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Abstract

Identification of causal networks in atmospheric teleconnection patterns has applications in
many climate studies. We evaluate and compare three data-driven causal discovery methods
in locating and linking causation of well-known climatic oscillations. Four climate variables
in the ERA-Interim reanalysis data (1979-2018) were examined in the study. We first employ
dimension reduction to derive the the time-series for selected climate variables. Then time-
series of dominant modes were processed using three different causal discovery methods:
Granger causality discovery, Convergent cross-mapping (CCM), and PCMCI. Discovered
causal links were different for different methods as well as for different variables. How-
ever, slightly similar causal links were observed between the Granger causality and CCM
methods. Comparison of these three methods is discussed based on the El Niño-Southern
Oscillation (ENSO) and its connection with other oscillations. Causal discovery methods
were able to capture the linkage between the ENSO, North Atlantic Oscillation (NAO), and
Pacific Decadal Oscillation (PDO), for some of the variables. Overall, this study identifies
the usage of these statistical models in locating the direct and indirect causal links among
the oscillations. Application of these data-driven causal discovery methods, both in terms of
mediation and direct relationships between the observed teleconnection patterns, suggests
that the data-driven statistical methods are efficient in locating the regimes of climate pat-
terns and their 12 observed real connections to some extent. We present and provide our
explanation of the evaluation results for each of the three causal discovery methods.
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1 Introduction

The study of causality has recently emerged as a primary research tool in many areas of
science [13]. The challenge is to reconstruct causal links along with their time lags using
complex dynamical systems and connect them to the physical processes represented. Re-
constructed causal graphs provide a new tool for identifying teleconnection patterns from
spatio-temporal climate data [5]. In addition, many previous works suggest that temporal
changes in the network’s architecture and its graphical representations are widely used to
identify signatures of global change due to the El Niño activity [8]. Here we introduce the
basic ideas of causal connection, as well as some applications of statistical causality models
to the climate system. We observed that the statistical causal discovery algorithms described
in this paper are easy to implement.

Atmospheric teleconnection patterns influence the global climate through the atmospheric
circulation [11]. Especially, the El Niño–Southern Oscillation (ENSO) has a significant effect
on humanity’s economic, social, and physical well-being. Many studies have been devoted to
predict the extreme weather conditions of different regions of the globe in association with
the ENSO [2, 6]. Unique and prominent circulation patterns occur in the atmosphere due
to large scale ENSO variability [23], although mediation of other atmospheric teleconnection
patterns and their causal connections are not well explained. Applying the graphical causal
discovery model to the climate patterns could potentially discover the causal pathways that
are responsible for extreme climate events of specific regions [21]. Dimension reduction is
one important component in causal discovery in the case of large climate data sets [26].

In general, global climate model data reveals large spatial and temporal patterns that are
relevant to multiple climate events. It is essential to isolate well-known climate patterns to
study the specific climate events associated with them. The empirical orthogonal function
decomposition (EOF), also called Principal Component Analysis, separates the data based
on the orthogonal basis function computed from the climate data. The EOF method pro-
duces spatial modes in addition to the temporal patterns. Especially, the rotated empirical
orthogonal function (REOF) approach is considered to be the most useful technique in cap-
turing the spatial variabilities of the complex dynamical system that are more clear, well
defined, and amenable to straightforward interpretation [11].

The purpose of this study is to explain how the climate system exhibits aspects of causal
networks, with dominant modes corresponding to major teleconnection patterns. This study
focused on identifying causal links between sea surface temperature (SST), 2-meter temper-
ature (T2M), 10-meter wind speed (SI10), and mean sea level pressure (MSL). The time
series of well-separated patterns associated with these variables were used as our primary
data for the causal discovery algorithms. We will discuss the results from the perspective
of causal discovery methods and their ability to capture the variabilities related to those
variables. We mainly intend to explain the causal connection between the ENSO mode and
other prominent climate variabilities using the Granger causality [9], Convergent cross Map-
ping (CCM) [27], and PCMCI [22] approaches. Reliability and limitation in the individual
techniques should be addressed to some extent in the future, but are out of scope of this
study.
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2 Data and Methods

2.1 ERA-Interim Reanalysis

In this study, we use ERA-Interim global atmospheric reanalysis data [4] from 1979-2018.
The 1.5 ERA-Interim modeling system includes 4-dimensional variational analysis (4D-Var)
with a running Integrated Forecast System (IFS) model cycle of 31R2. The horizontal
resolution of the data is T255 spectral (equivalent to about 80 km horizontal resolution) on
60 vertical levels. We obtained SST, MSL, SI10 and T2m from the monthly means of daily
means fields from [10]. The analysis was focused on the monthly data spanning 40 years.
For the causality study we use monthly time series that best represent dominant modes of
larger variances, calculated for all years.

2.2 Empirical Orthogonal Function (EOF)

We preprocessed climate data variables to retain the patterns that are inherent to the large
scale variabilities and remove the patterns corresponding to regional climate change. The
first step in preprocessing is to remove the annual cycles from the monthly data. The second
step is to detrend the data at every grid cell. The empirical orthogonal functions have
been calculated for preprocessed monthly anomalies. In this study, we perform a varimax
rotation of calculated EOFs using the first 30 modes [18]. The conventional EOF analysis
produces spatial patterns (EOFs) and time series (PCs) that are both orthogonal. The
Kaiser varimax rotation criterion [12] is being applied on each spatial mode to derive a
simple structure, which contains a localized center with maximized variability. The rotated
EOFs are orthonormal [19]. We chose six EOFs out of the 30 rotated EOFs based on their
percentage of variance as well as their meteorological significance. These six selected EOFs
and their associated principal components were used in further causal discovery analyses.

3 Granger Causality Method

3.1 Description of Method

Granger causality [9] was proposed by Nobel Laureate Clive W. Granger in 1969 and devel-
oped as a predictive model in economics. Granger causality is defined as follows: given two
time series variables x and y, we say that x Granger causes y if the regression for y based on
past values of both x and y is a statistically significant improvement on the regression of y
only based on past values of y. Let the set of lagged variables of x be written xPt for t from
1 to P , the maximum time lag. Similarly, let the lagged variables of y be notated yPt . To
evaluate Granger causality we generate the following regressions:

yt = A1 · yP + ε1 (3.1)

yt = A2 · yP +B2 · xP + ε2 (3.2)
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and consider whether or not the regression function in Equation 3.1 is better than Equation
3.2 in predicting y. A statistical hypothesis test method such as F -test or Chi-squared (χ2)
test is used to decide which regression is better by getting a p-value of the test and checking
to see if this value is low enough to indicate statistical significance.

The F -test is applied in regression problems to decide whether a model fits the data
significantly better than a naive model. In the case of Granger causality, model 3.1 is the
naive model, model 1, and model 3.2 is model 2. We write the residual sums of squares RSS1

and RSS2 and the number of parameters p1 and p2, respectively. Let n be the number of
total data samples. The null hypothesis is that model 2 does not fit data better than model
1. We calculate the F statistics of these two regression models via

F =

RSS1−RSS2

p2−p1
RSS2

n−p2

(3.3)

Then we look up the F statistics in F -distribution with its corresponding degree of freedom
to get the p-value of the null hypothesis and reject the null hypothesis if appropriate: The
null hypothesis is rejected only if the p-value is smaller than the given significance level. For
instance, if we set the level of significance of p-value as 0.05, and get a p-value from F -test
as 0.01, it means that the probability of the statement “model 2 does not fit data better
than model 1” being true is only 1%. Since 1% is less than 5%, we believe that model 2 is
better, which indicates that x Granger causes y.

In conclusion, the Granger causality test includes two important parts: the regression
models and the hypothesis test. The first regression model is a naive model that assumes
the time series is only predicted by its own lagged variables, and the second regression model
considers lagged variables of other time series as well. Hypothesis testing is used to compare
the two models to decide which is better. To support causality discovery among multiple
variables, the original model was extended to a graph model so that it could measure whether
and how one variable is caused by multiple other variables [28, 1].

3.2 Implementation

The statsmodels module [15] is a Python [17] module that provides classes and functions for
the estimation of many different statistical models. The Vector Autoregressions tsa.vector ar
package [16] from statsmodels 0.9.0 was our primary software for our Granger causality
approach.

The input data of the Granger causality model is the EOF modes of our time-series data.
The most significant modes are chosen to generate the causality plots. Based on the team’s
understanding of atmospheric science, the maximum time lag in the Granger causality model
is set to be 3 months.

The pairwise regression models are fitted and their RSSs are used to generate the F -test.
We use a p-value significance level of 0.05 for the F -test. The p-value threshold of 0.05
ensures that our tests reject the null hypothesis at 95% probability. By applying this p-value
threshold, the causality relationship pairs number is still large, making human interpretation
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difficult or impossible. So we set another threshold that only includes the 20 causal links
with lowest p-values, since these are the most significant ones.

4 Convergent Cross Mapping Method

4.1 Description of Method

Convergent cross mapping (CCM) is a causality analysis method designed for weakly or
moderately coupled dynamic systems. It was introduced in [24] and extended in [27]. The
fundamental theory for this method is phase space reconstruction for a dynamic system and
Takens’ Theorem [25]. The evolution of a dynamic system can be represented by a certain
phase orbit in the phase space, and any two nearby phase points will remain close to each
other for at least a short amount of time before diverging. The definition of causality in
CCM and the complete algorithm is described below.

The phase space of the dynamic system can be reconstructed from discrete observations
using the time delay embedding method. Assume there is a regular time series for the
variable y: yt0, yt0+1, yt0+2, ... If this system can be described by a set of n-th order ordinary

differential equations, then a vector Y = (y, dy
dt
, d

2y
dt2
, ..., d

ny
dtn

) will contain all the information
of the system at each moment following dY

dt
= f(Y ), where f is a given function. We

can approximate derivatives using consecutive observations, i.e., (yt,
dy
dt
|t, d

2y
dt2
|t, ..., d

ny
dtn
|t) ≈

A(yt, yt−τ , yt−2τ , ..., yt−nτ ), where A is a constant matrix. Thus, the phase space can be
reconstructed as the vector space for Yt = (yt, yt−τ , yt−2τ , ..., yt−nτ ).

If Y is only influenced by one external variable x, i.e. dY
dt

= f(x, Y ), then neighboring
phase points of Y are also associated with similar x. Therefore, we can estimate the historic
values of x by averaging x over a group of known neighboring phase points of Y . The causal
effect from x to y is defined and measured by the capability of estimating historic x from Y
using this cross mapping method.

Here are the steps of extended CCM [24, 27]:
(1) Reconstruct the phase space for Y with specified parameters n and τ : Yt = (yt, yt−τ ,

yt−2τ , ..., yt−nτ ).
(2) For each time t, we will find n+ 1 nearest neighbors of Yt in the reconstructed phase

space at time t1, t2, ..., tn+1, and their corresponding x at the same time or earlier.
(3) The historic x at time t is estimated as a weighted average of x at time t1, t2, ..., tn+1.

The weight is an exponentially decaying function of the Euclidean distance in the Y space.
(4) The skill of cross mapping is measured by the correlation coefficient between true x

at time t and the estimates. For a better comparison with the other two causality methods,
we also compute the p-values for the correlation coefficient assuming the residuals from a
linear model follow independent and identical normal distributions.

(5) Because x does not have to be concurrent with Y , the steps above can be repeated for
different lags between x and Y to determine the optimal time lag of the causal relationship.
Particularly, a causality is unreal if the optimal time lag requires x to occur later than the
time t. If the optimal time lag is 0, then it means x and Y are synchronized and it is hard
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to tell the true causal direction between these two variables [24]. We choose to dispose these
uncertain causal relations in our study, but we are aware that this conservative approach may
miss some quick processes and cause a decrease in the number of identified causal relations.

4.2 Implementation

Following the detailed description of the algorithm in [24, 27], we independently developed a
Python [17] program to compute the CCM causality for pairs of time series. In our analysis,
we set n = 3 and τ = 1, consistent with the other two methods. In order to make most
use of the relatively short data set, the neighboring points of Yt are selected from all time
steps except t. In addition to the causal relations with a non-positive optimal time lag, those
relations with a p-value above 0.05 are also disposed.

5 PCMCI Causality Method

5.1 Description of Method

PCMCI is a causal discovery method described in [22] which identifies relevant variables for
conditioning and estimates causal networks from time series data. The method makes use of
a “time series graph” made of nodes representing the state variables at different time-lags.
If the time lag is denoted by τ , a causal link is notated X i

t−τ −→ Xj
t , and this link exists if

X i
t−τ is not conditionally independent of Xj

t given the past of all variables. Assuming the
causal structure does not change over time, the same links are present at each time step.

The parents P(X) of a variable X are defined as the set of all nodes with a link towards
X. For example, in Figure 5.1, the parents of the variables X1 at t− 1 and variable X3 at
time t are shown with the red boxes and blue boxes respectively. However, estimating these
parents directly by testing for conditional independence on the whole past is problematic
due to high-dimensionality and because conditioning on irrelevant variables leads to biases.

PCMCI estimates causal links by a two-step procedure [22]:
1. Condition-selection: For each variable Xj, estimate a superset of parents P̃(Xj

t )
with an iterative Markov discovery algorithm [7] such as PC1 algorithm.

2. Momentary conditional independence: To test whether X i
t−τ −→ Xj

t with MCI,
we evaluate

X i
t−τ ⊥ Xj

t | P̃(Xj
t ), P̃(X i

t−τ ) (5.1)

The condition-selection step reduces the dimensionality and avoids conditioning on irrelevant
variables. The second step checks momentary conditional independence (MCI) conditions
between X i

t−τ and Xj
t , and checks whether or not X i

t−τ and Xj
t are not conditionally inde-

pendent given P̃(Xj
t ) and P̃(X i

t−τ ).
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Figure 5.1: Time series graph,representing the time-lagged causal dependency structure
underlying the data [20].

5.2 Implementation

Tigramite [20] is a Python [17] package implementing the above causal time series analysis.
It helps to efficiently reconstruct causal graphs from high-dimensional time series data sets,
the meteorological variables in our case, and model the obtained causal dependencies for
causal mediation and prediction analyses. Causal discovery is based on linear as well as
non-parametric conditional independence tests applicable to discrete or continuously-valued
time series [22].

Our implementation of the PCMCI causality method mirrors that found in the basic
tutorial documentation for the Tigramite Package in [20]. We have modified the code to
read data from our data files, rather than generating a random sequence, to suppress visual
output when desired, to store the images separately, and to store the connection information
in output files for postprocessing. We can then run separate scripts on these data files to
prepare them for visualization, sorting and filtering by connection strength.

We note that connection strength is reported in two ways, by p-values and by MCI partial
correlations. We must be careful in using these values, since MCI partial correlations is more
faithful to the PCMCI method, but is not easily compared to the other methods described
in this document. However, p-values are quite ubiquitous and can be easily considered in
light of the CCM and Grange Causality methods, although they do not contain as much
information about the results of the PCMCI algorithm.
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6 Identification of Causal Links between Atmospheric

Oscillations using Statistical Models

6.1 Granger Causality

Figure 6.1: Causal links discovered between dominant REOF modes of mean sea level pres-
sure (top left), sea surface temperature (top right), 10m wind speed (bottom left), and 2m-
temperature (bottom right) using the Granger causality method. Some of the well-known
modes shown here are North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO),
El Niño-Southern Oscillation (ENSO). The directionality of causal modes are shown using
the arrow directions, and the corresponding time lags are printed near the middle of each
arrow.

Fig. 6.1 shows the identified causal links from the Granger causality approach, based on
dimensionally reduced time series of mean sea level pressure, sea surface temperature, 10m
wind speed, and 2m temperature. In mean sea level pressure, NAO mediates all the other
observed teleconnection patterns. However, the linkage of ENSO has not been identified.
The effect of ENSO on other atmospheric teleconnection patterns is explained via the SST
variable. The observed change in the eastern Pacific (ENSO) with one or two months lag
time is most likely to affect the PDO oscillation. Likewise, the 10m wind speed captured
the ENSO variability; however, the identification of the Northern Hemispheric wind patterns
and their relation to ENSO has not been found. The 2 meter temperature could not capture
the ENSO, PDO or NAO but did discover the causal connection between the Arctic and
Antarctic oscillations, both directly and indirectly through Siberia, North America, and
Greenland. The calculated time lag for any variables suggests that one-month effective
change may be enough to drive the change in other linked patterns.
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6.2 CCM method

Figure 6.2: Causal links discovered between dominant REOF modes of mean sea level pres-
sure (top left), sea surface temperature (top right), 10m wind speed (bottom left), and
2m-temperature (bottom right) using the CCM causality method. Some of the well-known
modes shown here are North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO),
El Niño-Southern Oscillation (ENSO). The directionality of causal modes are shown using
the arrow directions, and the corresponding time lags are printed near the middle of each
arrow.

The observed causal links in CCM ( Fig. 6.2) are similar to those found using the Granger
causality method, but some of the causal relationships have changed in direction. The CCM
method was able to capture the mediation of PDO in casual effect on the NAO oscillation
and other oscillations in mean sea level pressure. The intervention of ENSO and their causal
links observed for both SST and wind speed. However, ENSO didn’t have any causal effect
on the 2 meter temperature variable.

6.3 PCMCI method

Fewer causal links were discovered for all variables in PCMCI (Fig 6.3). Also, PCMCI
has more causal links for sea level pressure than 2m temperature and 10m wind speed. In
particular, the SST variable could not capture any of the observed causal discoveries of other
methods. The PCMCI method may require a long time-series data to obtain any well-defined
causal links between the oscillations.
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Figure 6.3: Causal links discovered between dominant REOF modes of mean sea level pres-
sure (top left), 10m wind speed (top right), and 2m-temperature (bottom left) using the
PCMCI method. No significant causal links are identified for sea surface temperature. Some
of the well-known modes shown here are North Atlantic Oscillation (NAO), Pacific Decadal
Oscillation (PDO), El Niño-Southern Oscillation (ENSO). The directionality of causal modes
are shown using the arrow directions, and the corresponding time lags are printed near the
middle of each arrow.

7 Identification of causal discovery across the variables

7.1 Comparison of cross-variable causality between the statistical
models

Figures 7.1-7.3 show the causal graphs by the three causality discovery menthods for all four
variables. Similarly to how we plotted single variables, we only draw the 20 causal links with
the lowest p-values. In this section, we will focus on discussing cross-variable causal links
identified by different methods.

We visualize similar multivariate results for the CCM method in Figure 7.1. When
using the CCM method, the top six strongest cross-variable causal relations identified all
have clear physical bases. First, the causal link from SST-4/SST-7/SST-0 to SI10-5 indicates
that the trade wind anomaly in the central Pacific responds to SST anomaly in the equatorial
eastern/central Pacific and along the western coast of South America where ocean upwelling
frequently occurs, consistent with the Bjerknes feedback (e.g., [14]). Second, the causal link
from SI10-5 to SST-3 suggests that the 10m wind anomaly in the equatorial central Pacific
can cause an SST anomaly there. This relationship may reflect the zonal advection feedback
of ENSO, where a weaker easterly trade wind induces eastward advection of surface water
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from the western Pacific warm pool (e.g., [3, 14]). Third, the causal link from MSL-1 to SI10-
0 shows the connection between Antarctic sea level pressure and 10m wind anomalies in the
Antarctic Circumpolar Current (ACC) region. As is expected from a geostrophic balance,
wind speed strongly depends on the local pressure gradient. Fourth, a similar connection
between pressure and wind anomalies can be found in the southern Pacific, indicated by the
causal link from MSL-3 to SI10-1. However, some of the weaker cross-variable causations
are more difficult to interpret, such as the link from wind anomaly in the southern Pacific
(SI10-1) to the SST anomaly near Alaska (SST-4).

Similar to CCM, Granger causality results in Figure 7.2 also suggest causal links from
SST-4 to SI10-5 (the Bjerknes feedback in the equatorial Paciifc), from MSL-1 to SI10-
0 (pressure and wind near the ACC) and from MSL-3 to SI10-1 (pressure and wind in
the southern Pacific). The cross-variable causality detected by Granger causality around
Antarctica is more difficult to interpret, perhaps due to confounding and indirect factors.
For example, Granger causality identifies a strong causal link from MSL-1 to T2M-2, which
is the influence of sea level pressure on surface temperature in Antarctica. However, we
usually observe the influence of temperature on pressure in local circulations, such as a sea-
breeze. Furthermore, Granger causality suggests a causal link from surface winds (SI10-0)
to temperature (T2M-2), too. Therefore, it is possible that both of these causalities capture
the importance of atmospheric circulation, especially low-level heat transport, in Antarctica.

We also include a multivariate causal graph for the PCMCI method in Figure 7.3. PCMCI
tends to identify more long-range cross-variable causalities, such as the link from 10 m
wind anomalies in the southeast Pacific (SI10-4) to Antarctic sea level pressure (MSL-1),
from Greenland temperature (T2M-8) to Siberian pressure (MSL-7), from temperature/wind
anomalies in the southeast and north Pacific (SST-7, SST-4 and SI10-7) to Siberian tem-
perature (T2M-6), or from temperature anomalies in the central Pacific (SST-0) to surface
winds in the north Atlantic (SI10-6). All of these causalities are more difficult to interpret.
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Figure 7.1: Causal graph of SST, SI10, MSL and T2M using the Convergent Cross Mapping
method.

Figure 7.2: Causal graph of SST, SI10, MSL and T2M using the Granger Causality method.
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Figure 7.3: Causal graph of SST, SI10, MSL and T2M using PCMCI method.

7.2 Comparison of similarity measures between the statistical mod-
els

Causal connections were different for different methods. It is important to quantify the
causality methods that have the most similar results. To quantify the similarity coefficients,
we used the well-known matrix distance calculation to measure Jaccard coefficients for a
different combination of the model results.

The calculated Jaccard distance between the statisticals model is shown in Table 7.1. The
lower value corresponds to larger similarity measures between the methods. The Granger
causality and CCM pair has a lowest value which corresponds to a relatively large similarity
between their findings. However, the identified causal connections had few similarity between
CCM and PCMCI due to their high Jaccard distance.

Table 7.1: Matrix distance between the statistical models

Matrix Distance Granger Causality CCM PCMCI
Granger Causality 0 0.6926 0.8683

CCM 0.6926 0 0.9173
PCMCI 0.8683 0.9173 0

8 Conclusions

We tested the functionality of the causal discovery methods based on their causality and
direction using the atmospheric variables (e.g., 2m temperature, sea surface temperature,
sea ice fraction, and mean sea level pressure). The Granger causality and CCM methods
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were most likely to produce similar causal connections for most of the variables. This study
was identified the cross variable causal connections that can be related to previous findings
of Bjerknes feedback of ENSO, the geostrophic winds around Antarctica and the southern
Pacific [14]. However, this study is not intended to explain the important dynamical processes
and their effects on causal connections among the variables. The causal connection results
were suggested that significance of each selected PC components may vary the results of
the statistical model reasonably depending on the variables. The Jaccard coefficients were
calculated to test the similarity between the statistical models. More significant Jaccard
coefficient was found between PCMCI and CCM methods. Further work may be needed to
explain the physical processes involved in the causal connections and their application in
regional climate prediction.
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9 Appendix

9.1 Code and Results

The source code and causality discovery results of this work can be found at https://

github.com/big-data-lab-umbc/cybertraining/tree/master/year-2-projects/team-2.
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