

APPROVAL SHEET

Title of Dissertation: Understanding the Logical and Semantic
Structure of Large Documents

Name of Candidate: Muhammad Mahbubur Rahman
Computer Science, 2018

Dissertation and Abstract Approved:
Tim Finin, PhD
Professor
Department of Computer Science and
Electrical Engineering

Date Approved:

ABSTRACT

Title of Dissertation: Understanding the Logical and Semantic
Structure of Large Documents

Muhammad Mahbubur Rahman
Doctor of Philosophy, 2018

Dissertation directed by: Prof. Tim Finin
Department of Computer Science and
Electrical Engineering

Current language understanding approaches are mostly focused on small docu-

ments, such as newswire articles, blog posts, and product reviews. Understanding and

extracting information from large documents like legal documents, reports, proposals,

technical manuals, and research articles is still a challenging task. Because the docu-

ments may be multi-themed, complex, and cover diverse topics. The content can be split

into multiple files or aggregated into one large file. As a result, the content of the whole

document may have different structures and formats. Furthermore, the information is

expressed in different forms, such as paragraphs, headers, tables, images, mathematical

equations, or a nested combination of these structures.

Identifying a document’s logical sections and organizing them into a standard

structure to understand the semantic structure of a document will not only help many

information extraction applications, but also enable users to quickly navigate to sections

of interest. Such an understanding of a document’s structure will significantly benefit

and facilitate a variety of applications, such as information extraction, document sum-

marization, and question answering.

We intend to section large and complex PDF documents automatically and anno-

tate each section with a semantic, human-understandable label. Our semantic labels are

intended to capture the general purpose and domain specific semantic in the large doc-

ument. In a nutshell, we aim to automatically identify and classify semantic sections of

documents and assign human-understandable, consistent labels to them.

We developed powerful, yet simple, approaches to build our framework using lay-

out information and text contents extracted from documents, such as scholarly articles

and RFP documents. The framework has four units: Pre-processing Unit, Annotation

Unit, Classification Unit and Semantic Annotation Unit. We developed state-of-the-art

machine learning and deep learning architectures. We also explored and experimented

with the Latent Dirichlet Allocation (LDA), TextRank and Tensorflow Textsum mod-

els for semantic concept identification and document summarization respectively. We

mapped each of the sections with a semantic name using a document ontology.

We aimed to develop a generic and domain independent framework. We used

scholarly articles from the arXiv repository and RFP documents from RedShred. We

evaluated the performance of our framework using different evaluation matrices, such

as precision, recall, and f1-score. We also analyzed and visualized the results in the

embedding space. We made available a dataset of information about a collection of

scholarly articles from the arXiv eprints that includes a wide range of metadata for each

article, including a TOC, section labels, section summarizations, and more.

Understanding the Logical and Semantic
Structure of Large Documents

by

Muhammad Mahbubur Rahman

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Tim Finin, PhD, Chair
Anupam Joshi, PhD
Tim Oates, PhD
Cynthia Matuszek, PhD
James Mayfield, PhD

c© Copyright by
Muhammad Mahbubur Rahman

2018

To Dad and late Mom;

for their unwavering support, love and understanding

ii

Acknowledgments

First and foremost I would like to express my deepest gratitude to my advisor Dr.

Tim Finin for his consistent support, encouragement, careful guidance, and thoughtful

input over these years. His sense of pragmatism and relentless empiricism have been

well appreciated, and has availed my research enormously. Under his careful supervi-

sion, I have been able to pursue interesting research topics, and conduct the correspond-

ing projects in this dissertation.

I would also like to thank my dissertation committee members: Drs. Joshi, Oates,

Matuszek and Mayfield for their insightful comments and encouragement. Their critical

inputs were vital for my research and helped me improve this dissertation.

I am grateful to Jim and Jeehye from RedShred for supporting me a lot to un-

derstand the research problem and providing the annotated data. It has been a great

pleasure to work with the past and present members of Ebiquity Research Group at

UMBC. Some of my friends like Prajit, Jenn, Abhay, Clare, Lisa, Ramin, Taneeya, Sr-

ishty, Arya, Ankur, Sandeep and Sudip have provided critical feedback on my work, for

years. I am thankful to them for listening my speeches and presentations and providing

insightful comments and feedback.

I would also like to thank Drs. Syed and Gupta for providing ideas and working

with me over the years. Being a non-native speaker of a language comes with quirks

that one might find difficult to avoid while writing. Therefore, I am extremely thankful

to Dr. Mahmood for proof-reading this dissertation. He gave insightful and critical

inputs, which helped me a lot to improve this dissertation.

iii

I am also very thankful to the all staffs of the CSEE department for their hard

work, constant support and kind words. In particular, I would love to thank Olivia,

Keara and Dee Ann.

This dissertation would not have been completed without the persistent support

of my family and friends. Thanks to all of them, and finally to my loving parents and

sisters, who continue to encourage me to pursue my dreams.

iv

Table of Contents

List of Tables ix

List of Figures xi

List of Abbreviations xiii

1 INTRODUCTION 1
1.1 Motivation . 1
1.2 Background . 5

1.2.1 Sections . 5
1.2.2 Documents . 6
1.2.3 Document Segmentation . 7
1.2.4 Text Segmentation . 8

1.3 State of the Art Approach . 10
1.4 Research Challenges and Contributions 11
1.5 Structure of the Dissertation . 15

2 BACKGROUND AND RELATED WORK 17
2.1 Background . 17

2.1.1 Business Documents . 17
2.1.2 Scholarly Articles . 18
2.1.3 PDF Documents . 18
2.1.4 Ontology . 19
2.1.5 Deep Learning . 19
2.1.6 Semantic Annotation . 20

2.2 Related Work . 20
2.2.1 Document Sectioning . 20

2.2.1.1 Scanned Document Segmentation 20
2.2.1.2 Electronic Document Segmentation 22

2.2.2 Semantic Annotation and Labeling 24
2.2.2.1 Semantic Structure of Academic Articles 24
2.2.2.2 Semantic Annotation of Medical Documents 25

2.2.3 Deep Neural Networks . 25
2.2.4 Document Ontology Design 27
2.2.5 Document Summarization . 28
2.2.6 Extractive Document Summarization 28
2.2.7 Abstractive Document Summarization 30
2.2.8 Logical Structure Extraction Tools 31

2.3 Gaps in the Existing Research . 32

v

3 TECHNICAL APPROACH 33
3.1 High Level System Architecture . 33

3.1.1 Pre-processing Unit . 33
3.1.2 Annotation Unit . 34
3.1.3 Classification Unit . 35
3.1.4 Semantic Annotation Unit . 36

3.2 Input Data . 37
3.2.1 Input Data for the Classification Unit 37
3.2.2 Input Data for Semantic Annotation Unit 38

3.3 Output . 38
3.4 Our Approaches . 39

3.4.1 Line Classification . 39
3.4.1.1 Features Extractor 39
3.4.1.2 Support Vector Machines (SVM) 40
3.4.1.3 Decision Tree (DT) 42
3.4.1.4 Naive Bayes (NB) 43
3.4.1.5 Recurrent Neural Networks (RNN) 44
3.4.1.6 Convolutional Neural Network (CNN) 45

3.4.2 Section Classification . 47
3.4.2.1 Section Classifiers 50
3.4.2.2 Section Boundary Detector 51

3.4.3 Semantic Annotation . 52
3.4.3.1 Semantic Classifier 54
3.4.3.2 Sequence Prediction 55
3.4.3.3 Sections Mapping and Ontology Design 56
3.4.3.4 Semantic Concepts using LDA 61
3.4.3.5 Sections Summarization 61

4 INPUT DOCUMENT PROCESSING 65
4.1 Data Types . 65

4.1.1 arXiv Articles . 65
4.1.2 RFP Documents . 66

4.2 Data Collection . 66
4.2.1 Full Text Access . 66
4.2.2 OAI Call . 68
4.2.3 TOC Extraction . 68
4.2.4 Convert to TETML . 69

4.3 TETML Processing . 69
4.4 RFP Processing . 73
4.5 Training and Test Data . 74

4.5.1 Data for Line Classifiers . 74
4.5.2 Data For Section Classifiers 75
4.5.3 Data For Semantic Section Classifier 76
4.5.4 Data For Section Sequencing 76

vi

4.5.5 Data For Section Summarization 77
4.5.6 Data For Ontology Design . 78

5 EXPERIMENTS AND EVALUATION 79
5.1 Experiments for Line Classification 79

5.1.1 Using DT . 79
5.1.1.1 Results and Evaluation 80

5.1.2 Using SVM . 81
5.1.2.1 Results and Evaluation 82

5.1.3 Using NB . 83
5.1.3.1 Results and Evaluation 83

5.1.4 Using RNN . 84
5.1.4.1 Results and Evaluation 85

5.1.5 Using CNN . 87
5.1.5.1 Results and Evaluation 89

5.1.6 Discussion . 91
5.2 Experiments for Section Classification 91

5.2.1 Using RNN . 92
5.2.1.1 Results and Evaluation 93

5.2.2 Using CNN . 95
5.2.2.1 Results and Evaluation 96

5.2.3 Using CNN for Four Class . 97
5.2.3.1 Results and Evaluation 97

5.2.4 Discussion . 99
5.3 Experiments for Semantic Section Classification 100

5.3.1 Using CNN . 101
5.3.1.1 Results and Evaluation 101

5.3.2 Using Bidirectional LSTM . 103
5.3.2.1 Results and Evaluation 104

5.3.3 Discussion . 105
5.4 Experiments for Section Sequencing 107

5.4.1 Using LSTM . 107
5.4.2 Results and Evaluation . 108

5.5 Experiments for Section Summarization 109
5.5.1 Extractive Summarization . 110
5.5.2 Abstractive Summarization . 110
5.5.3 Results and Evaluation . 111

5.6 Experiments for Ontology Design . 112
5.6.1 Using Variational Autoencoder 112
5.6.2 Results and Evaluation . 113

5.7 Experiment for Semantic Concepts . 115
5.7.1 Using LDA . 115
5.7.2 Results and Evaluation . 116

5.8 Experiment on RFP Dataset . 119

vii

5.8.1 Results and Evaluation . 119
5.9 Discussion . 120

6 CONCLUSION 122
6.1 Discussion and Summary of Contributions 124
6.2 Limitations of the System . 126
6.3 Future Research Directions . 127

6.3.1 Improvement of Abstractive Summarization 127
6.3.2 Domain Adaptation . 128
6.3.3 Releasing a Complete System for Public Use 128
6.3.4 Extracting Information from Scanned Documents 129
6.3.5 Generating Document from a Structure 129

6.4 Concluding Remarks . 129

Bibliography 130

viii

List of Tables

3.1 Human Generated Features . 41
3.2 Classes for Ontology from arXiv Articles 63
3.3 Classes for Ontology from RFPs . 64

4.1 arXiv Statistics of All Files . 68
4.2 arXiv Article Metadata . 68
4.3 Generated Attributes from the TETML 70
4.4 Class Labels with Text hierarchy . 72
4.5 Dataset for Line Classifiers Having Two Classes 75
4.6 Dataset for Section Classifiers Having Three Classes 75
4.7 Dataset for Section Classifiers Having Four Classes 76
4.8 Training and Test Sections for Summarization 77

5.1 Configuration: Decision Tree Algorithms 80
5.2 Precision, Recall and F1-score for DT Using Only Layout Features . . . 81
5.3 Precision, Recall and F1-score for DT Using Combined Layout Fea-

tures and Text Features . 81
5.4 Top Five Features for DT Model Using Layout Feature Vector 81
5.5 Configuration: SVM Algorithms . 82
5.6 Precision, Recall and F1-score for SVM Using Only Layout Feature

Vector . 82
5.7 Precision, Recall and F1-score for SVM Using Combined Layout Fea-

ture and Text Feature Vectors . 83
5.8 Configuration: Naive Bayes Algorithms 83
5.9 Precision, Recall and F1-score for NB Using Only Layout Feature Vector 84
5.10 Precision, Recall and F1-score for NB Using Combined Layout Feature

and Text Feature Vectors . 84
5.11 Configuration of RNN Models for Line Classification 85
5.12 Precision, Recall and F1-score for RNN Models for Line Classification . 86
5.13 Configuration of CNN Models for Line Classification 88
5.14 Avg. Precision, Recall and F1-score for CNN Models for Line Classi-

fication . 90
5.15 Test Accuracies for CNN Models for Line Classification 91
5.16 Precision, Recall and F1-score for Section Classification using RNN . . 94
5.17 Precision, Recall and F1-score for Section Classification using CNN . . 97
5.18 Precision, Recall and F1-score for Four Class CNN for Section Classi-

fication . 98
5.19 Precision, Recall and F1-score for Semantic Section Classifier using CNN102
5.20 Precision, Recall and F1-score for Semantic Section Classifier using

Bidirectional LSTM . 104
5.21 Sample Sequence of Section Headers Prediction on Test Data using

LSTM Encoder-Decoder . 110

ix

5.22 Training and Test Dataset for LDA . 116
5.23 Comparative analysis of LDA models for semantic concepts 118
5.24 Precision, Recall and F1-score for Line Classification on RFP Dataset

using CNN . 120
5.25 Precision, Recall and F1-score for Section Classification on RFP Dataset

using CNN . 120

x

List of Figures

1.1 A Complex PDF View c© 2012, IEEE 3
1.2 A High Level System Work-flow . 4
1.3 Logical Model of a PDF Document . 5
1.4 Geometric Segmentation of a Document c© 2013, IEEE 7
1.5 Logical Segmentation of a Document c© 2012, IEEE 9

3.1 High Level System Architecture . 34
3.2 Overall Inputs and Outputs of Our Framework 38
3.3 Many-to-one RNN Approach for Section Header Classification 45
3.4 RNN Architecture for Layout and Text 46
3.5 CNN Architecture for Text Only Input 48
3.6 CNN Architecture for Combined Text Input and Layout Input 49
3.7 Inputs and Outputs of RNN/CNN for Section Classification with Text

Only[Squares are data; ovals are software components.] 51
3.8 Overall Inputs and Outputs for Section Classification with Combined

Text and Layout Vector . 51
3.9 Top-level Section Header, Subsection Header and Sub-subsection Header

Dependency Sequence . 52
3.10 CNN Architecture for Semantic Section Classifier 55
3.11 Bidirectional LSTM Architecture for Semantic Section Classifier 56
3.12 LSTM Sequence Prediction Diagram 57
3.13 Variational Autoencoder for Ontology Class Selection 59
3.14 Document Ontology . 60
3.15 LDA Topic Model . 62

4.1 Manifest File Structure . 67
4.2 PDFLib Processing Issue with Multiple Lines 72
4.3 Flow Diagram for Input Document Processing 73

5.1 Training Losses for Line Classification using RNN Models 87
5.2 Training Losses for Line Classification using CNN Models 90
5.3 Performance Comparison for Line Classification 92
5.4 T-SNE Visualization of Embedding Vector using RNN for Section Clas-

sification . 94
5.5 T-SNE Visualization of Embedding Vector using CNN for Section Clas-

sification . 96
5.6 T-SNE Visualization of Embedding Vector using CNN for Four Class

Section Classification . 98
5.7 Performance of RNN and CNN for Section Classification 100
5.8 T-SNE Visualization of Semantic Section Embedding using Word Based

CNN . 103
5.9 T-SNE Visualization of Semantic Section Embedding using Word Based

Bidirectional LSTM . 105

xi

5.10 Training Losses for Semantic Section Classification using CNN and
Bidirectional LSTM Models . 106

5.11 Performance Comparison for Semantic Section Classifiers 107
5.12 T-SNE Visualization of Section Sequencing using LSTM Encoder-Decoder

. 109
5.13 Loss for sequence-to-sequence TextSum Model 112
5.14 T-SNE Visualization of VAE Embedding Matrix Clusters with Input

Length 15 . 114
5.15 T-SNE Visualization of VAE Embedding Matrix Clusters with Input

Length 20 . 115
5.16 Inter Topic Distance Map and Top Terms for a Topic 117
5.17 Similarity Measures for LDA . 118

xii

List of Abbreviations

LSTM Long Short Term Memory networks
RNN Recurrent Neural Network
CNN Convolutional Neural Network
TF Tensorflow
BOW Bag-of-words
IDF Inverse Document Frequency
TF Term Frequency
TF-IDF Term Frequency-Inverse Document Frequency
SVM Support Vector Machine
OWL Web Ontology Language
RF Random Forest
NB Naive Bayes
DT Decision Tree
RFP Request for Proposal
OAI Open Archives Initiative

xiii

Chapter 1

INTRODUCTION

This thesis presents the logical and semantic processing of large electronic docu-

ments in PDF format. The logical and semantic processing of a PDF document is a non-

trivial research challenge due to characteristics and purposes of PDF documents. PDF

documents are rendered in an optimized way for displaying and printing the content in

a better visual representation, which makes it difficult for a machine to understand the

content.

This introductory chapter describes the research problem along with the elements

that motivate this work. It also describes necessary background knowledge, which is

followed by a state of the art approach in this research domain. Then it has the thesis

statement and contributions. At the end, it includes the overall structure of the thesis.

1.1 Motivation

The understanding and extracting of information from large documents, such

as reports, business opportunities, academic articles, medical documents and techni-

cal manuals poses challenges not present in short documents. State of the art natural

language processing approaches mostly focus on short documents, such as news ar-

ticles, dialogs, blog posts, product reviews and discussion forum entries. One of the

key challenges in processing of large documents is sectioning different parts of a doc-

1

ument. The reason behind this challenge is that large documents are complex and may

be unstructured and noisy with different formats.

Document understanding depends on a reader’s own interpretation. A document

can be structured, semi-structured or unstructured. Usually a human readable document

has a physical layout and logical structure. Such documents contain title and sections.

Sections may contain a header, section body or a nested structure. Sections are visually

separated by a section break such as extra space, empty line or a section heading for the

latter section. A section break gives indication to a reader regarding changes of concept,

mood, tone and emotion. The lack of proper transition from one to another section may

make the document more difficult to understand.

Understanding large multi-themed documents presents additional challenges since

these documents are composed of a variety of sections discussing diverse topics. Some

documents may have a table of contents, whereas others may not. Even if a table of

contents is present, mapping it across the document is not a straightforward process.

Section and subsection headers may or may not be present in the table of contents. If

they are present, they are often inconsistent across documents even within the same

vertical domain.

Most large documents, such as business documents, academic articles and techni-

cal reports, are available in PDF format. This is because of the popularity and the porta-

bility of the PDF file over different types of machines. But PDF is usually rendered by

various kind of tools such as Microsoft Office, Adobe Acrobat and Open Office. All

of these tools have their own rendering techniques. Moreover, contents are written and

2

Figure 1.1: A Complex PDF View c© 2012, IEEE

(Bubbles indicate different components, such as Tables, Diagrams, Equations and
Forms)

formatted by human beings. All of these factors make PDF documents very complex

with text, images, graphs, equations and tables. Figure ?? shows a sample of complex

PDF view.

Semantic organization of sections, subsections and sub-subsections of PDF docu-

ments across all vertical domains is not the same. For example, a business document has

a completely different structure from a user manual. Even research articles from com-

puter science and social science have completely different structures. Social science

articles have methodology sections where as computer science articles have approach

sections. Semantically these two sections should be the same.

3

Figure 1.2: A High Level System Work-flow

We intend to sectionalize large and complex PDF documents automatically and

annotate each section with a semantic and human-understandable label. Figure 1.2

shows the high level system work-flow of our framework. The framework takes a docu-

ment as input, extracts text, identifies logical sections and labels them with semantically

meaningful names. The framework uses layout information and text content extracted

from PDF documents. A logical model of a PDF document is given in Figure 1.3, where

each document is a collection of n sections and a section is a collection of n subsections

and so on.

Identifying a document’s logical sections and organizing them into a standard

structure, to understand the semantic structure of a document, will not only help many

information extraction applications, but also enable users to quickly navigate to sections

of interest. Such an understanding of a document’s structure will significantly benefit

4

Figure 1.3: Logical Model of a PDF Document

and inform a variety of applications, such as information extraction and retrieval, docu-

ment categorization and clustering, document summarization, text analysis and content

based question answering. People are often interested in reading specific sections of

a large document and hence will find semantically labeled sections very useful. It will

help people to simplify their reading operations as much as possible and to save valuable

time.

1.2 Background

This section provides necessary background on our research and includes defini-

tions required to understand the work.

1.2.1 Sections

A section can be defined in different ways. In this research, we define a section

as follows.

S = a sequence of paragraphs, P ; where number of paragraphs ranges from 1 to n

5

P = a set of lines, L

L = a set of words, W

W = a set of characters, C

C = all character set

D = digits | roman numbers | single character

LI = a set of list items

TI = an entry from a table

Cap = table caption | image caption

B = characters are in Bold

LFS = characters are in larger font size

HLS = higher line space

Section Header = l ⊂ L where l often starts with d ∈ D And l /∈ {TI, Cap} And

usually l ∈ LI And generally l ⊂ {B, LFS, HLS}

Section = s ⊂ S preceded by a Section Header.

1.2.2 Documents

Our work is focused on understanding the textual content of PDF documents that

may have a few pages to a few hundred pages. We consider those with more than ten

pages to be “large” documents. It is common for such large documents to have page

headers, footers, tables, images, graphics, forms and mathematical equations. Some ex-

6

Figure 1.4: Geometric Segmentation of a Document c© 2013, IEEE

(Texts are highlighted in blue, separators in magenta, graphics in green, images in
cyan)

amples of large documents are business documents, legal documents, technical reports

and academic articles.

1.2.3 Document Segmentation

Document segmentation is the process of splitting a scanned image of text doc-

ument into text and non-text sections. A non-text section may be an image or other

drawing. And a text section is a collection of machine-readable alphabets, which can

be processed by an OCR system. Usually two main approaches are used in document

segmentation, geometric segmentation and logical segmentation. According to geo-

7

metric segmentation, a document is split into text and non-text based on its geometric

structure. Figure ?? from Antonacopoulos et al. [6] shows geometric segmentation of

a document. This type of segmentation can be done using top-down, bottom-up and

hybrid approaches [60]. A logical segmentation is based on its logical labels, such as

header, footer, logo, table and title. After reading [46, 47], a logical segmentation of an

academic article [77] is drawn in Figure 1.5.

1.2.4 Text Segmentation

Text segmentation is a process of splitting digital text into words, sentences, para-

graphs, topics or meaningful sections. This task differs from document segmentation

and requires splitting text into meaningful sections, which is a non-trivial challenge.

If the text is large, such as a document of 10 to few hundred pages, segmenting the

text into meaningful semantic sections becomes more challenging. Reasons behind this

challenge are large documents may be multi-themed and may cover diverse topics.

One might be confused that document sectioning and semantic labeling are the

same as document segmentation [6], but these are distinct tasks. Document segmen-

tation is based on a scanned image of a text document. Usually a document is parsed

based on raw pixels generated from a binary image. We use electronic documents, such

as PDFs generated from Word, LaTeX or Google Doc, and consider different physical

layout attributes, such as indentation, line spaces and font information.

One might also confuse semantic labeling with rhetorical or coherence relations

of text spans in a document. Rhetorical Structure Theory (RST) [59, 91] uses rhetori-

8

Figure 1.5: Logical Segmentation of a Document c© 2012, IEEE

(boxes with different labels represent different logical components)9

cal relations to analyze text in order to describe rather than understand them. It finds

coherence in texts and parses their structure. This coherence is helpful for identifying

different components of a text block, but we aim to understand the text blocks in order

to associate a semantic meaning. Here, identifying is a process of recognizing compo-

nents from text block, such as contrast and background. Understanding is a technique

of finding semantic meaning for different text blocks, such as introduction and related

work from an academic article.

1.3 State of the Art Approach

Several state of art methods have been proposed to tackle the problem. Constantin

et al. developed a system called PDFX [22]. It is a rule-based system which reconstructs

the logical structure of scholarly articles in PDF. It also describes each of the sections

in terms of some semantic meaning, such as title, author, body text and references.

There are few major limitations in this system. First of all, this system focuses on only

selective top level headings. Secondly, this is a rule based system and considers only the

logical structure. Thirdly, the system doesn’t present any machine learning approach to

cover any type of section headings.

Another system is presented by Tuarob et al. [92] to discover semantic hierarchi-

cal sections from scholarly documents. This system is also limited to a few fixed section

headings identification. For classification algorithms, they only use Random Forest,

Support Vector Machines (SVM), Repeated Incremental Pruning to Produce Error Re-

duction (RIPPER) and Naive Bayes. These are simple machine learning approaches to

10

recognize some standard sections.

For both systems, approaches are simple and they capture only limited section

headings. If a document is large and complex, these simple approaches won’t work

well to learn all the top level, subsection and sub-subsection headings. To the best of

my knowledge, none of the systems can identify the nested level of section boundaries.

We also didn’t find any system that annotates different sections of a document with

human understandable semantic names.

To the best of my knowledge, there is no existing system, which understands dif-

ferent logical parts of a PDF formatted electronic document with a semantic meaning.

Therefore, sectionalizing a large electronic document to identify the logical structure

and annotating each of the sections with semantic names is still an open research prob-

lem. There is also a lack of general architecture, which capable of understanding the

logical and the semantic structure of any sort of PDF document, such as academic arti-

cles and business documents.

Along with the traditional machine learning approaches, we also explore RNN/L-

STM, CNN and seq2seq auto-encoder based deep learning models in extracting and

understanding the logical and the semantic structure of PDF documents with the help

of a document ontology.

1.4 Research Challenges and Contributions

Our thesis statement: it is possible to automatically identify a document’s logical

sections, infer their structure and assign human understandable and consistent semantic

11

labels that can help machines to understand large documents. The thesis statement

along with the description above motivates two research challenges. These are given

below.

• Understanding the logical structure of a document.

• Understanding the semantic structure of a document.

These two challenges provide substantial scientific and engineering contributions

to understand a document. A general interest in document understanding is to identify

a logical structure, and segment the document based on the structure. This structure is

very important to split a document, so that different segments can be used to analysis

the content for various purposes. The structure provides necessary information to a

machine for understanding the general flow of the content. The structure also allows

automatic document classification.

Another independent interest in text analysis is to understand the semantic mean-

ing of a text segmentation, and hence improve the understanding capability of a machine

in searching, information retrieval, text summarization, and question answering. Under-

standing the semantic structure of a sequence of sections in a document provides very

useful insight in document indexing.

We solve two research challenges mentioned above and have the following con-

tributions.

(i) Inferring the logical structure for a PDF document by a deep understanding of a

low level representation of the document.

12

(ii) Modeling and extracting the semantic structure of a document by providing gen-

eral purpose semantic and domain specific semantic concepts.

(iii) Making available a dataset of information about a collection of scholarly articles

from the arXiv eprints collection that includes a wide range of meta-data for each

article, including a table of contents, section labels, section summarizations and

more.

(iv) Releasing the source code of different components of the system.

In the first contribution, we design and develop deep learning architectures to

identify a document’s logical structure from a low level representation of the document.

Initially, the models generate text lines from the low level representation of the docu-

ment and classify each of the lines into regular-text or section-header. Then, the models

identify each section-header into different level of headings. Based on the output, our

models generate logical sections and are able to find the relationships among them. Our

deep learning models are reusable for any text classification tasks based on character

level input sequences. The logical structure generated using our models, can segment

any document into physically divided sections.

In the context of text summarization, the main concept is to find the most infor-

mative subset of data from the whole text where a key challenge is the length of the text.

If state-of-the-art techniques of text summarization are applied on a large document, it

is quite difficult to capture the most informative summaries over a variety of ideas from

different parts of the document. Our models are able to capture section-wise summaries

after splitting the document into different physically divided sections.

13

The models are applicable to a variety of document domains having document

formatting, such as section headers, indentation and line spacing. Our models are also

able to generate logical structure from a document of any language since people use

document style parameters to format the content in most of the languages.

In the second contribution, we design and develop both character and word level

deep learning architectures for understanding general purpose semantics of a document.

The models are able to capture semantic patterns from the word representation of any

document. We also design and develop a document ontology using deep learning. The

ontology is able to describe different functional parts of a document, which can be used

to enhance semantic indexing for a better understanding by human beings and machines.

The ontology development architectures are adequate for any document type since we

use auto-encoder and clustering approaches which are unsupervised techniques. We

also build LDA based models to capture domain specific semantics from any document.

The models are directly application to any academic article and are reproducible to any

other document types.

The third contribution is releasing a dataset containing metadata, TOC, article

categories, section summarizations and more from over one million arXiv articles. In

the context of language modeling and topic modeling, the machine learning and NLP

communities need to have a large number of clean sections or documents. Our dataset

is very useful resource for these communities. The dataset can also be resourceful for

content-based question answering, document indexing, and document similarity vector

generation.

14

Finally, we make available the source code of different deep learning architectures

of our system. Some of the source code can be used for any text classification and

semantic concept identification. We also release the document ontology, which can be

used for semantic indexing and labeling.

1.5 Structure of the Dissertation

This thesis has been structured into 6 chapters, including this introductory chapter.

The rest of the chapters are as follows.

Chapter 2 narrates the previous work related to our research. It includes the nec-

essary background knowledge to understand this thesis. It also explains the gaps in the

existing work in this research domain.

Chapter 3 presents the technical approaches. It starts with a description of the

developed framework. It clearly states each of the units of our system. It describes the

detailed technical procedures of each of the tasks.

Chapter 4 illustrates input document processing. It explains different steps which

are taken to attain clean data. It also discusses the difficulties we have faced during

document processing. It demonstrates the training and test data preparation for each of

the units. It also describes the annotation methods which were used to develop gold

standard for our experiments.

Chapter 5 presents the experiments we have done through out this research. It nar-

rates each of the models which different experimental setup. The results of our experi-

ments are evaluated in this chapter. The comparative analysis among existing research,

15

baseline experiments and advanced experiments are also discussed in this chapter.

Chapter 6 concludes the thesis with giving limitations of the system along with

some future research directions.

Finally, the last chapter includes the bibliographies and references of the existing

research.

16

Chapter 2

BACKGROUND AND RELATED WORK

In this chapter, we will provide background knowledge to understand the research

domain. We will also discuss related research work in this domain. At the end of this

chapter, we will describe gaps in the existing research.

2.1 Background

2.1.1 Business Documents

A document that contains information related to business, such as business plan,

goal, customer service and accounting, is known as a business document. Based on

intended purposes, business documents can be of different semantic types. In our initial

experiments, we used Request for Proposal (RFP) documents. An RFP is a document

that solicits a proposal, often made through a bidding process, by an agency or company

interested in procurement of a commodity, service, or valuable asset, potential suppliers

to submit business proposals [23]. An RFP presents preliminary requirements for the

commodity or the service. It often includes specifications of the item, project, or service

for which a proposal is requested.

A Request for Quotation (RFQ) [85] is similar to an RFP, whereby the customer

may simply be looking for a price quote. Another common format of business docu-

17

ments is Request for Information (RFI) [37] , which is also similar to an RFP, where a

customer asks for more information from vendors before submitting an RFP.

2.1.2 Scholarly Articles

Documents that represent academic research, experiments, and results are known

as academic or scholarly articles. These types of documents usually present research

findings, analysis, comparisons, mathematical equations, graphics and tables. They

usually have some standard sections, such as abstract, introduction, related works, ap-

proach and results. But, they may also have different standards based on the academic

categories. For example, a scholarly article from computer science usually has an ap-

proach section whereas, social science has a methodology section. Semantically, these

two sections are similar.

2.1.3 PDF Documents

Based on the visual representation of contents, documents may have different for-

mats. In our research, we will use Portable Document Format (PDF) [11] documents.

PDF is a file format which is commonly used to present documents in a manner in-

dependent of application software, hardware, or operating systems. It is an excellent

visualization for presenting any kind of document in a platform-independent way for

human readers. It is a standardized format, readable on various devices from mobile

phones to personal computers.

However, automatic post processing of contents of a PDF document is not an easy

18

task, since PDF is essentially a graphical format. Texts in PDF are represented by text

elements in page content streams. A text element specifies that the characters to be

drawn in certain positions. The characters are specified using the encoding of a selected

font resource. The PDF format allows numerous equally valid ways of producing the

same visual result and therefore no structure can reliably be derived from how the text

operators are used.

2.1.4 Ontology

According to Tom Gruber, an ontology is a specification of a conceptualization

[36]. It describes a concept with the help of an instance, class and properties. It can

be used to capture semantic meaning of different domains and annotate information.

We need an ontology to understand the semantic structure of a document and reuse

the structure in other documents. Detailed information of our ontology is given in the

Technical Approach chapter.

2.1.5 Deep Learning

Deep Learning is a subfield of machine learning that allows computational models

to learn important features from a large volume of data automatically. According to

Lecun et al. [51], it discovers the complex structure in a large data set by using the

back propagation algorithm [50]. A machine uses this structure to learn the important

features by changing internal parameters from layer to layer in a neural network [27].

Some of the most popular deep learning algorithms are Convolutional Neural Networks

19

(CNN) [49], Recurrent Neural Networks (RNN) [62] and Long Short-Term Memory

(LSTM) [39].

2.1.6 Semantic Annotation

Semantic annotation [93] can be described as a technique of enhancing a docu-

ment with automatic annotations, which provides a human-understandable way to get

the semantic meaning of an unstructured document. It also describes the document in

such a way that the document is understandable to a machine.

2.2 Related Work

2.2.1 Document Sectioning

2.2.1.1 Scanned Document Segmentation

Identifying the structure of a scanned text document is a well-known research

problem. Some solutions are proposed based on the analysis of the font size and text

indentation [14, 60]. Mao et al. provided a detailed survey of physical layout and

logical structure analysis of document images [60]. According to them, document style

parameters, such as sizes of and gap between characters, words and lines, have been

used to represent the physical document layout.

Algorithms used in physical layout analysis can be categorized into three main

types: top-down approaches, bottom-up approaches and hybrid approaches. Top-down

algorithms start from the whole document image and iteratively split it into smaller

20

ranges. Bottom-up algorithms start from document image pixels and cluster the pixels

into connected components, such as characters which are then clustered into words,

lines or zones. A mix of these two approaches is a hybrid approach.

The Docstrum algorithm of O’Gorman [69], the Voronoi-Diagram-based algo-

rithm of Kise et al. [45] and the Text String Separation algorithm of Fletcher et al. [32]

are bottom-up approaches. Gorman et al. described the Docstrum algorithm using the

K-nearest neighbors algorithm [33] for each connected component of a page and used

distance thresholds to form text lines and blocks. Kise et al. proposed the Voronoi-

diagram-based method for document images with a non-Manhattan layout and a skew.

This method is based on the connected component analysis. It uses an approximated

area Voronoi diagram [89] to represent the neighborhood of connected components.

Fletcher et al. designed an algorithm for separating text components in graphic regions

irrespective of their orientation. This approach is based on the Hough transform [44].

The X-Y-cut based algorithm presented by Nagy et al. [64] is an example of the

top-down approach. The X-Y-cut is a basic segmentation technique which recursively

cuts the document page into smaller rectangular areas. The cuts are decided based on

document pixels. The algorithm works only on a document that has a Manhattan layout

[84]. In a Manhattan layout, the text, graphics and other details can be separated by

horizontal and vertical line segments.

Pavlidis et al. [72] presented a hybrid approach. Their method identifies column

gaps and groups them into column separators after the horizontal smearing of black

pixels. A model-based logical structure analysis algorithm was presented by Yamashita

21

et al. [97]. It extracts character strings, lines and half-tone images [42] from a docu-

ment image. Based on the extracted elements, it can detect vertical and horizontal field

separators. Then it assigns labels to character strings.

2.2.1.2 Electronic Document Segmentation

Bloechle et al. described a method for finding blocks of text in a PDF document

and restructuring the document into a structured XCDF format [13]. Initially, their

approach trims all text primitives in order to remove extra white spaces. Then, it creates

a layer for each text rotation and processes them individually in a horizontal position.

To get a basic text segment, all text primitives are merged horizontally using a

dynamic distance threshold. The text segment is tokenized into words, numbers, punc-

tuation signs and other textual primitives and then merged horizontally into lines. The

lines are merged vertically into blocks by using a dynamic distance threshold. The idea

of using a separate layer for each text rotation is useful, since it allows the process

to concentrate only on basic left-to-right and up-to-down cases. This is a geometrical

approach and focuses on PDF formatted TV Schedules, newspapers and multimedia

meeting notes. Usually these types of documents are organized and have good format-

ting.

Chao et al. described an approach that automatically segments a PDF document

page into different logical structured regions, such as text blocks, images blocks, vector

graphics blocks and compound blocks [16]. Initially they converted a PDF page into

different logical objects until there were no more compound objects on the page display

22

list. Then they formed new text-only, image-only and path-objects-only PDF documents

while preserving the order of each object in the original objects list.

For text segmentation, they applied a bottom up approach starting with the small-

est text: characters in PDF documents. Words were formed using Adobe’s word-finder

[70, 9]. Lines were constructed based on the alignment, style of the words and the

distance between them. Text segments were formed based on the text line adjacency,

style, and line gap. This approach works based on page outlines and doesn’t consider

continuous pages.

Déjean et al. presented a system that relies solely on PDF-extracted content [26].

They developed a word reconstruction component to extract text from PDF. They ap-

plied different heuristics, such as distance between two characters and geometrical posi-

tions of characters, to produce word and line segmentation. They also build a lexicon to

correct any ill-formed words, but their lexicon is based on mainly technical documents.

For segmenting text into paragraphs, an X-Y-cut algorithm [64] was used. In order

to extract the logical structure of a document, they first detected the table of contents

(TOC) from a document. Then they mapped the document according to the hierarchical

information present in its TOC. However, many documents may not have a TOC.

Ramakrishnan et al. developed a layout-aware PDF text extraction system to en-

able accurate extraction of sections or bodies of text from PDF versions of research

articles [80]. They used different heuristics to extract text blocks from the PDF and

a rule-based method to classify these blocks into “rhetorical” categories (such as “In-

troduction”, “Results” and “Discussion”). In their approach, the rules are specified by

23

a user for each different journal layout. Since different journals have their own styles

and layout, their approach is not generic and may not be applicable to documents with

various formatting. This is one of the limitations of their approach. Another limitation

is that it may not capture varieties of categories, since their approach is rule-based.

2.2.2 Semantic Annotation and Labeling

2.2.2.1 Semantic Structure of Academic Articles

Constantin et al. designed PDFX, a rule-based system to reconstruct the logical

structure of scholarly articles in PDF form and to describe each of the sections in terms

of some semantic meaning, such as title, author, body text, or references [22]. The

rule set relies on relative parameters derived from font and layout information of each

article, rather than on a template-matching paradigm. PDFX has a two-stage process.

In the first stage, it constructs a geometrical model of a PDF document to determine

the spatial organization of textual and graphical units on a page. In the second stage,

it identifies different logical units of discourse based on their discriminative features.

They used the Utopia Documents PDF reader [7] to construct the geometrical model.

They used the geometrical model, document-wise and page-wise statistics to determine

the semantic roles of the newly created blocks.

Tuarob et al. described an algorithm to automatically build a semantic hierarchi-

cal structure of sections for a scholarly paper [92]. They defined a section as a pair

of the section header and its textual content. They proposed a rule-based approach to

recognize sections from scholarly articles. They applied a simple set of heuristics that

24

built a hierarchy of sections from the extracted section headers.

2.2.2.2 Semantic Annotation of Medical Documents

Monti et al. developed a system to reconstruct an electronic medical document

with semantic annotation [63]. They divided the whole process into three steps. In the

first step, they classified documents in one of the document categories specified in the

Consolidated CDA (C-CDA) standard [29]. Examples of CDA templates are consulta-

tion notes, discharge summaries and operative notes. They used the Naive Bayes [53]

classifier for the document classification.

They used PDFBox [95] to extract text from CDA standard medical documents.

Later, they split the document into paragraphs by using the typographical features avail-

able in the PDF file. Finally, they identified key concepts from the document and

mapped them to the most appropriate medical ontology. They didn’t present any tech-

nical detail in their paper. They also didn’t show any results. They only presented

the concept of the solution. It is important to note that they only considered standard

medical documents, which may not have complex document structure.

2.2.3 Deep Neural Networks

Zhang et al. applied temporal ConvNets [52] to understand text from character-

level inputs all the way up to abstract text concepts [98]. Their ConvNets do not require

any knowledge on the syntactic or semantic structure of a language to give good text un-

derstanding. They designed one large and one small ConvNet. Both of them are 9 layers

25

deep with 6 convolutional layers and 3 fully-connected layers, with different numbers

of hidden units and frame sizes. They used an alphabet that consists of 70 characters,

including 26 English letters, 10 digits, new line, and 33 other characters. They applied

their models to DBpedia ontology classification, Amazon review sentiment analysis,

Yahoo answers classification, and news categorization.

Ghosh et al. proposed a Contextual Long short-term memory (CLSTM) [39] for

sentence topic prediction [34]. They developed a model to predict topic or intent of the

next sentence, given the words and the topic of the current sentence. In their exper-

iments with topic features, they considered supervised topic categories obtained from

an extraneous source named Hierarchical Topic Model (HTM) [35] and also ”thought

embeddings” that are intrinsically generated from the previous context. Their CLSTM

is only for predicting the topic of the next sentence. It can be an interesting experiment

to predict the topic for the next section, given the sentences and the topic of the current

section.

Lopyrev et al. trained an encoder-decoder RNN with LSTM for generating news

headlines using the texts of news articles from the Gigaword dataset [57]. They only

used the first 50 words of a news article. Their approach works well on Gigaword

datasets only. A bi-directional RNN can be used for better results on other texts.

Srivastava et al. introduced a type of Deep Boltzmann Machine (DBM) for ex-

tracting distributed semantic representations from a large unstructured collection of

documents [88]. They presented a two hidden layer DBM model, which they called

the Over-Replicated Softmax model. They used the Over-Replicated Softmax model

26

for document retrieval and classification. However, the model works well on short doc-

uments only.

2.2.4 Document Ontology Design

Over the last few years, several ontologies have been developed to understand a

document’s semantic structure and annotate it with a semantic name. Some of them

deal with academic articles and some deal with other type of documents.

Ciccarese et al. developed an Ontology of Rhetorical Blocks (ORB) [20] to cap-

ture the coarse-grained rhetorical structure of a scientific article. ORB can add se-

mantics to a new article and annotate an existing article. It divides a scientific article

into three components, which are header, body and tail. The header captures meta-

information about the article, such as publication’s title, authors, affiliations, publishing

venue and abstract. The body adopts the IMRAD structure from [87] and contains intro-

duction, methods, results, and discussion. The tail provides additional meta-information

about the paper, such as acknowledgments and references.

Peroni et al. introduced a Semantic Publishing and Referencing (SPAR) Ontolo-

gies [75] to create comprehensive machine-readable RDF meta-data for the entire set of

characteristics of a document from semantic publishing. It is used to describe different

components of books and journal articles, such as citations and bibliographic records.

It has eight ontologies to cover all of the components for the creation of RDF meta-

data.These are DoCO, FaBiO, CiTO, PRO, PSO, C4O, BiRO and PWO. Among all of

the eight ontologies, DoCO describes the content of a document.

27

DoCO, the document components ontology [86, 21], provides a general-purpose

structured vocabulary of document elements to describe both structural and rhetorical

document components in RDF format. This ontology can be used to annotate and re-

trieve document components of an academic article based on the structure and content

of the article. Some of the classes of DoCO ontology are chapter, list, preface, table

and figure. DoCO also inherits another two ontologies: Discourse Elements Ontology

(Deo) [25] and Document Structural Patterns Ontology[5].

Shotton et al. developed the Deo [25] ontology to study different corpora of sci-

entific literature on different topics and publishers. It presents structured vocabulary

for rhetorical elements within an academic document. The major classes of Deo are in-

troduction, background, motivation, model, related work, methods, results, conclusion,

and acknowledgements. This ontology is very intriguing and relevant to our semantic

annotation. We can enhance the classes and the properties based on more than 1 million

academic articles and a few hundred thousand business documents.

2.2.5 Document Summarization

2.2.6 Extractive Document Summarization

Kågebäck et al. introduced a multi-document summarization using continuous

vector representations [41]. They used sentence embeddings along with phrase em-

beddings to maximize the cosine similarities among sentences, which significantly im-

proved the performance of the summarization technique presented by Lin et al. [54].

Cheng et al. presented a data-driven approach to extractive document summariza-

28

tion based on neural networks and continuous sentence features [17]. Their model in-

cludes a neural network-based hierarchical document reader or encoder and an attention-

based content extractor. They mentioned that the role of the reader was to derive the

meaning representation of a document based on its sentences and words in those sen-

tences. The attention-based extractor is directly used to select sentences or words from

the input document to the output summary. These types of neural attention-based archi-

tectures were used for geometry reasoning in [94].

An RNN based sequence model, SummaRuNNer was presented by Nallapati et al.

in [65]. They considered the summarization task as a sequence classification problem

wherein, each sentence is visited sequentially in the original document and a decision

was made whether the sentence should or should not be included in the summary. As the

basic building block of their sequence classifier, they used GRU based RNN from the

work presented in [19] by Chung et al. They claimed that their model had an additional

advantage to visualize of its predictions by abstract features, such as information content

and salience.

Nallapati et al. developed two architectures based on RNN for extractive summa-

rization of documents [67]. The architectures are “Classify” and “Select”. The Classify

architecture sequentially accepts or rejects each of the sentences from the original in-

put document for its membership in the final summary. The Select architecture has

a generative model that sequentially generates sentences which should be included in

the summary. They evaluated the performance of their models by deleting one abstract

feature at a time from the model, with replacement.

29

Narayan et al. developed a framework for document summarization based on

a hierarchical document encoder and an attention-based extractor with attention from

the side information [68]. The encoder is based on the architectures presented in [17,

65]. They used RNN to read the sequence of sentences from the input document. The

extractor selects sentences of the input document for the output summary using the

architecture presented in [10].

2.2.7 Abstractive Document Summarization

An abstractive summary framework, based on Abstract Meaning Representation

(AMR), was presented by Liu et al. [55]. The framework parses the source text into

a set of AMR graphs. Then, the summary text is generated from a summary graph,

which is transformed from AMR graphs. The framework focuses on the graph-to- graph

transformation as a structured prediction problem. It assumes text documents as input

and uses JAMR [31] to generate AMR graphs.

Inspired by the recent success of neural machine translation, Rush et al. presented

Attention-Based Summarization (ABS), a data-driven approach for generating abstrac-

tive summaries [83]. ABS uses a neural language model with a contextual attention-

based encoder from Bahdanau et al. [10]. But it also uses the Bag-of-Words Encoder

and Convolutional Encoder for the input sentence. It incorporates a beam-search de-

coder [48] as well as additional features to model extractive elements.

Chopra et al. introduced a conditional RNN to generate a summary from input

sentences [18]. The conditioning is achieved by a convolutional attention-based en-

30

coder. Their approach is similar to the model presented by Rush et al. [83] with the

replacement of the feed-forward neural language model by an RNN. They claimed that

their encoder was more sophisticated as it explicitly encodes the position information

of the input words.

Nallapati et al. presented an abstractive text summarization using Attentional

Encoder-Decoder Recurrent Neural Networks [66]. Their approach addresses mod-

eling keywords, capturing the hierarchy of sentence-to-word structure, and emitting

words that are rare or unseen at the training time. To identify the key concepts from the

input document, similar to the word embeddings, it creates additional look-up based

embedding matrices for the vocabulary of each tag-type. For mapping continuous fea-

tures in an embeddings matrix, it converts them into categorical values. At the decoding

stage, they used beam search to select a limited number of words for summary text.

2.2.8 Logical Structure Extraction Tools

Usually any PDF reader application implements some level of logical structure

identification for rendering texts and images from a PDF document. Poppler [76], a PDF

rendering library, uses an approach that starts from individual characters and creates

blocks of text. Many other PDF processing tools use it. However, the algorithm used

by Poppler is not described or presented anywhere in their documentation.

There are some tools available as open source or proprietary such as PDFBox

[95], PDF2Text [96] and PDFlib [73]. None of these tools have technical details avail-

able online. Extracting text from PDFs using PDFBox, PDF2Text and PDFlib has some

31

limitations. PDF2Text doesn’t work well when there is a table or image in the docu-

ment. Sometimes it converts the whole table into one single line or a complete column

into one single line. It also doesn’t provide any layout information, such as font size,

font family, or font weight. Similar to PDF2Text, sometimes PDFBox also gives an

inconsistent output. PDFlib provides layout information and gives the position of each

character in the document, but it doesn’t always detect tables correctly. And it is not

freely available.

2.3 Gaps in the Existing Research

To the best of our knowledge, many of the systems described above are not ac-

cessible. Most of the available systems focus on short articles or news articles. Some

of the systems focus on scholarly articles within a limited scope. We also haven’t seen

any end-to-end system to understand large and complex unstructured PDF formatted

documents.

Our proposed framework deals with large complex documents in electronic for-

mats. In our experiments, we use business documents, such as RFPs and a wide va-

rieties of scholarly articles from the arXiv repository. We applied machine learning

approaches including deep learning for sectioning and semantic labeling. Our frame-

work also understands the logical and semantic structure of scholarly articles as well as

RFP documents. The details of our approaches are presented in the Technical Approach

Chapter.

32

Chapter 3

TECHNICAL APPROACH

In this chapter, we will provide the system architecture of our framework. We

will explain the approach for each of the parts of the framework. We will also describe

the input and output of our proposed system architecture.

3.1 High Level System Architecture

Our proposed system is organized as a sequence of units, including a Pre-processing

Unit, Annotation Unit, Classification Unit and Semantic Annotation Unit. A high level

system architecture of our system is shown in Figure ??. All of the units of our system

are described below.

3.1.1 Pre-processing Unit

The Pre-processing Unit takes PDF documents as input and gives processed data

as output for annotation. It uses PDFLib [73] to extract metadata and text content

from PDF documents. It has a parser that parses XML generated by PDFLib using the

XML element tree (etree). The granularity of XML is word level, which means that

the XML generated by PDFLib from a PDF document has high level descriptions of

each character of a word. The parser applies different heuristics to get font information

of each character, such as size, weight and family. It uses x − y coordinates of each

33

Figure 3.1: High Level System Architecture

(Ovals are software components; squares are data;components developed for this
project are blue and light gray; algorithms are light gray; external components are

purple.)

character to generate a complete line and calculates indentation and line spacing of

each line. It also calculates average font size, weight and line spacing for each page.

All metadata on layout and text of each line are written in a CSV file, where each row

of the CSV has a line of text and layout information of the line.

3.1.2 Annotation Unit

The Annotation Unit takes layout information and text as input from the Pre-

processing Unit as a CSV file. Our annotation team reads each line, finds it in the

34

original PDF document and annotates it as a section-header or regular-text. A section-

header can be of different levels, such as top-level, subsection or sub-subsection. While

annotating, annotators do not look into the layout information given in the CSV file. For

our experiments on arXiv articles, we extracted bookmarks from PDF documents and

used them as the gold standard annotation for training and test as described in the Input

Document Processing chapter.

3.1.3 Classification Unit

The Classification Unit takes annotated data and trains classifiers to identify phys-

ically divided sections. The Unit has two sub-units for line and section classifications.

The Line Classification sub unit has Features Extractor and Line Classifiers module.

The Features Extractor takes layout information and texts as input. Based on heuristics,

it extracts features from layout information and texts. Features include text length, num-

ber of noun phrases, font size, higher line space, bold italic, colon and number sequence

at the beginning of a line. The Line Classifiers module implements multiple classifiers

using well known algorithms, such as Support Vector Machines (SVM), Decision Tree

(DT), Naive Bayes (NB), Convolutional Neural Network (CNN) and Recurrent Neural

Networks (RNN) as explained in the Approach section. Based on the performance of

different algorithms, the best one is selected for the operational purpose. The output of

the Line Classifiers module is section-header or regular-text.

The classified section header can be top-level, subsection or sub-subsection header.

The Section Classifiers module of the Section Classification sub unit takes section head-

35

ers as input and classifies them as top-level, subsection or sub-subsection headers using

RNN and CNN. The Section Classification sub unit also has a Section Boundary De-

tector, which detects the boundary of a section using different level of section headers

and regular text. It generates physically divided sections and finds relationship among

top-level, subsection and sub-subsection headers. It also generates a table of contents

(TOC) from a document based on the relationship among different levels of sections, as

explained further in the Approach section.

3.1.4 Semantic Annotation Unit

The Semantic Annotation Unit annotates each physically divided section with a

semantic name. It has a Semantic Labeling module, which implements Latent Dirich-

let Allocation (LDA) [12] topic modeling algorithm, CNN for semantic classification

for each of the divided sections, and LSTM for sequencing sections. LDA is used to

capture domain specific semantic concept from each of the sections. We design and

develop a document ontology to capture general purpose semantic annotation. The Se-

mantic Annotation Unit also applies document summarization techniques using NTLK

and Tensorflow to generate a short summary for each individual section. Detailed de-

scription is given in the approach section. The output of the Semantic Annotation Unit

is a TOC, sections with semantic labels and section summarizations from each PDF

document.

36

3.2 Input Data

The input documents for our framework are PDFs. Although our framework will

be generic, we set the scope of our research by limiting the types of PDF documents.

For the experiments in our research, we use RFP [23] documents and arXiv [1] scholarly

articles.

The RFP documents and arXiv research articles are usually in PDF format. We

have leveraged our existing collaboration with RedShred [2] to access large volumes

of RFPs from different government and private sources. We collected more than 1

million scholarly articles from the arXiv repository. These PDF formatted RFPs and

arXiv articles are the direct input to our framework. Our Pre-processing Unit extracts

data from PDF documents. More details on input data processing are mentioned in the

Document Processing chapter.

3.2.1 Input Data for the Classification Unit

The input for the Classification Unit is annotated data. The classification involves

the Line Classification and the Section Classification modules. The Line Classification

module takes a CSV file as input, where each row contains a text line and the layout

information about that line. The layout information includes font size, font family,

font weight, indentation of the line, x − y coordinates of the line etc. The Section

Classification module takes input from the Line Classification module. The input for

the Section Classification module is also a CSV file, which contains classified text lines

and layout information with their labels. The labels are regular-text, top-level section

37

Figure 3.2: Overall Inputs and Outputs of Our Framework

header, subsection header and sub-subsection header.

3.2.2 Input Data for Semantic Annotation Unit

The input for the Semantic Annotation Unit are divided sections. Each divided

section has a continuous text. For the training data, an annotator reads each section and

gives a label to it. Consequently, the final input for training and test is a divided section

with a class label. The class labels are introduction, background, services, deliverables,

etc. A complete list of classes is given in the Approach section.

3.3 Output

Final outputs of our framework are individual sections with semantic labels, TOC

and section-wise summaries of each of the documents. The overall inputs and outputs

of our framework are given in Figure 3.2.

38

3.4 Our Approaches

We use powerful, yet simple approaches to build our framework using layout

information and text contents. Layout information and text contents are extracted from

PDF documents, such as RFP documents and arXiv articles. We use different machine

learning algorithms, including deep learning, in our framework. The approaches are

Support Vector Machines (SVM), Decision Tree (DT), Naive Bayes (NB), Recurrent

Neural Networks (RNN), Long Short Term Memory (LSTM), Convolutional Neural

Networks (CNN) and Latent Dirichlet Allocation (LDA) [12]. The details are given

below based on each unit of our framework.

3.4.1 Line Classification

The Line Classification unit identifies each line of text as a section-header or

regular-text. It has the Features Extractor and the Line Classifiers component. The

approaches for the Line Classification are given below.

3.4.1.1 Features Extractor

Given a collection of labeled texts and layout information of a line, the Features

Extractor applies different heuristics to extract features. We build a vocabulary from all

section headers of arXiv training data, where a word is considered if the frequency of

that word is more than 100 and is not a common English word. The vocabulary size

is 13371 and the top five words are “Introduction”, “References”, “Proof”, “Appendix”

and “Conclusions”. The Features Extractor calculates average font size, font weight,

39

line spacing and line indentation. It finds number of dots, sequence number, length of

the text, presence of vocabulary and case of words (title case and upper case) in the text.

It also generates lexical features, such as the number of Nouns or Noun Phrases, Verbs

and Adjectives. It is common that a section header should have more Nouns or Noun

Phrases than other parts of speech. The ratio of Verbs or Auxiliary Verbs should be

much less in a section header. A section header usually starts with a numeric or Roman

numeral or single English alphabet letter. Based on all these heuristics, the Features

Extractor generates 16 features from each line. These features are given in table 3.1.

We also use the n-gram model to generate unigram, bigram and trigram features from

the text. After feature generation, the Line Classifiers module uses SVM, DT, NB, RNN

and CNN separately to identify a line as a section-header or regular-text.

3.4.1.2 Support Vector Machines (SVM)

Our line classification task can be considered as a text classification task where

inputs are layout features and n-gram from the text. Given a training dataset with labels,

we train SVM models which learn a decision boundary to split the dataset into two

groups by constructing a hyperplane or a set of hyperplanes in a high dimensional space.

Consider our training dataset, T = {x1, x2,, xn} and their label set, L = {0, 1},

where 0 means regular-text and 1 means section-header. Each of the data points from

T is either a vector of 16 layout features or a vector of 16 layout features concatenated

with n-gram features generated from text using TF-IDF. Using SVM we can determine

a classification model as Equation 3.1 to map a new data point with a class label from

40

Table 3.1: Human Generated Features

Feature name Description
pos nnp The ratio of NN or NNP in the line is more than

50%
without verb higher line space There is no Verb in the line and the line has

higher line space
font weight Font weight of the line is higher than the aver-

age font weight of the page
bold italic the line is bold and italic
at least 3 lines upper At least three consecutive lines are in upper case
higher line space The line has higher line space
number dot There is a sequence of numbers followed by dot
text len group The number of words in the line
seq number Numeric and roman numeral
colon The line has a colon
header 0 Font size is more than the average font size of

the page
header 1 Font size is more than the average font size of

the page and font weight is more than the aver-
age font weight

header 2 Font size is more than the average font weight
and bold

title case More than 50% of the words in the line are in
title case

all upper All the words of the line are in upper case
voc Vocabulary from section headers

L.

f : T → L f(x) = L (3.1)

Here the classification rule, the function f(x), can be of different types based on

the chosen kernels and optimization techniques. We use LinearSVC from scikit-learn

[74] which implements Support Vector Classification for the case of a linear kernel as

presented by Chang et al. [15]. Since our line classification task has only two class

labels, we use a linear kernel. We experimented with different parameter configurations

41

using the combined features vector as well as the layout features vector. The detail of

the SVM experiments is presented in the Experiments chapter.

3.4.1.3 Decision Tree (DT)

Given a set of lines, T = {x1, x2,, xn} where each line, xi is labeled with a

class name from the label set, L= {0, 1}, we train a decision tree model that predicts the

class label for a line, xi by learning simple decision rules inferred from either only 16

layoutfeatures or 16 layoutfeatures concatenated with a number of n-gram features

generated from the text using the TF-IDF vectorizer. The model recursively partitions

all the text lines such that the lines with the same class labels are grouped together.

To select the most important feature, which is the most relevant to the classifica-

tion process at each node, we calculate the gini − index. Let p1(f) and p2(f) be the

fraction of class label presence of two classes 0: regular-text and 1: section-header for

a feature f . Then, we have equation 3.2.

2∑
i=1

pi(f) = 1 (3.2)

Then, the gini− index for the feature f is in equation 3.3.

G(f) =
2∑
i=1

pi(f)2 (3.3)

For our two class line classification tasks, the value of G(f) is always in the range

of (1/2,1). If the value of G(f) is high, it indicates a higher discriminative power of the

42

feature f at a certain node.

We use Decision Tree implementation from scikit-learn [74] to train a decision

tree model for our line classification. The experimental results are explained in the

Experiments chapter.

3.4.1.4 Naive Bayes (NB)

Given a dependent feature vector set, F = {f1, f2,, fn} for each line of text

from a set of text lines, T = {x1, x2,, xn} and a class label set, L = {0, 1}, we

calculate the probability of each class ci from L using the Bayes theorem in equation

3.4.

P (ci|F) =
P (ci) . P (F |ci)

P (F)
(3.4)

As P (F) is the same for the given input text, we can determine the class label of

a text line having feature vector set F , using the equation 3.5.

Label(F) = arg Maxci{P (ci|F)}

= arg Maxci{P (ci) . P (F |ci)}

 (3.5)

Here, the probability P (F |ci) is calculated using the multinomial Naive Bayes

method. We use the multinomial Naive Bayes method from scikit-learn [74] to train

models, where the feature vector, F is either 16 features from layout or 16 layout fea-

tures concatenated with the word vector of the text line.

43

3.4.1.5 Recurrent Neural Networks (RNN)

Given an input sequence, S = {s1, s2,, st} of a line of text, we train a charac-

ter level RNN model to predict its label, l ∈ L= {regular-text :0, section-header :1}.

We use a many-to-one RNN approach, which reads a sequence of characters until it gets

to the end of the sequence character. It then predicts the class label of the sequence. The

RNN model takes the embeddings of characters in the text sequence as input. For char-

acter embedding, we represent the sequence into a character level one-hot matrix, which

is given as input to the RNN network. It is able to process the sequence recursively by

applying a transition function to its hidden unit, ht. The activation of the hidden unit is

computed by Equation 3.6.

ht =

0 t = 0

f(ht−1, st) otherwise

(3.6)

Here ht and ht−1 are the hidden units at time t and t − 1 and st is the input

sequence from the text line at time t. The RNN maps the whole sequence of characters

until the end of the sequence character with a continuous vector, which is input to the

softmax layer for label classification. A many-to-one RNN architecture for our line

classification is shown in Figure 3.3.

We use TensorFlow [4] to build our RNN models. We build three different net-

works for our line classification task. In the first and second network, we use text only

and layout only as input sequence respectively. In the third network, we use both the 16

layout features and the text as input, where the one-hot matrix of characters sequence is

44

Figure 3.3: Many-to-one RNN Approach for Section Header Classification

concatenated at the end of the layout features vector. Finally, the whole vector is given

as input to the network. Figure 3.4 shows the complete network architecture for com-

bined layout and text input vectors. Implementation details are given in the Experiments

chapter.

3.4.1.6 Convolutional Neural Network (CNN)

Given an input sequence, S = {s1, s2,, st} of a line of text, we train a character

level CNN model to predict its label, l ∈ L= {regular-text :0, section-header :1}. The

total vocabulary size is 256 different characters. We convert the input text into one hot

encoding. If the input length is more than a threshold, we truncate it. And if it is less

than the threshold, we pad it with zero at the end. Then the input sequence is passed

through the embedding layer to represent each of the characters with a mapping in the

embedding space. A convolution layer is used on the subsets of the input sequence with

a filter to produce new features. Thus, c is a set of features from the input sequence, S.

Then a feature map can be presented by equation 3.7 where each of the features, ci can

be generated by Equation 3.8.

c = [c1, c2, , ci] (3.7)

45

Figure 3.4: RNN Architecture for Layout and Text

46

ci = f(w.X + b) (3.8)

Here, w is a weight matrix, X is a subset from the input sequence S and b is a

bias value.

After getting the feature set, we apply max pooling on c, to get the maximum

feature values. These feature values are given to the fully connected hidden layer to

get the sentence level embedding vector, which is then passed to the Softmax layer

for classification. We build CNN networks for three vectors; text only, layout only and

combination of text and layout vectors. The network architecture for the text only input

is shown in Figure 3.5. We apply ReLu activation function at each convolution layer

and max pooling layer.

For the combined text and layout input vectors, we have two parallel sequential

layers. The first layer is for character level text input and the second layer is for the 16

layout features. The output from both layers are merged together and passed through

the last fully connected hidden layer. Finally, the output from the last hidden layer is

passed through the Softmax for classification. The network architecture is given in

Figure 3.6.

3.4.2 Section Classification

The section classification module takes section headers and section body text as

input from the line classification module and identifies different levels of section head-

ers, such as top-level section, subsection and sub-subsection headers. It also detects

47

Figure 3.5: CNN Architecture for Text Only Input

48

Figure 3.6: CNN Architecture for Combined Text Input and Layout Input

49

section boundaries. It has a Section Classifiers module and a Section Boundary Detec-

tor component, which are explained below. The output of this module are physically

divided sections.

3.4.2.1 Section Classifiers

Like the Line Classifiers module, the Section Classifiers module considers the

section classification task as a sequence classification problem, where we have a se-

quence of inputs, S = {s1, s2,, st} from classified section headers and the task is

to predict a category from L = { top-level section header:1, subsection header:2

sub-subsection header:3} for the sequence. For this sequence classification task, we

use both RNN and CNN architectures similar to the architectures used for the line clas-

sification task. We also use text only, layout only and combined text and layout input

vectors for the Section Classifiers. The input and output of RNN/CNN for the text only

network is shown in Figure 3.7. The overall inputs and outputs for the section clas-

sification task with the Section Boundary Detector is shown in Figure 3.8, where the

network has combined the text and layout input vectors.

There are few reasons for choosing RNN and CNN over other machine learning

algorithms for the section classification. The first reason is that the section classification

is more complex than the line classification due to the complexity of the nature of

different types of section headers. The second reason is that we get better performance

for line classification using RNN and CNN over other algorithms for our dataset. The

third reason is that we worry less about feature generation. The fourth reason is that

50

Figure 3.7: Inputs and Outputs of RNN/CNN for Section Classification with Text
Only[Squares are data; ovals are software components.]

Figure 3.8: Overall Inputs and Outputs for Section Classification with Combined Text
and Layout Vector

RNN and CNN learn the structure of our dataset more effectively than other machine

learning algorithms. The last but not least reason is that RNN and CNN can generate

new unknown features and find relationships between features for our dataset.

3.4.2.2 Section Boundary Detector

After identifying different levels of section headers, we merge all contents (reg-

ular text, top-level section header, subsection header and sub-subsection header) with

their class labels in a sequential order as they appear in the original document. The

51

Figure 3.9: Top-level Section Header, Subsection Header and Sub-subsection Header
Dependency Sequence

Section Boundary Detector splits the whole document into different sections, subsec-

tions and sub-subsections based on the given splitting level. By default, it splits the

document into top-level sections. It returns output as a dictionary where the keys are

“text”, “title” and “subsections” for each section, and the values are content, header

and nested sections respectively. The subsections have a similar nested structure. The

Section Boundary Detector finds the relationship among sections, subsections and sub-

subsections using the dependency state diagram presented in Figure 3.9. The high level

algorithm, that generates sections, subsections and sub-subsections using the depen-

dency diagram and class labels, is presented in Algorithm 1.

3.4.3 Semantic Annotation

Given a set of physically divided sections, D = {d1, d2,, dn}, the Semantic

Annotation Unit assigns a human understandable semantic name to each section. It has

52

Algorithm 1 Section boundary detector
1: procedure SPLIT DOC INTO SECTIONS(doc, split level)
2: sections =[]
3: if split level is top level then
4: for line in doc do
5: Generate text block based on class label = 1
6: Add {title, text block} in sections
7: end for
8: else if split level is subsection then
9: for line in doc do

10: Generate text block based on class label =1
11: end for
12: for block in text block do
13: Generate sub block based on class label =2
14: Add {title, sub block} in sections
15: end for
16: else
17: for line in doc do
18: Generate text block based on class label =1
19: end for
20: for block in text block do
21: Generate sub block based on class label =2
22: end for
23: for block in sub block do
24: Generate sub sub block based on class label =3
25: Add {title, sub sub block} in sections
26: end for
27: end if
28: return sections
29: end procedure

53

a Semantic Labeling module, which implements different components to get the output

of our framework.

3.4.3.1 Semantic Classifier

We built CNN and bidirectional LSTM models to classify each of the physically

divided sections. At the end, word based CNN model was chosen as a Semantic Clas-

sifier. There are several reasons to choose word based CNN as a Semantic Classifier.

First of all, we achieved the best performance using word based CNN for our dataset.

Secondly, we chose word based architecture to capture the semantic meaning of each

section based on words. Finally, CNN works better to capture the structure of sentences

in different sections, which helps to identify the semantic meaning of different sections.

For example, an introduction has sentences for explaining motivations, a related work

section has lot of citations, a technical approach section usually has more mathematics

and equations, and a result section has more graphics and plots.

The labels of the Semantic Classifier are classes from our document ontology.

Detailed information about class selection is described in the ontology design section.

We implemented a CNN architecture similar to the model presented by Kim [43] for

sentence classification. The architecture is also similar to the architecture we presented

in the Line Classification for CNN in a previous section of this chapter. In our imple-

mentation, we built a word embedding layer and each of the sections with its class label

is considered as input to the network. The CNN architecture is given in Figure 3.10.

For the experimental purpose, we also built both word based and character based

54

Figure 3.10: CNN Architecture for Semantic Section Classifier

bidirectional LSTM models for semantic section classification. The architecture is

given in Figure 3.11. The detailed description is given in the Experiments and Eval-

uation chapter.

3.4.3.2 Sequence Prediction

After getting all of the sections with semantic names of a document, we may

need to restructure the sequence of sections. The order of sections may differ from

article to article. In some articles, an introduction is followed by a related work section,

whereas in other articles, an introduction may also contain related work. It is important

to reorganize the section after automatic section generation with semantic name.

For a sequence of section headers, H = {h1, h2,, hn} from a document, we

built a Sequence Prediction model to reproduce the whole sequence of section head-

55

Figure 3.11: Bidirectional LSTM Architecture for Semantic Section Classifier

ers based on a given sequence of section headers. This prediction model predicts each

section header using historical sequence information in the sequence. We used LSTM

network for our sequence prediction task. The reason is that LSTM networks achieve

state-of-the-art results in sequence prediction problems. We chose a many-to-many

LSTM architecture for our section header prediction, since the whole sequence of sec-

tion headers is predicted based on the given sequence of section headers. The section

header prediction diagram is shown in Figure 3.12.

3.4.3.3 Sections Mapping and Ontology Design

After getting a list of section headers classified by the Semantic Classifier and

sequencing them using the Sequence Prediction model, we map them in a semantic

manner using an ontology. This mapping is basically the process of semantic annota-

56

Figure 3.12: LSTM Sequence Prediction Diagram

tion in a document. An article from computer science may have an approach section,

which is similar to a methodology section in a social science article. The semantic

section mapping will help to map each of the sections of a document with human un-

derstandable names, which adds meaningful semantics by standardizing section names

of the document.

In order to design a document ontology, we created a list of classes and properties.

We followed the count based and the cluster based approaches. In the count based

approach, we first took all section headers, including top-level, subsection and sub-

subsection which are basically headers from the table of contents of all arXiv articles.

Then we removed numbers and dots from the beginning of each header and generated

the count for each header and sorted them based on count. Then we manually analyzed

all section headers, which might be a class for our ontology.

In the cluster based approach, we generated all section headers from the table of

contents of all arXiv articles and developed a Variational Autoencoder(VAE) [28] to

57

represent each of the section headers in a sentence level embedding which is named as

header embedding in our research. We applied Autoencoder to learn the header embed-

ding in an unsupervised fashion so that we could get a good cluster. Then we dumped

the embedding vector from the last encoding layer. This vector has high dimensions.

Usually, clustering on high dimensional data doesn’t work well. So we applied t-SNE

[58] dimensionality reduction technique to reduce the dimensions of the embedding

vector to 2 dimensions. After dimensionality reduction, we used k-means [38] cluster-

ing on the embedding vector to cluster the header embedding in semantically meaning-

ful groups. We manually analyzed all clusters and all section headers from the count

based approach and came up with the classes to design our document ontology. We also

applied similar approaches for section headers from RFP documents. To understand the

sections of an RFP, we read [3] and discussed with experts from RedShred [2]. Table

3.2 and 3.3 show classes from arXiv articles and RFPs respectively, which were used

to design a simple document ontology. The architecture of the autoencoder is given in

Figure 3.13.

A Variational Autoencoder is a type of autoencoder, which learns latent variable

models [30] for the input data. As a result, instead of learning an arbitrary function, the

autoencoder learns the parameters of a probability distribution of the input data. The

encoder turns the input data into two parameters in a latent space, which are noted as

z̄ and z log σ. Then randomly, a similar data point, z is selected from the latent normal

distribution using equation 3.9. At the end, a decoder maps these latent space points

58

Figure 3.13: Variational Autoencoder for Ontology Class Selection

back to the original input data.

z = z̄ + ez log σ ∗ ε (3.9)

After getting the classes from manual analysis of the count and the cluster based

approaches, we designed an ontology for our input document. The classes represent

concepts in our ontology. We also analyzed cluster visualization to get properties and

relationship among classes. Detailed results are included in the Experiments chapter.

Figure 3.14 shows our simple document ontology.

The document ontology builds the concepts from the arXiv academic articles and

RFP documents. The top level “Document” class has two subclasses: “Academic Ar-

ticle” and “RFP”. The Document class has “Category” that describes the type of docu-

ment, such as Computer Science, Mathematics, Social Science, Networking, Biomedi-

cal and Software articles/RFPs. Both Academic articles and RFPs have contents, which

59

Figure 3.14: Document Ontology

are sections. These sections are the classes of different semantic concepts in a docu-

ment. Both Academic articles and RFPs share some concepts, such as “Introduction”,

“Conclusion” and “Background”. They also have their own concepts. For example,

“Approach” and “Results” are available in Academic Articles whereas RFP has “Con-

tractClauses” and “Deliverable” concepts/classes. Due to space constraint, the classes

are shown in Tables 3.2 and 3.3. Each of the classes/concepts has two properties “Se-

manticTerms” and “Content” which are represented by the relationships “hasSeman-

ticTerms” and “hasContent”. The data types for these two properties are String. The

“hasSemanticTerms” property captures semantic topics applying Latent Dirichlet Allo-

cation (LDA) to each section. Some concepts may have part, which is represented by a

relationship “hasPart”. For example, a concept “Results” has another subconcept “Ex-

periments”. Some of the concepts may be similar to another concepts, which is shown

by a relationship “isSimilarTo”. For example “Approach” and “Methodology” are two

similar concepts.

60

3.4.3.4 Semantic Concepts using LDA

We used LDA [12] to find semantic concepts from a section. LDA is a gener-

ative topic model which is used to understand the hidden structure of a collection of

documents. In an LDA model, each document has a mixture of various topics with a

probability distribution. Again, each topic is a distribution of words. A graphical LDA

model is shown in Figure 3.15 presented by Blei et al. [12], where a circle represents

a random variable and an observed variable is shaded. An arrow indicates the depen-

dency of value from one random variable to another. A repetitive set of variables is

surrounded by a rectangular plate.

Using Gensim [81, 82], we trained an LDA topic model on a set of divided sec-

tions. The model is used to predict the topic for any test section. A couple of terms,

which have the highest probability values of the predicted topics, are used as semantic

concepts for a given section. These semantic concepts are also used as property values

in the document ontology.

3.4.3.5 Sections Summarization

Given a set of sections, D = {d1, d2,, dn} from an arXiv article or an RFP,

the semantic labeling module implements a summarization component to generate au-

tomatic summary for each section. The summarization component uses state of the art

approaches to generate both extractive and abstractive summaries. For an extractive

summary, it uses the Textrank algorithm [61] implemented in Gensim [81].

The summarization component also trains the Tensorflow Textsum [71] model

61

Figure 3.15: LDA Topic Model

using Sequence-to-Sequence with Attention Model [90] to generate an abstractive sum-

mary from each section. The model is based on LSTM architecture. The model works

well for short articles, assuming that the first 2 sentences have enough information,

which may play a significant role in summarization. During training, the model uses

the first two sentences from the article as an input. And during decoding, the model uses

beam search [48] to find the best sentence from candidate sentences generated by the

model. The two sentence assumption may not always be true; hence we modified some

of the network parameters, including number of sentences, words, and layers, to fit the

model in our dataset. The details of training and test datasets are described in the Input

Document Processing chapter and results are explained in the Experiment chapter.

62

Table 3.2: Classes for Ontology from arXiv Articles

Class Name Description
Introduction It is an initial description about the work. It may contain the

main research idea and contributions.
Conclusion This is the ending section of an article. Usually it summa-

rizes the work with evidences. It may also include some
future work.

Discussion This is a section that describes and interprets the results of
the experiments.

References This section includes citations on related works.
Acknowledgments This section presents an acknowledgement of the people

and agencies that supported the work by giving funds and
ideas.

Results This section describes all the experimental results.
Abstract A very initial description about the work is presented in this

section.
Appendix This section includes additional information, such as extra

proofs and detailed information.
Related Work This section often follows the introduction. The related

work section may also be called a literature review. It in-
cludes related previous research.

Experiments This section represents detailed procedures that were car-
ried out to support, refute, or validate a hypothesis.

Methodology This is the systematic, theoretical analysis of the methods
applied to the research to solve the problem.

Proof of Theorem This section evaluates mathematical proofs of hypotheses.
Evaluation This the section that evaluates the methodology.
Future Work This is the future direction of the current research.
Datasets This section describes the dataset used for the research.
Contribution This section includes all of the contributions of the research.

Sometimes, this section is merged with introduction.
Background This section includes the information that is essential for

understanding the research problem.
Implementation This section describes the detailed implementation of the

proposed approach.
Approach This is the technical approach section, which is similar to

the methodology section.
Preliminary This section includes the preliminary research work in the

proposed research.

63

Table 3.3: Classes for Ontology from RFPs

Class Name Description
Introduction It is an initial description about the work. It may contain the

main research idea and contributions.
Requirement The requirement section of an RFP provides suppliers with

technical requirements and enough information to enable
them to understand the issues and write a proposal.

General Information This section of an RFP has a solicitation form. The form
gives basic information about the project.

Conclusion This is the ending section of an article. Usually it sum-
maries the work with evidences. It may also include some
future work.

Statement of Work In this section, the main concept of an RFP is presented.
It describes the necessaries that should be submitted by the
contractor. It also includes the process of submission.

Contract Administration This is a section that describes administrative information
that is required from the agency.

Appendix This section includes additional information such as extra
proofs and detailed information about any aspect of a paper.

Background This section includes the information that is essential for
understanding the research problem.

Deliverable This section presents all of the deliverables for a specific
proposal call, such as software as a deliverable

Contract Clauses This section presents all of the clauses, which are required
to understand an RFP submission. Usually this section de-
scribes boilerplate.

64

Chapter 4

INPUT DOCUMENT PROCESSING

In this chapter, we will describe input documents, data collection, data processing,

training data and test data. We will also explain the nature of input data.

4.1 Data Types

In this research, we focused on PDF documents. The reason to choose PDF doc-

uments as input documents is the popularity and portability of PDF files over different

types of devices, such as personal computers, laptops, mobile phones and other smart

devices. PDF is also compatible with different operating systems, such as Windows,

Mac OS and Linux. We mostly focused on large PDF documents and those may be

of different domains, such as academic articles, business documents, medical reports

and user manuals. Due to resource limitation, we confined our scope to input docu-

ment types to academic articles and business documents. We chose arXiv e-prints as

academic articles and RFPs as business documents.

4.1.1 arXiv Articles

arXiv is a repository for a large number of scholarly articles from different scien-

tific fields, such as computer science, mathematics, statistics and quantitative finance.

It has more than one million scholarly articles over different categories. We collected

65

1,121,363 arXiv articles during or before 2016. Detailed description is given in the Data

Collection section.

4.1.2 RFP Documents

An RFP is a type of bidding document that is used to announce available funding

for a project, where an agency or a company can bid to get the business opportunity.

The announcing party can get potential vendors for a desired project. An RFP usually

has different sections, such as statement and scope of work, requirements, terms and

conditions, technical goals and administrative contract. Each of the sections has a spe-

cific purpose. The bidding agencies read an RFP carefully, analyze it, and take a “go”

or “no go” decision. We leveraged our existing collaboration with RedShred [2] to get

a wide range of RFPs for our experiments.

4.2 Data Collection

We used the arXiv bulk data access option to collect arXiv articles available from

Amazon S3. The available access mechanisms are grouped into two different services:

metadata access and full-text access services. Both are explained below.

4.2.1 Full Text Access

We downloaded a complete set of arXiv articles available in PDF format using

requester pay buckets [8] from Amazon S3 cloud. The buckets are located in the Eastern

US (N. Virginia) region. The PDFs are grouped into .tar files as a chunk. The size of

66

Figure 4.1: Manifest File Structure

each tar file is approximately 500MB. We downloaded an XML formatted manifest file

from arXiv, which contains the complete list of all chunks. The manifest file structure is

given in Figure 4.1. We parsed the manifest file and took the filename element for each

tar file. Then we installed and configured the “s3cmd” tool with our amazon account

and downloaded all tar files using the s3cmd.

After downloading all tar files, we used the “xopf” tar command to unzip each of

the tar files. In total, we received 1, 121, 363 PDF articles over all arXiv categories. The

total size of all PDF files was 743.4GB. We organized all the PDF files according to

publication years. Detailed statistics of all files are given in Table 4.1.

67

Table 4.1: arXiv Statistics of All Files

Name Value
Tar file size 500MB
Number of total PDFs 1,121,363
Size of all PDFs 743.4GB
Size of all TETML files 5.1TB
Number of categories 37966
Years 1986 to 2016

4.2.2 OAI Call

After unzipping all the PDF files, we used the name of the files as arXiv article

identifier and used Open Archives Initiative (OAI) protocol to harvest metadata for each

article. The arxiv.org returns an XML file for each OAI request. We parsed the XML

response and generated metadata for each article. A list of metadata is shown in table

4.2. We generated a JSON file to store all meta information for each article, where the

key of each article was the arXiv file identifier. We also retrieved month and year of the

publication from the date metadata.

Table 4.2: arXiv Article Metadata

Metadata Name Type
Title String
Publication Date Date
Summary String
Category Name List
Authors Name List
Link To arXiv String

4.2.3 TOC Extraction

Some of the arXiv articles have bookmarks. These bookmarks are generated

from the latex source when arXiv generates PDF version from the source submitted

68

by the authors. For each of the arXiv identifiers from the JSON file, we extracted

bookmarks from the original PDF file. The hierarchy, which had up to several level

of sub-subsections, was kept intact. We considered bookmarks as the TOC for each

article. The TOCs were used as section header annotation in our experiments. Later,

We merged metadata and TOC for individual arXiv articles and stored them in the same

JSON file.

4.2.4 Convert to TETML

For each of the arXiv articles in PDF format, we applied PDFLib TET [73] to

extract their contents from the PDF. The PDFLib converts PDF to special type of

XML called Text Extraction Toolkit Markup Language (TETML). While converting

into TETML, we used word level granularity which generated TETML with a detailed

description of each character of every word in a PDF file. The description includes x−y

coordinates, font information, and page number for each character. The description is

used for feature generation. After converting all arXiv PDF files into TETML files, the

total size of all TETML files was 5.1TB.

4.3 TETML Processing

The elements in a TETML are organized in a hierarchical order. Each TETML

file contains pages, and each page has annotation and content elements. The content

element has all of the text blocks in a page as a list of para elements. Each para element

has a list of words where each word contains a high level description of each character.

69

We developed a parser to read the structure of the TETEML file. The parser also reads

and processes the description of each character. We applied different heuristics to pro-

cess the description. Based on the heuristics, the parser generates the text on each line,

font size, font weight, and font family for that line. It also calculates the starting and

ending position of each line by generating x− y coordinates for the very first character

of the first word, and the last character of the last word in a line. All of the generated

attributes from the TETML description are given in Table 4.3. All of these attribute

values were used to generate layout features.

Table 4.3: Generated Attributes from the TETML

Attribute’s Name Description
Text Line A complete text line based on heuristics.

Font Size
Font size is selected based on the maximum occurrence of
font size from a line.

Font Family
Font family is selected based on the maximum occurrence of
font family from a line.

Font Weight
Font weight is selected based on the maximum occurrence of
font weight from a line.

Page Number Page number is taken from TETML attribute “number”.
X Position Left X coordinate of the first character of the first word in a line.
X Position Right X coordinate of the last character of the last word in a line.
Y Position Left Y coordinate of the first character of the first word in a line.
Y Position Right Y coordinate of the last character of the last word in a line.
Page Width Page width is taken from TETML attribute “width”.
Page Height Page height is taken from TETML attribute “height”.

We also processed a table from the TETML file. TETML has a tag called “table”

to store content from a table. A table element has a row, a row has a cell, a cell has a

para, a para has words, and finally a word has a text tag to store content from a table.

We also captured content from all tables.

For each article, we mapped TOC with original text lines from the document.

70

This mapping was used to generate class labels for each of the text lines. If a line is

not in the TOC, it was considered a regular text and the class label was 0. If a line

was in the TOC, we searched the path of that line from the root to leaf. And for each

hierarchical hop, we added a level in such a way that the top-level element from a TOC

had label 1, the next level had 2 and so on. A complete list is show in table 4.4. To

find the path of a text line from the TOC, we wrote a recursive function. Due to the

limitation of PDFLib TET, sometimes a text line doesn’t match with an element from

a TOC, although it exists in the TOC for an article. This happens when the PDFLib

tool mislabels a para element. To overcome this challenge as much as possible, instead

of exactly matching a line in the TOC, we used string similarity matching based on a

threshold value. If the similarity score is more than a threshold value, we considered

that partial match as a match. We used the SequenceMatcher python library to calculate

the string similarity.

Sometimes PDFLib processes a section header into multiple para elements. It

is very challenging to keep track of or monitor this issue in a document, as there is

no identical difference between such para. An example is shown in Figure 4.2. In

such cases, our parser may fail to map a line with an element from a TOC. PDFLib

splits “III. ENCODING QUBITS IN THREE-LEVEL SYSTEMS” into two different

text blocks, which are two different para elements in the TETML. One para element

contains “III. ” and another one contains “ENCODING QUBITS IN THREE-LEVEL”

and “SYSTEMS”. Our parser can handle the second para, as two lines are in the same

para element. Due to the PDF encoding technique, PDFLib makes this type of error.

71

Table 4.4: Class Labels with Text hierarchy

Hierarchical Level Class Label
Regular Text (not
from a TOC) 0

Top-level from TOC 1
2nd level from TOC 2
3rd Level from TOC 3
4th Level from TOC 4
5th Level from TOC 5

Figure 4.2: PDFLib Processing Issue with Multiple Lines

After mapping each line with elements from the TOC for a document, we wrote

all the lines with attribute values shown in Table 4.3 in CSV files. We obtained a total

of 762 CSV files containing all arXiv articles. The size of each CSV file was around

115MB. Each row of a CSV file contained a line with layout information and a class

label. A complete process diagram is shown in Figure 4.3.We split the whole dataset

for training and test data. A Complete set of actions for processing a TETML file is

shown in the list below.

• Read each TETML file

• Generate lines based on heuristics

• Generate layout information for each line

72

Figure 4.3: Flow Diagram for Input Document Processing

• Map each line with the elements from the TOC

• While mapping, find the path from the TOC to obtain a class label

• Write each line to a CSV file

4.4 RFP Processing

We collected a wide range of RFPs from different sources through the collab-

oration with RedShred. The total number of RFPs was three hundred fifty thousand.

Most of the RFPs were in PDF format, though some of the RFPs were in DOC or Excel

format. We converted non-PDF formatted RFPs into PDF using a standard PDF conver-

sion tool. Then we chose 250 random RFPs over the total RFPs to ensure diverseness

in the chosen RFPs. We generated TETML files for each of the chosen RFPs.

For each of the TETML files, we processed it as described in the TETML Pro-

73

cessing section above and stored them in a CSV file. Unlike arXiv articles, there was no

bookmark available in RFPs. As a result, we had to follow a manual annotation process

to obtain annotated data from RFPs. We took help from the RedShred expert annota-

tion team in the annotation process. We followed standard annotation techniques for

annotating each line of the CSV file as regular-text, top-level section header, subsection

header and sub-subsection header. We used this annotated data for our experiments on

RFPs. Detailed description is given in the Experiments chapter.

4.5 Training and Test Data

For each of the units of our system architecture, we created a training and test

dataset. The training set was used to build models in each unit and the test set was used

to evaluate the performance of the models. We took 60 random files among 762 CSV

files for training and test dataset preparation.

4.5.1 Data for Line Classifiers

We developed the training and test dataset from 60 randomly chosen CSV files.

For each of the data points we had two feature vectors: layout vector and text vector.

The Features Extractor presented in the Technical Approach chapter was used to gener-

ate the layout feature vector. The text vector was a one hot encoding vector from a text

line. After generating both vectors, we split the whole dataset into training and test sets

using a 5fold cross validation with balanced class labels. Then we randomized each

dataset using stratified sampling so that the classifiers learned from random input data.

74

Table 4.5 shows the training and test dataset for the Line Classifiers having two classes.

Table 4.5: Dataset for Line Classifiers Having Two Classes

Dataset Class Label Sample Number

Training Regular-Text 389229
Section-Header 389229

Test Regular-Text 80184
Section-Header 80184

4.5.2 Data For Section Classifiers

Similar to the Line Classifiers, we also developed training and test dataset for

Section Classifiers. In our section classification task, we experimented with three and

four classes. The three classes are top-level, subsection and sub-subsection section

headers. The four classes experiment uses an additional regular-text class. The dataset

was prepared using stratified sampling to balance all of the class samples. Table 4.6 and

4.7 show the training and test dataset for the Section Classifiers having three and four

classes respectively.

Table 4.6: Dataset for Section Classifiers Having Three Classes

Dataset Class Label Sample Number

Training
Top-level 37650
Subsection 37650
Sub-subsection 37650

Test
Top-level 9003
Subsection 9003
Sub-subsection 9003

75

Table 4.7: Dataset for Section Classifiers Having Four Classes

Dataset Class Label Sample Number

Training

Regular-Text 37650
Top-level 37650
Subsection 37650
Sub-subsection 37650

Test

Regular-Text 9003
Top-level 9003
Subsection 9003
Sub-subsection 9003

4.5.3 Data For Semantic Section Classifier

For each physically divided section and corresponding section header, we applied

some heuristics to group them based on the classes defined for our document ontology.

For the ontology of arXiv articles, we had 20 different classes. We mapped those classes

with the section headers of each section to generate training and test datasets for the

Semantic Section Classifier. We stratified the dataset to balance class samples, where

each class had 5000 sample. Later we split the dataset into training and test using 5fold

cross validation approach to ensure the randomness in training and test dataset. After

developing the training and test datasets, we gave special emphasis on test dataset. We

manually went through the test dataset, checked the class labels and corrected if there

was any wrong class label. This implies that our test dataset has good quality.

4.5.4 Data For Section Sequencing

We took all section headers for each document in a sequential order. Then we

mapped them to the classes of our document ontology for arXiv articles. As we pro-

cessed section headers in a sequential order from a document, we could predict the

76

next section header based on the previous sequence using the approach explained in

the Technical Approach chapter. We developed training and test datasets for sequence

prediction in a section sequence. After data generation, the whole dataset was split

into training and test dataset with a stratified sampling. The training and test dataset

sizes are 86991 and 16439 respectively. We manually went through the test dataset and

checked each sample and, corrected if it was needed. This implies a good test dataset

for evaluation.

4.5.5 Data For Section Summarization

After detecting the section boundaries, we used state of the art techniques to gen-

erate extractive summarization for each of the sections. To generate abstractive summa-

rization using the Tensorflow TextSum model, we developed training and test datasets

from extractive summarization. Extractive summarization for each section was consid-

ered an annotated summary and was used for training and test. We also used 5fold

cross validation for splitting the dataset. The total training and test sections for summa-

rization are shown in table 4.8.

Table 4.8: Training and Test Sections for Summarization

Dataset Sample Number
Training 618276
Test 117876

Subsequently we prepared the dataset for Tensorflow Textsum models and we

read each section and its summary. Both section and summary were split into sentences.

Each sentence was included inside < s >< /s > tag. A list of < s >< /s > is

77

generated based on all sentences, which was inserted in < d >< p >< /p >< /d >

tags sequences. Finally, we encoded each section and summary as article and title

respectively in a binary formatted file. We also built a vocabulary list from the whole

dataset. The total vocabulary size was 241657.

4.5.6 Data For Ontology Design

We retrieved all section headers from TOCs of all arXiv articles and applied

some heuristics to remove numbers, dots, etc from all headers. Later we lowered the

case for all headers. The total number of unique section headers was 3364668 for all the

categories of articles. We used these section headers to get classes for ontology design

as explained in the Technical Approach chapter. We also retrieved section headers from

only Computer Science articles. After applying the similar approach, we found 666877

unique section headers from the category of Computer Science articles. The results for

all categories, as well as Computer Science, are described in the Experiments chapter.

78

Chapter 5

EXPERIMENTS AND EVALUATION

In this chapter, we will discuss experimental setup followed by the detailed pro-

cedures. We will describe the results and the findings of each experiment and illus-

trate the results using comparative analysis with the baseline system and other existing

researches. We will explain the performance of the developed models together with

critical discussion and evaluation.

5.1 Experiments for Line Classification

As explained in the Technical Approach chapter, we used SVM, DT, NB, RNN

and CNN algorithms for our line classification. Since a document has very few section

headers with respect to regular texts, after layout features generation we balanced our

datasets. The detailed information is given in the Input Document Processing chap-

ter. The initial experiments and results are presented in our work [78]. More detailed

experiments using each of the algorithms are described below.

5.1.1 Using DT

We used the Decision Tree Classifier from scikit-learn [74] to implement DT

models for the line classification. During training, we used gini−impurity for splitting

data points into branches. The first model was trained on layout feature vector, the

79

second model was trained on the combined layout and text feature vectors. As explained

in the Technical Approach chapter, layout features were generated from layout meta

information and text features were generated using n-gram language models, such as

unigram, bigram and trigram. We used the TF − IDF vectorizer for vectorizing the

texts. The configuration for DT is shown in table 5.1.

Table 5.1: Configuration: Decision Tree Algorithms

Attribute Value
criterion gini
algorithm CART

features
only layout,
layout and text

minimum doc frequency 5%
maximum doc frequency 95%
vectorizer TF-IDF vectorizer
ngram unigram, bigram and trigram

While generating text features, we considered a word or a phrase as a feature if it

occurred in at least 5% and at most 95% of the training data. For the combined layout

and text features, we made a feature union of layout vector and text vector using the

scikit-learn pipeline module. We also removed English stop words before applying the

vectorizer to the texts.

5.1.1.1 Results and Evaluation

To evaluate the performance of DT models, we used precision (positive predictive

value), recall (sensitivity) and f1-score (harmonic mean of precision and recall) using

the test dataset. Table 5.2 shows the precision, recall, and F1-score for the model trained

using only the layout feature vector. The precision, recall and f1-score for the model

80

trained using the combined layout and text feature vectors are shown in table 5.3.

Table 5.2: Precision, Recall and F1-score for DT Using Only Layout Features

Class Label Precision Recall F1-score
Regular-Text 0.92 0.97 0.95
Section-Header 0.97 0.92 0.95
Avg 0.95 0.95 0.95

Table 5.3: Precision, Recall and F1-score for DT Using Combined Layout Features and
Text Features

Class Label Precision Recall F1-score
Regular-Text 0.88 0.97 0.92
Section-Header 0.96 0.87 0.91
Avg 0.92 0.92 0.92

These two tables show that a better performance was achieved for the model

trained using only the layout feature vector. This is because the DT works better for

a rule based system, and the layout feature vector was generated based on heuristic

rules. For the layout feature vector, we also generated feature importance, which is

shown in table 5.4.

Table 5.4: Top Five Features for DT Model Using Layout Feature Vector

Feature Rank Score
number dot 1 0.759395
voc 2 0.080806
colon 3 0.060793
header 0 4 0.034286
text len group 5 0.020130

5.1.2 Using SVM

Similar to the DT, we built models using the SVM algorithm for the layout feature

vector, and the combined layout and text feature vector. We produced both vectors using

81

the same way as the DT model. The configuration of the SVM implementation is shown

in table 5.5. In this experiment, we chose linear kernel, since we had two class labels

for the Line Classification.

Table 5.5: Configuration: SVM Algorithms

Attribute Value
kernel linear
regularization l2

features
only layout,
layout and text

minimum doc frequency 5%
maximum doc frequency 95%
vectorizer TF-IDF vectorizer
ngram unigram, bigram and trigram

5.1.2.1 Results and Evaluation

We used the precision, recall and f1-score for the evaluation of the models gen-

erated using SVM. Precision, recall and f1-score for the test dataset using the layout

feature vector are shown in Table 5.6. Table 5.7 shows the precision, recall and f1-score

for the combined layout feature and text feature vector. Table 5.6 and 5.7 show that we

accomplished a better performance using only the layout feature vector.

Table 5.6: Precision, Recall and F1-score for SVM Using Only Layout Feature Vector

Class Label Precision Recall F1-score
Regular-Text 0.93 0.97 0.95
Section-Header 0.97 0.92 0.94
Avg 0.95 0.95 0.95

82

Table 5.7: Precision, Recall and F1-score for SVM Using Combined Layout Feature
and Text Feature Vectors

Class Label Precision Recall F1-score
Regular-Text 0.92 0.93 0.93
Section-Header 0.93 0.92 0.93
Avg 0.93 0.93 0.93

5.1.3 Using NB

We also trained line classification models using the NB algorithm. Similar to DT

and SVM models, we used the layout feature vector, and the combined layout feature

and text feature vectors. Using scikit-learn, we implemented the Multinomial Naive

Bayes architecture for the NB models. The complete configuration for the NB is dis-

played in Table 5.8.

Table 5.8: Configuration: Naive Bayes Algorithms

Attribute Value
algorithm MultinomialNB

features
only layout,
layout and text

minimum doc frequency 5%
maximum doc frequency 95%
vectorizer TF-IDF vectorizer
ngram unigram, bigram and trigram

5.1.3.1 Results and Evaluation

We also evaluated the performance of the NB models using precision, recall and

f1-score. Table 5.9 and Table 5.10 show the precision, recall and f1-score for the models

trained using the layout feature vector, and the combined layout feature and text feature

vector respectively. Similar to DT and SVM, the NB model trained using the layout

83

feature vector had better performance over the combined layout feature and text feature

vectors.

Table 5.9: Precision, Recall and F1-score for NB Using Only Layout Feature Vector

Class Label Precision Recall F1-score
Regular-Text 0.88 0.72 0.79
Section-Header 0.76 0.90 0.82
Avg 0.82 0.81 0.81

We obtained a poor performance using NB models compared to DT and SVM.

The reason is that NB makes a strong assumption that any two features from the feature

vectors are independent. But features might not be independent since a section header

could be bold while it had dots.

Table 5.10: Precision, Recall and F1-score for NB Using Combined Layout Feature and
Text Feature Vectors

Class Label Precision Recall F1-score
Regular-Text 0.85 0.67 0.75
Section-Header 0.73 0.89 0.80
Avg 0.79 0.78 0.77

5.1.4 Using RNN

We used the Tensorflow [4] deep learning framework to build models using RNN.

Three different networks were developed for text-only, layout-only, and combined lay-

out and text input vectors. The texts were converted into a character level one-hot

vector. We used a character level RNN model to capture character patterns in an input

sequence. The one-hot vector was passed into the tanh layer and the output of the tanh

layer was passed through hidden layers. Finally, the output of the last fully connected

84

hidden layer, which we called header embedding, was passed through the softmax

layer for classification. The network configuration for the RNN network is given in

Table 5.11.

Table 5.11: Configuration of RNN Models for Line Classification

Attribute Value
max doc len 100
hidden size 20
encoding one-hot
optimizer adma
learning rate 0.001
objective function softmax
batch size 100

For layout only RNN network, the layout vector, having 16 features for each

line, was converted into a multi-label one-hot vector. Later the vector was given to

the network for classification using the same architecture designed for text-only input

vector. For the third RNN network, we concatenated text-only and layout-only vectors.

The final vector was passed into the tanh layer followed by a hidden layer. The output

of the last fully connected hidden layer was passed through the softmax layer for

classification. The architecture was presented in Figure 3.4 in the Technical Approach

chapter.

5.1.4.1 Results and Evaluation

To evaluate the performance of the RNN models, we calculated precision, recall,

and f1-score for the test data using the models trained on the training data. Table 5.12

shows the performance of RNN models using three different input vectors. We observed

that an RNN model trained using the combined text and layout vectors had the best

85

performance. An intuitive reason for having the best performance using the combined

feature vectors is that the network captures more information from two different vectors.

Figure 5.1 shows the training losses for layout-only, text-only, and combined layout and

test input vectors using RNN models.

Table 5.12: Precision, Recall and F1-score for RNN Models for Line Classification

RNN Model Class Label Precision Recall F1-score

Text Features
Regular-Text 0.94 0.95 0.95
Section-Header 0.95 0.94 0.94
Avg 0.94 0.94 0.94

Layout Features
Regular-Text 0.94 0.94 0.94
Section-Header 0.94 0.94 0.94
Avg 0.94 0.94 0.94

Combined Text
and Layout Features

Regular-Text 0.95 0.95 0.95
Section-Header 0.95 0.95 0.95
Avg 0.95 0.95 0.95

86

(a) Only Layout

(b) Only Text

(c) Combined Layout and Text

Figure 5.1: Training Losses for Line Classification using RNN Models

5.1.5 Using CNN

We trained CNN models as described in the Technical Approach chapter for text-

only, layout-only, and combined text and layout vectors. Texts were converted into

character level one-hot vector where the maximum input length was 100 characters. If

the length was more than 100, it was truncated. If the length was less than 100, it was

87

padded with 0. The hyperparameters for the CNN models are given in Table 5.13. Since

we used categorical crossentropy as a loss function, we converted the class vector into

a categorical vector using keras deep learning utility.

Table 5.13: Configuration of CNN Models for Line Classification

Attribute Value
max doc len 100
hidden dim 100
encoding one-hot
optimizer adma
learning rate 0.001
objective function softmax
batch size 128
filter size 250
kernel size 3
loss function categorical crossentropy

We mapped the one-hot input vector into the embedding vector. Before pass-

ing the embedding vector through the conv1D layer, we applied dropout to reduce

overfitting in CNN models. Later we appliedMaxPooling to get the maximum value

as output from the previous layer. This technique was applied to reduce the number of

features effectively, which helped to prevent overfitting in our models. Thereafter, we

had a fully connected hidden layer, which was followed by a softmax layer to classify

each line.

In a similar way, we trained the CNN model for the layout-only input vector. In

this case, the layout vector was converted into a multi-label binary encoding vector,

which was passed into the embedding layer. Later a conv1D layer was applied on

the output of the embedding layer. A fully connected hidden layer was applied on the

output of the conv1D layer after passing through a MaxPooling layer. Finally, we

88

used a softmax layer for the classification of the output of the last fully connected

hidden layer.

Using two parallel sequential layers, we trained a CNN model for combined text

and layout input vectors, where both layers were merged before the last fully connected

hidden layer. One sequential layer had the text vector and another one had the layout

vector as input. Due to the merging of two parallel, sequential layers, the last hidden

layer had two hundred dimensions. The output of the last hidden layer was passed

through a softmax layer for line classification.

5.1.5.1 Results and Evaluation

To evaluate the performance of the CNN models, precision, recall, and f1-score

were calculated using the test dataset. Table 5.14 shows the average precision, recall,

and f1-score for all three CNN models. We also calculated test accuracy for each of the

models. Table 5.15 shows accuracy of each of the CNN models for line classification.

From the results presented in Table 5.14 and 5.15, we observed that the CNN model

using combined text and layout vectors had the best performance. A CNN model trained

using only the layout vector had poor performance compared to other two models. We

achieved better performance for the CNN model using the text-only input vector since

CNN was able to learn important patterns from character sequences. Figure 5.2 shows

the training losses for line classification using CNN models.

89

Table 5.14: Avg. Precision, Recall and F1-score for CNN Models for Line Classifica-
tion

Model Precision Recall F1-score
Text 0.97 0.96 0.96
Layout 0.91 0.84 0.87
Combined Text
and Layout 0.98 0.95 0.97

(a) Layout

(b) Text

(c) Combined Layout and Text

Figure 5.2: Training Losses for Line Classification using CNN Models

90

Table 5.15: Test Accuracies for CNN Models for Line Classification

Model Accuracy
Text 0.96
Layout 0.87
Combined Text
and Layout 0.97

5.1.6 Discussion

From all of the experiments presented above for line classification, it is observed

that we achieved the best performance using the CNN model with combined text and

layout input vectors. We can also conclude that deep learning models had better per-

formance over regular machine learning models for line classification. Deep learning

models had the best performance because both RNN and CNN were able to learn impor-

tant and complex features automatically. Figure 5.3 shows the performance comparison

over all of the models for line classification.

5.2 Experiments for Section Classification

As explained in the Technical Approach chapter, we used RNN and CNN algo-

rithms for our section classification. We also explained the reasons for choosing RNN

and CNN for section classification in section 3.4.2.1 of the Technical Approach chap-

ter. Training and test data processing were described in the Input Document Processing

chapter. Experiments using each of the algorithms are described below.

91

Figure 5.3: Performance Comparison for Line Classification

5.2.1 Using RNN

After identifying each line as a Regular-Text or Section-Header, we built RNN

models to classify each Section-Header as a Top-level, Subsection or Sub-subsection

header. We used text-only, layout-only, and combined text and layout as input vectors

to train three different RNN models. Similar to the Line Classifiers, we converted each

section header into character level one-hot vector. The layout vector was represented

using 16 layout features.

For text-only input vector, initially the one-hot vector was passed into the tanh

layer. Thereafter, the output of the tanh layer was passed into a fully connected hidden

layer followed by a softmax layer to classify section headers into Top-level, Subsection

and Sub-subsection headers. For the layout-only input vector, the layout vector was

92

mapped in the embedding space followed by a tanh layer. The output of the tanh

layer was passed through a fully connected dense layer followed by a softmax layer to

classify each input vector into any of the classes.

For the combined text and layout input vectors, we had two parallel sequen-

tial layers using the section header and layout. Section headers were converted into

a one-hot vector, which was passed through an embedding layer with a tanh activa-

tion function and dropout regularization technique. The output of the embedding layer

was passed through a fully connected hidden layer with a ReLu activation function.

After applying an embedding layer on the layout vector, it was passed into a fully con-

nected hidden layer. The output from both hidden layers were merged together and

passed through the last fully connected hidden layer, which was later classified by the

softmax layer. We used categorical crossentropy as a loss function and adam as an

optimizer.

5.2.1.1 Results and Evaluation

Using precision, recall, and f1-score, we evaluated the performance of three RNN

models for section classification. Table 5.16 shows the performance of RNN models.

We achieved the best performance using the combined text and layout input vector. We

observed that RNN models using layout-only input vector had poor performance com-

pared with the two other models. Figure 5.4 shows a T-SNE visualization of embedding

vector generated by RNN model using combined text and layout input vectors. After

analyzing the visualization, we found same level of section headers to be grouped to-

93

gether. We also observed that similar section headers are plotted near by each other.

For example, result and observation sections were close by in the embedding space.

Table 5.16: Precision, Recall and F1-score for Section Classification using RNN

Model Class Precision Recall F1-score

Text

Top-level 0.81 0.89 0.85
Subsection 0.84 0.79 0.82
Sub-subsection 0.77 0.74 0.76
Avg 0.81 0.81 0.81

Layout

Top-level 0.39 0.94 0.55
Subsection 0.62 0.15 0.24
Sub-subsection 0.63 0.22 0.33
Avg 0.55 0.44 0.38

Combined Text and Layout

Top-level 0.85 0.95 0.89
Subsection 0.82 0.84 0.83
Sub-subsection 0.85 0.74 0.79
Avg 0.84 0.84 0.84

Figure 5.4: T-SNE Visualization of Embedding Vector using RNN for Section Classifi-

cation

94

5.2.2 Using CNN

Similar to RNN models, we trained CNN models for section classification using

text-only, layout-only, and combined text and layout input vectors. We also converted

section headers into a one-hot vector and layout information into a multi-level one-hot

vector using binary encoding. For the text-only CNN model, we built the network as

explained in the Technical Approach chapter. One-hot vector was given as input to the

CNN model, where the embedding layer mapped it to automatic feature set. The output

of the embedding layer was passed through a conv1D layer with a ReLu activation

function and dropout regularization technique. AMaxPooling layer was applied to get

the most important features. Finally a softmax layer was used to classify each section

header after applying a fully connected hidden layer on the output of the MaxPooling

layer.

For the layout-only input vector, the embedding layer was mapped into a multi-

level one-hot vector in a feature space, on which a conv1D layer was applied to generate

automatic features. Thereafter, a MaxPooling layer was applied followed by a fully

connected hidden layer. Finally the softmax layer classified each of the section headers

into three different classes.

We built two parallel sequential layers using CNN for the combined text and

layout input vectors, where we followed the procedures described above for text-only

and layout-only vectors individually. The output of the two parallel layers were merged

together and passed through a fully connected hidden layer, which was followed by a

softmax layer for classification.

95

5.2.2.1 Results and Evaluation

We evaluated the performance of CNN models for section classification using

precision, recall, and f1-score. Table 5.17 shows the performance of each model, where

we achieved the best performance using combined text and layout input vectors. We

also observed that model using layout input vector has poor performance compared to

the other two models. Figure 5.5 shows the T-SNE visualization for the embedding

vector generated by the CNN models using combined text and layout input vectors for

section classification. Similar to the RNN models, we also obtained that similar level

of section headers are grouped together in the embedding space.

Figure 5.5: T-SNE Visualization of Embedding Vector using CNN for Section Classifi-

cation

96

Table 5.17: Precision, Recall and F1-score for Section Classification using CNN

Model Class Precision Recall F1-score

Text

Top-level 0.81 0.90 0.85
Subsection 0.84 0.82 0.82
Sub-subsection 0.80 0.73 0.76
Avg 0.83 0.82 0.82

Layout

Top-level 0.36 0.98 0.53
Subsection 0.71 0.08 0.15
Sub-subsection 0.59 0.11 0.18
Avg 0.55 0.39 0.29

Combined Text and Layout

Top-level 0.82 0.94 0.88
Subsection 0.83 0.84 0.83
Sub-subsection 0.86 0.72 0.78
Avg 0.83 0.84 0.83

5.2.3 Using CNN for Four Class

We also trained a CNN model for section classification as four class classification

problem, where the classes are Regular-Text, Top-level, Subsection and Sub-subsection

headers. The model was trained based on text-only, and combined text and layout

feature vectors. The network architecture and experimental procedures were similar to

the three class experiments using CNN.

5.2.3.1 Results and Evaluation

For the evaluation purposes, we assessed the CNN model with the text-only input

vector. Table 5.18 shows the average precision, recall, and f1-score for the four class

CNN model for section classification. Compared with Table 5.17 and 5.14, we observed

that a pipeline approach of line and section classifiers performed better than the single

four class classifier. Figure 5.6 shows the T-SNE visualization of the embedding vector

generated by the CNN model for the four class section classification using the text-only

97

input vector. We analyzed the embedding visualization compared to the three class sec-

tion classification presented in Figure 5.5 and observed that we achieved better class

separation in the pipeline approach.

Table 5.18: Precision, Recall and F1-score for Four Class CNN for Section Classifica-
tion

Model Precision Recall F1-score
Text 0.8430 0.8442 0.8415

Figure 5.6: T-SNE Visualization of Embedding Vector using CNN for Four Class Sec-

tion Classification

98

5.2.4 Discussion

After analyzing the performance of the models trained by RNN and CNN using

text-only, layout-only, and combined text and layout input vectors, we achieved the

best performance using combined input vectors. Figure 5.7 shows the performance

comparison of all of the models trained by RNN and CNN for section classification.

Models trained by CNN and RNN using the combined text and layout input vectors

had almost similar performance. We achieved poor performance using the layout-only

vector. The reason is that many section headers have similar layout information though

they are from different classes. For example, a top-level section header and a subsection

header might be bold with the same indentation. From Figure 5.4 and 5.5, we observed

that some sub-subsection headers were plotted near by top-level section headers because

in some articles, sub-subsection headers started with a single number or letter. The CNN

and RNN models sketched those in the same embedding space.

99

Figure 5.7: Performance of RNN and CNN for Section Classification

5.3 Experiments for Semantic Section Classification

After identifying the different levels of section headers, we applied the Section

Boundary Detector 1 algorithm in order to split a document into different sections, sub-

sections, and sub-subsections. We used semantic section classifiers to assign a human

understandable semantic label for each physically divided section. We then built se-

mantic section classifier models using CNN and bidirectional LSTM algorithms based

on both word and character level inputs.

100

5.3.1 Using CNN

As explained in the Technical Approach chapter, we trained CNN models using

sections obtained from section classifiers. We had 20 classes which were mentioned in

the Table 3.2 of the Technical Approach chapter. The models were trained based on

both word and character level inputs. For the word based CNN model, we considered

the first two hundred words for each section. The total vocabulary size was 111084

words generated from all training samples with a minimum frequency of 150. The

input texts were converted into a multi-label one-hot vector, which was passed into

the embedding layer to map each word in the embedding space. A dropout layer was

applied to the output of the embedding layer to avoid overfitting. Later, a conv1D layer

was applied with ReLu activation function, and followed by a maxpooling layer and

a fully connected hidden layer. Finally, a softmax layer, with an adam optimizer and

a categorical crossentropy loss function, was used to classify the output of the last

fully connected hidden layer.

For the character based CNN model, we considered the first 600 characters from

each section and converted them into a multi-label one-hot vector, which was input to

the embedding layer. The rest of the layers were similar to the layers of the word based

CNN model. In this model, the total vocabulary size was 256.

5.3.1.1 Results and Evaluation

To evaluate the performance of the CNN models trained for semantic section

classification, we used precision, recall, and f1-score, which are shown in Table 5.19.

101

We achieved better performance using the word based CNN model. This is because

the word based model was able to capture the semantic meaning of different words.

For some classes, the model wasn’t able to classify any instance, such as background,

datasets, and implementation. We analyzed the results and obtained that sections of

these classes usually describe various concepts, and hence the model was unable to get

the semantic meaning from those sections. We also achieved very high precision and

recall for some classes, such as acknowledgements, references, abstract, and introduc-

tion. After analyzing sections for these classes, we found that sections for these classes

have semantic patterns.

Figure 5.8 shows the T-SNE visualization of section embedding with different

classes. After analyzing the visualization we can say that some of the sections were

well separated and surrounded by semantically similar sections. We also achieved 0.79

and 0.77 test accuracy using word based CNN and character based CNN models for

semantic section classification respectively.

Table 5.19: Precision, Recall and F1-score for Semantic Section Classifier using CNN

Model Class Precision Recall F1-score
Word Based Avg 0.72 0.75 0.73
Character Based Avg 0.69 0.72 0.70

102

Figure 5.8: T-SNE Visualization of Semantic Section Embedding using Word Based

CNN

5.3.2 Using Bidirectional LSTM

In the bidirectional LSTM model, we converted texts from each section into a

multi-label one-hot vector, which was input to the embedding layer. The word based

network had the word level one-hot vector and the character based network had the char-

acter level one-hot vector generated from texts. The output of the embedding layer was

input to the forward LSTM units in a sequential order and a reversed sequence was input

to the backward LSTM units. The outputs from both forward and backward LSTM units

were concatenated and passed into a fully connected hidden layer. Finally, the output

of the last fully connected hidden layer was passed into the softmax layer for classifi-

103

cation. The softmax layer had adam as an optimizer and categorical crossentropy

as a loss function. We also applied dropout at each LSTM unit to avoid overfitting.

5.3.2.1 Results and Evaluation

The precision, recall, and f1-score for bidirectional LSTM models are given in

Table 5.20. Figure 5.9 shows the T-SNE visualization of semantic section embedding

using word based bidirectional LSTM. From this embedding visualization, we observed

that most of the sections were scattered all over the embedding space. For example,

sections from “acknowledgement” were spread into different regions of the embedding

space. From this observation, we could infer that bidirectional LSTM wasn’t able to

capture the semantic meaning of each section.

Table 5.20: Precision, Recall and F1-score for Semantic Section Classifier using Bidi-
rectional LSTM

Model Class Precision Recall F1-score
Word Based Avg 0.71 0.72 0.71
Character Based Avg 0.68 0.70 0.69

104

Figure 5.9: T-SNE Visualization of Semantic Section Embedding using Word Based

Bidirectional LSTM

5.3.3 Discussion

Figure 5.10 shows training losses of CNN and Bidirectional LSTM models for

semantic section classification. Although we noticed that the word level bidirectional

LSTM model had the lowest training loss among all of the models, we achieved poor

performance in the embedding visualization. From this observation, we can infer that

the bidirectional LSTM model was overfitted for our training dataset. Figure 5.11 shows

the precision, recall, and f1-score comparison for the CNN and Bidirectional LSTM

models trained at word and character level input.

105

(a) Word Level CNN

(b) Character Level CNN

(c) Word Level Bidirectional LSTM

(d) Character Level Bidirectional LSTM

Figure 5.10: Training Losses for Semantic Section Classification using CNN and Bidi-

rectional LSTM Models

106

Figure 5.11: Performance Comparison for Semantic Section Classifiers

5.4 Experiments for Section Sequencing

After obtaining all of the semantic annotated sections, we restructured the se-

quence of sections with semantic names. We trained a sequence prediction model to re-

produce the sequence of section headers or semantic names. As a sequence prediction

model, we chose LSTM encoder-decoder architecture as sequence prediction model.

The detailed experiment is described below.

5.4.1 Using LSTM

We chose an LSTM encoder-decoder architecture since LSTM can remember a

long sequence of observations and its encoder-decoder approach can be trained in an

107

unsupervised way. The model took a sequence of section headers and reproduced the in-

put sequence. We built the model using Tensorflow and Keras deep learning framework.

A document may have any number of sections. Since we were using arXiv scholarly

articles, we set the threshold for the number of sections to be 15. We truncated the se-

quence if the length was more than 15 and padded if the length was less then 15. Then

we used a LabelEncoder from the scikit-learn preprocessing module to encode each of

the sequences into a sequence of integer numbers.

In order to feed the input sequence into the LSTM encoder-decoder, we trans-

formed the sequence into a one-hot binary vector representation. As a result, our in-

put sequence was converted into a vector of 15x20 = 300 dimensions, where 15 was

the input sequence length and 20 was the number of unique semantic section headers.

Thereafter we built a sequential model where we had 20 LSTM memory units followed

by a TimeDistributed fully connected Dense layer. We used a TimeDistributed

layer since each of the terms in the sequence was considered as an input at a time and

the output layer predicted one term at a time. The fully connected Dense layer had

softmax activation function. The model was complied using an adam optimizer and a

categorical crossentropy loss function.

5.4.2 Results and Evaluation

Since we trained our model in an unsupervised way, we don’t have the preci-

sion, recall and f1-score to evaluate the model. The loss in the validation dataset was

0.000000119, a very low test loss. Figure 5.12 shows the T-SNE visualization of sec-

108

tion sequences in an embedding space. From the Figure 5.12 and the validation loss,

we inferred that the LSTM performed very well in our section sequencing and grouped

similar section sequences together. The model was tested on the test dataset and a few

random sequence of section headers prediction is given in Table 5.21.

Figure 5.12: T-SNE Visualization of Section Sequencing using LSTM Encoder-

Decoder

5.5 Experiments for Section Summarization

One of the outputs of our framework is document summarization. We generated

summaries for each of the sections from a document using the Textrank algorithm

[61] and Tensorflow Textsum [71] model. As described in the Technical Approach

chapter, we used Textrank for extractive summarization and Textsum for abstractive

109

Table 5.21: Sample Sequence of Section Headers Prediction on Test Data using LSTM
Encoder-Decoder

Original Sequence Predicted Sequence
[0, 13, 13, 3, 3, 8, 8, 5, 5, 5, 5, 14, 14, 14,
14]

[0, 13, 13, 3, 3, 8, 8, 5, 5, 5, 5, 14, 14, 14,
14]

[0, 13, 3, 17, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19]

[0, 13, 3, 17, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19]

[0, 13, 4, 14, 14, 14, 14, 14, 14, 10, 16, 5,
15, 19, 19]

[0, 13, 4, 14, 14, 14, 14, 14, 14, 10, 16, 5,
15, 19, 19]

[0, 13, 3, 14, 14, 14, 14, 14, 16, 9, 8, 14,
14, 14, 14]

[0, 13, 3, 14, 14, 14, 14, 14, 16, 9, 8, 14,
14, 14, 14]

[0, 13, 16, 14, 5, 2, 13, 16, 14, 14, 14, 14,
9, 14, 14]

[0, 13, 16, 14, 5, 2, 13, 16, 14, 14, 14, 14,
9, 14, 14]

[0, 13, 18, 15, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19]

[0, 13, 18, 15, 19, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19]

[0, 13, 16, 10, 5, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19]

[0, 13, 16, 10, 5, 19, 19, 19, 19, 19, 19,
19, 19, 19, 19]

summarization.

5.5.1 Extractive Summarization

For each of the sections from a document, we generated an extractive summary

using the Textrank algorithm. The algorithm is available in Gensim. We set the ratio

at 0.2 to return 20% of the original content as summary. The summary would consist

of the most representative sentences from the original texts. As a result, we obtained a

short version of the original document with the most informative sentences in each of

the sections.

5.5.2 Abstractive Summarization

As explained in the Technical Approach chapter, we used Sequence-to-Sequence

with an Attention model implemented in Tensorflow for abstractive summarization.

110

To train a deep learning model for abstractive summaries, we needed human annotated

summaries. Due to resource constraints, we treated the extractive summary generated

in the previous section as annotated data to train a Textsum model. The training and

test dataset development were described in the Input Document Processing chapter.

5.5.3 Results and Evaluation

Usually text summarization is evaluated by comparing automated summaries to

human generated reference summaries. Due to resource constraints, we did not have

access to human generated reference summaries. We also were not able to achieve

evaluation scores by human judgments using a manual evaluation of automated sum-

maries. Figure 5.13a shows the training loss of sequence-to-sequence learning for the

Textsum model. After analyzing the loss graph, we observed that the Textsum model

had high training loss. This is because the Textsum model works well for short texts

such as new headline generation from a few lines of a news article. Evaluation loss for

the Textsum model is shown in Figure 5.13b. We noticed that the evaluation loss was

oscillating between 6 and 9, which inferred that the model didn’t perform well for the

test dataset.

111

(a) Training Loss

(b) Evaluation Loss

Figure 5.13: Loss for sequence-to-sequence TextSum Model

5.6 Experiments for Ontology Design

This section shows the experiments and results analysis for document ontology

design and development. Some of the results are presented in our work [79]. A more

detailed are described below.

5.6.1 Using Variational Autoencoder

As described in the Technical Approach chapter, we trained a Variational Au-

toencoder (VAE) to learn the header embedding for ontology design. We clustered the

header embedding matrix into semantically meaningful groups and identified different

112

classes for ontology. The VAE was trained with different configurations and hyperpa-

rameters to achieve the best results. We experimented with different input lengths, such

as 10, 15 and 20 word length section headers. All section headers were converted into

a multi-level one-hot vector.

We used 100 embedding dimensions, 100 hidden layers and 1.0 ε to learn latent

variables. The one-hot vector was the input to the network, which was followed by an

embedding layer with ReLu activation function. Then we had a dense layer to capture

input features in a latent space. The model parameters were trained using two loss

functions, which were a reconstruction loss to force the decoded output to match with

the initial inputs, and a KL divergence between the learned latent and prior distribution.

The decoder was used with a sigmoid activation function and the model was complied

with an rmsprop optimizer and KL divergence loss function.

5.6.2 Results and Evaluation

The VAE models were trained in an unsupervised way to capture the semantic

meaning of each section header. The output of the VAE embedding layer was dumped

and clustered after T-SNE dimensionality reduction. Figure 5.14 shows the visualiza-

tion of k-means clustering with k = 50 and inputlength = 15 for VAE embedding

after T-SNE dimensionality reduction. Similar visualization with inputlength = 20 is

shown in Figure 5.15. After analyzing both the Figures, we observed that VAE models

learned very well and were able to capture similar section headers together. We noticed

that semantically similar section headers were plotted nearby. We also realized that

113

semantically similar section headers were constructed gradually from one concept to

another. For example, we noticed a pattern in the graph where a sequence of concepts

from “methods” gradually moved to “data construction”, “results”, “discussion”, “re-

marks” and “conclusion”. From this analysis, we could infer that VAE learned concepts

over section headers in a semantic pattern.

Figure 5.14: T-SNE Visualization of VAE Embedding Matrix Clusters with Input

Length 15

114

Figure 5.15: T-SNE Visualization of VAE Embedding Matrix Clusters with Input

Length 20

We also trained VAE models for section headers from Computer Science articles

and RFP documents individually. The performance for Computer Science articles was

similar to the performance we achieved for all arXiv articles. Due to a fewer number of

section headers collected from RFP documents, we obtained different patterns, where

most of the section headers where scattered all over the embedding space.

5.7 Experiment for Semantic Concepts

5.7.1 Using LDA

We trained an LDA topic model on a large number of sections to capture a seman-

tic concept for each of the sections. The model was trained using the Gensim frame-

115

work. The approach was described in the Technical Approach chapter and the input

was divided into sections generated from arXiv articles. The total number of training

and test sections for LDA are given in Table 5.22.

To build the LDA models, we applied different experimental approaches, based

on word, phrase and bigram dictionaries. The word-based dictionary contains only un-

igram terms where as the bigram dictionary has only bigram terms. The phrase based

dictionary contains combination of unigram, bigram and trigram terms. All three dictio-

naries were developed from the training dataset by ignoring terms that appeared in less

than 20 sections or in more than 10% of the sections of the whole training dataset. The

final dictionary size, after filtering, was 100, 000. Different LDA models were trained

based on various number of topics and passes. We ran the trained model to identify a

topic for any section, which was used to retrieve top terms with the highest probabil-

ity. The terms with the highest probability were used as a domain specific semantic

concepts for a section.

Table 5.22: Training and Test Dataset for LDA

Dataset Number
Training 128505
Test 11633

5.7.2 Results and Evaluation

To evaluate LDA models, we used test dataset. Figure 5.16 shows the inter topic

distance map for ten topics where some of the topics were overlapped. This Figure also

shows 30 of the most relevant terms of the topic number 4, where the relevance score is

116

80%. For performance evaluation of LDA models, we considered perplexity and cosine

similarity measures. The perplexity for a test chunk was -9.684 for ten topics. In our

experiment, the perplexity was lower in magnitude, which meant that the LDA model

fit better for test sections and probability distribution fit better for predicting sections.

Figure 5.16: Inter Topic Distance Map and Top Terms for a Topic

For cosine similarity measurement, we split the test dataset into ten different

chunks of test sections where each chunk had 1000 sections without repetition. We

also split each section from each test chunk into two parts and checked two measures.

The first measure was a similarity between topics of the first half and topics of the sec-

ond half for the same section. The second measure was a similarity between halves

of two different sections. We calculated an average cosine similarity between parts for

each test chunk. Due to coherence among topics, the first measure would be higher

117

and the second measure would be lower. Figure 5.17 shows these two measures for ten

different chunk of test sections.

Figure 5.17: Similarity Measures for LDA

Table 5.23: Comparative analysis of LDA models for semantic concepts

arXiv Category Word based LDA Bigram based LDA Phrase based LDA

Mathematics - Algebraic Topology,
Mathematics - Combinatorics

algebra, lie, maps,
element and metric

half plane, complex plane,
real axis, rational functions
and unit disk

recent, paper is, theoretical,
framework, and developed

Nuclear Theory phase, spin, magnetic,
particle and momentum

form factor, matrix elements,
heavy ion, transverse
momentum and u’energy loss

scattering, quark, momentum,
neutron move and gcd

Computer Science - Computer Vision
and Pattern Recognition

network, performance,
error, channel and average

neural networks, machine
learning, loss function,
training data and deep learning

learning, deep, layers, image
and machine learning

Mathematical Physics
quantum, entropy,
asymptotic, boundary and
classical

dx dx, initial data, unique
solution, positive constant
and uniformly bounded

stochastic, the process of,
convergence rate, diffusion
rate and walk

Astrophysics - Solar and
Stellar Astrophysics

stars, emission,
gas, stellar and velocity

active region, flux rope,
magnetic reconnection,
model set and solar cycle

magnetic ray, the magnetic,
plasma, shock and rays

For the evaluation, we also loaded the trained LDA models and generated domain

specific semantic concepts from 100 arXiv abstracts, where we knew the categories

of the articles. We analyzed their categories and semantic terms. We noticed a very

interesting correlation between the arXiv category and the semantic terms from LDA

topic models. We found that most of the top semantic terms are strongly co-related to

their original arXiv categories. A comparative analysis is shown in Table 5.23. After

118

manual analysis of the results, we noticed that a bigram LDA model is more meaningful

than two other models.

5.8 Experiment on RFP Dataset

Since our initial proposal was on the RFP dataset, we evaluated our models using

the RFP dataset. We manually annotated RFP documents as explained in the Input

Document Processing chapter. Later, we processed annotated data to prepare a test

dataset for text-only, layout-only, and combined text and layout input vectors. The

models which had the best performance for line and section classification for the arXiv

dataset, were used to test the RFP dataset. Since we achieved the best performance

using CNN models, we loaded the CNN models for combined text and layout input

vectors. The models were tested for both line and section classifications.

5.8.1 Results and Evaluation

To evaluate the performance of the RFP dataset, we calculated precision, recall,

and f1-score. Table 5.24 shows the precision, recall, and f1-score for the line classifi-

cation of the RFP dataset using the CNN model for the combined text and layout input

vectors. The precision, recall, and f1-score for section classification of the RFP dataset

using the combined text and layout input vectors are given in Table 5.25. The models

did not perform as well as they performed for arXiv datasets. This is because we devel-

oped few features from arXiv section headers which are not similar to the RFP section

headers, such as “Experiments”, “Dataset” and “Contribution” usually exist in arXiv

119

articles whereas “Requirement”, “Deliverable” and “Contract Clauses” generally exist

in RFP documents.

Table 5.24: Precision, Recall and F1-score for Line Classification on RFP Dataset using
CNN

Model Class Precision Recall F1-score

Combined Text and Layout
Regular-Text 0.88 0.92 0.92
Section-Header 0.91 0.90 0.91
Avg 0.90 0.91 0.91

Table 5.25: Precision, Recall and F1-score for Section Classification on RFP Dataset
using CNN

Model Class Precision Recall F1-score

Combined Text and Layout
Top-level 0.75 0.77 0.76
Subsection 0.79 0.73 0.76
Sub-subsection 0.82 0.78 0.80
Avg 0.79 0.76 0.77

5.9 Discussion

We compared the performance of our framework in this chapter with respect to

different performance matrices and with the help of different visualization techniques.

We also compared the performance of our framework against top performing systems

developed for scholarly articles. The first system to be compared was PDFX presented

by Constantin et al. in [22]. Our task is partially similar to their task. Their system

identifies author, title, email, section headers, etc. from scholarly articles. They reported

an f1-score of 0.77 for top-level section headers identified from various articles. We

could not evaluate our framework using their dataset since the dataset was not publicly

available.

120

The second system, which we would like to compare our results with, had a hybrid

approach by Tuarob et al. [92] to discover semantic hierarchical sections from schol-

arly documents. Their task was limited to a few fixed section header names whereas our

framework identifies any section header. Hence, their dataset may not not directly ap-

plicable to our system. They attained a 0.92 f1-score for the section boundary detection

where sections were from fixed names, such as abstract, introduction and conclusion.

121

Chapter 6

CONCLUSION

In this dissertation, we have explored a variety of machine learning and deep

learning architectures to understand the logical and semantic structure of large doc-

uments. Our framework was able to automatically identify logical sections from an

unstructured document, infer their structure, capture their semantic meaning, and as-

sign a human understandable and consistent semantic label to each section that could

help a machine understand a large document. The framework used arXiv scholarly arti-

cles and RFP business documents to extract and identify logical and semantic structure.

This thesis also contributed to a new dataset of information about a collection of aca-

demic articles from arXiv eprints repository, which included a wide range of meta-data

for each article, including TOCs, section summarizations, and more.

To wrap up this dissertation, we recapped key points from each of the chapters.

Afterwards, some limitations of our work and future direction in this research were

briefly described.

In the Background and Related work chapter, we described the current state of

the art research and applications which exist in this research domain. However, we

weren’t able to find a complete solution for the proposed research challenge described

in the Introduction chapter. At the end of the Background and Related Work chapter, we

mentioned the gaps in the existing research and hence were motivated to get a complete

122

solution using a variety of deep learning architectures.

As seen in the Technical Approach chapter, we explained a detailed system ar-

chitecture for our proposed framework. We propounded the approaches with powerful

deep learning techniques using text-only, layout-only, and combined text and layout

input vectors. The key points were identifying logical sections and inferring their struc-

tures. We also described important features which were used for learning and capturing

both logical and semantic structures of a document which resulted in a novel approach

to understand large document.

The Input Document Processing chapter described detailed procedures of input

document collection and processing. The types and semantics of input documents were

also explained in the Input Document Processing chapter. The training and test datasets

for each of the units of our proposed framework were also narrated in that chapter. We

used arXiv scholarly articles and RFP business documents to develop our training and

test datasets. In order to train models for capturing most of the patterns from the dataset,

we stratified the training and test datasets.

In order to prove our proposed approaches, a complete set of experiments with

detailed evaluation for each unit of our framework was presented in the Experiments

and Evaluation chapter. The chapter relates each of the units of our system by estab-

lishing connections among them. Each of the experiments was followed by a results and

evaluation section, which showed the performance of a trained model using precision,

recall, and f1-score matrices. The results and evaluation section also plotted graphs and

visualizations of evaluation and embedding matrices. To visualize embedding matrices

123

of CNN, RNN, LSTM and Auto-encoder, we used T-SNE dimensionality reduction on

the original data. At the end of the experiments of each unit, we had a discussion section

to assess the overall performance of that unit.

6.1 Discussion and Summary of Contributions

The general goal of document understanding as a research endeavor is to form

models and inferring relationship on those models in a variety of document types, such

as academic articles, business documents and user manuals. The key challenges to

achieve this goal are forming the logical segmentations, inferring the logical structure

from these segmentations, deriving a high-level semantic description about document

content and evolving the semantic structure from the semantic description.

This dissertation explores the above mentioned challenges to understand a large

and complex document. While exploring the first and second challenges, we realized

that the most difficult and important tasks are identifying different level of headings

from the low level representation of a document. Because the documents are prepared

by human beings and the models are confused due to document’s formatting and style

parameters. To get a good logical segmentation, initially we formed each line and

identified it as a regular-text or section-header. Later we classified level of headings,

such as top-level section, subsection and sub-subsection heading. Then we segmented

the document based on level of section headings. Finally, we inferred the relationship

among different segments of a document.

The granularity of the logical segmentation in our research is line level which

124

enables our machine learning approaches to learn the hidden structures of sections,

subsections and sub-subsections. We designed the models using document layout pa-

rameters and text content. These designed attributes of our models are able distinguish

the learning approaches in our experiments. For example, our deep learning approaches,

such as RNN and CNN perform better than SVM and Decision Tree techniques. Be-

cause both RNN and CNN approaches were able to learn the character sequences and

found distinguishable features whereas SVM and Decision Tree were not able to cap-

ture sequential features from the text content.

While focusing the third and fourth challenges, the most important tasks are cap-

turing a semantic from a block of text and evolving a semantic structure from a doc-

ument. To capture a general purpose semantic, we chose word level CNN, RNN and

LSTM approaches. The word level granularity enables our approaches to understand the

meaning of the context and to find the semantic patterns from a sequence of text. This

attribute of our approaches has confirmed a lower computational cost than a character-

based approach because the character-based approach for a large text block needs much

higher hidden layer to capture long-term dependencies.

To evolve a semantic structure, we designed and developed a document ontology

using both Variational and Convolutional Auto-encoder. A big challenge in semantic

annotation is to understand and map semantically similar labels. Developing a docu-

ment ontology helped to capture this semantic over a large number of different docu-

ments. The unsupervised nature of our approaches was able to choose the Variational

Auto-encoder over the Convolutional Auto-encoder.

125

The output of this research are logically divided sections with semantic labels,

section summaries and table of content of a document. A content-based question an-

swering platform can use our system to generate sections with semantic names and

develop a document indexing system for efficient information retrieval. NLP communi-

ties working in topic modeling, language modeling and co-reference resolution find out

system very useful. Any agencies which read thousands of documents to take business

decision, will find section summaries to save their valuable time and money. In a larger

problem space, any person who works in a different problem domain, can use this thesis

to understand deep learning architectures in text classification, semantic concept iden-

tification and ontology concepts development. People who are interested in document

analysis can also get benefits from this thesis.

6.2 Limitations of the System

The input of this framework is TETML which is generated by PDFLib Text Ex-

traction Toolkit. Hence the framework heavily depends on PDFLib TET. Sometimes

PDFLib generates multiple blocks from a single text line and assigns them into different

paragraph tags. While parsing a TETML file, the parser may consider these paragraphs

separately since the post-processing of TETML file depends on rules and schema of a

TETML.

Due to resource limitation for the annotation process of RFP documents, models

trained for arXiv articles are used for RFP document sectioning and semantic labeling.

Though it helps generalization, models cannot predict semantic labels for RFP sections.

126

This is because RFP is domain dependent and has its own sections, such as deliverable

and Contract Clauses, which are not seen in any scholarly article. Moreover, other

sections, such as background and requirement of an RFP document, describe different

concepts than an academic article.

The Semantic Section Classifiers become confused with contribution sections

since different articles describe different contributions. The classifiers also confuse

future work and conclusion sections. Though many articles have two different sections

for future work and conclusion, some articles merge them into one section.

6.3 Future Research Directions

Understanding a large and complex document is a very challenging research prob-

lem since there is a long road ahead for a machine to read and understand like a human

reader. So far we have focused on the design of a general architecture to cover academic

articles and RFP documents. But there are a lot of other domains where further research

could be done with real world applications. A list of possible future work related to the

research is explained below.

6.3.1 Improvement of Abstractive Summarization

As explained in the Experiments and Evaluation chapter, we observed that we

were not able to achieve a good performance for abstractive summarization using the

Tensorflow Textsum algorithm. We noticed that the model did not work well for large

sections. So, we should further study the abstractive summarization techniques of deep

127

learning architectures and come up with a good architecture that could handle longer

texts. We plan to develop a new variational encoder-decoder architecture with an atten-

tion mechanism which can capture abstractive summaries for longer texts.

6.3.2 Domain Adaptation

This research work can be extended to include other domains, such as Medical

Reports, US Patents and Business Reports. A prospective approach to include other

domains in our framework could be the domain adaptation approach [40, 24, 56]. The

learning and cost functions in models presented in this research work can be modified

to enhance the capabilities of current models for training in one domain and applying

them in other domains.

Both unsupervised and supervised domain adaptation techniques can be applied

to the current models. In the case of unsupervised domain adaptation, the models will be

tested on unlabeled datasets from other domains. For the supervised domain adaptation,

the models will be trained on a small amount of training data from other domains and

tested on a large amount of unlabeled datasets.

6.3.3 Releasing a Complete System for Public Use

We hope to quickly develop a complete end-to-end system to release the product

for public use. We will make the system open source. We also plan to deploy our system

in the cloud. The final system will have navigations in order to access the sections of

interest. The system will also have semantic indexing for sections, which would be

128

useful for content-based question answering systems.

6.3.4 Extracting Information from Scanned Documents

We may consider scanned documents, extract information from them and apply

the techniques we presented in this dissertation. However, in order to extract infor-

mation from scanned documents, we would need to include Optical Character Recog-

nition (OCR) techniques in our framework. We plan to further explore our approach

to include scanned documents in our system to section annotate and label them with

semantic names.

6.3.5 Generating Document from a Structure

Another potential future work is implementing a generative deep learning ap-

proach to construct a document given the structure of the document. The model will be

trained on a large number of documents with their semantic structures. Thereafter, the

model will be used to generate contents for each semantic section and to combine the

contents as a new document.

6.4 Concluding Remarks

We end this dissertation by repeating the thesis statement: “ It is possible to auto-

matically identify a document’s logical sections, infer their structure and assign human

understandable and consistent semantic labels that can help machines to understand

large documents.”

129

Bibliography

[1] Arxiv repository of electronic preprints, 2017. [Online; accessed 16-October-
2017].

[2] Redshred, 2017. [Online; accessed 16-October-2017].

[3] Sections of an rfp, 2017. [Online; accessed 22-October-2017].

[4] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467, 2016.

[5] Silvio Peroni Angelo Di Iorio, Fabio Vitali. Document structural patterns ontol-
ogy, 2017. [Online; accessed 09-October-2017].

[6] Apostolos Antonacopoulos, Christian Clausner, Christos Papadopoulos, and Ste-
fan Pletschacher. Icdar 2013 competition on historical newspaper layout analysis
(hnla 2013). In 2013 12th International Conference on Document Analysis and
Recognition, pages 1454–1458. IEEE, 2013.

[7] Terri K Attwood, Douglas B Kell, Philip McDermott, James Marsh, SR Pettifer,
and David Thorne. Utopia documents: linking scholarly literature with research
data. Bioinformatics, 26(18):i568–i574, 2010.

[8] Amazon AWS. Requester pays buckets.

[9] Robert M Ayers. Method and apparatus for identifying words described in a page
description language file, November 3 1998. US Patent 5,832,531.

[10] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

[11] Tim Bienz, Richard Cohn, and Calif.) Adobe Systems (Mountain View. Portable
document format reference manual. Citeseer, 1993.

[12] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

[13] Jean-Luc Bloechle, Maurizio Rigamonti, Karim Hadjar, Denis Lalanne, and Rolf
Ingold. Xcdf: a canonical and structured document format. In International Work-
shop on Document Analysis Systems, pages 141–152. Springer, 2006.

[14] Dan S Bloomberg and Francine R Chen. Document image summarization with-
out ocr. In Image Processing, 1996. Proceedings., International Conference on,
volume 1, pages 229–232. IEEE, 1996.

130

[15] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27,
2011.

[16] Hui Chao and Jian Fan. Layout and content extraction for pdf documents. In
International Workshop on Document Analysis Systems, pages 213–224. Springer,
2004.

[17] Jianpeng Cheng and Mirella Lapata. Neural summarization by extracting sen-
tences and words. arXiv preprint arXiv:1603.07252, 2016.

[18] Sumit Chopra, Michael Auli, and Alexander M Rush. Abstractive sentence sum-
marization with attentive recurrent neural networks. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 93–98, 2016.

[19] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empir-
ical evaluation of gated recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555, 2014.

[20] P Ciccarese and T Groza. Ontology of rhetorical blocks (orb). edi-
tor’s draft, 5 june 2011. World Wide Web Consortium. http://www. w3.
org/2001/sw/hcls/notes/orb/(last visited March 12, 2012), 2011.

[21] Alexandru Constantin, Silvio Peroni, Steve Pettifer, David Shotton, and Fabio
Vitali. The document components ontology (doco). Semantic Web, 7(2):167–181,
2016.

[22] Alexandru Constantin, Steve Pettifer, and Andrei Voronkov. Pdfx: fully-
automated pdf-to-xml conversion of scientific literature. In Proceedings of the
2013 ACM symposium on Document engineering, pages 177–180. ACM, 2013.

[23] Joseph P Coyne, Harold A Daub, Judy J Kogut-O’Connell, Teresa G Fiore,
Michael A Fortine, Pamela K Lowe, Aldo Morandin, Yoshiaki Ohsumi, Jose de
Jesus Michel Rodriguez, Anne C Ten Dyke, et al. Process for determining an
auction methodology, January 6 2009. US Patent 7,475,034.

[24] Gabriela Csurka. Domain adaptation for visual applications: A comprehensive
survey. arXiv preprint arXiv:1702.05374, 2017.

[25] Silvio Peroni David Shotton. Discourse elements ontology(deo), 2017. [Online;
accessed 09-October-2017].

[26] Hervé Déjean and Jean-Luc Meunier. A system for converting pdf documents into
structured xml format. In International Workshop on Document Analysis Systems,
pages 129–140. Springer, 2006.

[27] Howard B Demuth, Mark H Beale, Orlando De Jess, and Martin T Hagan. Neural
network design. Martin Hagan, 2014.

131

[28] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

[29] Robert H Dolin, Lawrence Garber, and Icode Solutions. Hl7 implementation guide
for cda R© release 2: Consolidated cda templates for clinical notes (us realm) draft
standard for trial use release 2.

[30] Jacob Eisenstein, Brendan O’Connor, Noah A Smith, and Eric P Xing. A la-
tent variable model for geographic lexical variation. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, pages 1277–
1287. Association for Computational Linguistics, 2010.

[31] Jeffrey Flanigan, Sam Thomson, Jaime G Carbonell, Chris Dyer, and Noah A
Smith. A discriminative graph-based parser for the abstract meaning representa-
tion. 2014.

[32] Lloyd A. Fletcher and Rangachar Kasturi. A robust algorithm for text string sep-
aration from mixed text/graphics images. IEEE transactions on pattern analysis
and machine intelligence, 10(6):910–918, 1988.

[33] Keinosuke Fukunaga and Patrenahalli M. Narendra. A branch and bound al-
gorithm for computing k-nearest neighbors. IEEE transactions on computers,
100(7):750–753, 1975.

[34] Shalini Ghosh, Oriol Vinyals, Brian Strope, Scott Roy, Tom Dean, and Larry
Heck. Contextual lstm (clstm) models for large scale nlp tasks. arXiv preprint
arXiv:1602.06291, 2016.

[35] Justin Grimmer. A bayesian hierarchical topic model for political texts: Measuring
expressed agendas in senate press releases. Political Analysis, 18(1):1–35, 2010.

[36] Thomas R Gruber. A translation approach to portable ontology specifications.
Knowledge acquisition, 5(2):199–220, 1993.

[37] Awad S Hanna, Eric J Tadt, and Gary C Whited. Request for information: bench-
marks and metrics for major highway projects. Journal of Construction Engineer-
ing and Management, 138(12):1347–1352, 2012.

[38] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

[39] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[40] Jing Jiang. A literature survey on domain adaptation of statistical classifiers. URL:
http://sifaka. cs. uiuc. edu/jiang4/domainadaptation/survey, 3, 2008.

132

[41] Mikael Kågebäck, Olof Mogren, Nina Tahmasebi, and Devdatt Dubhashi. Ex-
tractive summarization using continuous vector space models. In Proceedings of
the 2nd Workshop on Continuous Vector Space Models and their Compositionality
(CVSC)@ EACL, pages 31–39, 2014.

[42] D Kermisch and PG Roetling. Fourier spectrum of halftone images. JOSA,
65(6):716–723, 1975.

[43] Yoon Kim. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882, 2014.

[44] Nahum Kiryati, Yuval Eldar, and Alfred M Bruckstein. A probabilistic hough
transform. Pattern recognition, 24(4):303–316, 1991.

[45] Koichi Kise, Akinori Sato, and Motoi Iwata. Segmentation of page images using
the area voronoi diagram. Computer Vision and Image Understanding, 70(3):370–
382, 1998.

[46] Stefan Klink, Andreas Dengel, and Thomas Kieninger. Document structure anal-
ysis based on layout and textual features. In Proc. of International Workshop on
Document Analysis Systems, DAS2000, pages 99–111. Citeseer, 2000.

[47] Stefan Klink and Thomas Kieninger. Rule-based document structure understand-
ing with a fuzzy combination of layout and textual features. International Journal
on Document Analysis and Recognition, 4(1):18–26, 2001.

[48] Philipp Koehn. Pharaoh: a beam search decoder for phrase-based statistical ma-
chine translation models. Machine translation: From real users to research, pages
115–124, 2004.

[49] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

[50] Yann Le Cun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework
for back-propagation. In Proceedings of the 1988 Connectionist Models Summer
School, pages 21–28. CMU, Pittsburgh, Pa: Morgan Kaufmann, 1988.

[51] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[52] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[53] David D Lewis. Naive (bayes) at forty: The independence assumption in informa-
tion retrieval. In European conference on machine learning, pages 4–15. Springer,
1998.

133

[54] Hui Lin and Jeff Bilmes. A class of submodular functions for document summa-
rization. In Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies-Volume 1, pages 510–520.
Association for Computational Linguistics, 2011.

[55] Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, and Noah A Smith.
Toward abstractive summarization using semantic representations. 2015.

[56] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning trans-
ferable features with deep adaptation networks. In International Conference on
Machine Learning, pages 97–105, 2015.

[57] Konstantin Lopyrev. Generating news headlines with recurrent neural networks.
arXiv preprint arXiv:1512.01712, 2015.

[58] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Jour-
nal of Machine Learning Research, 9(Nov):2579–2605, 2008.

[59] William C Mann and Sandra A Thompson. Rhetorical structure theory: Toward a
functional theory of text organization. Text-Interdisciplinary Journal for the Study
of Discourse, 8(3):243–281, 1988.

[60] Song Mao, Azriel Rosenfeld, and Tapas Kanungo. Document structure analy-
sis algorithms: a literature survey. In Electronic Imaging 2003, pages 197–207.
International Society for Optics and Photonics, 2003.

[61] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into texts. Association
for Computational Linguistics, 2004.

[62] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khu-
danpur. Recurrent neural network based language model. In Interspeech, vol-
ume 2, page 3, 2010.

[63] Diego Monti and Maurizio Morisio. Semantic annotation of medical documents
in cda context. In International Conference on Information Technology in Bio-and
Medical Informatics, pages 163–172. Springer, 2016.

[64] George Nagy, Sharad Seth, and Mahesh Viswanathan. A prototype document
image analysis system for technical journals. Computer, 25(7):10–22, 1992.

[65] Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent
neural network based sequence model for extractive summarization of documents.
hiP (yi= 1— hi, si, d), 1:1, 2017.

[66] Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive
text summarization using sequence-to-sequence rnns and beyond. arXiv preprint
arXiv:1602.06023, 2016.

134

[67] Ramesh Nallapati, Bowen Zhou, and Mingbo Ma. Classify or select: Neu-
ral architectures for extractive document summarization. arXiv preprint
arXiv:1611.04244, 2016.

[68] Shashi Narayan, Nikos Papasarantopoulos, Mirella Lapata, and Shay B Co-
hen. Neural extractive summarization with side information. arXiv preprint
arXiv:1704.04530, 2017.

[69] Lawrence O’Gorman. The document spectrum for page layout analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(11):1162–1173,
1993.

[70] Mohammad Daryoush Paknad and Robert M Ayers. Method and apparatus for
identifying words described in a portable electronic document, November 3 1998.
US Patent 5,832,530.

[71] Xin Pan and Peter Liu. Tensorflow textsum, 2015. [Online; accessed 23-October-
2017].

[72] Theo Pavlidis and Jiangying Zhou. Page segmentation and classification. CVGIP:
Graphical models and image processing, 54(6):484–496, 1992.

[73] PDFlib. Pdflib tet, 2016. [Online; accessed 25-October-2016].

[74] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[75] Silvio Peroni. The semantic publishing and referencing ontologies. In Seman-
tic Web Technologies and Legal Scholarly Publishing, pages 121–193. Springer,
2014.

[76] Poppler. Poppler pdf rendering library, 2016. [Online; accessed 30-October-
2016].

[77] Muhammad Mahbubur Rahman. Intellectual knowledge extraction from online
social data. In Informatics, Electronics & Vision (ICIEV), 2012 International Con-
ference on, pages 205–210. IEEE, 2012.

[78] Muhammad Mahbubur Rahman and Tim Finin. Deep understanding of a docu-
ment’s structure. In Proceedings of the Fourth IEEE/ACM International Confer-
ence on Big Data Computing, Applications and Technologies, pages 63–73. ACM,
2017.

[79] Muhammad Mahbubur Rahman, Tim Finin, et al. Understanding and representing
the semantics of large structured documents. In Proceedings of the 4th Workshop
on Semantic Deep Learning (SemDeep-4, ISWC), 2018.

135

[80] Cartic Ramakrishnan, Abhishek Patnia, Eduard Hovy, and Gully APC Burns.
Layout-aware text extraction from full-text pdf of scientific articles. Source code
for biology and medicine, 7(1):1, 2012.

[81] R Rehurek and P Sojka. Gensim–python framework for vector space modelling.
NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic,
2011.

[82] Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http:
//is.muni.cz/publication/884893/en.

[83] Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model
for abstractive sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

[84] Georg Sander. A fast heuristic for hierarchical manhattan layout. In International
Symposium on Graph Drawing, pages 447–458. Springer, 1995.

[85] Arne Schulze. Methods and computer readable storage medium for conducting a
reverse auction, May 20 2008. US Patent 7,376,593.

[86] David Shotton and Silvio Peroni. Doco, the document components ontology.
2011.

[87] Luciana B Sollaci and Mauricio G Pereira. The introduction, methods, results, and
discussion (imrad) structure: a fifty-year survey. Journal of the medical library
association, 92(3):364, 2004.

[88] Nitish Srivastava, Ruslan R Salakhutdinov, and Geoffrey E Hinton. Modeling doc-
uments with deep boltzmann machines. arXiv preprint arXiv:1309.6865, 2013.

[89] Kokichi Sugihara. Approximation of generalized voronoi diagrams by ordinary
voronoi diagrams. CVGIP: Graphical Models and Image Processing, 55(6):522–
531, 1993.

[90] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages
3104–3112, 2014.

[91] Maite Taboada and William C Mann. Rhetorical structure theory: Looking back
and moving ahead. Discourse studies, 8(3):423–459, 2006.

[92] Suppawong Tuarob, Prasenjit Mitra, and C Lee Giles. A hybrid approach to dis-
cover semantic hierarchical sections in scholarly documents. In Document Anal-
ysis and Recognition (ICDAR), 2015 13th International Conference on, pages
1081–1085. IEEE, 2015.

136

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

[93] Victoria Uren, Philipp Cimiano, José Iria, Siegfried Handschuh, Maria Vargas-
Vera, Enrico Motta, and Fabio Ciravegna. Semantic annotation for knowledge
management: Requirements and a survey of the state of the art. Web Semantics:
science, services and agents on the World Wide Web, 4(1):14–28, 2006.

[94] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Ad-
vances in Neural Information Processing Systems, pages 2692–2700, 2015.

[95] Wikipedia. Apache pdfbox — wikipedia, the free encyclopedia, 2016. [Online;
accessed 20-September-2016].

[96] Wikipedia. Pdftotext — wikipedia, the free encyclopedia, 2016. [Online; accessed
27-September-2016].

[97] A Yamashita, T Amano, I Takahashi, and K Toyokawa. A model based layout
understanding method for the document recognition system. In Proceedings of
International Conference on Document Analysis and Recognition, pages 130–138,
1991.

[98] Xiang Zhang and Yann LeCun. Text understanding from scratch. arXiv preprint
arXiv:1502.01710, 2015.

137

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Background
	Sections
	Documents
	Document Segmentation
	Text Segmentation

	State of the Art Approach
	Research Challenges and Contributions
	Structure of the Dissertation

	Background and Related work
	Background
	Business Documents
	Scholarly Articles
	PDF Documents
	Ontology
	Deep Learning
	Semantic Annotation

	Related Work
	Document Sectioning
	Semantic Annotation and Labeling
	Deep Neural Networks
	Document Ontology Design
	Document Summarization
	Extractive Document Summarization
	Abstractive Document Summarization
	Logical Structure Extraction Tools

	Gaps in the Existing Research

	Technical Approach
	High Level System Architecture
	Pre-processing Unit
	Annotation Unit
	Classification Unit
	Semantic Annotation Unit

	Input Data
	Input Data for the Classification Unit
	Input Data for Semantic Annotation Unit

	Output
	Our Approaches
	Line Classification
	Section Classification
	Semantic Annotation

	Input Document Processing
	Data Types
	arXiv Articles
	RFP Documents

	Data Collection
	Full Text Access
	OAI Call
	TOC Extraction
	Convert to TETML

	TETML Processing
	RFP Processing
	Training and Test Data
	Data for Line Classifiers
	Data For Section Classifiers
	Data For Semantic Section Classifier
	Data For Section Sequencing
	Data For Section Summarization
	Data For Ontology Design

	Experiments and Evaluation
	Experiments for Line Classification
	Using DT
	Using SVM
	Using NB
	Using RNN
	Using CNN
	Discussion

	Experiments for Section Classification
	Using RNN
	Using CNN
	Using CNN for Four Class
	Discussion

	Experiments for Semantic Section Classification
	Using CNN
	Using Bidirectional LSTM
	Discussion

	Experiments for Section Sequencing
	Using LSTM
	Results and Evaluation

	Experiments for Section Summarization
	Extractive Summarization
	Abstractive Summarization
	Results and Evaluation

	Experiments for Ontology Design
	Using Variational Autoencoder
	Results and Evaluation

	Experiment for Semantic Concepts
	Using LDA
	Results and Evaluation

	Experiment on RFP Dataset
	Results and Evaluation

	Discussion

	Conclusion
	Discussion and Summary of Contributions
	Limitations of the System
	Future Research Directions
	Improvement of Abstractive Summarization
	Domain Adaptation
	Releasing a Complete System for Public Use
	Extracting Information from Scanned Documents
	Generating Document from a Structure

	Concluding Remarks

	Bibliography

