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ABSTRACT This paper reports the genome sequences of five bacteriophages that were
isolated using Streptomyces scabiei. Phages Fabian, FlowerPower, Geostin, RetrieverFever,
and Vorvolakos were assigned to actinobacteriophage cluster BF based on shared gene
content, with each phage containing between 16 and 21 tRNA genes.

Five bacteriophages were isolated using the phytopathogenic bacterium Streptomyces
scabiei RL-34 and annotated as part of the Science Education Alliance-Phage Hunters

Advancing Genomics and Evolutionary Science (SEA-PHAGES) program (1).
Phages were isolated from soil samples collected across Maryland, USA (Table 1), using

standard methods (2). Briefly, soil samples were suspended in phage buffer (10 mM Tris [pH
7.5], 10 mMMgSO4, 1 mM CaCl2, 68.5 mM NaCl). Suspensions were centrifuged to pellet soil,
and the supernatant was filtered (0.22-mm filter). The filtrate was then plated in tryptic soy
soft agar (BD) with S. scabiei RL-34 on nutrient agar plates (BD Difco) supplemented with
10 mMMgCl2, 8 mM Ca(NO3)2, and 0.5% glucose. Incubation at 30°C for 1 to 2 days yielded
bacteriophages Fabian, FlowerPower, Geostin, RetrieverFever, and Vorvolakos. A minimum
of three rounds of plaque purification were performed for each phage. After 24 to 48 h at 30°C
on S. scabiei, all phages except Vorvolakos formed round 1.5- to 5-mm-diameter plaques
with turbid halos; Vorvolakos formed clear plaques. Negative-staining transmission electron
microscopy revealed these phages to be podoviruses, with capsid widths ranging from 50
to 61 nm (Fig. 1A).

Phage DNA was isolated using the Promega Wizard DNA purification system on a freshly
prepared lysate as described previously (3). Sequencing of Fabian, Geostin, RetrieverFever,
and Vorvolakos was completed by the Pittsburgh Bacteriophage Institute; sequencing of
FlowerPower was completed by the North Carolina State University Genomic Sciences
Laboratory. All sequencing was performed with the Illumina MiSeq (v3 reagents) sequencing
platform using the NEBNext Ultra II library preparation kit and 150-base single-end reads.
Raw sequencing reads were assembled using Newbler v2.9 or the CLC Genomics Workbench
next-generation sequencing (NGS) de novo assembler v6 with default settings. Genome com-
pleteness and termini were determined using Consed v29 (4, 5). All phages were found to
have linear chromosomes with 253-bp direct terminal repeats and an average GC content
of 60.07% (standard deviation, 60.44%) (Table 1). Based on gene content similarity, the
Actinobacteriophage Database (phagesDB) assigned these phages to the BF cluster (6–8).

Genome annotation was completed using DNA Master v5.23.6 (9) embedded with
Glimmer v3.02b (10) and GeneMark v4.28 (11), with manual refinement using parameters
such as proximity and directionality with respect to protein-encoding sequences, the presence
of putative ribosome binding sites, and sequence similarity to previously annotated genes
(12). Protein-encoding genes were functionally annotated using BLASTp (13), Phamerator v3.0
(14), and HHPred v57c87 (15, 16). The numbers of genes encoding proteins with known func-
tions ranged from 13 to 20 (Table 1). The numbers of tRNA genes found using ARAGORN
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FIG 1 Characterization of phages and tRNA genes. (A) Representative transmission electron microscopy images of the phages described in this paper. (Top
left) Fabian. (Top right) FlowerPower. (Bottom left) Geostin. (Bottom right) RetrieverFever. (B) Pearson correlation coefficients for correlations between
codons recognized by the products of tRNA genes included in Streptomyces BF cluster phage genomes, the S. scabiei genome, or the combined phage and
S. scabiei genomes and the codons present in the gene coding for the MCP in each phage. Codon usage correlates better with the combined tRNA pool.
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v1.2.41 ranged from 16 to 21 (17). All cluster BF phages contain 15 to 20 tRNAs in a single
genome segment. The numbers of codons in their major capsid protein (MCP) gene sequen-
ces, as well as the numbers of host and phage tRNAs recognizing each codon, were tabulated,
and their correlation was analyzed. Our data support the observation that phage tRNAs match
the codon usage for the MCPs better than do host tRNAs (Fig. 1B) (18).

Data availability. GenBank nucleotide record and Sequence Read Archive (SRA)
accession numbers for all genomes reported in this work are provided in Table 1.
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