNIR recorded a criterion
value of 0.987 (17 optimal bands) for MIG and 0.987 (25 optimal bands) for ME at the
coarsest scale (62.5 m). The outcome of the FFS also shows SCM–VNIR (25 m) having better
separate specific class combinations (such as ACAU–RHRA versus RHRA–PERH) than the
reflectance at native resolution. The results further show that the NN criterion values of all
the metrics were highest for ACAU versus ACAU–RHRA ranging between 0.976–1. This
indicates a greater separability of the ACAU and ACAU–RHRA class pair compared to the
other classes examined in this study.

3.5. Species Classification

Figure 14 shows a comparison of the classification accuracies attained when the
window size is varied from 12.5 to 62.5 m. For the VNIR, the lowest classification error
was achieved with ME (93.6%, Q-SVM classifier) at a window size of 25 m. In comparison,
the highest classification accuracy from the reflectance at the native spatial resolution was
89.7% (Q-SVM classifier). The best classification accuracy for the SWIR was achieved by
ME (84.5%, Q-SVM classifier, 25 m). However, the best SWIR classification was found for
reflectance at the native spatial resolution (2.5 m) resulting in an accuracy of 94.8% with
the Q-SVM classifier (Figure 14).
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Figure 14. A comparison of the mean classification accuracies for different window sizes 62.5 m,
25 m, and 12.5 m of reflectance data and SCM. The error bars illustrate the minimum and maximum
overall classification accuracy achieved for each dataset.

The overall best SCM–VNIR classification performance was found with the 25 m
(10 × 10 pixel window) 93.1% and 93.6% for MIG and ME, respectively, in comparison
to 80% for 25 m spatially resampled VNIR reflectance (Figure 14). At 25 m, SCM–SWIR
recorded a classification accuracy between 68.8–83.7% comparable to what was recorded
for SWIR reflectance (25 m) in the range of 70.1–82.7%. Figure 15 illustrates the confusion
matrix of the best performing classifiers ME–VNIR at 25 m spatial resolution (Q-SVM
classifier) and 2.5 m SWIR reflectance (Q-SVM classifier). The producer’s accuracy for ME–
VNIR ranged between 79.7–100% whilst the user’s accuracy ranged between 79.4–100%
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(Figure 15a). The producer’s accuracy for SWIR 2.5 m reflectance ranged from 83.5%
to 99.6% and the user’s accuracy ranged from 80.2% to 99.4% (Figure 15b). The best
classification outcome for SCM–SWIR was achieved by ME (25 m) with an accuracy of
84.5%. Further evaluation of the confusion matrix of the best VNIR classifier revealed that
most of the confusion was between the RHRA and RHRA–PERH classes. For the best
SWIR classifier (Figure 15b), the majority of the confusion was between PERH, RHRA, and
RHRA–PERH. The confusion matrices for the other classifiers and scales are presented in
Figures S3–S11. A species distribution map using ME–VNIR data (25 m) with the Q-SVM
classifier is shown in Figure 16.
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3.6. Spectral Beta (β) Diversity

For reflectance data (VNIR) at the native pixel size of 2.5 m, the spectral β diversity
was highest for ACAU (µ = 29.51 ± 18.13) and lowest for PERH (µ = 8.1 ± 6.3) (Figure 17a).
Similarly, ACAU and the forest class recorded the highest (µ = 52.4 ± 27.22) and lowest
(µ = 11.88 ± 5.4) spectral variability, respectively, in the SWIR reflectance (Figure 17b).
The spectral β diversity of the reflectance data (both VNIR and SWIR) at 2.5 m did not
always follow a normal distribution; the post-hoc Kruskal–Wallis test showed significant
differences (p < 0.05) between ACAU versus forest, ACAU–RHRA and RHRA–PERH. In
addition, a significant difference (p < 0.05) was observed between PERH and RHRA for
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the VNIR reflectance. After resampling the reflectance data to the same spatial scale as
the SCM (25 m), the overall values of β diversity decreased. At the 25 m pixel size, in the
VNIR, β diversity was highest for ACAU (µ = 0.87 ± 0.64) and lowest for ACAU–RHRA
(µ = 0.21 ± 0.20) (Figure 17c). For the SWIR (25 m), RHRA–PERH and forest recorded the
highest (µ = 0.77 ± 0.75) and the lowest spectral β diversity (µ = 0.29 ± 0.35) (Figure 17d).
Significant differences (p < 0.05) were observed between ACAU and other classes except
RHRA–PERH for SWIR reflectance (25 m) while the differences between ACAU versus
PERH, RHRA, and ACAU–RHRA were significant for VNIR spatially resampled reflectance
(25 m).
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For MIG–VNIR (25 m), the variation in spectral β diversity was highest for the PERH
class (µ = 4.3 ± 1.83) with the least variability recorded by forest class (µ = 0.75 ± 0.38)
(Figure 18a). Additionally, for ME–VNIR, RHRA–PERH had the highest variation in
spectral β diversity (µ = 5.5 ± 3.6), while the lowest was attained by the forest class
(µ = 1.8 ± 0.84) (Figure 18b). Statistically significant differences (p < 0.05) were found
between the forest and ACAU–RHRA versus pure species and RHRA–PERH for ME–VNIR.
Additionally, for the MIG–VNIR, except for ACAU–RHRA versus forest and RHRA–PERH
as well as ACAU versus PERH, significant differences (p < 0.05) were also found between
a pair of the remaining classes. Considering SCM in the SWIR (25 m), MIG spectral β
diversity was highest for the ACAU class (µ = 2.0 ± 0.65), while forest recorded the lowest
values diversity (µ = 0.14 ± 0.10). For MIG–SWIR (25 m), the differences between the
forest class and all other classes except RHRA–PERH were statistically significant (p < 0.05)
(Figure 18c). In addition, the difference between ACAU versus RHRA and RHRA–PERH
was also statistically different for MIG–SWIR (25 m). With regards to ME–SWIR, PERH is
considered to have the highest β diversity (µ = 3.0 ± 1.9), while the forest class had the
lowest β diversity (µ = 0.72 ± 0.61) (Figure 18d). The results for the post-hoc multiple
comparison test for ME–SWIR (25 m) indicates that there were statistically significant
differences between the forest and all other classes.
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Figure 17. Violin plots showing the 10th and 90th percentiles range of spectral β diversity for five
predominant mangrove species (ACAU, ACAU–RHRA, PERH, RHRA, and RHRA–PERH) and a
forest class for (a) VNIR spectral reflectance at the 2.5 m native spatial resolution. (b) SWIR spectral
reflectance at the 2.5 m native spatial resolution, (c) VNIR spectral reflectance resampled to the same
spatial resolution (25 m) as MIG/ME, (d) SWIR spectral reflectance resampled to the same spatial
resolution (25 m) as MIG/ME. Red dashed lines represent median and the dotted lines represent the
quartiles. Different superscripts letter indicates statistically significant (p < 0.05) differences between
pairs of predominant mangrove species classes.
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Figure 18. Violin plots showing the 10th and 90th percentiles range of spectral β diversity computed
from the SCM at 25 m spatial resolution. Each box represents one of the five predominant mangrove
species classes (ACAU, ACAU–RHRA, PERH, RHRA, and RHRA–PERH) and a forest class. (a) MIG–
VNIR, (b) ME–VNIR, (c) MIG–SWIR, and (d) ME–SWIR. Red dashed lines represent median and
the dotted lines represent the quartiles. Different superscripts letter indicates statistically significant
(p < 0.05) differences between pairs of predominant mangrove species classes.



Remote Sens. 2021, 13, 2604 22 of 28

4. Discussion

The results from our study represent the first attempt to classify mangrove extent
and mangrove species using SCM: MIG (spectral reflectance spatial heterogeneity) and
ME (spectral reflectance aspatial heterogeneity) derived from airborne HSI. While the
highest accuracy separating mangroves from terrestrial forest in the VNIR was found for
the reflectance data at the native spectral resolution (OA = 98.8%, Figure 10), classification
accuracy of both SCM metrics outperformed the original spectral reflectance in the SWIR
by 2.7%. In consideration of current and upcoming spaceborne HSI systems with coarser
spatial resolutions (e.g., 30 m PRISMA, DESIS, EnMAP, HyspIRI), the classification accuracy
from ME–VNIR with a 25 m window size also performed nearly as well (OA = 92%).
Although the mean canopy spectral reflectance of forest and mangrove were comparable in
the visible spectrum (Figure 6), there were differences in the amplitude in the SCM spectra
(Figure 6). The observed differences in MIG and ME values for mangrove and terrestrial
vegetation in the visible spectrum can be associated with differing chlorophyll absorption
for those vegetation types [56]. Canopy structural differences between mangrove and
forest is responsible for observable differences in MIG and ME beyond 680 nm wavelength
range [57]. Furthermore, dissimilarity of the reflectance spectra for both classes in the
shortwave infrared region can be attributed to differences in water content of the habitats
of mangrove and terrestrial forest, with mangrove forest found in substrate with a high
water content due to accumulation as a function of periodic flooding [58–60] (see Figure 2).
Additionally, in the SWIR region, starch, sugar, lignin, protein, and nitrogen are the main
canopy biochemical variables detectable at wavelengths of 1577 nm–1716 nm [61]. An
earlier study conducted by [62] hypothesized that spectral differences expressed by these
leaf components at a longer wavelength (e.g., SWIR and Mid infrared) can be useful for
mangrove discrimination. Based on data from a field spectrometer, [9] showed that two
mangrove species were separable due to their biophysical and chemical properties. This
suggests that there is variability in the concentration of these components in the canopies
of mangrove vegetation and terrestrial forest, thus serving as a potential indicator for
separating mangrove from surrounding vegetation.

The values of the SCM are an indication of the variability of the reflectance. A value
of 0.4 is generally accepted as the threshold between low and high spectral complexity.
Here, forest often had a MIG and ME value above 0.4, indicating that its reflectance is more
diverse than mangrove forest. Comparing both ecosystems, mangroves are considered as
structurally simple (Figure 2a) in terms of species diversity with fewer microhabitats [63,64].
Conversely, tropical forests are among the most structurally complex ecosystems, char-
acterized by high species diversity [65]. Since spectral diversity is positively correlated
with species diversity [66], a unit area in an undisturbed tropical forest with high species
diversity will exhibit variable spectral reflectance that can be associated with the species
present. Notwithstanding, since the ME metric categorizes the landscape according to
the reflectance variability, a higher ME value is expected for the adjacent tropical forest
than the mangrove. Additionally, during MIG computation, spectral reflectance within a
unit area is configured in a more spatially complex pattern; thus, a higher MIG value is
also expected for a unit area with highly variable reflectance (high species diversity) and
vice versa [27]. Computation of MIG and ME produces a spectral complexity signature
that is specific to an ecosystem and can be used to discriminate different habitats [30,32].
This explains why quantifying spectral complexity from HSI in this study was largely
successful in separating mangrove and terrestrial forest. Although multispectral imagery
based indices such as spectral match degree (SMD), normalized difference mangrove in-
dex (NDMI), shortwave infrared absorption depth (SIAD), and a mangrove recognition
index (MRI) have been proposed to discriminate mangroves from other vegetation [67,68],
the classification accuracy attained in this study (OA = 98%) was higher than the overall
classification accuracy (73.43–95%) reported for those indices. Additionally, the SCM also
outperformed the classification accuracy (89.48%) reported for a study that employed a
combination of different vegetation indices to classify mangrove forest [57].
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To discriminate species, we demonstrate that unlike the SWIR reflectance, a transfor-
mation of VNIR reflectance to a measure of spectral complexity (25 m window size) can
improve the classification performance (i.e., up to 93.6%) compared to the accuracy attained
from the VNIR reflectance at the native spatial resolution (Figure 14). Mangrove species
can grow in relatively small patches and linear stands (Figure 2). Therefore, transforming
high resolution HSI to SCM with 25 m spatial resolution could highlight reflectance het-
erogeneity that is characteristic of specific mangrove communities to aid their separability.
Additionally, reflectance heterogeneity can be associated with differences in canopy bio-
chemical traits, and physiological and structural properties of tree species [69,70]. Hence,
a transformation of high spatial resolution HSI to SCM may highlight biochemical and
structural differences specific to mangrove species. In addition, by visual examination
of the HSI (Figure 2), differences between the various species can be observed. These
could explain the classification accuracy attained for the SCM, despite the coarser spatial
resolution of the non-overlapping window (25 m), thus serving as a useful metric for
mangrove species mapping. This finding is important when considering the potential
utility of spaceborne HSI (e.g., Hyperion, EnMAP, etc.) for classifying mangrove species
with moderate spatial resolution (i.e., 30 m).

When comparing VNIR-SCM to VNIR-reflectance at the same spatial scale, we found
that a better species classification performance is possible for the SCM than when re-
flectance is resampled to the same spatial scale (e.g., for 25 m resolution, ME = 93.6% and
Reflectance = 80%; see Figures 14 and 15, and Figure S4). This is because resampling high
spatial resolution HSI (2.5 m) leads to a loss of spectral detail (i.e., through averaging of
mixed pixels) with potential impacts on classification accuracy [71]. Optimal detection of
mangrove vegetation is feasible at specific spatial scales and pixel sizes; thus, a gradual
decrease in classification accuracy is inevitable as high spatial resolution HSI is spatially
degraded [71]. From Figure 2, gaps exist between the mangrove canopies; hence, spa-
tially degrading high resolution HSI implies including non-mangrove spectra within the
averaged spectra, whereas for SCM, the variability of mangrove canopies and non-trees
captured within a 25 m window could highlight structural attributes. At the moderate reso-
lution of the SCM (25 m), the accuracy attained in this study for MIG–VNIR and ME–VNIR
(OA = 93.1% and 93.6%, respectively) was higher than in a recent study that employed
Landsat 8 reflectance data (OA = 68.57%) [72] and also higher than the accuracy attained
with AVIRIS-NG (spatial resolution = 5 m) for mangrove species classification (87.61%) [73].
A recent study that integrated LiDAR with HSI to map mangrove species reported overall
accuracies varying from 86% to 88% [74]. Most hyperspectral remote sensing studies that
have employed machine learning methods to map six or more mangrove species have
reported an accuracy range between 76.12–93.6% [22,23,75], consistent with the accuracy
range recorded in this study.

The key limitation of the SCM is the spatial resolution of the final product, equiva-
lent to the size of the non-overlapping window used for the computation. This implies
that mangrove communities smaller than the spatial extent of the window size cannot
be detected. Originally, MIG and ME metrics have mostly been applied to terrestrial
photographs from digital cameras which have much smaller pixels than the airborne
HSI [27,32]. As demonstrated in this study, the choice of the window size impacts the
classification accuracy (Figure 14). Therefore, it is recommended that the suitable window
size be determined based on the spatial resolution of the imagery and the scale of the anal-
ysis, before proceeding to the computation. In the future, as datasets from spaceborne HSI
such as EnMap [76,77], HISUI [78], PRISMA [79], Planet HSI constellation [80], and others
become widely accessible with global coverage, and new ultra-high resolution UAV-based
HSI systems [81] become fully operational, the efficacy of SCM can be tested with these
datasets to map mangrove extent and species composition.

Finally, spectral variability in reflectance is crucial for inter-species discrimination [26,82].
The results from the spectral β diversity analysis indicate significant differences (p < 0.05)
between some predominant mangrove species from SCM and reflectance (VNIR and SWIR)
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data (Figures 17 and 18). At the canopy level, spectral variability is driven by factors such
as vegetation type, leaf biochemical differences, plant health, background reflectance from
water, soils, and other environmental factors [9,83]. Therefore, for a given neighborhood
of pixels (e.g., 25 m window), the spectral composition may constitute reflected radiation
from multiple targets (e.g., mangrove crowns, ferns, water, canopy shadows, gaps, etc.).
These differences can result in varying estimates of SCM for each processing window even
for mangrove species within the same class. Additionally, with the high spatial resolution
of the airborne HSI, inter-pixel heterogeneity (e.g., locating pixels representing crown shad-
ows or canopy gaps next to a pixel that represents tree crowns) is a common phenomenon
often observed in high resolution scenes [84]. These may explain the significant differences
in β diversity observed between individual classes from SCM and the reflectance data.

For SCM, except MIG–SWIR, the most variable class was found to be PERH or
its association with RHRA (RHRA–PERH) while the forest class was the least variable
(Figures 17 and 18). Unlike the forest class, while RHRA and PERH are similar in terms of
anatomical and physiological attributes, they differ in terms of stand heights, diameters,
density, and flowering periods [85,86]; which are factors that influence spectral character-
istics of those species [9]. Additionally, anthropogenic factors such as selective logging
and agricultural activities commonly affect PERH, thus causing variation in stand struc-
ture [85,87], and usually colonization of the disturbed area by ACAU, a native fern whose
occurrence often indicates habitat disturbance [87]. ACAU also prevents the establishment
of other mangrove species, and in the context of restoration, mapping their extent can
support restoration efforts [88–90]. Therefore, the structural and floristic variations coupled
with environmental factors such as water and soil introduced reflectance variability, thereby
making the PERH class and the association of PERH with RHRA (RHRA–PERH) the most
variable classes.

5. Conclusions

The present study demonstrates the utility of spectral complexity metrics (MIG and
ME), an information theory measure, derived from full range airborne hyperspectral
imagery for mangrove classification. The spectral complexity metrics produced spectral
signatures that can be associated with the mangrove and terrestrial forest. They can be
used to not only differentiate both ecosystems but also for delineating mangrove species.
Moreover, the limitation of SCM due to the spatial constraint imposed by the choice of
the window size during the transformation does not permit the detection of mangrove
communities smaller than the selected window size. Therefore, for optimal detection of
mangrove species, selection of an appropriate window size is needed. Future studies
may take advantage of the ultrafine spatial resolution (<5 cm) associated with the rapidly
evolving UAV hyperspectral systems to quantify SCM to a finer spatial scale (e.g., <4 m)
necessary for the detection of mangrove species at the tree level. Additionally, the results
from this study suggest that SCM can be implemented on hyperspectral imagery from
current and forthcoming spaceborne systems to permit monitoring of temporal trends
in mangrove extent and species at large geographic scales (i.e., landscape, national, and
global scales). Finally, SCM can serve as alternative tools for monitoring temporal changes
in mangrove forests and potentially other habitat types to support conservation initiatives.
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