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Abstract 

Myeloid-derived suppressor cells (MDSC) are present in most cancer patients where they are 

significant contributors to the immune suppressive tumor microenvironment (TME).  The TME is a 

hostile locale due to deficiencies in oxygen (hypoxia) and nutrients, and the presence of reactive oxygen 

species (ROS).  The survival of tumor cells within the TME is partially governed by two mechanisms: (i) 

Activation of the transcription factor Nuclear Factor Erythroid-derived 2-like 2 (Nrf2) which turns on 

genes that attenuate oxidative stress; and (ii) The presence of High Mobility Group Box Protein-1 

(HMGB1), a damage-associated molecular pattern molecule (DAMP) that induces autophagy and 

protects against apoptosis.  Because Nrf2 and HMGB1 promote tumor cell survival, we speculated that 

Nrf2 and HMGB1 may facilitate MDSC survival.  We tested this hypothesis using Nrf2+/+ and Nrf2-/- 

BALB/c and C57BL/6 mice and pharmacological inhibitors of HMGB1.  In vitro and in vivo studies 

demonstrated that Nrf2 increased the suppressive potency and quantity of tumor-infiltrating MDSC by 

up-regulating MDSC production of H2O2 and decreasing MDSC apoptosis.  Decreased apoptosis was 

accompanied by a decrease in the production of MDSC, demonstrating that MDSC levels are 

homeostatically regulated.  Pharmacological inhibition of autophagy increased MDSC apoptosis 

indicating that autophagy increases MDSC half-life.  Inhibition of HMGB1 also increased MDSC apoptosis 

and reduced MDSC autophagy.  These results combined with our previous findings that HMGB1 drives 

the accumulation of MDSC, demonstrate that HMGB1 maintains MDSC viability by inducing autophagy.  

Collectively, these findings identify Nrf2 and HMGB1 as important factors that enable MDSC to survive in 

the TME. 
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Introduction 

 T cell-mediated adaptive immunity is capable of controlling cancer cell progression and 

eliminating malignant cells, as shown by the successful treatment with the checkpoint blockade 

inhibitors (CBI) anti-CTLA-4, anti-PD-1, and anti-PD-L1 antibodies.  However, CBIs are only effective in a 

subset of patients with certain types of cancers [1].  This partial effectiveness is likely due to the 

presence of other immune suppressive mechanisms present in the TME (tumor microenvironment).  

Myeloid-derived suppressor cells (MDSC) are present at different levels in virtually all cancer patients.  

These immature myeloid cells are potent inhibitors of T cell-mediated antitumor immunity. They are 

derived from the common myeloid progenitor cell in the bone marrow, accumulate in response to a 

variety of pro-inflammatory mediators, and are chemoattracted to the TME by chemokines [2, 3]. They 

use a variety of mechanisms to suppress antitumor immunity and facilitate tumor progression including 

inhibition of T cell activation and function, polarization of macrophages towards an M2-like phenotype, 

induction of T regulatory cells, inhibition of T cell trafficking into lymph nodes, blocking NK cell-mediated 

cytotoxicity, promotion of neo-angiogenesis, and enhancement of cancer cell stemness (reviewed in [4, 

5]).  The chronic low-grade inflammation associated with obesity also drives the accumulation of MDSC 

and is at least partially responsible for the increased susceptibility of obese individuals to more rapid 

tumor progression [6, 7]. 

 The local environment within solid tumors is typically inhospitable for many cells due to the 

presence of reactive oxygen species (ROS) [8], hypoxia [9], and limited quantities of nutrients [10].  

Tumor cells thrive in the TME because they have adapted to these harsh conditions.  One mechanism 

used by tumor cells to survive is the activation of the transcription factor nuclear factor erythroid-2-

related factor 2 (Nrf2). Under non-stress conditions Nrf2 is bound to the Kelch-like ECH-associated 

protein (Keap1) in the cytoplasm where it is polyubiquitinated and subsequently degraded in the 26s 

proteasome [11-13].  Under conditions of oxidative stress, cytosolic Nrf2 is stabilized because cysteine 
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residues in Keap1 are oxidized resulting in conformational changes to Keap1 and the release of Nrf2.  

Stabilization of Nrf2 is also mediated by direct phosphorylation by kinases, including myc, Kras, PKC, 

ERK, and p38MAPK.  Stabilized Nrf2 translocates to the nucleus where in conjunction with other 

transcription factors it binds to the antioxidant response elements (ARE) in the regulatory region of 

more than 200 genes [14-17].  Most of these genes encode proteins that protect against oxidative 

damage; however, genes that facilitate proliferation [18, 19] and autophagy [20, 21] are also activated.  

As a result, tumor cells are protected against oxidative stress and they proliferate.   

 Autophagy is another key mechanism used by tumor cells to thrive in the harsh TME.  Cells 

undergoing so-called “macroautophagy” (henceforth called “autophagy”) degrade non-essential 

cytosolic components in their lysosomes and recycle the constituents into molecules essential for 

survival [22].   Autophagy has multiple effects within the TME and differentially impacts different 

tumors.  However, its main effect is to alter tumor cell metabolism under conditions of nutrient stress 

[23] and hypoxia [24], a process that is regulated by the AMP kinase and mTOR pathways [25, 26].  Since 

radiotherapy and chemotherapy induce intracellular tumor stress, autophagy also facilitates tumor cell 

survival in cancer patients undergoing these treatments [27].    

 High mobility group box protein 1 (HMGB1), a damage associated molecule pattern molecule 

(DAMP) is an established inducer of autophagy, and is ubiquitously present in the TME [28-30].   HMGB1 

is also a potent inducer of MDSC and a driver of MDSC suppressive activity [31].  Given the known 

protective effects of autophagy and Nrf2 on cancer cells, we hypothesized that MDSC may use these 

same mechanisms to survive in the nutrient-depleted and hypoxic environment of solid tumors.  This 

article reviews our studies supporting this hypothesis.  

 

Nrf2 decreases the survival time of tumor-bearing mice  

 Some studies have demonstrated that host cell-expressed Nrf2 reduces carcinogenesis [32-34], 
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while other studies indicate Nrf2 supports tumor progression [35, 36].  Therefore, we first determined 

how Nrf2 expression impacted tumor progression by comparing the survival of wildtype and Nrf2-

deficient BALB/c mice carrying the syngeneic 4T1 tumor and wild type and Nrf2-deficient C57BL/6 mice 

carrying the MC38 colon carcinoma.  For both tumors, Nrf2-deficient mice had significantly longer 

survival times (p<0.01) compared to their wild type counterparts, indicating that in the setting of the 

current studies Nrf2 enhances tumor progression [37]. 

   To ascertain that Nrf2 is not activated in the MDSC of Nrf2-deficient mice, quantitative RT-PCR 

was used to detect the expression of four genes known to be upregulated by activated Nrf2 (glutamate-

cysteine ligase, heme oxygenase-1, catalase, and NADPH dehydrogenase) [38-40].  Circulating MDSC 

(Gr1+CD11b+ cells) from the blood of tumor-bearing Nrf2-deficient mice treated with tert-

butylhydroquinone (tBHQ), a stressor that activates Nrf2 [41], did not contain detectable mRNA for any 

of these genes, while MDSC from wild type mice contained mRNA for these genes. 

 

Nrf2 increases the frequency of tumor-infiltrating MDSC and the suppressive potency of MDSC 

MDSC are potent suppressors of activated CD4+ and CD8+ T cells and prevent the activation of 

naïve T cells.  To determine if Nrf2 impacts the frequency of tumor-infiltrating MDSC (TIMDSC), primary 

4T1 tumors were resected from the breast tissue of BALB/c wildtype and Nrf2-deficient mice and the 

number of CD45+ host hematopoietic cells was quantified.  Significantly higher levels of Gr1+CD11b+ 

MDSC were detected in the tumors of the wild type mice relative to the Nrf2-deficient mice (p<0.01).  

No differences in the frequency of dendritic cells, CD4+ or CD8+ T cells, or B cells were found, although 

the tumors of Nrf2-deficient mice contained significantly higher levels of macrophages (p<0.01) [37].  

The macrophage increase could be due to the reduced number of MDSC since macrophages and MDSC 

are derived from a common progenitor cell and fewer MDSC may result in differentiation of more 

macrophages.  
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To determine if Nrf2 impacts MDSC suppressive potency, MDSC from the blood of 4T1 tumor-

bearing BALB/c wildtype and Nrf2-deficient mice were analyzed for their production of hydrogen 

peroxide, one of the ROS used by MDSC to inhibit T cell function.  The MDSC were also tested for their 

ability to inhibit the antigen-driven activation of CD4+ T cells.  The Nrf2-deficient MDSC produced 

significantly less (p<0.01) hydrogen peroxide and were less suppressive of T cell activation as compared 

to MDSC from wildtype mice.  Levels of arginase, another molecule used by MDSC to inactivate T cells, 

did not differ between Nrf2-deficient and wildtype MDSC.  These findings demonstrate that Nrf2 not 

only increases the numbers of TIMDSC, but also enables individual MDSC to be more suppressive 

through their production of ROS [37]. 

 

Nrf2 decreases intracellular oxidative stress in MDSC and reduces apoptosis of MDSC 

MDSC have a half-life in vivo and in vitro of approximately 1-2 days.  This relatively short half-life 

may be due to their high content of ROS.  Nrf2 may contribute to MDSC survival by activating 

antioxidant genes that reduce intracellular ROS and thereby reduce intracellular oxidative stress.  To test 

this possibility, circulating MDSC from 4T1 tumor-bearing wildtype of Nrf2-deficient mice, and MDSC 

differentiated in vitro from bone marrow progenitor cells were stained and analyzed by flow cytometry 

for their content of ROS.  In vivo and in vitro generated PMN-MDSC from Nrf2-deficient mice contained 

significantly more ROS compared to MDSC from wildtype mice, indicating that wildtype MDSC are less 

oxidatively stressed than Nrf2-deficient MDSC.  In addition, MDSC in the blood Nrf2-deficient mice were 

significantly more apoptotic than MDSC from wildtype mice (p<0.05).  Therefore, activation of Nrf2 in 

MDSC sustains MDSC survival and reduces MDSC apoptosis by decreasing intracellular oxidative stress 

[37].   

 

Nrf2 controls MDSC levels by regulating MDSC homeostasis 
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 Although Nrf2 increases the number of TIMDSC and reduces MDSC apoptosis, tumor-bearing 

Nrf2-deficient and wildtype mice have the same levels of circulating MDSC in the blood.  Given this 

apparent inconsistency, we speculated that Nrf2 may also regulate the rate of generation of MDSC in 

bone marrow.  This hypothesis was tested by culturing bone marrow from Nrf2-deficient and wildtype 

BALB/c and C57BL/6 mice under conditions that induce MDSC differentiation.  For both strains of mice, 

Nrf2-deficient bone marrow generated significantly more MDSC than wild type bone marrow.  The 

increased number of MDSC was due exclusively to the production of more PMN-MDSC.  Therefore, in 

the absence of Nrf2, MDSC turnover more quickly but are maintained at a constant level in the 

circulation by an increased rate of production in the bone marrow.   

Collectively, these findings demonstrate that Nrf2 homeostatically regulates MDSC production 

in the bone marrow and facilitates MDSC survival in the inhospitable TME by reducing MDSC apoptosis 

[37].  

 

HMGB1 promotes MDSC survival by promoting autophagy 

 To determine if autophagy facilitates survival, we compared MDSC that were induced to 

undergo autophagy by starving in nutrient-deprived medium vs. MDSC that were maintained in their 

normal culture medium.   Following four hours of culture, MDSC were treated with autophagy inhibitors, 

and assessed for viability.  Inhibition of autophagy with chloroquine or bafilomycin significantly reduced 

the number of viable MDSC as assessed by propidium iodide (PI) and annexin V staining, demonstrating 

that autophagic MDSC have enhanced survival [42].  Our previous studies established that HMGB1 is 

ubiquitously present in the tumor microenvironment and drives the accumulation and suppressive 

potency of tumor-infiltrating  M-MDSC and PMN-MDSC [31].  These findings combined with the 

knowledge that HMGB1 is an established inducer of autophagy [28], suggested that HMGB1 may also 

promote MDSC survival.  In vitro treatment of starved MDSC with the HMGB1 inhibitor ethyl pyruvate 
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significantly reduced MDSC viability (p<0.01) demonstrating that HMGB1 also regulates MDSC survival.  

Additional in vitro studies using the autophagy inhibitor bafilomycin and the HMGB1 inhibitor ethyl 

pyruvate indicated that HMGB1 sustains MDSC viability by promoting autophagy. Subsequent in vivo 

experiments using 4T1 mammary tumors showed that tumor-infiltrating MDSC are significantly more 

autophagic than MDSC circulating in the blood of either tumor-free or tumor-bearing mice (p=0.02).   

Collectively, these findings demonstrated that HMGB1 facilitates the survival of MDSC within the TME by 

inducing autophagy [42]. 

 

Autophagic MDSC have decreased suppressive activity 

 Autophagy enables cells to maintain metabolic activity by repurposing amino acids that come 

from degraded non-essential cytoplasmic components [22].  Since autophagic survival eliminates some 

non-essential cellular functions, we speculated that autophagic MDSC may have diminished suppressive 

activity.  MDSC treated with the autophagy inhibitors bafilomycin or chloroquine were more effective 

than control-treated MDSC at suppressing the antigen-specific activation of T cell receptor transgenic 

CD4+ and CD8+ T cells.  Therefore, autophagy sustains MDSC survival, but also reduces MDSC suppressive 

potency [42]. 

 

Concluding remarks 

The TME of solid tumors is an inflamed, hypoxic, and oxidatively stressed locale that is locally 

deprived of nutrients.  This review highlights our work in understanding how MDSC survive and persist 

in the TME via Nrf2 signaling and HMGB1-induced autophagy (Figure 1A).  Our data demonstrate that 

Nrf2 and autophagy independently regulate MDSC survival.  However, there is also cross-talk between 

these two mechanisms.  Nrf2 transcriptionally regulates the autophagy-related protein p62, which is an 

adaptor protein that recruits ubiquitinated autophagy substrates to the autophagosome.  Subsequently, 
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p62 also interacts with KEAP1 and sequesters it away from Nrf2.  Thus, activated Nrf2 not only directly 

protects MDSC against oxidative stress, but it also facilitates autophagy [43, 44], which further facilitates 

MDSC survival (Figure 1B).  

 MDSC are profoundly immune suppressive cells and may be a significant contributing factor in 

patients who are non-responsive to checkpoint blockade immunotherapy.  Therefore, strategies to 

neutralize MDSC could have significant clinical benefit.  Targeting Nrf2 activation may provide a 

reduction in tumor-infiltrating MDSC as shown here.  However, Nrf2-deficiency in a mouse model has 

also been shown to increase in many of the proinflammatory mediators that drive MDSC accumulation 

[45].  The balance between these two apparently contradictory effects on MDSC levels may vary 

depending on the type of tumor and must be taken into account if considering Nrf2 attenuation as a 

therapeutic mechanism.   

 Strategies aimed at modulating HMGB1 may also be promising.  Our previous studies 

demonstrated that neutralization of HMGB1 reduces tumor burden in mouse systems [31], and 

treatment with the autophagy inhibitor chloroquine has improved clinical outcome in patients with 

glioblastoma [46].  Neutralization of HMGB1 could also prevent the self-feedback loop whereby HMGB1 

promotes autophagy and autophagy, in turn, promotes the release of additional HMGB1.  This feedback 

loop was demonstrated in the mouse Lewis Lung carcinoma system in which HMGB1 drove tumor cell 

autophagy via the receptor for advanced glycation endproducts (RAGE) [47].  This HMGB1 release 

resulted in signaling through the mTOR pathway and enabled tumor cells to switch their energy source 

to glutamine obtained from skeletal muscle.  Whether this metabolic change also occurs in MDSC 

remains unclear.  However, neutralization of HMGB1 may have the dual benefits of impairing MDSC 

function, while simultaneously limiting cancer cell growth.   
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 Regardless of what therapeutic strategy is ultimately successful, inactivation or elimination of 

MDSC is likely to benefit checkpoint blockade or other cancer immunotherapies that depend on the 

host’s activated adaptive immune response.  
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Figure Caption 

 

Figure 1.  MDSC survival in the tumor microenvironment are facilitated by the activation of Nrf2 and 

by HMGB1-induced autophagy.  (A)  The TME is hypoxic, inflamed, and nutrient-deprived and includes 

reactive oxygen species (ROS) and high mobility group box protein 1 (HMGB1).  Activation of Nrf2 in 

MDSC results in the production of many anti-oxidant proteins that (i) protect MDSC from oxidative 

stress, (ii) increase the number of tumor-infiltrating MDSC, (iii) facilitate MDSC survival, and (iv) protect 

MDSC from apoptosis.  HMGB1, which is ubiquitously present in the TME increases MDSC (i) suppressive 

activity, (ii) accumulation, (iii) survival, and (iv) autophagy.  (B)  Nrf2 transcriptionally regulates the 

autophagy-related protein p62, which is an adaptor protein that recruits ubiquitinated autophagy 

substrates to the autophagosome.  Subsequently, p62 also interacts with KEAP1 and sequesters it away 

from Nrf2.  Thus, activated Nrf2 not only directly protects MDSC against oxidative stress, but it also 

facilitates autophagy, which further facilitates MDSC survival.   
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