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Key Points 

 We evaluated subsurface hydrologic response to development pattern across a 

gradient of urbanization  

 Catchments with lowest amounts of impervious cover showed greatest variability in 

subsurface storage  

 Temporal variability in subsurface storage was most responsive to land cover in near-

surface layers and to topographic control at depth 
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Abstract 

We compare the effects of urban development type and spatial pattern on the hydrology of 

six small headwater catchments near Baltimore, Maryland utilizing a three-dimensional 

coupled groundwater-surface water-land atmosphere model (ParFlow.CLM). The catchments 

range in size from 0.2 - 2 sq km, across a spectrum of older heavily urbanized development to 

less developed exurban residential areas. The topography and land cover of each model 

domain is defined using high-resolution LiDAR topography and orthoimagery. Simulations 

were conducted at an hourly time-step for calendar years 2012-2015 using a 10-m terrain-

following horizontal grid with variable dz (0.1 m to 8 m). Differences in development type 

and pattern across catchments give rise to complex spatial and temporal trends in the water 

budget. Catchments with the lowest amounts of impervious cover show the greatest 

variability in total storage response to climatic variation, whereas those with the greatest 

amount of impervious cover show less variability in response of subsurface storage to annual 

and seasonal variability in precipitation input. The storage response among catchments tends 

to be pronounced during prolonged dry and wet periods, with the variability in response 

being less pronounced over short-term events.  A negative correlation is observed across 

catchments between impervious cover and net subsurface storage variability. Temporal 

variability in subsurface storage is most responsive to development pattern in near-surface 

layers, but transitions to topographic control at depth.  Spatially, the development footprint 

controls where recharge and evapotranspiration occur in the unsaturated zone. Infiltration in 

pervious areas flows laterally beneath impervious surfaces.   
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1 Introduction 

It is a tenet of urban hydrology that percent impervious cover together with efficiency 

of the storm-drain network is a fundamental driver of urban hydrologic response to rainfall 

events. The effects of percent impervious cover and density of the storm-drain network on the 

hydrograph peak and various measures of the time base of the rising limb and other measures 

of “flashiness” are well-established (Graf, 1977; Leopold, 1968; Smith et al., 2002; Smith et 

al. 2005). This simple conceptual model has been reiterated frequently in the literature and 

has survived repeated analyses, albeit with some modification (Schueler et al., 2009). Urban 

and suburban watershed runoff response to storm events is also affected by complex spatial 

patterns of development (Brander et al., 2004; Gironas et al., 2009, 2010; Mejia & Moglen, 

2009, 2010), rainfall amount and intensity (Mejia & Moglen, 2009, 2010), and soil moisture 

storage capacity in pervious areas (Smith et al. 2015). 

The impact of urban development on hydrologic response of groundwater systems has 

received less attention; however, it is recognized that groundwater is an integral component 

of the urban hydrologic cycle (e.g., Bhaskar et al., 2015; Kaushal & Belt, 2012), particularly 

in terms of base flow generation for urban streams (Bhaskar et al., 2016) that provide 

numerous ecosystem services.  With the recent emphasis by municipalities on implementing 

infiltration as a stormwater management technique (e.g., Maimone et al., 2011), 

understanding the groundwater response to this practice is of growing interest.  

Subsurface hydrologic response can be quantified in terms of changes in water table 

elevation or changes in subsurface storage that includes the unsaturated zone.  Water table 

changes can be observed through field measurements, although monitoring well networks in 

urban areas not dependent on groundwater use for water supply are relatively sparse, and are 

logistically challenging to install owing to the presence of underground utility lines. Changes 

in subsurface storage can be calculated on a lumped basis from water balance components for 
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areas where data are available. However, the spatial pattern of temporal variability is not 

generally available from field data, again owing to sparse coverage.  And data from one well, 

or aggregate changes in subsurface storage from water-budget calculations, do not provide 

information needed to evaluate spatial patterns of system behavior. 

Bhaskar et al. (2015) used a simulation approach to systematically examine the 

influence of urban features on subsurface storage. This simulation and scenario-testing 

approach was carried out at a regional scale across an urban to rural gradient at relatively 

coarse pixelation (500 m horizontal, 5 m vertical).  The investigators found that reduced 

vegetation and increased impervious surface area are predicted to have negligible effects on 

subsurface storage compared to leaking infrastructure, at least for the conditions in the case 

study presented.    

The intent here is to build on this previous simulation work by focusing on the effects 

of development pattern on groundwater dynamics at the small watershed scale, as well as 

groundwater response to climatic variability, including seasonal and interannual cycles of 

wetting and drying. Of interest is the spatial variability of watershed response to fine-scale 

heterogeneity (10 m horizontal, 0.1 m – 8 m vertical) of land cover and land surface 

processes.  By utilizing a highly-resolved distributed modeling approach, we aim to better 

capture the linkages between the energy balance and shallow subsurface dynamics. In this 

paper, we focus in particular on the role of varying spatial patterns of land cover and 

topography, to address the following questions:  

(1) How does subsurface storage across a gradient of development respond to 

seasonal patterns of wetting and drying? 

(2) What is the importance of land cover type and distribution versus topography on 

subsurface storage variability?   

Our objective is to use a three-dimensional coupled groundwater/surface water/land-
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surface model applied to headwater catchments spanning a range of development types and 

patterns, using data in the Baltimore metropolitan region as an illustrative example.  

2 Study sites 

Six headwater catchments were selected for analysis within the Gwynns Falls 

watershed, located in Baltimore County, Maryland, USA (Figure 1). The Gwynns Falls is a 

principal observational watershed of the Baltimore Ecosystem Study (BES) Long-Term 

Ecological Research project (http://beslter.org).  The Gwynns Falls empties to Baltimore 

Harbor, which in turn drains to the Chesapeake Bay. Average annual precipitation in this 

region is approximately 1100 mm and is distributed evenly year round, with storm events 

occurring every 7-10 days (National Weather Service, http://www.weather.gov/lwx/bwinme). 

The study sites were selected in order to evaluate hydrologic response across a range of 

development types and ages.  

The subwatersheds chosen for analysis (Figure 1b) vary with respect to dominant 

land-cover type (Figure 2), stormwater management infrastructure, topographic 

configuration, and underlying geology and soils; these characteristics are summarized in 

Tables 1 and 2.  The subwatersheds range in drainage area from 0.21 to 1.63 km2. Three of 

the study sites are located within the Red Run watershed, an exurban suburban area in the 

Baltimore region where new development follows principles of “smart growth” characterized 

by cluster development,  

preserved open space, and extensive stormwater management. Three other sites are located 

within the Dead Run watershed, an older, densely-developed inner suburban area where there 

is little to no stormwater management.  The catchments all lie in the Piedmont Physiographic 

Province. Those in Red Run are underlain by Loch Raven Schist; those in Dead Run are 

underlain by mafic and ultramafic rocks that interfinger with the Potomac Group of the 

Atlantic Coastal Plain at the watershed southern boundary. Additional details on the study 

http://www.weather.gov/lwx/bwinme
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area are provided in Supplementary Information.  

3 Methods 

3.1 Hydrologic model  

We used ParFlow.CLM, a three-dimensional groundwater flow code (Ashby & 

Falgout, 1996; Jones & Woodward, 2001) modified to include fully coupled surface flow 

(Kollet & Maxwell, 2006) as well as energy and plant processes (Kollet & Maxwell, 2008; 

Maxwell & Miller, 2005). The code is optimized for parallel computing for large-scale, high-

resolution simulations.   

We selected a horizontal grid resolution for each basin model of 10 m for the 

catchment study areas that were on the order of 0.2 to 2 km2. This resolution captured the 

spatial extent and characteristics of the developed landscape in good detail, while balancing 

computational considerations. We utilized a terrain-following grid with a variable vertical 

discretization (Maxwell, 2013) ranging from 0.1 m - 8 m, representing a vertical thickness of 

31 m. We implemented no-flow boundary conditions around the edges of each domain. The 

resulting model domains contained 69,120 to 505,440 finite difference cells (Table 3). We 

simulated the four-year period from 1 January 2012 to 31 December 2015 using an hourly 

simulation time step. Non-pressured pipe flows (buried streams, stormwater pipes) were 

modeled as streams; we simulated surface flow and groundwater pressure heads and 

compared to relevant available field data. We did not attempt to model other stormwater 

infrastructure (ponds, infiltration areas, wetlands) explicitly. Some infrastructure features are 

accounted for in the terrain data, for example, wetlands and some detention basin locations 

are implicitly included in the model where the water table intersects the land surface. 

 

 

 



 

 

© 2018 American Geophysical Union. All rights reserved. 

3.1.1  Model input data  

3.1.1.1 Topographic, land cover, and infrastructure data 

We utilized a high-resolution land-cover classification for Baltimore County for the 

year 2007 (0.61-m (2-ft) resolution) developed by the University of Vermont Spatial Analysis 

Laboratory.  The classification uses Ikonos satellite imagery and LiDAR as input to an 

object-based image analysis (University of Vermont Spatial Analysis Laboratory (UVM 

SAL), 2007).  We resampled the UVM SAL map to 10-m model grid resolution using the 

mode of the classification, and then mapped the UVM SAL classes to the those in the 

Common Land Model International Geosphere Biosphere Programme (CLM IGBP) land-

cover classes (Table 4).  In addition to vegetation type, we used this mapping product to 

distinguish between pervious and impervious areas, and assigned top layer hydraulic 

properties accordingly.  

A high-resolution LiDAR DEM (1-m horizontal discretization) provided topographic 

information for the study areas (see hillslope shading in Figure 3). The DEM was derived by 

UMBC from LiDAR flown for Baltimore County, MD in 2005.  We resampled the LiDAR 

DEM  

data at a resolution of 10 m for model input. ParFlow uses a free surface overland flow 

boundary condition to simulate integrated groundwater-surface water interactions (Kollet & 

Maxwell 2006). The overland flow component is simulated using the kinematic wave 

approximation, in which the diffusion terms of the momentum equation are neglected, 

leaving the friction slope equal to the bed slope. The model user calculates these slope fields 

using digital elevation model (DEM) data, and provides them as the input for the ParFlow 

overland flow simulation. We calculated model slopes using a global slope enforcement 

approach to ensure flow connectivity in the overland flow grid using the method of Barnes et 

al. (2016). 
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We utilized mappings of stream and storm drain networks available from Baltimore 

County, MD Department of Public Works to provide a continuous drainage layer for the 

purposes of aiding watershed delineation.  In cases where a stream was buried in a 

stormwater pipe, the pipes were burned into the DEM to represent flow channels.  

3.1.1.2 Hydrogeology 

 We utilized hydrogeologic data characterizing the regional geology reported in the 

literature (Laughlin, 1966; Nutter & Otton, 1969). Individual well data reported in Laughlin 

(1966) were digitized and imported into a geospatial database. We set the model initial water 

table depth condition at 5 m below the land surface for each modeling domain, consistent 

with regional observations of water level from the period of active well drilling. Many of the 

wells reported in Laughlin (1966) are no longer in service, as the study area has transitioned 

to a surface-water municipal water supply; however, the legacy data provide a valuable 

resource for domain characterization. 

 We represented the subsurface in each catchment model with four hydrogeologic 

units (Table 5) composed of: soil or impervious surface, saprolite, a transition zone, and 

fractured  

bedrock.  The transition zone between saprolite and bedrock consists of weathered bedrock 

characterized by high hydraulic conductivity. Each hydrogeologic unit was represented by at  

least one model layer. Fine discretization of the model in the upper layers yielded highly-

resolved vertical output, which allowed detailed analysis of shallow subsurface processes.  

3.1.1.3 Forcing data  

To populate the CLM land surface model component of the model, we utilized forcing 

data from the North American Land Data Assimilation System (NLDAS2, 

https://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php) project dataset. These data were 

downloaded and processed, with data extracted for the nearest 1/8th degree NLDAS2 pixel. 

https://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php
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The CLM model utilized eight fields from NLDAS2: long wave radiation (DLWR) (W/m2), 

short wave radiation (DSWR) (W/m2), precipitation (APCP) (kg/m2), temperature (TEMP) 

(K), specific humidity (SPFH) (kg/kg), pressure (PRESS) (Pa), EW wind component 

(UGRD) (m/s), and NS wind component (VGRD) (m/s). Precipitation data were converted 

from hourly kg/m2 to mm/s.  Although one 1/8th degree NLDAS2 pixel of forcing was used 

for the region, spatial variability of the evapotranspiration process was captured through 

parameterization of land cover at the 10-m pixelation of the model.  

3.1.2  Model initialization 

We initialized the model using a two stage process. First, we imposed a constant 

recharge rate of 305 mm/yr (Swain et al., 2004) for a time period of 2 years, with an initial 

water table set at a depth of 5 m below the land surface. During this initial period, the CLM 

component of the model was not activated, and the ParFlow spin-up keys (Maxwell et al., 

2016, Section 6.1.34) were switched on. Next, we initialized each model with transient 

meteorological forcing from the years 2008-2011 from NLDAS2 with the overland flow and 

CLM components of the model active. Each model was thus spun-up for total of 6 years.  

3.1.3  Computational resources 

To carry out the simulations, we used computational resources from XSEDE (Towns 

et al., 2014), with the simulations running primarily on the Stampede supercomputer at the 

Texas Advanced Computing Center (TACC). Simulations used between 64 and 256 

processors (Table 3), and required ~200,000 service unit (SU) hours to complete. Utilizing 

parallel resources significantly reduced the total wall clock time, and enabled efficient 

completion of the simulations. 

3.2 Evaluation of spatial variability of watershed response  

We quantitatively documented watershed pattern and spatial response by calculating 

semivariograms of two inputs and two outputs using the 10-m pixelated model 
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data.  Semivariogram analysis quantifies the distance over which a spatially-varying attribute 

is autocorrelated; cross-semivariogram analysis quantifies the distance over which two 

spatially-varying attributes are cross-correlated and the strength of the cross correlation. For 

inputs, we calculated semivariograms of: (1) leaf area index (LAI) based on land cover type; 

and (2) the digital elevation model.  For outputs, we calculated semivariograms of (1) a 

snapshot of change in unsaturated zone storage representing the difference between the initial 

storage and the driest time step of the model (18 September 2012); and (2) the standard 

deviation of pressure head at the bottom layer of the model representing water table 

fluctuation, averaged over all time steps.  In addition, we calculated cross-semivariograms 

between (1) LAI and change in unsaturated zone storage; and (2) DEM and pressure response 

at depth. Semivariograms and cross-semivariograms were computed using GAMV from the 

GSLIB software library (Deutsch & Journel, 1998). 

The semivariograms of LAI utilized information specified as input to CLM for 

LAImax. One value was assigned to trees, one value was assigned to grass/shrubs, and a value 

of 0 was assigned to impervious surfaces.  Isotropic (omnidirectional) variograms were 

calculated for LAI and change in storage, since behavior was independent of direction of 

analysis. Directional (anisotropic) variograms were calculated for DEM and pressure in 

directions of maximum and minimum correlation.  All (auto) semivariogram output was 

scaled by the variance so that any existing sills had a value of 1.0. 

Cross semivariograms were computed for LAI-∆S and DEM-pressure. For cross-

semivariogram analysis, z-scores of the data were calculated for use in the analysis owing to 

the disparate units of measure of the paired variables.  The resulting sills of the cross-

semivariogram functions of the z-score data can range from -1 to +1, with +1 indicating 

perfect correlation and positive values less than 1 indicating the strength of the positive 

correlation.  
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To determine the distance over which each variable was autocorrelated or pairs of 

variables were cross correlated (“effective range” using Deutsch and Journel (1998) 

terminology), the exponential variogram model was fit to experimental semivariograms of 

LAI, change in storage, and cross semivariograms of LAI-∆S.  The Gaussian variogram 

model was fit to experimental cross-semivariograms of DEM-pressure head.  For descriptions 

of variogram models, see Deutsch and Journal (1998, page 25). In addition to the effective 

range, the model fits were used to determine the best-fit values of the nugget, and in the case 

of the cross-semivariograms, the sill.     

3.3  Hydrologic monitoring 

A privately-owned bedrock well in the region no longer in use (location shown in 

Figure 1b) was outfitted with a continuously-recording pressure transducer (In-Situ Level 

Troll 500) installed ~ 1 m below the summertime water table elevation.  Permission was 

obtained from the owner to utilize this well in our research. Pressure head was recorded at 1-

hour intervals.  Pressure head was converted to a continuous record of depth-to-water below 

land surface. Manual depth-to-water measurements were collected to correct for pressure 

transducer drift. Data were manually downloaded every 60 days to a field laptop, processed, 

and subsequently transferred to a database at UMBC.  Observed depth-to-water data were 

used to compare to model output.  

A USGS stream gaging station was available at the outlet of one of our study domains 

(DR5). The site is instrumented with a staff gage and an Accububble pressure measurement 

device.  Stage is recorded at a frequency of 5 minutes.  A rating curve has been developed 

relating stream discharge to stage by making manual streamflow measurements every 8 

weeks, under a range of flow conditions. Stage and discharge data are telemetered to USGS 

hourly and served in near-real time at 

https://waterdata.usgs.gov/md/nwis/uv?site_no=01589312.   

https://waterdata.usgs.gov/md/nwis/uv?site_no=01589312
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4 Results and Discussion 

Model output consisted of pressure head and saturation for every cell in the 6 domains 

(61,440 to 505,440 cells per domain; see Table 3) for hourly time steps over the four years of 

simulation time (35,040 time steps total). Derived outputs were calculated to compare to field 

data: here we calculated subsurface storage scaled by watershed area, which can be compared 

to the pattern of observed water table fluctuations, and stream discharge, which can be 

compared to observations for conditions up to bankfull flow. Results are presented in terms 

of averages over time or space, and spatial snapshots in time.   

We do recognize the role of parameter uncertainty in the results.  We view our 

variable land cover and topography across the six domains as representing a range of patterns 

and density of urban development as well as natural catchment variability. We held the 

geologic and meteorological forcing data as constant over space so as to be able to examine 

the influence of the spatially variable land cover and topography on model results. There is 

uncertainty in subsurface properties that we were unable to quantify given the available data.  

 

4.1  How does subsurface storage across a gradient of development respond to seasonal 

patterns of wetting and drying? 

4.1.1  Subsurface storage 

4.1.1.1 Simulation data  

Hourly mean-removed subsurface storage scaled by watershed area illustrates event-

scale, seasonal, annual and interannual variability over the 6 study domains for the 2012-

2015 simulation period (Figure 4).  Across all domains, the observed high-frequency 

temporal variability results from recharge events and from diel fluctuations in 

evapotranspiration.  

Superimposed on the high-frequency fluctuations is an annual pattern of highs and 
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lows. Subsurface storage reaches a minimum value at mid to late September; the maximum 

value occurs between mid-May and mid-June, although the pattern of highs is not as well 

defined interannually compared to the pattern of low values for the four years 

simulated.  Maximum subsurface storage corresponds to late spring hydrologic conditions 

before full leaf-out; minimum subsurface storage corresponds to the end of the growing 

season before leaf fall.  This pattern illustrates the expected effect of evapotranspiration on 

annual cycles of subsurface storage, when evapotranspiration is lowest and recharge is 

highest during leaf-off periods.  

The simulation results also illustrate the interannual variability in subsurface storage 

as a function of climatic conditions. The four-year modeling time period captures extremes in 

wet and dry conditions.  2012 was the driest dry year overall, as reflected by double the 

change in minimum subsurface storage for 2012 (-100 mm) compared to the minimum for the 

wettest year 2014 (-50 mm). In 2012, there is no well-defined seasonal high in subsurface 

storage. This results from the relatively low precipitation in spring 2012 coupled with the 

carry-over effects of an extremely dry autumn 2011 period.  This persistence of a relatively 

dry period in most of 2012 was quickly reversed by Hurricane Sandy (at the end of October 

2012), characterized by 182 mm of precipitation over a 48-hour period. The subsurface 

storage response changed from  

-70 mm to +40 mm in response to this event, which was nearly as much as the annual 

variability in other more typical years (e.g., 2015).  At the other extreme, the spring 2014 

shows the greatest maximum change in subsurface storage across all four years of 

simulation.  This aberration is due to occurrence of an unusually large, long-duration event at 

the end of April 2014 (135 mm of 

precipitation over 4 days) in an already-wet spring. Again, we see that this effect is magnified 

for the less developed watersheds and muted for the most developed watersheds.  
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This general pattern of annual highs and lows in subsurface storage is similar over the 

six study areas, but the magnitude of temporal variability ranges across the 

domains.  Sunnydale and Runnymeade, the two catchments with the lowest amounts of 

impervious cover, show the greatest variability in total storage response to climatic 

variation.  Kevsway, DR5, Greengage and Redbrook, all with > 42% impervious cover, show 

less variability in response of subsurface storage to annual and seasonal variability in 

precipitation input. The variability in storage responses among the catchments tends to be 

pronounced during prolonged dry periods and prolonged wet periods, with the variability in 

response being less pronounced over short-term events.   

Using percent impervious surface area as a metric, the variability in subsurface 

storage consistently is reduced as the percent impervious surface area is increased, across the 

six study domains.  A plot of the standard deviation in subsurface storage over all time steps 

for each domain as a function of percent impervious surface area reveals a strong negative 

linear correlation between these two parameters (Figure 5). The simulated storage responses 

across a spectrum of development illustrate the net effect of the competing processes of 

reduced infiltration (and increased runoff) and lower evapotranspiration (due to reduced 

vegetative cover) for high-percentage impervious surface area and the opposite effect for 

low-percentage of impervious area.  

In order to simplify the comparison of temporal behavior across watersheds, we  

calculated the mean daily subsurface storage, averaged these values across Julian day for the 

four simulation years, and then smoothed the results for each domain (Figure 6a). The NCAR 

Command Language (NCL) function smthClmDayTLL was used to calculate the smoothed 

values, utilizing a fast Fourier transform technique (The NCAR Command Language, 2017). 

The resulting plot further highlights predicted annual differences in subsurface storage across 

the study domains as a function of impervious surface area, with a smoothing out of the 
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interannual variability caused by wet vs dry years over the simulation period. The variability 

in mean daily subsurface storage again appears to be correlated to impervious surface area. 

Figure 6a also illustrates a slight lag in the annual maxima and minima in subsurface 

storage across watersheds: the spring peak ranges from Julian day 160 (9 June) for least-

developed Sunnydale to Julian day 168 (17 June) for the most-developed Kevsway 

domain.  Conversely, the annual minimum occurs earlier for Kevsway (Julian day 258, 15 

September) than for Sunnydale (Julian day 261, 18 September).  The dates for maximum and 

minimum storage for the other four domains are temporally ordered between these endpoints 

as a function of percent impervious surface area.  The net result is a shortening of the time 

period between the annual minimum and maximum mean daily subsurface storage by 11 days 

for the most developed watershed compared to the least developed watershed.  

A final point to be made regarding the results for mean subsurface storage is that the 

annual minimum is single-valued and more pronounced than the annual maximum 

values.  The annual maxima are spread out over multiple peaks.  This multi-peaked mean 

behavior is due to significant precipitation events or dry periods during each of the four years 

of record (Figure 4) that affect the four-year mean values (Figure 6a).  It is expected that the 

multi-peaked nature of the annual maximum values would converge to a well-defined single 

value over more years of simulation data.  The subtle bump in the receding limb of the annual 

low data around Julian day 300 is due to the influence of Hurricane Sandy from 28 October 

2012 to 30 October 2012.  

In summary, we have illustrated a pattern of changes in simulated subsurface storage 

across a gradient of development.  The variability in subsurface storage is greatest for the 

least urbanized catchment.  This results from a combination of low impervious surface area 

and high amount of vegetated land surface, which together provide greater opportunity for 

infiltration/ recharge as well as evapotranspiration. 
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4.1.1.2 Comparison to field data 

Two sets of field data are available for comparison with the subsurface storage 

simulation results. One data set (Figure 6b) consists of mean monthly subsurface storage 

calculated from water balance components over a period of 77 years (Nutter & Otton, 1969) 

from data collected at the nearby Gunpowder Falls watershed (Figure 1a).  As expected, 

averaging the water balance data set over 77 years smooths out deviations from the long-term 

mean behavior.  This data set clearly shows the annual cycle of highs and lows for the 

region:  in this depiction of mean monthly averages, the annual maximum mean monthly 

subsurface storage occurs at Julian day 90 (31 March) and the minimum occurs at Julian day 

273 (30 September).   

Hourly depth-to-water data were collected during the study period at a bedrock well 

that is located approximately 3 km from the Kevsway site (star in Figure 1a), averaged over 

Julian day, and smoothed (Figure 6c) over the four-year period of simulation.  The annual 

maximum and minimum depth to water values occur at 91 and 275 days, respectively, which 

is similar to the long-term pattern exhibited by Figure 6b. Similar to the subsurface storage 

simulation data for this four-year period (Figure 6a), the annual mean high and low values of 

depth-to-water are affected by a few extreme events, whereas over the long-term it would be 

expected that this multi-peaked behavior would converge to one maximum and one minimum 

value as shown in Figure 6b. 

Overall, in comparing the simulation data to these observations, we see that the 

general pattern of observed annual highs and lows is well captured by the model 

output.  What the field data do not indicate that is captured by the model is the subtle 

predicted differences in subsurface storage across a gradient of development.  Site-specific 

data are not available to corroborate this behavior.  
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4.1.2  Stream discharge 

Comparisons were made between mean daily stream discharge simulated at the 

watershed outlet of DR5, and a subset of USGS discharge data available for that location 

(Figure S1).  In general, we found that streamflow was overpredicted by the simulations, but 

that the timing and peak values of storm discharge were in good agreement between the 

simulated and observed data.  The R2 correlation coefficient for the period of 2012 evaluated 

was 0.62, which indicates a reasonable representation of the field data by the 

model.  Streamflow was overpredicted for a number of reasons, some having to do with 

uncertainty in the data and some having to do with model constraints.  

In terms of data uncertainties, according the USGS web site for this station 

(https://waterdata.usgs.gov/md/nwis/uv?site_no=01589312), up to 25% of the watershed area 

is non-contributing, meaning that a portion of the delineated watershed does not drain to the 

stream network. This implies a smaller effective drainage area. If this smaller value were to 

be used in Figure S1 to scale discharge, the observed runoff values would be increased by 

25%.  Second, some groundwater may bypass the stream gage owing to the size of the 

watershed (groundwater divides may not be coincident with surface water divides), and 

leakage into sanitary sewer pipes crossing beneath the stream (Bhaskar et al., 2012; Bhaskar 

et al., 2016).  This can lead to decreases in observed runoff.  Third, the stage-discharge rating 

curve is adjusted by USGS multiple times per year following field observations of changes in 

downstream controls; low flows are particularly sensitive to these changes.  For 2012, rating 

shifts at DR5 resulted in streamflow discharge values varying by up to an order of magnitude 

for low values of stage (0.1 – 0.3 m) and discharge (0.0008 – 0.3 m3/s).  

In terms of the model, there is a disparity in scale between the actual stream geometry 

and modeled stream geometry. The streams are physically quite small, varying from about 

0.5 m to 2 m in width. We chose horizontal model discretization of 10 m x 10 m to balance 
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computational burden with representation of land cover and topography in adequate enough 

detail. The fact that the model discretization is larger than the stream width can contribute to 

difficulty in simulating small values of base flow (< 0.03 m3/s).  More specifically, discharge 

below a given threshhold will not be simulated with accuracy because the baseflow-

generation process begins to occur in the catchment at a scale finer than the model grid. This 

can lead to overestimation of (erroneously high) base flows as a model result.   

A second model issue is that the coupled model may be undersimulating 

(underestimating) evapotranspiration for watersheds having high percentage of impervious 

surface area. ET could occur in reality in impervious areas from cracks in parking lots, or in 

parking lots incorporating trees with roots penetrating beneath impervious surfaces, both of 

which could contribute to more ET than occurs from the modeled impervious land cover 

type. If we are undersimulating ET, this water would ultimately exit from the watershed via 

streamflow, leading to higher modeled streamflow values than would be the case in reality.   

The items discussed above contribute to uncertainty (modeled and observed) in the 

runoff sink term of the water balance for these small urban catchments, making it particularly 

difficult to accurately estimate this component. The comparison here does indicate a biased 

model overestimation of runoff on an annual basis, but the magnitude of this overestimation 

is not known with precision at the scale at which we are working, owing to the complicating 

factors described. Baseflow overestimation bias could potentially influence the slope of 

modeled subsurface storage recession, but we did not observe this influence in Figure 6. 

     

4.2  What is the importance of land cover type and distribution versus topography on 

subsurface storage variability?   

Here we examine snapshots or averages of spatial output and evaluate the drivers of 

the observed spatial patterns.  
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4.2.1 Spatial variability of subsurface pressure fields  

For each domain, the pressure head for each model cell was statistically compared 

over all time steps to evaluate the long term patterns and correlation to other physical 

variables.  Figure 3 illustrates the standard deviation of the modeled pressure head over all 

hourly time steps for four years of simulation time at the bottom model layer (23 - 31 m 

depth) of the simulated domains. The standard deviation in pressure head at the base layer 

indicates the average fluctuation in water table elevation above. Values for the pressure-head 

standard deviation range from a maximum of 0.21 m to 0.58 m across the basins.  The result 

is superimposed on the DEM of the watersheds.  This figure reveals that DEM and the 

standard deviation of pressure head at depth exhibit similar spatial patterns.  The patterns 

generally show that the greatest variability in pressure head occurs beneath the ridges and the 

least amount of variability occurs beneath the valley bottoms. The lower pressure-head 

variability in the valley bottoms results from drainage by the streams modulating the 

magnitude of water table changes at these locations. The observed pattern appears to be the 

case regardless of the spatial distribution of development and the percent impervious surface 

area of the domain. Generally, catchments with lower overall storage variability (Figure 4) 

have lower maximum values of standard deviation in pressure head in the hilltops. 

In an attempt to quantify this visual observation, we calculated semivariograms of 

DEM and pressure head variability at depth in directions of maximum and minimum 

correlation (not shown), and the cross-correlation between these two variables using cross 

semivariogram analysis (also not shown).  It is not surprising that the DEM exhibits 

maximum, unbounded correlation along the valley axis, and minimum but finite 

autocorrelation on the cross-valley perpendicular axis.  The pressure head variability at depth 

generally follows this pattern.  Cross-semivariogram analysis of z scores shows a similar 

order-of-magnitude effective range for the cross semivariograms of DEM and at-depth 
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pressure variability across domains, with no apparent relation to degree of development 

(percent and pattern of impervious surface area).  The strength of the positive cross-

correlation, as indicated by the value of the cross-semivariogram sill, ranged from 0.40 

(Redbrook and Runnymeade) to 0.73 (Kevsway), also with no relation to the percent or 

pattern of developed land. This analysis did confirm quantitatively what we observed visually 

in Figure 3 – that there is a positive cross-correlation between DEM and pressure variability 

at depth, and that this appears to be the case regardless of the spatial distribution of 

development and the percent impervious surface area of the domain.  

4.2.2 Spatial variability of subsurface storage change 

We calculated a metric of maximum decrease in storage across all domains by 

determining the change in storage between the first simulation time step and the time step at 

which the greatest negative departure from mean storage occurred. This driest time step 

(6268) occurred during 18 September 18 2012 (Figure 4). The calculation was carried out for 

the fifth model layer beneath the land surface (i.e., at a 1-m depth) representing the 

subsurface zone immediately below the upper one meter of soil or impervious 

cover.  Snapshots of this calculated change in subsurface storage are shown for the 

Runnymeade domain in Figure 7; the same depiction for all domains is shown in Figure S2.   

The subsurface change in storage under dry conditions is due to the daily pattern of 

evapotranspiration.  The pattern of subsurface storage change appears to be strongly related 

to the vegetation pattern (Figure 2), where the change in storage is greater beneath larger 

patches of vegetation. It is also related to the pattern of impervious surface coverage. Areas 

where water cannot infiltrate exhibit less storage change because they do not fully wet up 

during rain events and evapotranspiration is impeded at these locations.  

To quantify the spatial correlation of this observed pattern, we calculated separately 

the isotropic (omnidirectional) semivariograms of leaf area index and change in subsurface 
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storage for each model domain, and cross-semivariograms between these two variables for 

each model domain (Figures S3, S4; Tables S1-S3). Cross-semivariogram analysis between 

LAI and ∆S  

showed a positive, although weak, correlation, with sill values ranging from 0.13 to 

0.28.  The largest two sill values are associated with two of the most developed watersheds 

(DR5 and Greengage), whereas the smallest sill value is associated with one of the least 

developed watersheds (Runnymeade).  The distance over which LAI is correlated with ∆S 

(effective range) for the 6 watershed domains varied from 54 m to 330 m, where the smaller 

effective ranges are associated with watersheds having the greatest percentage of vegetation, 

and where the pattern  

exhibits fine-scale heterogeneity.   

4.2.3 Spatial variability of infiltration patterns 

To visualize the effect of development pattern on infiltration into the subsurface, we 

present an animation of model results for change in storage of the Runnymeade domain 

during the simulation period for Hurricane Sandy, from model time step 7224 (midnight 28 

October 2012) to 7344 (midnight 2 November 2012) (Figure 8). This animation represents 

change in storage between time step 7223 and the labelled time step. 

From this animation, the progression of the three-dimensional nature of the infiltration 

process, and how the pattern of impervious surface area interacts with this process, can be 

observed. During precipitation events, the differential pattern of wet-up of pervious vs 

impervious patches at the land surface is apparent. Water enters the subsurface vertically 

through pervious/vegetated patches, and then migrates laterally underneath impervious 

surface patches. The rising water table response in terms of increase in subsurface storage is 

apparent. Toward the end of the simulation, an increase in storage is also seen toward the 

bottom of the model, deep in the saturated zone. This is due to increases in storage resulting 
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from increases in pressure head. 

Although not discernable in the visualization, impervious patches impede 

evapotranspiration of water migrating under them owing to both lack of vegetation to remove 

water through vegetative pumping and reduced pore space open to the land surface whereby 

evaporative processes act to remove water from the soil pores. This results in subsurface 

storage being retained for longer beneath impervious patches.  

5 Summary and Implications 

We have demonstrated how the pattern of urbanization in six study catchments creates 

complex spatial and temporal trends in the underlying groundwater resources across a 

gradient of development type and intensity.  Our simulations illustrate that impervious 

surfaces modulate the location of recharge and the overall magnitude of subsurface storage 

changes, with the water table aquifer integrating the local groundwater response at the 

catchment scale.  Although the approach was applied to Baltimore suburbs as a case study in 

order to use real data for the simulation demonstrations, the same method could be applied to 

any area where fine-scale DEM, land cover, meteorological forcing, and geologic input data 

are available.  

Our findings can be summarized as follows:  

1. Using a highly-resolved coupled groundwater-surface water-land surface 

simulation approach applied to small urban catchments, we were able to capture the effects of 

spatial variability of development patterns and the temporal effects of climatic variability on 

subsurface storage across a gradient of urbanization.  A novelty of the approach was use of 

fine-scale land cover and DEM coupled with regional-scale subsurface properties and 

meteorological forcing. 

2. The overall annual cycle of changes in subsurface storage compared well to limited 
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regional observational data available for comparison to the simulations.  

3. The modeling approach revealed spatial variability in temporal subsurface 

hydrologic response across a range of time scales. Diel and storm-scale responses were well 

captured.  

Mean-removed subsurface storage showed greatest variability in the least developed 

watersheds and least variability in the most developed watersheds. Negative correlation 

between hourly subsurface storage and percent impervious surface area was strong (R2 = .95).  

4. Impervious surface area is an important driver in both increasing runoff during 

storm events and thus diverting water away from recharge areas, and decreasing 

evapotranspiration (due to less vegetative cover) during seasonal recession periods and 

during longer-term droughts, with both effects reducing the variability in subsurface storage.   

5. At the storm scale, simulations showed that water on upland surfaces infiltrates 

through pervious zones and then migrates laterally beneath impervious patches. Impervious 

patches mediate the storage response by reducing evapotranspiration from unsaturated zone 

patches beneath impervious cover.  

6. In the shallow subsurface, land cover patterns had the greatest influence on 

subsurface hydrologic response, whereas at depth, the topographic signal was the most 

important control on hydrologic response.  

Our findings have implications for future scientific investigations and for policy 

applications.  First, the use of a three-dimensional distributed model provides insights into the 

spatial variability of subsurface hydrologic response that would not be discernible with a two-

dimensional approach. Documentation that the infiltration process must be recognized as 

being truly three-dimensional and not two-dimensional could have implications for green 

infrastructure design for stormwater management, where infiltrated stormwater has a 

horizontal component to subsurface flow.  Second, three-dimensional heterogeneous 
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hydrologic response fields such as those generated by this work provide rich data sets far 

beyond what is currently measureable in a distributed sense in any watershed-scale 

landscape. The simulation output could be used for hypothesis testing via deployment of field 

instrumentation to determine whether the simulated patterns can be observed, or mined to 

determine where to optimally place observation wells for monitoring purposes.   

Finally, the work here should provide further impetus in addition to the work of many 

before us to collect all hydrogeologic and related data into a national database, so that 

researcher best efforts are spent on data interpretation rather than data manipulation and 

assimilation. This kind of effort has been achieved for the atmospheric science community 

(WRF) and more recently progress has been made for surface water community (National 

Water Model), but the day has yet to arrive where groundwater models such as ParFlow.CLM 

can automatically be populated from standardized data sets. Given the increasing emphasis 

on earth system science and the need to consider the water cycle as a whole, this kind of 

capability is critical.   
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Table 1.  Land cover classification of modeled sites  

 
Site Name 

 
Watershed 

nested 
within 

 
 

Basin 
drainage 

area 
(km2) 

 
Model 

domain 
area 
(km2) 

Model domain 
% vegetation 

Model domain 
% impervious 

% Tree 
canopy 

% 
Grass/ 
shrubs 

% 
Buildings  

% 
Road/ 
rail 

% 
Other/ 
paved 

 
Sunnydale 

 
Red Run 

 
0.23 

 
0.46 

86.4 13.8 

56.7 29.7 5.3 6.3 2.2 

 
Runnymeade 

 
Red Run 

 
0.62 

 
1.23 

77.0 22.3 

40.0 37.0 7.8 9.3 5.2 

 
Redbrook 

 
Red Run 

 
0.21 

 
0.33 

57.2 42.0 

14.0 43.2 6.4 6.8 28.8 

 
DR5 

 
Dead Run 

 
1.63 

 
3.37 

52.6  47.4  

31.0  21.6  12.4  14.2  20.8  

 
Greengage 

 
Dead Run 

 
0.46 

 
0.92 

43.0 57.0 

25.5 17.5 14.0 11.8 31.2 

 
Kevsway 

 
Dead Run 

 
0.24 

 
0.52 

29.7 70.4 

18.8 10.9 15.3 10.3 44.8 

 

* Land cover classes “bare soil” and “water” are not shown; sums exceeding 100% are due to 

rounding  
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Table 2.  Development characteristics of modeled sites 

Site 
Name 

Median 
devel- 
opment 
date 

Develop- 
ment type 

Storm- 
water management 

Water/ 
waste- 
water 

Topographic 
characterization:   
Slope coefficient of 

variation 

Sunny- 
dale 

1967 Residential None Wells and 
septic 

 
0.63 

Runny- 
meade 

1996 Residential, 
high density, 
new 

Detention ponds, 
wetland 

Municipal 
water and 
sanitary 
sewer 

 
0.81 

Redbrook 1991 Commercial Detention treatment 
train (detention 
ponds, infiltration 
basins, wetland) 

Municipal 
water and 
sanitary 
sewer 

 

 
0.99 

DR5 1962 Mixed 
residential/ 
commercial 

None Municipal 
water and 
sanitary 
sewer  

 

 
0.76 

Green- 
gage 

1962 Mixed 
residential/ 
commercial 

Extended detention Municipal 
water and 
sanitary 
sewer 

 

 
0.72 

Kevsway 1987 Mixed 
residential/ 
commercial 

Infiltration basin, 
detention  pond 

Municipal 
water and 
sanitary 
sewer  

 

 
0.87 
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Table 3. Cell counts and extents of model domains.      

 
Domain 
name 

 

nx 

 

ny 

 

nz 

 

dx 
(m)  

 

dy (m) 

 

dz 
(m) 

Number of 
model 
cells 

Number of 
processors 

utilized 

Sunnydale 48 96 15 10 10 0.1 - 8  69120 256 

Runnymeade 128 96 15 10 10 0.1 - 8 184320 256 

Redbrook 64 64 15 10 10 0.1 - 8 61440 256 

DR5 216 156 15 10 10 0.1 - 8 505440 64 

Greengage 88 104 15 10 10 0.1 - 8 137280 64 

Kevsway 72 72 15 10 10 0.1 - 8 77760 64 
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Table 4. Mapping of UVM SAL land cover class to CLM IGBP land cover class. 

UVM SAL Land Cover Class CLM IGBP Land Cover Class 

Tree Canopy Deciduous Forest 

Grass/Shrubs Grasslands 

Water Water Bodies 

Building Bare Soil 

Road Rail Bare Soil 

Other Paved Bare Soil 

Bare Soil Bare Soil 
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Table 5.  Hydrogeologic properties assigned to model domain. 

 

Hydrogeologic 
unit 

 
Depth below 
land surface 

(m) 

Layer thicknesses 
comprising unit (m) 

 
Hydraulic 

conductivity 
(m/hr) 

 
Porosity (-) 

Soil 0 – 1  0.1, 0.2, 0.2, 0.5 0.0227 0.45 

Impervious 
Cover 

0  - 1  0.1, 0.2, 0.2, 0.5 0.00212 0.05 

Saprolite 1  - 14 0.5, 0.5, 1.5, 1.5, 2.0, 
2.0, 2.0, 4.0  

0.00556 0.45 

Transition Zone 14 – 17  4.0 0.227 0.45 

Bedrock 17 – 31 4.0, 8.0 0.00001 0.05 
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Figure 1. (a) The Baltimore metropolitan region; (b) locations of headwater study sites 

(shown in green) within Red Run and Dead Run subwatersheds. Red dots indicate stream 

gage locations. The black star indicates the location of the DRGC bedrock monitoring well.  
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Figure 2.  Land cover of six study watersheds: buildings (dark purple); roads (purple); 

parking lots (red); trees (green); grass (blue-green); water bodies (blue), based on University 

of Vermont land cover classification.   Watershed boundaries are indicated in black; water 

courses (streams, pipes, and detention basin outlines) are indicated in blue.   Watersheds are 

designated as: (a) Sunnydale, (b) Runnymeade, (c) Redbrook, (d) DR5, (e) Greengage, and 

(f) Kevsway. The domains are ordered in terms of increasing percent impervious surface 

area.  
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Figure 3. Hillshade digital elevation model (gray scale) derived from LiDAR data overlaid 

with modeled pressure fields at depth for the six study watersheds: (a) Sunnydale, (b) 

Runnymeade, (c) Redbrook, (d) DR5, (e) Greengage, and (f) Kevsway.  The depicted 

pressure field is the standard deviation of the modeled pressure head (m) over all hourly 

timesteps for four years of simulation time at the bottom layer of the model. Watershed 

boundaries are shown in black; streams and stormwater pipes that contain dry weather flow 

are shown in white. 
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Figure 4.  Mean-removed subsurface storage scaled by watershed area for the six study 

domains, 2012-2015.  Precipitation is shown in black. All data are in hourly timesteps.  
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Figure 5.  Standard deviation of subsurface storage as a function of percent impervious 

surface area for the six study watersheds; R2 = 0.95. 
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Figure 6. (a) Simulated mean daily subsurface storage as a function of Julian day with temporal 

smoothing applied.  Averages for each Julian day are calculated over the four years (1 January 

2012 - 31 December 2015) of model output. (b) Mean monthly change in subsurface storage 

as a function of Julian day calculated from water budget data for the nearby Gunpowder Falls 

basin (Figure 1a), 1884 -1960 (Nutter & Otton, 1969).  (c) Mean daily depth to water below 

land surface as a function of Julian day for well DRGC near Kevsway (blue line) with temporal 

smoothing applied (red line).  Data were collected hourly from 1 January 2012 - 31 December 

2015; daily averages were calculated and then averaged over the four years of record for each 

Julian Day. 
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Figure 7. Snapshot of change in subsurface storage in model layer 2 in the unsaturated zone, 

between the first timestep and the driest timestep of the simulated domain (18 September 

2012), draped over a gray-scale version of land cover shown in Figure 2b, for the 

Runnymeade domain.  Blue indicates the smallest change in storage and green indicates 

largest change in storage.  Land cover is depicted with impervious surfaces designated as 

black and dark gray, grass and shrubs as light gray, and trees as white. 
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Figure 8. Animation of the infiltration process for Runnymeade for simulation spanning 

Hurricane Sandy from model time step 7224 (midnight 28 October 2012) to 7344 (midnight 2 

November 2012), at an increment of 3 time steps (3 hours).  The color scale depicts change in 

subsurface storage between time step 7223 and the given time step.   The view of the lower 

left side of the domain is from the east as defined by Figures 2b, 3b.  Total storm 

precipitation was 182 mm. 


