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Abstract: In classical thermodynamics the Euler relation is an expression for the internal energy as a
sum of the products of canonical pairs of extensive and intensive variables. For quantum systems
the situation is more intricate, since one has to account for the effects of the measurement back
action. To this end, we derive a quantum analog of the Euler relation, which is governed by the
information retrieved by local quantum measurements. The validity of the relation is demonstrated
for the collective dissipation model, where we find that thermodynamic behavior is exhibited in the
weak-coupling regime.
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1. Introduction

Thermodynamics is a phenomenological theory studying the average behavior of heat
and work [1,2] originally developed to optimize heat engines [3]. Remarkably, this theory
has been extended far beyond its origins and led to profound fundamental statements
about nature, such as the second law linking the monotonicity of entropy to the arrow
of time [2], and the seminal role of information in physics [4,5]. Building on the success
of this theory, quantum thermodynamics [6,7] emerged as generalization of stochastic
thermodynamics [6,8–10] to the quantum realm.

Quantum thermodynamics aims to ground our understanding of the universal laws
and statements on a fundamental and genuine quantum level [6], which is set to have
a direct impact on the development of new generation quantum technologies [11,12].
Therefore, many recent studies focused on probing the role of quantum information as
a thermodynamic resource [13–26], and deriving second law statements for quantum
systems [6,26,27]. However, to the best of our knowledge, fundamental statements such as
quantum generalizations of the Euler relation are still lacking.

In classical thermodynamics, the Euler relation is a fundamental statement expressing
the internal energy U as a sum of the products of canonical pairs of extensive Xi and
intensive Yi variables [1],

U = ∑
i

YiXi. (1)

In its simplest form, this fundamental statement relates the internal energy and the Clausius
entropy S, with the volume V and the particle number N, such that U = TS− PV + µN,
and the intensive variables are the temperature T, pressure P, and chemical potential µ.
This relation is derived using Euler’s homogeneous function theorem [1], hence the name
“Euler relation”. The main goal of the present analysis is to derive a quantum analog of the
Euler relation, that we dub the quantum Euler relation. To this end, we have to relate the
internal energy to thermodynamic quantities as well as the information output of quantum
measurements. Consequently, our new relation connects the information gained from
quantum measurements to inherent thermodynamic properties of a system.
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In the following, we focus on an established measure that quantifies the output
information of a quantum measurement and its effects on the system we are probing.
This measure was first introduced in the seventies [28], when Groenewold proposed
entropy reduction as a straightforward quantifier of information gain. Hereafter, we will
simply refer to this quantifier as the information gain “Ig”. Note that the information
gain is generally different from the Holevo information or the Holevo bound “χ” [29,30],
which is widely used in the literature to quantify the classical information gained from
measurements of bipartite quantum states. The discrepancy between these two information
theoretic quantities will be made clear in our analysis.

To obtain the quantum Euler relation, we consider the general setup of a quantum
system S with two arbitrary partitions A and B, in a Hilbert space HS = HA ⊗HB. We
start by exploring the connection between the information gain and bipartite correlations,
classical and quantum, in the case of local measurements (cf. Figure 1). In particular,
we show that correlations between the two partitions of S directly hinder the amount of
information gain accessible through measurements. Then, in Section 3, we present our main
results by first separating the information gain into classical and quantum contributions,
and by deriving upper bounds on Ig as a function of the Holevo bound and thermodynamic
quantities.

We illustrate the tightness of the latter bounds in a collective dissipation model, where
two qubits are collectively coupled to a thermal bath. Remarkably, by combining the
aforementioned results and beyond our illustrative case study, we arrive at fundamental
statements. The first, constitutes the quantum Euler relation involving the maximum work
that can be extracted from the state of S (through unitary and cyclic operations) and the
quantum contribution of the information gain Ig. The second statement is a trade-off
relation involving quantum correlations within the state of S , and the entanglement that
one of its partitions (A or B) shares with the surrounding environment.

Figure 1. Sketch illustrating fundamentally different ways one can carry out quantum measurements:
either (i) globally or (ii) locally. For global measurements, we are usually interested in quantities such
as the information gain Ig and the Holevo bound χS . For local measurements, the direct quantities
we measure are the local counterparts of Ig and χS : (IA

g , IB
g , χA, χB).
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2. The Information Gain

We start by introducing notions and notations before we will derive upper bounds
on Ig. This will clarify the effect of bipartite correlations (classical and quantum) on the
amount of Ig that is accessible through measurements.

2.1. Positive Operator-Valued Measures

General quantum measurements [30–32] are described by a set of positive semi-
definite operators,M = {Mn}n∈J1, dK, where “n” labels the measurement outcome. These
operators Mn are called positive operator-valued measures or POVMs for short. They live
on a C∗-algebra over the Hilbert space of the system being measured [30], and satisfy the
completness relation

d

∑
n=1

M†
n Mn = I. (2)

For a general mixed state, characterized by a density matrix ρ, the nth measurement
outcome occurs with a probability p(n),

p(n) = tr
{

MnρM†
n

}
, (3)

and the post-measurement state (after applying Mn) reads

ρn =
MnρM†

n
p(n)

. (4)

Additionally, by considering the set of measurementsM, the end state of the measurement
process reads M(ρ) = ∑d

n=1 p(n)ρn, which simplifies to M(ρ) = ∑d
n=1 MnρM†

n. Here,
we are implicitly considering efficient measurements where each measurement Mn is
represented by a single Kraus operator [28,33–38], as opposed to the case of weak [39] or
inefficient measurements Mn(ρ) = ∑i Mn,iρM†

n,i. Previous studies [33–37,40] have shown
that the information gain Ig is positive for all efficient measurements.

2.2. Maximal Information Gain

To probe the effect of correlations on the accessible information gain, we now derive
two general upper bounds on Ig. We begin by considering arbitrary POVMs, applied on a
bipartite quantum system S living on the Hilbert spaceHS = HA ⊗HB, with partitions A
and B, and dimension dS = dAdB. The information gain Ig can be written as [28]

Ig = S(ρAB)−∑
n

pnS(ρn), (5)

where S(ρ) = −tr{ρ ln(ρ)} is the von Neumann entropy, and the density matrices ρAB
and ρn represent the pre-measurement and post-measurement (with probability pn) states,
respectively.

From the definition of the quantum mutual information between the two partitions A
and B,

I(A : B) = S(ρA) + S(ρB)− S(ρAB), (6)

and for any choice of POVMs, we arrive at a trivial bound by recognizing that the second
term in the expression of the information gain (cf. Equation (5)) is negative, hence

Ig ≤ ln(dS )− I(A : B). (7)

The bound in Equation (7) shows that the information contained in the correlations between
A and B directly hinders the amount of accessible information gain. In other words, the
higher the value of the mutual information I(A : B) the less information gain we can
access through measurements.
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Now, considering general, local POVMs applied on ρAB, of the form Mn = MnA ⊗MnB

(cf. Figure 1), we get

Ig = S(ρA) + S(ρB)− I(A : B)−∑
n

pn(S(ρn
A) + S(ρn

B)− In(A : B)),

=

(
S(ρA)−∑

n
pnS(ρn

A)

)
+

(
S(ρB)−∑

n
pnS(ρn

B)

)
− I(A : B) + ∑

n
pnIn(A : B),

(8)

hence,
Ig = IA

g + IB
g − I(A : B) + ∑

n
pnIn(A : B), (9)

where IA
g and IB

g refer to the local information gain on each partition. We have [41,42]

∑
n

pnIn(A : B) ≤ I(A : B), (10)

which directly implies the inequality

Ig ≤ IA
g + IB

g , (11)

that is reminiscent of the subadditivity of the von Neumann entropy [30]. In fact, from the
above inequality we infer that, due to correlations between A and B, the total information
gain we can access locally (from each partition) is greater or equal to the information
gain of the composite system, and the more correlations between the partitions the less
information gain we can access.

It is noteworthy that the type of measurements considered above (i.e., general local
POVMs) describe more realistic settings [30,38,39,43], where one usually considers a quan-
tum system interacting with an environment/ancilla. In such scenarios, measurements of a
physical observable are either applied on the system (cf. [39], Mn = MA

n ⊗ IB) or simulta-
neously on the system and environment (cf. [43], Mn = MnA ⊗MnB ). More specifically, to
evaluate the work applied on the system or the heat exchanged with the environment, these
measurements take the form of local projective energy measurements. The latter will be
the main focus of the following section where we explore the thermodynamic significance
of the information gain.

In addition it is interesting to note that from the expression in Equation (9) we can
define a new quantity Il = I(A : B)−∑n pnIn(A : B), which represents the amount of
total correlations lost as a consequence of measuring S . Note that, following Equation (10),
the quantity Il is positive for local measurements. This quantity might prove useful in
quantifying the invasiveness of quantum measurements, i.e., their effect on the correlations
in a bipartite state. Finally, note that since the quantum mutual information does not
increase under general local measurements we consider that the post measurement states
have support on orthogonal subspaces [30]. In particular we forgo classical communication
between the two partitions, and hence through general local measurements alone the
quantum mutual information does not increase [44].

Illustrative Example:

Consider an arbitrary bipartite state described by a density matrix ρAB, and von Neu-
mann measurements [30] Mn = ΠnA ⊗ΠnB such that ΠnA (ΠnB ) are rank-one projectors
acting on subsystem A (B). In this scenario, Equation (11) becomes

S(ρAB) ≤ S(ρA) + S(ρB). (12)

This is nothing but the subadditivity of the von Neumann entropy [30], and it reflects
the fact that the quantum mutual information is positive I(A : B) ≥ 0. Additionally, the
inequality is saturated if and only if the partitions of the composite system are uncorrelated,
i.e., ρAB = ρA ⊗ ρB.
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It is worth emphasizing that the subadditivity of the information gain Equation (11), is
valid for general local measurements such that the post-measurement states have support
on orthogonal subspaces [30]. In scenarios where these local measurements are represented
by rank-one projectors we recover the subadditivity of the von Neumann entropy.

2.3. The Holevo Bound

However, before we continue with local measurements on a single partition and derive
our main results, it is crucial to consider the subtle difference between the information gain
and the Holevo bound, first. The Groenewold information gain is directly related to the
Holevo bound χS (defined through measurementM on the composite system S) via [38],

Ig + ∆ = χS , (13)

where ∆ = S(M(ρAB))− S(ρAB) represents the change in entropy caused by the mea-
surement. This quantity is also referred to as the entropy cost of a measurement [38],
and, as the name suggests, it quantifies the change in entropy between the pre- and post-
measurement states. Depending on the type of measurements we carry out, the quantity
∆ can be either positive or negative. For instance, it is straightforward to infer that for all
projective measurements ∆ ≥ 0 [30].

Illustrative Example:

To illustrate the discrepancy between these quantities we consider the same example
we studied above. Namely, for von Neumann measurements Mn = ΠnA ⊗ΠnB composed
of rank-one projectors on each subsystem. Now, we further assume that the arbitrary state
ρAB has coherences in the basis determined by the latter projectors. Thus, the Holevo
bound becomes

χS = S(M(ρAB))−∑
n

pnS(ρn), (14)

which implies
χS = S(M(ρAB))− 0 = S(ρdiag

AB ), (15)

where ρ
diag
AB is the incoherent state of S , generated by removing the off-diagonal elements

of ρAB. On the other hand, the information gain is equal to the von Neumann entropy of S ,
Ig = S(ρAB). Therefore, it is straightforward to get the strict inequality

Ig < χS , (16)

since the difference between the two quantities (χS − Ig) is exactly the relative entropy of
coherence [45] in the basis determined by the rank-one projectors.

3. Projective Local Measurements

We are now positioned to relate the information gain to thermodynamic quantities,
and derive fundamental statements in quantum information theory as well as in quantum
thermodynamics. To this end, we focus on the case of local projective energy measure-
ments [43,46] such that

M = {IA ⊗ |En
B〉〈En

B|}n∈J1, dBK = {Mn}n∈J1, dBK, (17)

where |En
B〉 is the nth energy eigenstate of the self Hamiltonian of subsystem B, and dB

is the dimension of its Hilbert space. Moreover, we assume the state ρAB to be locally
thermal (on both partitions) with inverse temperature β, i.e., ρA = exp(−βHA)/ZA and
ρB = exp(−βHB)/ZB, while A and B share correlations such that the global state ρAB
is not necessarily thermal. Similar scenarios were discussed in the literature [21,26] to
assign thermodynamic value to quantum correlations. More specifically, we have shown
in Ref. [26] that the maximum work that can be extracted from a bipartite quantum state
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“ρAB”, under unitary and cyclic operations, is directly related to the quantum mutual
information “I(A : B)”, which will be crucial later on in our analysis.

It is a simple exercise to show that we have

(∀n ∈ J1, dBK); S(ρn
B) = In(A : B) = 0. (18)

Therefore, Equation (9) simplifies to

Ig = IA
g + S(ρB)− I(A : B),

= χB + S(ρB)− I(A : B),
(19)

where χB is the Holevo information obtained by projective measurements on B (cf. Equation (17)),
and it reflects the information we gain about the partition A by measuring subsystem B.
In this case, we have IA

g = χB since we apply local measurements on B. The derivation
directly follows from the cyclic property of the partial trace for the local measurements we
are considering (cf. Equation (17)). More specifically, we have

χB = S(trB{M(ρAB)})−∑
n

pnS(ρn
A) = S(ρA)−∑

n
pnS(ρn

A), (20)

which implies IA
g = χB.

From the equality in Equation (19) we can separate the information gain into classical
and quantum contributions, and we can relate Ig to the maximum work extractable from
ρAB. As a consequence of combining both results we will be able to derive fundamental
statements for Ig.

3.1. Quantum and Classical Contributions

Now exploiting the Koashi–Winter relation [47], Equation (19) can be written as

Ig = χB + χmax
A + E(B : C)− I(A : B), (21)

for a subsystem “C” that purifies the state of S = A ∪ B. This subsystem can be regarded
as the environment for the system of interest S , such that the state of the quantum universe
“ABC” is pure. We emphasize that we are implicitly adopting the realistic setting of a
system of interest S open to an environment “C”, with which it can share quantum as
well as classical correlations. Moreover, χmax

A refers to the Holevo bound under optimal
measurements on A, and “E(B : C)” is the entanglement of formation [48] which represents
a generalization of entanglement entropy to mixed states. To elaborate, the entanglement
of formation “E(B : C)” quantifies the entanglement in the mixed state ρBC, since the
entanglement entropy is no longer a viable measure of entanglement for such states [30].

The expression in Equation (21) is further simplified by noting that the quantum
mutual information can be decomposed into classical and quantum contributions [49,50].
In fact, the quantum contribution is known as quantum discord which is defined as the
difference between the mutual information and the Holevo bound [49]

DA = I(A : B)− χmax
A , (22)

hence it quantifies purely the quantum correlations in a bipartite state. From this definition,
we get the equality

Ig = χB + (E(B : C)−DA), (23)

which expresses the information gain, on the composite state of S , in terms of classical
and quantum contributions. The classical contribution is the Holevo information χB, and
the quantum contribution is represented by the difference between the entanglement of
formation E(B : C) and quantum discord DA, which we will refer to as the quantum
information gain “IQ

g ” where IQ
g = E(B : C)−DA. This is a crucial result that will lead



Entropy 2021, 23, 889 7 of 13

to interesting conclusions, as we will explore in the remainder of our analysis. Namely,
once we look at the problem from a thermodynamics perspective through the notion of
ergotropy [51] (aka the maximum extractable work under unitary and cyclic operations).

3.2. Maximum Extractable Work

The maximum amount of work that can be extracted from the composite state ρAB,
through unitary and cyclic operations, is referred to as the ergotropy “E” [26,51,52].
Consider a quantum system with Hamiltonian H = ∑d

i=1 εi|εi〉〈εi| and quantum state
ρ = ∑d

j=1 rj
∣∣rj
〉〈

rj
∣∣, such that εi ≤ εi+1 and rj ≥ rj+1. The ergotropy is calculated by

performing an optimization over all possible unitary operations to achieve a final state that
has the minimum average energy with respect to H,

E(ρ) = tr{Hρ} −min
U

{
tr
{

HUρU†
}}

= tr
{

H(ρ− Pρ)
}

, (24)

where Pρ ≡ ∑k rk|εk〉〈εk| is called the passive state. An equivalent expression reads

E(ρ) = ∑
i,j

rjεi

(
|
〈
rj|εi

〉
|2 − δij

)
. (25)

Assuming the passive state Pρ is not thermal, we can still extract work out of it, if we have
access to, and ability to globally act upon, multiple copies of this state. This is captured by
the bound ergotropy Eb [26,53],

Eb(ρ) = tr
{
(Pρ − Pth

ρ )H
}

, (26)

where Pth
ρ is a thermal state such that S(Pρ) = S(Pth

ρ ). In other words, Pth
ρ is the thermal

state associated with the passive state Pρ.
From the definition of the ergotropy and using the result of Ref. [26], namely the

relationship between the quantum mutual information and the ergotropy, βE ≤ I(A : B),
and Equation (19), we obtain

Ig ≤ χB + β(〈HB〉 − E − FB). (27)

In the above inequality, FB = −(1/β) log(ZB) is the Helmholtz free energy. Furthermore,
considering the bound ergotropy Eb, where EG = E + Eb is the global ergotropy, and using
the general inequality βEG ≤ I(A : B) from Ref. [26], we arrive at the tighter bound

Ig ≤ χB + β(〈HB〉 − EG − FB). (28)

In fact, the above inequality is saturated for a large class of states. This will be
exemplified in the following section through a collective dissipation model. For the class of
states where the above inequality is saturated, and using Equation (23), we get

E(B : C)−DA = β(〈HB〉 − EG − FB). (29)

This result can be interpreted as follows. First, it represents a trade-off relation between
the quantum correlations present in S (quantified by DA) and the entanglement between a
partition of S (B in this case) and the surrounding environment (C). This is complementary
to the Koashi–Winter relation, which represents a trade-off between classical information
and entanglement. Second, simply by rearranging the terms, we obtain a quantum Euler
relation involving ergotropy, the free energy, and the quantum correlations within S as
well as the entanglement that S shares with its surroundings, namely

〈HB〉 = EG + FB + IQ
g /β. (30)
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Equation (30) constitutes our main result. It relates the quantum information gained from
local measurements to inherent thermodynamic properties of a bipartite system.

4. Collective Dissipation

After having established the conceptual framework and the main results, this part
of the analysis is dedicated to an illustrative case study. In particular, we illustrate the
tightness of the bounds derived in Equations (27) and (28). To this end, we consider
two-qubit X-shape density matrices of the form

ρ(t) =


ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ∗23 ρ33 0

ρ∗14 0 0 ρ44

 . (31)

For such matrices, taking a partial trace on either qubits results in a thermal state with
inverse temperature β. Here, the composite system S is described by the density matrix
ρ(t). Therefore, the partitions A and B are single qubit. These X-shape density matrices
are ubiquitous in the literature [54], as they can be found in Pauli channels [55], collec-
tive dephasing models for two-qubit systems [56], or in 1-D spin chains that exhibit Z2
symmetry [57–59].

Such X-states are characteristic for the collective dissipation model where a two-qubit
system is collectively coupled to a thermal bath with inverse temperature βe. The master
equation of the dynamics reads [60–65]

∂ρ

∂t
= − i

h̄
[(H0 + Hd), ρ] + D−(ρ) + D+(ρ), (32)

where H0 = h̄ω(σ+
1 σ−1 + σ+

2 σ−2 ) and Hd = h̄ f (σ+
1 σ−2 + σ+

2 σ−1 ) are the self-Hamiltonian of
the whole system and the interaction Hamiltonian between the qubits, respectively. The
σ+

i and σ−i are the usual Pauli raising and lowering operators, respectively. Additionally,

D−(ρ) =
2

∑
i,j=1

γij (n̄ + 1)(σ−j ρσ+
i −

1
2
{σ+

i σ−j , ρ}),

D+(ρ) =
2

∑
i,j=1

γij n̄(σ+
j ρσ−i −

1
2
{σ−i σ+

j , ρ}).
(33)

Here, n̄ = [exp(βeω) − 1]−1 is the mean number of photons at the temperature of the
environment βe, and γij are the spontaneous decay rates. One can show that there is no
unique fixed point for this model [66,67] and the steady state ρss depends on the initial
state ρ0. In fact, the analytic expression for the X-shape steady states [61] is

ρss = (1− c)|ψ−〉〈ψ−|
+ cZ−1

+ (βe)
(
exp(−2ωβe)|ψee〉〈ψee|+ exp(−ωβe)|ψ+〉〈ψ+|+

∣∣ψgg
〉〈

ψgg
∣∣), (34)

where,
∣∣ψgg

〉
= |gg〉, |ψee〉= |ee〉, |ψ±〉= |ge〉 ± |eg〉/

√
2, c=

〈
ψgg
∣∣ρ0
∣∣ψgg

〉
+ 〈ψee|ρ0|ψee〉+

〈ψ+|ρ0|ψ+〉, and Z+(βe)= 1 + exp(−ωβe) + exp(−2ωβe). It is instructive to realize that
the parameter c plays the role of an effective coupling constant. For c = 1 the stationary
state is thermal and the usual thermodynamic behavior is recovered. In particular, in this
case the stationary state is independent of the initial preparation from within the set of
states that result in c = 1, or in other words, the stationary state carries no memory of the
initial state from within the invariant subspace with c = 1. In stark contrast, for c = 0 the
stationary state is strongly dependent on the initial preparation. Thus, one would expect
thermodynamic statements to be only valid for c ' 1, whereas only weaker statements can
hold for arbitrary c.
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Additionally, note that the inverse temperature β of each partition/qubit is directly
related to the bath temperature and we have

β =
1
ω

ln
[

1 + 2 cosh(βeω) + 2c sinh(βeω)

1 + 2 cosh(βeω)− 2c sinh(βeω)

]
. (35)

For more technical details on the collective dissipation model, interested readers can refer
to Refs. [15,26].

Here we continue by illustrating Equation (27). To this end, we plot the right and left
hand sides of the inequality for βe = 10 and ω = 1. In the case of ω = 1 and in the limit of
low temperatures (namely, βe = 10), the ergotropy can be expressed with a simple analytic
formula [15] (

∀c ∈ [0,
1
2
]

)
; E = 1− 2c,(

∀c ∈ [
1
2

, 1]
)

; E = 0.
(36)

From Figure 2, we observe that the upper bound is not a tight bound for almost all
values of c, this is due to the fact that the mutual information is not a sharp upper bound to
the ergotropy as observed in Ref. [26]. Additionally, the kink in the red curve at the value
c = 0.5 is a direct consequence of the functional form of the ergotropy, cf. Equation (36).
For a tighter bound we illustrate Equation (28) in Figure 3, and we observe that the upper
bound is saturated for all steady states where roughly c ∈ [0.7, 1].

The collective dissipation model we use in this section is a perfect example of an
experimentally relevant scenario [57–59] where the inequality presented in Equation (28)
is saturated. Consequently, this model shows the existence of a class of states where the
statements in Equations (29) and (30) are valid, which can be qualitatively explained as
follows. Recall that c quantifies the information the steady state carries about the initial
state of the dynamics (cf. Equation (34)). Therefore, as c gets closer to one we recover the
limit where thermodynamic expressions such as the Euler relation (i.e., Equation (30)) are
valid. Beyond this limit, we have the general inequality

〈HB〉 ≥ EG + FB + IQ
g /β. (37)

0.2 0.4 0.6 0.8 1.0
c

0.2

0.4

0.6

0.8

1.0

1.2

1.4

β<HB> - (FB + ℰ) β + χB

ℐg

Figure 2. Plots of the information gain Ig and the right hand side of Equation (27) as a function of c.
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0.2 0.4 0.6 0.8 1.0
c

0.1

0.2

0.3

0.4

0.5

0.6

0.7

β<HB> - (FB + ℰG) β + χB

ℐg

Figure 3. Plots of the information gain Ig and the right hand side of Equation (28) as a function of c.

5. Concluding Remarks

In the present analysis, we studied the information gain Ig, originally proposed by
Groenewold, to derive the quantum analog of the Euler relation. More specifically, we
studied the relationship between Ig and bipartite total correlations (quantum and classical)
which led to the quantum Euler relation as well as a general trade-off statement. First, we
started by showing that total correlations hinder the amount of information gain Ig that can
be accessed through measurements. We then presented the direct connection between the
Holevo bound and Ig. In Section 3, we showcased our main results, where we considered
bipartite states that are locally thermal. In particular, we proved that the information gain
can be separated into quantum and classical contributions. Additionally, we derived upper
bounds on Ig as a function of the Holevo bound, the average and free energies, as well
as the ergotropy. The aforementioned inequalities were illustrated in the experimentally
relevant example of a two-qubit system collectively coupled to a thermal bath.

Remarkably, combining the separation of terms (quantum and classical) and the
thermodynamic bounds on Ig, we arrived at a fundamental identity that is valid for a large
class of states. From an information theoretic perspective, we observed that the identity
represents a general trade-off relation between genuine quantum correlations within a
bipartite state (S) and the entanglement that one of its partitions (A or B) shares with
the surrounding environment (C). Interestingly, from a thermodynamics perspective, the
identity represents a novel quantum formulation of the Euler relation. In this relation, the
internal energy is expressed as a function of the ergotropy and the quantum information
gain, directly displaying the role of quantum correlations as a thermodynamic resource,
and the thermodynamic significance of the quantum information gained through local
measurements. A table summarizing the statements derived throughout the paper can be
found in Figure 4.

Our results highlight the importance of the Groenewold information gain Ig as a
quantifier for the information output from a quantum measurement and its effects on
the state we are probing. The main inequalities we presented in this work can be further
examined in various scenarios to determine the general class of states for which the
quantum Euler relation and the trade-off expression are valid. We leave this analysis for
future work on the topic.

Interestingly, the quantum Euler relation can be used in order to estimate the global
ergotropy (the ergotropy plus the bound ergotropy) without performing an optimization
over all possible unitary operations (cf. Equation (24)), and without acting globally on many
copies of the state of S (to evaluate Eb). In such cases, we only have to apply local projective
energy measurements, on a single partition of S , in order to compute the global ergotropy for
the state of S , which can be extremely practical in experimental settings that rely on work
extraction from correlations (i.e., work extraction from quantum batteries, through cyclic and
unitary operations). In fact, IBM Quantum Experience [68–71] is an adequate platform to
experimentally probe this idea, where projective energy measurements can be implemented
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locally to extract all the relevant, thermodynamic and information theoretic, quantities in
the quantum Euler relation. Furthermore, only recently, a novel method of implementing
two point measurement schemes was introduced in Ref. [72], and implemented in IBM
quantum processors, which has the potential to further increase the scope of our main result.
More specifically, implementing the two point measurement scheme (applying projective
measurements at two instants; t = 0 and t = τ) to our conceptual framework would lead to
quantum Euler relations defined at t = 0 and t = τ. The difference between the two equalities
is nothing but the first law of thermodynamics, which expresses the change in internal energy
as a function of the change in the ergotropy and the change in the quantum information gain.
Further probing this novel formulation of the first law of quantum thermodynamics and
its limitations, in various settings, would constitute a significant step in understanding the
intimate connection between quantum information and inherent thermodynamic properties
of a system. We leave such a task for future endeavors on the topic.

Figure 4. Table summarizing the results of the present manuscript, with the main result shown in red.
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