

APPROVAL SHEET

Title of Dissertation: Clustering for Monitoring Distributed Data Streams

Name of Candidate: Maria Barouti
Doctor of Philosophy, 2016

Dissertation and Abstract Approved:
Jacob Kogan
Professor of Mathematics
Department of Mathematics and Statistics

Yaakov Malinovsky
Assistant Professor of Statistics
Department of Mathematics and Statistics

Date Approved:

ABSTRACT

Title of dissertation: CLUSTERING FOR MONITORING
DISTRIBUTED DATA STREAMS

Maria Barouti
Doctor of Philosophy, 2016

Dissertation directed by: Jacob Kogan
Professor of Mathematics
Department of Mathematics and Statistics
University of Maryland, Baltimore County

Yaakov Malinovsky
Assistant Professor of Statistics
Department of Mathematics and Statistics
University of Maryland, Baltimore County

Data mining is a challenging research area of computer science with profound ap-
plications in database industries and resulting market needs. Data mining is the computa-
tional process of discovering patterns in big data sets. This process enables us to extract
valuable information from large data by involving methods at the intersection of different
topics such as machine learning, statistics, and artificial intelligence. Over the last years
there has been a growing interest in data analysis research by monitoring data streams in
a distributed system. In this study we propose to monitor arbitrary threshold functions
over distributed data streams while minimizing communication overhead. To illustrate
this further, assume that we have a number of sensors that are spread in the space and
we would like to monitor the average of their measurements while minimizing commu-
nication between the sensors. Each sensor represents a node that produces time varying
vectors derived from the stream of measurements. Thus we are interested to check if a
function evaluated at the vectors’ average at each time is greater than zero while commu-
nication between the nodes is minimized.

Motivated by recent contributions based on geometric ideas, and after reviewing
some well known clustering algorithms we present an alternative approach that combines
system theory techniques, clustering and statistical approaches. Our approach enables
monitoring values of an arbitrary threshold function over distributed data streams through
a set of constraints applied independently on each stream and/or clusters of streams. The
clusters are designed to evolve in time and to adapt themselves to the data stream. A cor-
rect choice of clusters yields a reduction in communication load. Unlike many clustering

algorithms that attempt to collect together similar data items, monitoring requires clusters
with dissimilar vectors canceling each other as much as possible. In particular, subclus-
ters of a good cluster do not have to be good. This novel type of clustering dictated by
the problem at hand requires development of new algorithms and/or modification of the
existing ones, and this thesis is a step in this direction (extension of a book chapter, see
Barouti et al. [2015]).

We report experiments on real-world data with a newly devised clustering algo-
rithm. The experiments detect instances where communication between nodes is required,
and show that the clustering approach reduces communication load. Last but not least,
we indicate new future directions and discuss possible methodologies that can be involved
into my future research agenda.

CLUSTERING FOR MONITORING DISTRIBUTED DATA STREAMS

by

Maria Barouti

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2016

Advisory Committee:
Dr. Jacob Kogan, Professor/Advisor
Dr. Yaakov Malinovsky, Assistant Professor/Co-Advisor
Dr. James Lo, Professor
Dr. Charles Nicholas, Professor
Dr. Junyong Park, Associate Professor

c© Copyright by
Maria Barouti

2016

DEDICATION

To my parents, Athanasios and Marina and my siblings, Nikolaos and
Katerina. Last but not least, to my partner in life and science Zois

Boukouvalas.

ii

ACKNOWLEDGMENTS

It has been a great privilege to study mathematics at UMBC. Having previously
completed a Bachelors degree in Mathematics and a Masters degree in Applied and Com-
putational Mathematics, I deeply appreciated the chance I was given by UMBC to broaden
my knowledge in Mathematics by obtaining a Masters degree as well as pursuing a PhD
in Applied Mathematics.

Firstly, I would like to express my sincere gratitude to my advisors and mentors,
Dr. Jacob Kogan and Dr. Yaakov Malinovsky, who have been a great inspiration and
source of enthusiasm for me. Dr. Kogan and Dr. Malinovsky were the people who
mostly influenced my academic career and guided me through my journey in the broad
area of data mining and machine learning. Their steady encouragement and help was a
cornerstone for completing this thesis. Furthermore, their advice on both research as well
as my career have been priceless allowing me to grow as a research scientist.

Furthermore, I would like to thank Drs. Charles Nicholas, James Lo and Junyong
Park for graciously serving in my dissertation committee and for providing valuable feed-
back about the work. The UMBC Department of Mathematics and Statistics has been a
wonderful, supportive environment for graduate study. Thanks to Janet Burgee, Deneen
Blair, Boris Alemi, Marshal Turner, Maggie Kennedy and all the staff who helped me
during my time in the department. Thanks to all the faculty for their teaching and guid-
ance, especially the mathematics group: Drs. Rouben Rostamian, Muddappa Gowda,
Muruhan Rathinam, Kathleen Hoffman, Raji Baradwaj, Kalman Nanes, and Liz Stan-
wyck. I would also like to thank my previous supervisor Dr. Andreas Arvanitoyergos, for
his encouragement over the years.

Special thanks to my family and friends for their endless support. Finally and most
importantly for his many years love and ability to keep me grounded, I would like to thank
Zois Boukouvalas.

iii

Contents

1. Introduction . 1
1.1 Text Mining Application . 2
1.2 Related Work . 4
1.3 Motivation and Contribution . 8
1.4 Overview of Dissertation . 10

2. Conventional Clustering Algorithms . 11
2.1 PDDP . 11
2.2 Batch k-means . 14
2.3 Incremental k-means . 16
2.4 Batch k-means followed by incremental k-means 17
2.5 Node Clustering with Classical Clustering Algorithms 18

3. Adaptive Clustering for Monitoring Distributed Data Streams 21
3.1 Mathematical Formulation . 22
3.2 Implementation . 24

4. Experimental Results . 30
4.1 Data . 30
4.2 Monitoring with Incremental Clustering 32

5. Discussion . 37

Appendices . 40
Appendix 1: First and Second Moments . 41
Appendix 2: Broadcast Count . 47

References . 52

Chapter 1

Introduction

In many emerging applications such as sensor networks (Madden and Franklin

[2002]), network monitoring (Dilman and Raz [2002]) etc. one needs to process a con-

tinuous stream of data in real time. Monitoring queries are a particular class of queries

in the context of data streams. Previous work in this area examine monitoring simple

aggregates (Dilman and Raz [2002]), or term frequency occurrence in a set of distributed

streams (Manjhi et al. [2005]) where the algorithms proposed enable detecting when the

sum of a distributed set of variables exceeds a predetermined threshold. However, these

algorithms concentrate on monitoring the sum of a set of variables, whereas in this thesis

enables monitoring values of an arbitrary threshold function. A useful, more general type

of monitoring query is described as follows:

Let S = {s1, . . . , sn} be a set of data streams collected at n nodes N = {n1, . . . ,nn}

and let v1(t), . . . ,vn(t) be d-dimensional, real-valued, time varying vectors derived from

the streams. For a function f : Rd → R we would like to monitor the inequality

f

(
v1(t) + · · ·+ vn(t)

n

)
> 0 (1.0.1)

while minimizing communication between the nodes. We refer to this query as a threshold

function query. Often the threshold might be a constant r other than 0. In what follows,

for notational convenience, we shall always consider the inequality f > 0, and when one

is interested in monitoring the inequality f > r we will modify the threshold function and

consider g = f − r, so that the inequality g > 0 yields f > r.

A task of feature selection is an important task that requires very high commu-

nication overhead using naive, centralized algorithms. Motivated by results reported in

(Sharfman et al. [2007]) we are interested in determining, at any given time, whether

the value of an arbitrary function on the average of these vectors crosses a predetermined

threshold. In the next section we present a Text Mining application that consists a relevant

example of the monitoring query described above.

1.1 Text Mining Application

Information and data are generated everyday through economic, academic and so-

cial activities. Techniques such as text and data mining are required to exploit a significant

potential economic and societal value. Text mining is an interdisciplinary field that draws

on information retrieval, data mining, machine learning, statistics, and computational lin-

guistics. Text mining is the process of unlocking hidden information in plain sight as

well as developing new knowledge by finding unseen connections and patterns through

countless pages of digitized text. Since the vocabulary comprising data streams may be

very large, an important task is to determine which words, or features, should be used for

performing a classification. This task is known as feature selection and it is performed as

follows:

Let T be a textual database (for example a collection of mail or news items). We

denote the size of the set T by |T|. We will be concerned with two subsets of T:

1. R–the set of “relevant” texts (e.g. texts not labeled as ”spam”),

2. F–the set of texts that contain a “feature” (word or term for example).

We denote complements of the sets by R, F respectively (i.e. R∪R = F∪F = T), and

2

consider the relative size of the four sets F ∩R, F ∩R, F ∩R, and F ∩R as follows:

x11(T) = |F∩R|
|T| , x12(T) = |F∩R|

|T| ,

x21(T) = |F∩R|
|T| , x22(T) = |F∩R|

|T| .

(1.1.1)

Note that 0 ≤ xij ≤ 1, and x11 + x12 + x21 + x22 = 1. The function f is given by

∑
i,j

xij log

(
xij

(xi1 + xi2)(x1j + x2j)

)
, (1.1.2)

where log x = log2 x throughout the thesis. The information gain for the “feature” is

provided by f (see e.g. (Gray [2011]).

As an example of monitoring a continuous query, we consider n agents installed on

n different servers, and a stream of texts arriving at the servers. Let Th = {th1, . . . , thw}

be the last w texts received at the hth server, with T =
⋃n
h=1Th. Note that

xij(T) =
n∑
h=1

|Th|
|T| xij(Th),

i.e., entries of the global contingency table {xij(T)} are the weighted average of the

local contingency tables {xij(Th)}, h = 1, . . . , n. To check that the given “feature”

is sufficiently informative with respect to the target relevance label r, one may want to

monitor the inequality

f(v) > 0, (1.1.3)

where v = (x11(T), x12(T), x21(T), x22(T)) while minimizing communication between

the servers.

Thus all the features scoring above a certain threshold can be chosen as parameters

for the classification task. Moreover, the example presented below shows that there is a

fundamental difference between monitoring the cases of linear and non-linear f.

3

Let f(x) be a linear function and vi, i = 1, 2 are scalar values stored at two distinct

nodes. Then if both values of f at nodes have the same sign its value at the average will

have this sign too, since f(v1+v2

2
) = 1

2
f(v1) + 1

2
f(v2). However, this is not true when f

is not linear. To see that let f(x) = x2 − 6. Note that if v1 = −4, and v2 = 4, then

f(v1) = f(v2) = 10 > 0 and f(v1+v2

2
) = −6 < 0.

If v1 = −2, and v2 = 4, then

f(v1) = −2 < 0, f(v2) = 10 > 0 and f(v1+v2

2
) = −5 < 0.

Finally, when v1 = 2, and v2 = 4 one has

f(v1) = −2 < 0, f(v2) = 10 > 0 and f(v1+v2

2
) = 3 > 0.

This thesis is handling non linear threshold functions, with a specific focus on in-

formation gain (1.1.2).

1.2 Related Work

The difference between monitoring problems involving linear and non-linear func-

tions f is discussed and illustrated by a simple example involving a quadratic function

f in (Sharfman et al. [2007]). The difficulty of determining from the values of f at the

nodes whether its value at the average is above a threshold or not led the authors of (Sharf-

man et al. [2007]) to present a distributed algorithm for locally determining whether f ’s

value at the average data vector is above the threshold or not. The geometric approach

presented in (Sharfman et al. [2007]) allows splitting an arbitrary monitoring task into a

set of constraints that applied locally on each of the streams.

Specifically, the proposed solution is to monitor the values of f on the convex hull

of {v(ti),u1(t),u2(t), ...un(t)}where uj(t) = v(ti)+[vj(t)−vj(ti)], t ≥ ti and v(ti) =

1
n

∑n
j=1 vj(ti). This technique is based on two observations:

4

• The convexity property: the mean v(t) is in the convex hull of {v(ti),u1(t),u2(t), ...un(t)}.

(Note that uj(t) and v(ti) are available to node j without any communication with

other nodes).

• The union of the l2 balls B2(v,uj) of radius 1
2
||v − uj|| centered at v+uj

2
covers

the convex hull of the vectors (ball cover), i.e. conv{v(ti),u1(t),u2(t), ...un(t)} ⊆

∪B2(v(ti),uj(t)) (see Figure 1.2.1). The triangle denotes the convex hull of the

vectors.

Fig. 1.2.1: Ball cover where Zf = {x : f(x) = 0}

Since each ball B2(v(ti),uj(t)), t ≥ ti, j = 1, 2, ..., n can be monitored by node j

with no communication with other nodes, the second observation allows to split monitor-

ing of the convex hull into n independent tasks executed by the n nodes separately (ball

monitoring) and without communication. Therefore, instead of collecting all vectors to

a central location which is very costly in terms of communication load, (Sharfman et al.

[2007]) chooses to impose numerical constraints on the data collected at each node. The

local constraint on each stream is set as follows: the monitored function f and the thresh-

5

old can be seen as inducing a coloring over Rd. Thus the vectors {x : f(x) > 0} are

said to be different color from the vectors {x : f(x) ≤ 0}. The local constraints that all

nodes maintain is to check if all the l2 balls described above are of the same color (pink)

as shown in Figure 1.2.1. Note that the convex hull of the vectors is denoted by the blue

triangle.

The geometric analysis of this problem guarantees that as long as the constraints

on all the streams are upheld, the result of the query remains unchanged and thus no

communication is required. If a constraint in one of the streams is violated (see Figure

1.2.2) then new data is gathered from the streams, the query is reevaluated, and new

constraints are set on the streams. This strategy leads to sufficient conditions for (1.0.1),

and may be conservative.

Fig. 1.2.2: Violation at node n2

A more recent work reported in (Kogan [2012]) is motivated by results reported in

(Sharfman et al. [2007]). In (Kogan [2012]) the setting of the problem is the same (deals

with the information gain function) but here the author in order to check if the mean v(t)

belongs to the set Z+(f) = {x : f(x) > 0}, he focuses on the distance from the mean to

the boundary of the set Z+(f). Note that its boundary denoted by Zf . Thus the functional

6

monitoring problem (1.0.1) is transformed to the monitoring of the following geometric

condition

v(t) =
v1(t) + · · ·+ vn(t)

n
∈ Z+(f). (1.2.1)

The author extends the idea of monitoring and provides a threshold monitoring algorithm

which is described as follows.

At time t0 the vectors vi(t0) for i = 0, 1, ..., n, the mean v(t0) and the local con-

straint δ = dist (v(t0),Zf) are computed. The local constraint δ is made available to

all nodes. As new vector vk(t) is computed at some node nk at time t, the inequality

||vk(t0) − vk(t)|| < δ is checked. If the inequality holds true then the node keeps silent,

no updates of the mean v(t0) and the local constraint δ are required. If the inequality

fails at time t at least at one node then the nodes communicate, the mean v(t) is up-

dated, the new local constraint δ = dist(v(t),Zf) is computed and made available to each

node. This process continues until the end of the stream. Thus in (Kogan [2012]) only

a scalar δ should be communicated to each node as opposed to (Sharfman et al. [2007])

where the value of the updated mean should be transmitted and this can be costly for high

dimensional problems.

This type of monitoring suggested in (Kogan [2012]) allows to apply the above

monitoring algorithm to a variety of distance functions (vector norms) as opposed to the

“ball monitoring” idea suggested in (Sharfman et al. [2007]) that sometimes fails for the

distance provided by the l1 norm, i.e. conv{v(ti),u1(t),u2(t), ...un(t)} 6⊆ ∪B1(v(ti),uj(t)).

Indeed, when B1(v,u) is an l1 ball of radius 1
2
||v − u||1 centered at v+u

2
, for example,

v =

 0

0.5

, u1 =

−1

0

, u2 =

 1

0

 (see Figure 1.2.3) one has conv{v,u1,u2} 6⊆

B1(v,u1) ∪B1(v,u2).

In the next section we analyze the numerical experiments conducted in (Kogan

[2012]) with the dataset described in Section 1 Chapter 4.

7

Algorithm 1
Monitoring Threshold Function

• A node is designated as a root r.

• The root sets i = 0.

• Until end of stream

1. The root sends a request to each node n for the vectors vn(ti). The nodes
respond to the root. The root computes the distance δ between the mean
1
n

∑
n∈N vn(ti) and the zero set Zf of the function f . The root transmits δ

to each node.

2. do for each n ∈ N
If ||vn(t)− vn(ti)|| < δ

the node n is silent
else

n notifies the root about violation of its local constraint δ
the root sets i = i+ 1
go to Step 1.

• Stop

Fig. 1.2.3: failed cover by l1 balls

1.3 Motivation and Contribution

Our goal is to monitor data streams with as little communication as possible over

a sequence of discrete time instances that we shall denote by t. The time instances that

8

require communication between nodes are denoted by ti, i = 1, 2,

The numerical experiments conducted with l1, l2 and l∞ norm in (Kogan [2012])

with the dataset described in Section 1 Chapter 4 show that:

1. The number of time instances the mean violates (1.0.1) is a small fraction (< 1%)

of the number of time instances when the local constraint is violated at the nodes.

2. The lion’s share of communications (about 75%) is required because of a single

node violation of the local constraint δ.

3. The smallest number of communications is required when one uses the l1 norm.

Table 1.3.1 presents a result of an experiment reported in (Kogan [2012]) for a dis-

tributed system with 10 nodes. The first row of the table shows the number of nodes

simultaneously violating local constraint, the second one reports the number of time in-

stances over the life time of the system when the violation of local constraint happened

exactly at k nodes. The table reports total of 4006 time instances when the local con-

straint is violated. In 3034 out of 4006 time instances, communications with the root are

triggered by constraint violations at exactly one node, in 620 time instances the violation

was caused by exactly two nodes, and at no time instance violation was caused by all 10

nodes. This observation naturally leads to the idea of clustering nodes to further reduce

communication load, and independent monitoring of the node clusters equipped with a

coordinator.

of nodes violators 1 2 3 4 5 6 7 8 9 10
of violation instances 3034 620 162 70 38 26 34 17 5 0

Tab. 1.3.1: Number of local constraint violations simultaneously by k nodes, r = 0.0025, l2 norm,
the feature is “bosnia”

Clustering in general is a difficult problem, and many clustering problems are

known to be NP-complete (no fast solution to them is known) (Brucker [1978]).That is,

9

the time required to solve the problem using any currently known algorithm increases very

quickly as the size of the problem grows. In this thesis we advance clustering approach

to monitoring. The main contribution of this work is twofold:

1. We suggest to cluster nodes in order to reduce communication required, apply a

specific clustering strategy and report the communication reduction achieved.

2. We apply the same clustering strategy with l1, l2, and l∞ norms and report the

results obtained.

1.4 Overview of Dissertation

This thesis is organized as follows. In Chapter 2 we present a number of well

known clustering algorithms and indicate how those can be used for monitoring data

streams. However, observations show that a straightforward application of common clus-

tering methods are not applicable to our problem. In Chapter 3 we present a specific

strategy of monitoring distributed data streams through node clustering that yields a re-

duction in communication load. This novel type of clustering dictated by the problem at

hand requires development of new algorithms and this thesis is a step in this direction.

Experimental results on real-world data of monitoring with and without clustering as well

as their comparison presented in Chapter 4. Using different norms we can see applica-

tions of monitoring data streams that benefit from clustering. Clustering, however does

not offer a universal remedy. In Chapter 5 we indicate new research directions and con-

clude this thesis. Appendices summarize some useful properties of the first and second

moments as well as detail the accounting of message transmission.

10

Chapter 2

Conventional Clustering Algorithms

Clustering or grouping document collections into conceptually meaningful clusters

is a well-studied problem. As we described in Section 1 Chapter 1 the basic idea of cre-

ating a vector space model is first to extract unique content-bearing words from the set of

documents treating these words as features and then represent each document as a vector

of certain weighted word frequencies in this feature space (Salton et al. [1975]). Typically

the document vectors are very high-dimensional. In addition, a single document typically

contains only a small fraction of the total number of words in the entire collection; hence,

the document vectors are generally very sparse, i.e., contain a lot of zero entries.

The k-means algorithm is a popular method for clustering a set of data vectors. An

application of k-means though requires an initial partition of the data. While a number of

initialization methods for the k-means clustering algorithm are available in the literature

(Celebi et al. [2013]) we focus on PDDP which is briefly described next.

2.1 PDDP

A good partitioning of a vector set into a number of subsets is a difficult problem

even in the case when the required number of subsets is only two. There is, however, an

exception. When the dimension of the vector space is one, i.e. one has to deal with a

scalar set, the problem is relatively easy. While real-life data is rarely one dimensional,

a least squares one dimensional approximation can be constructed and used to cluster

a multidimensional vector set. The Principal Direction Divisive Partitioning algorithm

briefly recalled below does just that. In the reminder of this section we denote by ||a|| the

l2 norm of a vector a.

For a vector a and a line l in Rd denote by Pl(a) the orthogonal projection of a

on l. For a set of vectors A = {a1, . . . , am} denote by Pl(A) the set of projections

{Pl(a1), . . . ,Pl(am)}. For a fixed vector set A the quantity

m∑
i=1

||ai −Pl(ai)||2

depends on the line l. A line that minimizes this quantity (and provides the best least

squares fit for the set A) defines a principal direction. This line passes through the arith-

metic mean µ = µ (A) of the vector setA, and its direction vector is an eigenvector of the

matrix BBT that corresponds to the maximal eigenvalue. Here B = [a1, . . . , am]− µeT ,

and e is a vector of ones (for details see Boley [1998]).

A basic step of the Principal Direction Divisive Partitioning algorithm (PDDP) is

the following:

1. Given a set of vectors A in Rd determine the one dimensional line l that provides

the “best” approximation to A.

2. Project A onto l, and denote the projection of the set A by P (note that P is just a

set of scalars). Denote the projection of a vector a by p.

3. Partition P into two subsets P1 and P2.

4. Generate the induced partition {A1,A2} of A as follows:

A1 = {a : p ∈ P1} , and A2 = {a : p ∈ P2} (2.1.1)

The algorithm divides the entire collection into two clusters by using the principal di-

rection. Each of these two clusters will be divided into two sub-clusters using the same

12

process recursively. The subdivision of a cluster is stopped when the cluster satisfies a cer-

tain “quality” criterion (such as, for example, cluster size, number of clusters, or cluster

quality).

Implementation of the algorithm requires computation of the largest eigenvalue of

the symmetric matrix BBT . In many cases this task may not be performed analytically.

While in the text mining application described in Section 1 Chapter 1 the space dimension

d = 4 one of the coordinates is an affine function of three others. We now consider the

case when each d dimensional data vector a can be written as

a =

b

Cb + d

 ,
where b ∈ Rd1 , d ∈ Rd2 , d1 + d2 = d, and C is an d2 × d1 matrix. For a vector set

B = {b1, . . . ,bm} one has µ (A) =

µ (B)

Cµ (B) + d

. We now turn to the matrix BBT .

Denoting bi − µ (B) by vi we obtain

B =

v1 . . .vm

Cv1 . . . Cvm

 =

 I
C

[v1 . . .vm

]
, where I is the d1 × d1 identity matrix.

Since rank B ≤ d1 one has rank BBT ≤ d1, and the number of nonzero eigenvalues

of BBT does not exceed d1. For our text mining application d1 = 3, and the nonzero

eigenvalues can be obtained by solving a cubic equation, i.e., the eigenvector for BBT

corresponding to the largest eigenvalue can be obtained just by solving a system of linear

equations.

PDDP by itself generates good clustering results. Those could be further improved

by applying k−means clustering to partitions generated by PDDP (see e.g. Boley [1998]).

Next we briefly recall a number of versions of k−means.

13

2.2 Batch k-means

Batch k−means is by far the most popular clustering algorithm. The algorithm

is scalable, and easy to implement. The algorithm is centered around the concept of

“centroid”–the best vector representative for a vector set introduced first by Steinhaus in

1956 (see Steinhaus [1956], MacQueen et al. [1967], Diday [1973], Lloyd [1982] and

Forgy [1965]).

For a set of vectors A = {a1, . . . , am} ⊂ Rn, and a “distance” function d(x, a)

define a centroid c = c (A) of the set A as a solution of the minimization problem

c = arg min

{∑
a∈A

d(x, a), x ∈ C
}
, (2.2.1)

where C ⊂ Rn.

We call d a “distance-like” function because even in the classical implementation

of k−means d(x, a) = ‖x − a‖22, the square of the l2 norm, that fails to be a distance

function (the triangle inequality does not hold). Further, k− means works with a wide

class of functions called Bregman divergences and failing to be distances (Kullback–

Leibler divergence is one of them, see Banerjee et al. [2005]).

The quality of the set A is denoted by q (A) and is defined by

q (A) =
∑
a∈A

d (c, a) , where c = c (A) (2.2.2)

(we set q(∅) = 0 for convenience). Let Π = {π1, . . . , πk} be a partition of A, i.e.

⋃
i

πi = A, and πi ∩ πj = ∅ if i 6= j.

14

We define the quality of the partition Π by

Q (Π) = q(π1) + · · ·+ q(πk). (2.2.3)

We aim to find a k− cluster partition Πmin = {π min
1 , . . . , π min

k } that minimizes the value

of the objective function Q. The problem is known to be NP–hard (Brucker [1978]), and

we are looking for algorithms that generate “reasonable” solutions. It is easy to see that

centroids and partitions are associated as follows:

1. Given a partition Π = {π1, . . . , πk} of the set A one can define the corresponding

centroids {c (π1) , . . . , c (πk)} by:

c (πi) = arg min

{∑
a∈πi

d(x, a), x ∈ C
}
, (2.2.4)

where C is a predefined subset of Rd.

2. For a set of k “centroids” {c1, . . . , ck} one can define a partition Π = {π1, . . . , πk}

of the set A by:

πi = {a : a ∈ A, d(ci, a) ≤ d(cl, a) for each l = 1, . . . , k} (2.2.5)

(we break ties arbitrarily). Note that, in general, c (πi) 6= ci.

The classical batch k–means algorithm is a procedure that iterates between the two steps

described above to generate a partition Π′ from a partition Π.

While 0 ≤ Q(Π′) ≤ Q(Π) and the process described above converges, it rarely

converges to the global minimum. In case we start with an arbitrary poor clustering

the batch k− means algorithm returns a poor clustering as the final ouput. Take the

simple scalar case A = {0, 2, 3}, and the initial partition Π(0) =
{
π
(0)
1 , π

(0)
2

}
where

π
(0)
1 = {0, 2}, and π(0)

2 = {3} an application of batch k−means to Π(0) does not change

15

the partition, and misses a better partition Π(1) =
{
π
(1)
1 , π

(1)
2

}
with π

(1)
1 = {0}, and

π
(1)
2 = {2, 3}. The reason for this phenomenon along with a possible remedy is suggested

in (Dhillon et al. [2002]). Before the relevant material is briefly recalled in the next section

we remark that an application of incremental clustering described below to the scalar

dataset A generates partition Π(1). This observation suggests to use PDDP to generate

initial partitions to k−means like algorithms.

2.3 Incremental k-means

The failure of batch k−means to discover a better partition Π(1) stems from a sim-

ple fact that Step 2 of the procedure ignores change of centroids due to data-vectors’

movement governed by (2.2.5). A way to accurately account for the centroid change is to

allow a single data-vector movement during one iteration of the algorithm. This version

of k−means is described, for example, in the classical manuscript (Duda et al. [2012]).

While more accurate, incremental k−means changes cluster affiliation of only one

vector per iteration. As compared to batch k−means the algorithm requires many more it-

erations to converge, hence is time consuming. One way to enhance incremental k−means

is by expanding the local search to seek a chain of moves in a Kernighan-Lin fashion in-

stead of just one more. This enhancement leads to a better local maximum (Dhillon et al.

[2002]).

We take again the simple scalar case described in Section 2 Chapter 2 and apply

incremental k−means. Then we will get the partition Π(1) which is a better partition than

Π(0) since

0 ≤ Q(Π(1)) ≤ Q(Π(0))

Incremental k−means becomes effective in the case of small clusters (cluster of size 100

or less) (Dhillon et al. [2002]). We next discuss a “merger” of two algorithms in order to

achieve better results.

16

2.4 Batch k-means followed by incremental k-means

While more accurate incremental k−means is not as fast as the batch algorithm. To

benefit from speed of the batch algorithm and accuracy of the incremental k−means a

number of contributions suggested to “merge” both algorithms as follows:

1. run batch k−means until it stops.

2. run one iteration of incremental k−means

3. if the iteration incremental k−means changed the partition

go to Step 1

else

Stop.

All numerical computations associated with Step 2 of the algorithm have been already

performed in Step 1. The improvement over batch k−means comes, therefore, at vir-

tually no additional computational expense (Dhillon et al. [2004]). The possibility of

the “merger” was first indicated, perhaps, in (Spath [1980]), and formally introduced in

([1985]). Later the “merger” was independently rediscovered by many other authors1.

Sequential application

PDDP−→batch k−means−→incremental k−means

generates good tight clusters. Next we describe how these tight clusters can be used for

node clustering.

1 confirming the old adage that “success has many parents while failure is an orphan.”

17

2.5 Node Clustering with Classical Clustering Algorithms

To simplify the exposition we first consider a two cluster {π1, π2} partition problem

for a given set of n vectors A = {a1, . . . , an} ⊂ Rd. We are seeking a partition Π =

{π1, π2} so that

A = π1
⋃

π2, π1
⋂

π2 = ∅

and the partition Π quality Q(Π) given by

Q(Π) = max

{∣∣∣∣∣
∣∣∣∣∣ 1

|π1|
∑
a∈π1

a

∣∣∣∣∣
∣∣∣∣∣ ,
∣∣∣∣∣
∣∣∣∣∣ 1

|π2|
∑
a∈π2

a

∣∣∣∣∣
∣∣∣∣∣
}

is minimized. We denote the size of πi by |πi|. Due to convexity of any norm one has

∣∣∣∣∣
∣∣∣∣∣ 1

|A|
∑
a∈A

a

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣ |π1||A| 1

|π1|
∑
a∈π1

a +
|π2|
|A|

1

|π2|
∑
a∈π2

a

∣∣∣∣∣
∣∣∣∣∣

≤ |π1||A|

∣∣∣∣∣
∣∣∣∣∣ 1

|π1|
∑
a∈π1

a

∣∣∣∣∣
∣∣∣∣∣+
|π2|
|A|

∣∣∣∣∣
∣∣∣∣∣ 1

|π2|
∑
a∈π2

a

∣∣∣∣∣
∣∣∣∣∣

≤ |π1||A|Q(Π) +
|π2|
|A|Q(Π) = Q(Π).

This inequality shows that the norm of the mean is a lower bound for Q(Π). Take the

simple scalar case A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 15} (Semenov [2014]), where the mean of

A is 6. As we saw above 6 ≤ Q(Π). Again, we are seeking for a two cluster partition that

minimizes

Q(Π) = max

{∣∣∣∣∣
∣∣∣∣∣ 1

|π1|
∑
a∈π1

a

∣∣∣∣∣
∣∣∣∣∣ ,
∣∣∣∣∣
∣∣∣∣∣ 1

|π2|
∑
a∈π2

a

∣∣∣∣∣
∣∣∣∣∣
}
.

Since Q(Π) cannot be less than 6 a best cluster partition would be Π(0) =
{
π
(0)
1 , π

(0)
2

}
,

where π(0)
1 = {6} and π(0)

2 = {1, 2, 3, 4, 5, 7, 8, 9, 15}. Hence Q(Π) = 6. This example is

interesting because one can easily build a 3 cluster optimal partition π(0)
1 = {6}, π(0)

2 =

{5, 7}, π(0)
3 = {1, 2, 3, 4, 8, 9, 15}, a 4 cluster optimal partition π(0)

1 = {6}, π(0)
2 = {5, 7},

18

π
(0)
3 = {4, 8}, π(0)

4 = {1, 2, 3, 9, 15}, etc. We next show how to build an optimal partition

for a special particular case of the data set.

Assume that n = 2m, and the vector set A consists of two identical copies of m

vectors, i.e.

A = {a1, . . . , am, a1, . . . , am}.

If πo1 = πo2 = {a1, . . . , am}, then |πo1| = |πo2| = 1
2
|A|, and

max

 1

|πo1|

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
a∈πo

1

a

∣∣∣∣∣∣
∣∣∣∣∣∣ , 1

|πo2|

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
a∈πo

2

a

∣∣∣∣∣∣
∣∣∣∣∣∣
 =

∣∣∣∣∣
∣∣∣∣∣ 1

|A|
∑
a∈A

a

∣∣∣∣∣
∣∣∣∣∣ ,

i.e., {πo1, πo2} is an optimal partition.

This observation motivates the following two cluster Π = {π1, π2} partition strategy:

1. Apply any clustering algorithm to the dataset A to generate clusters of size 2.

2. Select one vector from each cluster generated and assign selected vectors to cluster

π1.

3. Assign remaining vectors to cluster π2.

Generalization of this strategy to a k cluster partition and full description of the algorithm

is beyond the scope of our work and will be provided elsewhere.

Clustering in general is a difficult problem and there does not exist a best clustering

method that is, one which is superior to the other methods. For this reason there are many

clustering problems that are known to be NP-complete (Brucker [1978]). Unlike classical

clustering approaches that attempt to collect together similar vectors (Mirkin [2012]), we

are looking for clusters with dissimilar vectors which cancel out each other as much as

possible. While sub-clusters of a “classical” good cluster are usually good, this may not

be the case for our problem. To illustrate this, assume that we have 4 vectors v1,v2,v3

and v4 as shown in Figure 2.5.1a. Note that their mean is zero. The classical clustering

19

0

v1

v2

v3

v4

0

v1

v2

v3

v40

v1

v2

v3

v4

0

v1

v2

v3

v4

(a)

0

v1

v2

v3

v4

0

v1

v2

v3

v40

v1

v2

v3

v4

0

v1

v2

v3

v4

(b)

0

v1

v2

v3

v4

0

v1

v2

v3

v40

v1

v2

v3

v4

0

v1

v2

v3

v4

(c)

Fig. 2.5.1

approach suggests to cluster similar vectors together but in our problem this leads to bad

sub-clusters as shown in Figure 2.5.1b. On the other hand, when we cluster together

dissimilar vectors (Figure 2.5.1c) we can see that the mean of the clusters is minimized.

Since our idea is based on minimization of the total average change within a cluster,

common clustering methods are not applicable to our problem. In Chapter 3 we present

a specific strategy for monitoring distributed data streams through node clustering that

yields a reduction in communication load.

20

Chapter 3

Adaptive Clustering for Monitoring Distributed

Data Streams

A standard clustering problem is often described as finding and describing cohesive

or homogeneous chunks in data, the clusters (see e.g. Mirkin [2012]). Motivated by

the results in (Kogan [2012]), the authors in (Kogan and Malinovsky [2013]) present

an approach based on convex analysis techniques and clustering. Their idea is to apply a

different clustering strategy attempting to balance out vectors assigned to the same cluster,

and by doing so to minimize the norm of the clusters average. Thus by clustering together

the “longest” vector vnL
(t) − vnL

(ti) with the “shortest” vnS
(t) − vnS

(ti) reduction of

the communication load is achieved. This idea may result in the mean of the two vector

cluster being shorter than δ (as defined in Chapter 1). To illustrate this further consider

the case of three scalar functions v1(t), v2(t) and v3(t), and the identity function f (i.e.

f(x) = x). We would like to monitor the inequality

v(t) =
v1(t) + v2(t) + v3(t)

3
> 0

while keeping the nodes silent as long as possible. Assume now that the local constraint

is violated at n1 at time t, i.e. |v1(t)− v1(t0)| ≥ δ, and at the same time

v1(t)− v1(t0) = −[v2(t)− v2(t0)],

while |v3(t) − v3(t0)| < δ. Then |v(t) − v(t0)| < δ, f(v(t)) > 0, and update of the

mean can be avoided. Thus separate monitoring of the two node cluster {n1,n2} would

require communication involving two nodes only, and could reduce communication load.

Therefore, node clustering may lead to communication savings. It is shown in (Kogan and

Malinovsky [2013]) that clustering together just two nodes may reduce communication

by about 10%.

Since dissimilarity of vectors in each cluster should be maximized (and the similar-

ity should be minimized) a direct application of center-based clustering algorithms (such

as, for example, k−means) is not possible. Next, we extend the idea of clustering to-

gether dissimilar vectors as suggested in (Kogan and Malinovsky [2013]) to the general

case-invloving many nodes, arbitrary functions, and high-dimensional data.

3.1 Mathematical Formulation

Motivated by the results of Table 1.3.1 and (Kogan and Malinovsky [2013]) we

advance the node clustering approach and demonstrate additional computation savings

(see Barouti et al. [2014a], Barouti et al. [2014b]). For the problem at hand we have a set

of nodes N and we would like to partition it into k disjoint clusters Π = {π1, . . . , πk} so

that

N = ∪ki=1πi and πi ∩ πj = ∅ if i 6= j.

Then each cluster πi will be equipped with a “coordinator” ci (one of the clusters’ node)

and

• if n′ ∈ πi violates its local constraint at time t > tj , where tj was the last time the

violation took place, then ci collects vectors vn(t)− vn(tj) from all n ∈ πi.

• ci computes the mean of πi and checks if the total change within cluster πi does not

22

exceed δ, i.e.,
1

|πi|

∣∣∣∣∣
∣∣∣∣∣∑
n∈πi

[vn(t)− vn(tj)]

∣∣∣∣∣
∣∣∣∣∣ < δ. (3.1.1)

If (3.1.1) holds for each cluster then

∣∣∣∣∣
∣∣∣∣∣∑
n∈N

vn(t)− vn(tj)

n

∣∣∣∣∣
∣∣∣∣∣ ≤

k∑
i=1

|πi|
n

∣∣∣∣∣
∣∣∣∣∣∑
n∈πi

vn(t)− vn(tj)

|πi|

∣∣∣∣∣
∣∣∣∣∣ < δ. (3.1.2)

The inequality shows that the “new” mean 1
n

∑
n∈N vn(t) belongs to Z+(f) if the “old”

mean 1
n

∑
n∈N vn(tj) belongs to this set and recomputation of v(t) is not needed. If

(3.1.1) fails for at least one cluster, then the cluster coordinator alerts the root (a node of

the set N), and the mean of the entire dataset v(t) is recomputed by the root.

By this way we can check if (1.0.1) holds. To conclude we can say that our aim is

to identify k and a k cluster partition Πo that minimizes

Q(Π) = max
i∈{1,...,k}

{
1

|πi|

∣∣∣∣∣
∣∣∣∣∣∑
n∈πi

[vn(t)− vn(tj)]

∣∣∣∣∣
∣∣∣∣∣
}

for t > tj .

The monitoring problem requires to assign nodes {ni1 , . . . ,nik} to the same cluster

π so that the total average change within cluster π

∣∣∣∣∣
∣∣∣∣∣ 1

|π|
∑
n∈π

[vn(t)− vn(tj)]

∣∣∣∣∣
∣∣∣∣∣ for t > tj

is minimized, i.e., nodes with different variations vn(t)−vn(tj) that cancel out each other

as much as possible are assigned to the same cluster. Thus we will achieve reduction of

the communication load (see Chapter 4).

It is important to see that the proposed partition quality Q(Π) generates three im-

mediate problems:

23

1. Since the arithmetic mean a of a finite set of real numbers {a1, . . . , ak} satisfies

min{a1, . . . , ak} ≤ a ≤ max {a1, . . . , ak}

the single cluster partition always minimizes Q(Π). Considering the entire set of

nodes as a single cluster with its own coordinator that communicates with the root

introduces an additional unnecessary “bureaucracy” layer that only increases com-

munications. We seek a trade-off which yields clusters with ”good” sizes (this is

rigorously defined in the next section).

2. Computation of Q(Π) involves future values vn(t), which are not available at time

tj when the clustering is performed.

3. Since the communication overhead of the balancing process (3.1.1) is proportional

to the size of a cluster, the individual clusters’ sizes should affect the clustering

quality q(π).

In the next section we address these problems.

3.2 Implementation

We argue that in addition to the average magnitude of the variations vn(t)− vn(tj)

inside the cluster π, the cluster’s size also affects the frequency of updates, and, as a result,

the communication load. We therefore define the quality of the cluster π by

q(π) =
1

|π|

∣∣∣∣∣
∣∣∣∣∣∑
n∈π

[vn(t)− vn(tj)]

∣∣∣∣∣
∣∣∣∣∣+ α|π|, (3.2.1)

where α is a nonnegative scalar parameter. The quality of the partition Π = {π1, . . . , πk}

is defined by

Q(Π) = max
i∈{1,...,k}

q(πi), (3.2.2)

24

When α = 0 the partition that minimizes Q(Π) is a single cluster partition (that we would

like to avoid). Larger values of α force clusters’ size to decrease.

When maxn ||vn(t)− vn(tj)|| ≤ α the optimal partition is made up of n singleton clus-

ters. In this chapter we shall focus on

0 < α < max
n∈N
||vn(t)− vn(tj)|| . (3.2.3)

The choice of the constant α depends on t and tj , and below we show how to avoid this

dependence.

Computation of Q(Π) required for the clustering procedure is described below. In

order to compute Q(Π) at time tj one needs to know vn(t) at a future time t > tj which

is not available. While the future behavior is not known, we shall use past values of vn(t)

for prediction. For each node n we build “history” vectors hn(tj) defined as follows:

• hn(t0) = 0

• hn(t1) = vn(t1)− vn(t0)

• hn(t2) = vn(t2)− vn(t1) + 1
2
[vn(t1)− vn(t0)]

• ...

• hn(tj) = vn(tj)− vn(tj−1) + 1
2
[vn(tj−1)− vn(tj−2)] + ...+ 1

2j−1 [vn(t1)− vn(t0)]

The vectors hn(tj) accumulate the history of changes, with older changes assigned smaller

weights. We shall use the vectors {hn(tj)} to generate a node partition at time tj . We

note that scaling of the vector set that should be clustered does not change the induced

optimal partitioning of the nodes. When the vector set is scaled by the magnitude of the

longest vector in the set, the range for α conveniently shrinks to [0, 1]. In what follows

we set h = maxn∈N ||hn(tj)||, assume that h > 0, and describe a “greedy” clustering

25

procedure for the normalized vector set

{a1, . . . , an}, ai =
1

h
hni

(tj), i = 1, . . . , n.

We start with the n cluster partition Πn (each cluster is a singleton). We set k = n

and loop the following procedure until the number of clusters reduces to k = 2.

Algorithm 2
Incremental Clustering

• Set k = n.

• do until k > 2:

1. in partition Πk identify the cluster πj of maximal quality , i.e.,

q (πj) ≥ q (πi) , i 6= j,

or
1

|πj|

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
a∈πj

a

∣∣∣∣∣∣
∣∣∣∣∣∣+ α|πj| ≥

1

|πi|

∣∣∣∣∣
∣∣∣∣∣∑
a∈πi

a

∣∣∣∣∣
∣∣∣∣∣+ α|πi|, i 6= j.

2. identify cluster πi so that the merger of πi with πj produces a cluster of small-
est possible quality, i.e.,

q
(
πj
⋃

πi

)
≤ q

(
πj
⋃

πl

)
, l 6= j,

where cluster’s quality is defined in step 1.

3. Build partition Πk−1 by merging clusters πj and πi.

4. Set k = k − 1.

5. go to Step 1.

• Stop.

The final partition is selected from the n − 1 partitions {Π2, . . . ,Πn} as the one that
minimizes Q.

Note that node constraints δ do not have to be equal (see step 2 of monitoring al-

gorithm with clustering below). Taking into account the distribution of the data streams

at each node can further reduce communication. We illustrate this statement by a sim-

26

ple example involving two nodes. If, for example, there is a reason to believe that the

inequality

2‖v1(t)− v1(ti)‖ ≤ ‖v2(t)− v2(ti)‖ (3.2.4)

always holds, then the number of node violations may be reduced by imposing node

dependent constraints

‖v1(t)− v1(ti)‖ < δ1 =
2

3
δ, and ‖v2(t)− v2(ti)‖ < δ2 =

4

3
δ

so that the wider varying stream at the second node enjoys larger “freedom” of change,

while the inequality

∣∣∣∣∣∣∣∣v1(t) + v2(t)

2
− v1(ti) + v2(ti)

2

∣∣∣∣∣∣∣∣ < δ1 + δ2
2

= δ

holds true. Assigning “weighted” local constraints requires information provided by

(3.2.4). With no additional assumptions about the stream data distribution this infor-

mation is not available. Unlike (Keren et al. [2012]) we refrain from making assumptions

regarding the underlying data distributions; instead, we estimate the weights through past

values vn(t), n ∈ N as explained below.

In what follows we denote the arithmetic mean x1+···+xm

m
of a vector set X =

{x1, . . . ,xm} ⊂ Rd by µ(X). With slight abuse of notations the central second moment∑m
i=1 (xi − µ(X))T (xi − µ(X)) is denoted by σ2(X). At the initial time t0 all nodes

report their vectors vn(t0) to the root, the root computes the average, and the the distance

δ(r) from the average to the boundary of Z+(f). At this point we define δ(n) = δ(r), for

each n ∈ N.

We now focus on a particular node n. Consider first m time instances t1, t2, . . . , tm

and the vector set

V′n = {v′n(t1), . . . ,v′n(tm)},

27

where

v′n(tm) = vn(tm), v′n(tm−1) =
1

2
vn(tm−1), . . . ,v′n(t1) =

1

2m−1
vn(t1).

The node constraint δ(n) introduced below depends on the arithmetic mean µ(V′n)

and the central second moment

σ2(V′n) =
m∑
i=0

(v′n(ti)− µ(V′n))
T

(v′n(ti)− µ(V′n))

of the node n. We denote µ(V′n) by µn, and σ2(V′n) by σ2
n. Since ||v′n(ti)− µn|| ≤√

m−1
m
σ2
n, i = 1, . . . ,m (see Appendix 1) we define

Wn(tm) = Wn = ||µn||+
√
m− 1

m
σ2
n. (3.2.5)

We note that although the bound
√

m−1
m
σ2
n may be very conservative, the same conserva-

tive criterion is applied uniformly to every node.

If at time tm the root constraint δ(r) is updated, each node n broadcasts Wn(tm) = Wn

to the root, the root computes W =
∑

n∈NWn, and transmits the updated δ(n) = wnδ(r)

where wn = n × Wn

W
(so that

∑
n∈Nwn = n) back to node n. For a coordinator c of a

node cluster π the constraint δ(c) = 1
|π|
∑

n∈π δ(n).

Node constraints δ(n) based on the first moment only are introduced in (Barouti

et al. [2014b]). In Chapter 4 we provide monitoring results for node constraints based

on the first and second moments, and compare the results with those reported in (Barouti

et al. [2014a]) as well as monitoring with no clustering reported in (Kogan [2012]).

28

Algorithm 3
Monitoring Threshold Function with Clustering

• A node is designated as a root r.

• The root sets i = 0.

• Until end of stream

1. The root sends a request to each node n for the vectors vn(ti). The nodes
respond to the root. The root computes the distance δ between the mean
1
n

∑
n∈N vn(ti) and the zero set Zf of the function f . The root transmits δ

to each node.

2. set t = ti
do

set violation= 0, t = t+ 1
for each n ∈ N

If ||vn(t)− vn(ti)|| ≥ δ
violation++

endif
while (violation=0)

3. set i = i+ 1, and ti = t

4. violator node n notifies the root about the violation of its local constraint δ

5. The root requests vectors vn(ti) and weights Wn(ti).
The root forms a partition Π = {π1, . . . , πk} (based on incremental clustering
algorithm) and sends node and coordinator constraints δ(n) and δ(c) to nodes
and coordinators.

6. do for each π ∈ Π
do for each n ∈ π

If δ(n) ≤ ||vn(t)− vn(ti)||
If δ(c) ≤ 1

|π|
∣∣∣∣∑

n∈π vn(t)−∑n∈π vn(ti)
∣∣∣∣

notify root about coordinator violation
root updates the distance δ(r) and go to Step 3

endif
endif

• Stop

29

Chapter 4

Experimental Results

In this chapter we first describe our data and since the weights described in Chapter

3 depend on the arithmetic mean and the central second moment, we provide monitoring

results for node constraints based on the first and second moments. Next we compare the

results with those reported in (Kogan [2012]) (monitoring with no clustering).

4.1 Data

The data streams analyzed in this section are generated from the Reuters Corpus

RCV1–V2. The data is available from http://leon.bottou.org/projects/sgd

and consists of 781, 265 tokenized documents with document ID ranging from 2651 to

810596. We simulate n streams by arranging the feature vectors vi in ascending order

with respect to document ID, and selecting feature vectors for the stream in the round-

robin fashion. The feature vectors are generated as described in text mining application

(see Chapter 1 Section 1).

Each document in the Reuters Corpus RCV1–V2 is labeled as belonging to one

or more categories. We label a document as “relevant” if it belongs to the “CORPO-

RATE/INDUSTRIAL” (“CCAT”) category, and “spam” otherwise. In the experiments

our goal is to select features that are most relevant to the “CCAT” category. Thus by fol-

lowing (Sharfman et al. [2007]) we focus on three features: “bosnia”, “ipo”, and “febru”

that display different characteristic behaviour. In each experiment we want to detect for

each feature, at any given time, whether its information gain (1.1.2) is above or below a

given threshold value (i.e. (1.1.3)). Each experiment was performed with 10 nodes, where

each node holds a sliding window containing the last 6,700 documents it received.

First we use 67, 000 documents to generate initial sliding windows. The remaining

714, 265 documents are used to generate datastreams, hence the selected feature informa-

tion gain is computed 714,265
10

times. At any given time the information gain of a feature is

based on the documents contained at the time in the sliding windows of all the nodes. Thus

based on all the documents contained in the sliding window at each one of the 714,266
10

time

instances we compute and graph 714,266
10

information gain values for the feature “bosnia”

(see Figure 4.1.1). Thus the following figure shows us how much information each fea-

ture contains as the stream evolve. In Figure 4.1.1 we can observe that the information

gain for the feature “bosnia” displays an oscillating trend as the stream evolve.

Fig. 4.1.1: information gain values for the feature “bosnia”

31

4.2 Monitoring with Incremental Clustering

For the experiments described below the goal is to monitor the inequality f(v)−r >

0 while minimizing communication between the nodes. We assume that new data arrive

simultaneously at each node.

Before we analyze the results of our clustering approach we can see some numerical

results of the approach described in (Kogan [2012]) for a variety of vector norms. The

results obtained for “febru” without clustering are presented in Table 4.2.1, for “ipo”

in 4.2.2 and for “bosnia” in Table 4.2.3. It is easy to see that the smallest number of

communications is obtained when l1 norm is used.

norm mean updates broadcasts
l1 2591 67388
l2 3140 81650
l∞ 3044 79144

Tab. 4.2.1: Number of mean computations, and broadcasts for feature “febru” with threshold r =
0.0025, no clustering

norm mean updates broadcasts
l1 15331 398606
l2 21109 548834
l∞ 19598 509548

Tab. 4.2.2: Number of mean computations, and broadcasts for feature “ipo” with threshold r =
0.0025, no clustering

As we saw in Table 1.3.1, an application of the procedure decribed in (Kogan

[2012]) to data streams generated from the Reuters Corpus RCV1-V2 leads to 3034 out of

4006 time instances, communications with the root are triggered by constraint violations

at exactly one node. These results and the idea of clustering together dissimilar vectors

suggested in (Kogan and Malinovsky [2013]) motivated us to run the node clustering

monitoring presented in Chapter 3.

32

norm mean updates broadcasts
l1 3053 79378
l2 4006 104156
l∞ 3801 98826

Tab. 4.2.3: Number of mean computations, and broadcasts, for feature “bosnia” with threshold
r = 0.0025, no clustering

The previous work (Barouti et al. [2014b]) reported monitoring results obtained

with the incremental clustering algorithm with weights Wn = ‖µn‖ only. We shall call

this implementation of the algorithm “first moment incremental clustering” (FMIC). The

clustering algorithm with weightsWn = ||µn||+
√

m−1
m
σ2
n (3.2.5) introduced in Chapter 3

will be referred to as the “second moment incremental clustering” (SMIC). Moreover, as

we mentioned before the cluster’s size affects the frequency of the updates of the mean as

well as the communication load. For this reason we introduced the cluster quality q(π) =

1
|π|
∣∣∣∣∑

n∈π[vn(t)− vn(tj)]
∣∣∣∣+α|π| (3.2.1). In this section we report and compare results

generated by the algorithms for the threshold r = 0.0025 and α = 0.05, 0.10, . . . , 0.95.

By keeping α between 0.05 and 0.95 we force nodes to cluster.

The choice of α that generates best results obtained by an application of FMIC to the

features “febru,” “ipo” and “bosnia” are presented in Tables 4.2.4, 4.2.5 and 4.2.6. The

best results for l1, l2, and l∞ norms with respect to α are presented in Table 4.2.4 in case of

“febru” where the coordinators’ constraints are not violated, and the root mean updates are

decreased significantly. The coordinator mean is referred only to non singleton clusters.

In Table 4.2.4 the root mean is updated due to violations in singletons. Note that the root

mean is updated only if there is a violation in a singleton cluster or there is a coordinator

violation in a cluster. In case of a coordinator violation in a cluster the coordinator mean

is updated as well. Comparing results of Table 4.2.4 to Table 4.2.1 we can see that the

number of broadcasts (communication between the nodes) decreases by about 50%.

33

norm α root mean coordinator total
update mean update broadcasts

l1 0.70 1431 0 38665
l2 0.80 1317 0 35597
l∞ 0.65 1409 0 38093

Tab. 4.2.4: Number of root and coordinator mean computations, and total broadcasts for feature
“febru” with threshold r = 0.0025 and the “first moment clustering”

Table 4.2.5 demonstrates significant inside cluster activity, and a decrease in root

mean updates. Last we turn to the feature “bosnia”. Application of clustering to mon-

itoring this feature information gain appears to be far less successful (see Table 4.2.6).

Application of the clustering procedure leads to a slight decrease in the number of broad-

casts in case of the l2 and l∞ norms (see Table 4.2.6). In case of the l1 norm, the number

of broadcasts increases.

norm α root mean coordinator total
update mean update broadcasts

l1 0.15 5455 829 217925
l2 0.10 7414 1782 296276
l∞ 0.10 9768 2346 366300

Tab. 4.2.5: Number of root and coordinator mean computations, and total broadcasts for feature
“ipo” with threshold r = 0.0025 and the “first moment clustering”

norm α root mean coordinator total
update mean update broadcasts

l1 0.65 3290 2 89128
l2 0.55 3502 7 97602
l∞ 0.60 3338 2 91306

Tab. 4.2.6: Number of root and coordinator mean computations, and total broadcasts for feature
“bosnia” with threshold r = 0.0025 and the “first moment clustering”

34

The corresponding results with respect to α generated by SMIC to the features

“febru,” “ipo” and “bosnia” are provided in Tables 4.2.7, 4.2.8 and 4.2.9. Results in

Table 4.2.7 show a significant decrease in the number of broadcasts as compared to re-

sults in Table 4.2.4. Next we turn to the features “ipo” and “bosnia” and report results

with the lowest number of broadcasts. Application of SMIC leads to results provided in

Table 4.2.8. The table demonstrates significant inside cluster activity, and a significant

decrease in broadcasts due to the second moment. Finally we turn to the feature “bosnia.”

The second moment clustering further significantly reduces the number of broadcasts, see

Table 4.2.9.

norm best root mean coordinator total
α update mean update broadcasts

l1 0.85 883 0 23859
l2 0.75 833 0 22509
l∞ 0.75 854 0 23076

Tab. 4.2.7: Number of root and coordinator mean computations, and total broadcasts for feature
“febru” with threshold r = 0.0025 and the “second moment clustering”

norm best root mean coordinator total
α update mean update broadcasts

l1 0.50 4585 121 127345
l2 0.35 6304 421 180536
l∞ 0.30 8405 842 240455

Tab. 4.2.8: Number of root and coordinator mean computations, and total broadcasts for feature
“ipo” with threshold r = 0.0025 and the “second moment clustering”

35

As the results show sometimes clustering leads to communicational savings, how-

ever clustering does not offer a universal remedy; in some cases better performance is

achieved with no clustering. In the next Chapter we discuss possible future directions that

may reduce the communication load.

norm best root mean coordinator total
α update mean update broadcasts

l1 0.65 1749 8 47717
l2 0.75 1940 4 52510
l∞ 0.65 1756 8 47958

Tab. 4.2.9: Number of root and coordinator mean computations, and total broadcasts for feature
“bosnia” with threshold r = 0.0025 and the “second moment clustering”

36

Chapter 5

Discussion

In this thesis we consider application of clustering to monitoring data streams in

a distributed system. Unlike standard clustering algorithms that aiming at collections of

similar data items into same clusters, monitoring requires clusters with dissimilar vectors

canceling each other as much as possible. A straightforward application of a standard

clustering algorithm is, therefore, not possible.

The clustering strategy suggested is based on minimization of a combination of the

total average change within a cluster and the cluster size. The nodes are re–clustered each

time the entire dataset mean is updated. Note that each computation of δ(r) (the distance

from the mean of the entire set and the zero set of the function) triggers recomputations

of node constraints δ(n) that carry past history. This study uses the first and second mo-

ments to recompute node constraints. A possible future direction would be to to consider

additional statistical metrics such as, for example, median for node constraints computa-

tions and see how the communication burden will be affected. Another direction would

be to use a statistical approach in order to decide whether or not to disregard some local

violations. By doing so, it may reduce the communication load without drastic degrading

monitoring performance.

A possible application of classical clustering algorithms is an additional research

direction that may lead to scalable clustering procedures. While the experimental results

demonstrate that communication savings may depend on the choice of a norm or a dis-

tance function many of the proposed clustering algorithms can be applied with Bregman

divergences [2006].

Furthermore, another approach of considerable interest would be to search for the

“largest” possible convex region in Z+(f) that contains the convex hull of the vectors

described in [2007]. So as long as the new vectors vi(t) belong in this convex region no

communication between the nodes will be required. We call this region “largest” because

it provides more “freedom” to the new vectors vi(t) while reducing the communication

between the nodes. Finally based on this thesis we can conclude that the amount of

communication required depends on the “trade off” parameter 0 < α < 1 selected at the

beginning of the monitoring process. Dependence of the number of broadcasts on a is not

understood at this point and should be further investigated. Figure 5.0.1 shows the number

of broadcasts for 18 values α = 0.05, 0.10, · · · , 0.95. The smallest number of broadcasts

corresponds to α = 0.30 (as reported in Table 4.2.8). Next we run monitoring for 98

values of α = 0.01, 0.02, · · · , 0.99 (see Figure 5.0.2). This time the smallest number of

broadcasts corresponds to α = 0.16. Zooming in does not indicate any particularly useful

property of the function.

1 Clustering for Monitoring Distributed Data Streams 21

We devise a specific clustering strategy that yields a reduction in communi-
cation load. The proposed clustering depends on a scalar parameter α , and may
be too slow for applications involving systems with large number of nodes. De-
pendence of the number of broadcasts on α is not understood at this point and
should be further investigated. Figure 1.2 shows the number of broadcasts for 18
values α 0 05 0 10 0 95. The smallest number of broadcasts corresponds
to α 0 30 (as reported in Table 1.5). Next we run monitoring for 98 values of
α 0 01 0 02 0 99 (see Figure 1.3). This time the smallest number of broad-
casts corresponds to α 0 16. Zooming in does not indicate any particularly useful
property of the function.

Each recomputation of δ (the distance from the mean
1
n ∑

n N
vn ti and the zero set

Z f of the function f) triggers recomputations of node constraints δ n . This chapter
uses the first and second moments to recompute node constraints. We plan to con-
sider additional statistical metrics such as, for example, median for node constraints
computations.

A possible applications of classical clustering algorithms is an additional re-
search direction that may lead to scalable clustering procedures. While the experi-
mental results demonstrate than communication savings may depend on the choice

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.4

2.45

2.5

2.55

2.6

2.65
x 105 α vs. broadcasts

α

br
oa

dc
as

ts

Fig. 1.2 l∞ norm, α 0 05 0 10 0 95 vs. broadcasts, for feature “ipo”

Fig. 5.0.1: l∞, α = 0.05, 0.10, · · · , 0.95 vs broadcasts, for feature “ipo”

38

22 Maria Barouti, Daniel Keren, Jacob Kogan and Yaakov Malinovsky

of a norm or a “distance” function many of the proposed clustering algorithms can
be applied with Bregman divergences [28].

Acknowledgements The authors thank the editor for bringing a number of significant relevant ref-
erences to their attention. The research of the second author was supported by Grant No. 2008405
from the United States-Israel Binational Science Foundation (BSF). The work of the fourth author
was partially supported by a 2013 UMBC Summer Faculty Fellowship grant.

Appendix 1: First and Second Moments

In what follows we consider the auxiliary problem: ”Let X be a vector set of size m
with mean µµµ and variance γ 0. How far away from µµµ a vector x X can get?”
The answer to this question is provided below. To simplify the exposition we first
assume µµµ 0.

Let m γ be a family of sets X x1 xm Rd with µµµ X 0, and σ 2 X
m

∑
i 1

xi µµµ X T xi µµµ X γ 0. In this section x stands for x 2. For each

X m γ define r X and R γ as follows:

r X max
x X

x and R γ sup
X m γ

r X

In what follows we describe sets Xγ m γ that maximize r, and the function
R γ .

Lemma 1.1. The function R γ is a homogeneous function of degree
1
2

. For each

positive scalar c one has R cγ c
1
2 R γ .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 105 α vs. broadcasts

α

br
oa

dc
as

ts

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.38

2.4

2.42

2.44

2.46

2.48

2.5
x 105 α vs. broadcasts

α

br
oa

dc
as

ts

Fig. 1.3 feature “ipo”, l∞ norm, α 0 01 0 02 0 99 vs. broadcasts, (left) and zoom in for
α 0 14 0 15 0 99 (right)Fig. 5.0.2: feature “ipo”, l∞ norm, α = 0.01, 0.02, · · · , 0.99 vs broadcasts, (left) and zoom in for

α = 0.14, 0.15, · · · , 0.99 (right)

Thus the approach of monitoring distributed data streams through node clustering,

if successful, in many cases reduces the communication required to message exchanges

within a cluster only, yielding overall communication reduction. While the results ob-

tained show improvement over previously reported ones that do not use clustering [2012]

it is of interest to introduce an update of α based on the monitoring history each time

nodes are re–clustered.

Clustering does not provide a universal remedy. It is of interest to identify data

streams that benefit from clustering, and those for which clustering does not reduce com-

munication load in any significant fashion. Finally a methodology that measures effective-

ness of various monitoring techniques should be introduced, so that different monitoring

strategies can be easily compared.

39

Appendices

40

Appendix A: First and Second Moments

In what follows we consider the auxiliary problem: “Let X be a vector set of size

m with mean µ and variance γ > 0. How far away from µ a vector x ∈ X can get?”

The answer to this question is provided below. To simplify the exposition we first assume

µ = 0.

Let X (m, γ) be a family of sets X = {x1, . . . ,xm} ⊂ Rd with µ(X) = 0, and σ2(X) =∑m
i=1 (xi − µ(X))T (xi − µ(X)) = γ ≥ 0. In this section ||x|| stands for ||x||2. For each

X ∈ X (m, γ) define r(X) and R(γ) as follows:

r(X) = max
x∈X
‖x‖, and R(γ) = sup

X∈X (m,γ)

r(X).

In what follows we describe sets Xγ ∈ X (m, γ) that maximize r, and the function R(γ).

This implies that r
(
Xγ

)
≥ r (X), ∀X ∈ X (m, γ) and r

(
Xγ

)
= R(γ).

Lemma .1. The function R(γ) is a homogeneous function of degree 1
2
. For each positive

scalar c one has R(cγ) = c
1
2R(γ).

Proof. Note that for positive scalars t and s one has

tR(γ) = tr
(
Xγ

)
= r

(
tXγ

)
≤ r

(
Xγt2

)
= R(γt2),

and

sR(γt2) = sr(Xγt2) = r(sXγt2) ≤ r(Xγt2s2) = R(γt2s2).

In particular when ts = 1 one has

R(γ) ≤ t−1R(γt2), and R(γt2) ≤ s−1R(γt2s2) = s−1R(γ).

This shows that for positive t one has tR(γ) = R(γt2) and completes the proof.

41

Lemma .2. Let u ∈ Xγ be such that ‖u‖ = r(Xγ) = R(γ). For each x ∈ Xγ there is a

scalar c such that x = cu.

Proof. We assume now that the claim is false. Without any loss of generality we assume

that ‖u‖ = 1. Let {x1, . . . ,xk} be all nonzero vectors in Xγ so that u(uTxi) 6= xi,

i = 1, . . . , k. Since µ(Xγ) = 0 and the vectors xi − u(uTxi) 6= 0 then

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

Fig. .0.3

∑k
i=1

[
xi − u(uTxi)

]
= 0 and

∑m
i=1 u(uTxi) = 0 (see Fig. .0.3). Consider next the

vector set X′ = {x′1, . . . ,x′m} where

x′i =
1

2
[xi − u(uTxi)] + u(uTxi), i = 1, . . . , k, and x′i = xi, i = k + 1, . . . ,m

(see Fig. .0.4).

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

Fig. .0.4

42

We note that µ(X′) = 0, and σ2(X′) = γ′ < γ. Due to Lemma .1 one has

1 = ||u|| = r(X′) ≤ R(γ′) < R(γ) = ||u|| = 1.

This contradiction completes the proof.

Thus we proved that there is no vector xi that sticks out of the line defined by the

vector u.

Lemma .3. Let u ∈ Xγ be such that ‖u‖ = r(Xγ) = R(γ). For each x ∈ Xγ , x 6= u

there is a scalar c ≤ 0 such that x = cu.

Proof. First note that there is at least one x ∈ Xγ such that x = cu with c < 0. We denote

this c by c−. Assume that the statement of the lemma is false. Then there is 0 < c+ ≤ 1

such that c+u ∈ Xγ (see Fig. .0.5).

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

Fig. .0.5

Let ε > 0 be so small that c+ − ε > 0, and c− + ε < 0 (see Fig. .0.6). Define X′ by

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

Fig. .0.6

substituting the vectors c+u and c−u by (c+ − ε)u and (c− + ε)u correspondingly, and

keeping the other m− 2 vectors unchanged.

We note that µ(X′) = 0, and σ2(X′) = γ′ < γ. Due to Lemma .1 one has

‖u‖ = r(X′) ≤ R(γ′) < R(γ) = ‖u‖.

This contradiction completes the proof.

43

Thus all x ∈ Xγ , x 6= u are of the form x = cu where c ≤ 0. Next we prove that

all these vectors x have the same length.

Lemma .4. Let u ∈ Xγ be such that ‖u‖ = r(Xγ) = R(γ). If x ∈ Xγ and x 6= u, then

x = − 1
m−1u.

Proof. Assume the opposite, i.e., there are x1 = c1u, and x2 = c2u such that c1 < c2 ≤ 0.

Let X′ be a vector set obtained from Xγ by substituting x1 = c1u by x′1 = (c1 + ε)u,

x2 = c2u by x′2 = (c2 − ε)u, and keeping the other vectors unchanged (see Fig. .0.7).

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

0

xi

xi � u(utxi)

u

u(utxi)

c�u

c+u

(c� + ✏)u

(c+ � ✏)u

x0
1

x1

x0
2

x2

x

x0
i

1
2
[xi � u(utxi)]

Fig. .0.7

Note that µ(X′) = 0, and

σ2(Xγ)− σ2(X′) = 2ε(c2 − c1 − ε).

We note that for a small positive ε one has σ2(Xγ) > σ2(X′). Due to Lemma .1 one has

‖u‖ = r(X′) ≤ R(γ′) < R(γ) = ‖u‖.

This contradiction completes the proof.

The next statement summarizes the above results.

Theorem .5. If X = {x1, . . . ,xm} ⊂ Rd with µ(X) = µ, and σ2(X) = γ ≥ 0, then

‖xi − µ‖2 ≤
m− 1

m
γ.

Further, ‖xm − µ‖2 = m−1
m
γ if and only if

x1 = · · · = xm−1 = µ− 1

m− 1
[xm − µ].

44

Next we prove Theorem .5 for scalars and then for vectors. In both proofs we don’t

use any of the previous Lemmas but we use the rearrangement inequality.

Definition .6. For every choice of real numbers x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn and

every permutation xσ(1), · · · ,xσ(n) of x1, · · · ,xn,

xny1 + · · ·+ x1yn ≤ xσ(1)y1 + · · ·+ xσ(n)yn ≤ x1y1 + · · ·+ xnyn.

If the numbers are different, meaning that x1 < · · · < xn and y1 < · · · < yn, then the

lower bound is attained only for the permutation which reverses the order, i.e. σ(i) =

n − i + 1 for all i = 1, · · · , n, and the upper bound is attained only for the identity, i.e.

σ(i) = i for all i = 1, · · · , n.

Proof. (of Theorem .5)

Without loss of generality, µ = 0 and x1 ≤ x2 ≤ · · · ≤ xm, where xi are constants. Also

assume that |x1| ≤ |xm|. (The proof can be done similarly when |x1| ≥ |xm|.) Then it is

enough to show that

xm
2 ≤ m−1

m

∑m
i=1 xi

2 since γ =
∑m

i=1 xi
2.

Starting with the left hand side of the inequality we have that

xm
2 = (−x1 − x2 − · · · − xm−1)

2 =
m−1∑
i=1

x2
i + 2

∑
1≤i<j≤m−1

xixj (.0.1)

provided µ = 0. Next by using the rearrangement inequality we prove that

2
∑

1≤i<j≤m−1
xixj ≤ (m− 2)

m−1∑
i=1

xi
2. (.0.2)

By Induction

• m = 3⇒ 2x1x2 ≤ x1
2 + x2

2, which is true by rearrangement inequality.

• m = 4 then we need to show that 2(x1x2 +x1x3 +x2x3) ≤ 2(x1
2 +x2

2 +x3
2). By

starting with the left hand side we can see that there are 6 terms in total. Notice that

45

each term xi appears 4 times for all i = 1, · · · ,m−1. By rearrangement inequality

we have that each term appears twice. So we have m − 1 terms that each appears

twice in m− 2 expressions, i.e, 4 = 2(m− 2). Thus,

2
∑

1≤i<j≤m−1
xixj ≤ (m− 2)(x1

2 + x2
2 + x3

2). (.0.3)

• · · ·

• m terms then we need to show that 2
∑

1≤i<j≤m−1 xixj ≤ (m − 2)
∑m−1

i=1 xi
2 .

Starting again with the left hand side we can see that there are (m − 1)(m − 2)

terms in the summation. Similarly, by rearrangement inequality each of the m− 1

terms appears twice in m− 2 expressions.

By using now .0.2 and .0.1 it is easy to see that

xm
2 ≤ m− 1

m

m∑
i=1

xi
2. (.0.4)

Lemma .7. If X = {x1, . . . ,xm} ⊂ Rd such that

1. x1 + · · ·+ xm = 0,

2. xt1x1 + · · ·+ xtmxm = γ ≥ 0,

then xtmxm ≤ m−1
m
γ.

Proof.

(x1 + · · ·+ xm−1)
t(x1 + · · ·+ xm−1) =

m−1∑
i=1

xtixi +
m−1∑
i 6=j

xtixj =
m−1∑
i=1

xtixi + 2
m−1∑
j>i

xtixj

≤
m−1∑
i=1

xtixi + (m− 2)
m−1∑
i=1

xtixi = (m− 1)
m−1∑
i=1

xtixi

46

(this inequality follows from the rearrangement inequality).

By adding (m− 1)xtmxm to both sides of the inequality one gets

mxtmxm ≤ (m− 1)
∑m

i=1 x
t
ixi = (m− 1)γ.

This completes the proof.

Appendix B: Broadcast Count

Transmission of a double precision real number is defined as a message in Kogan

[2012]. In this thesis, in addition to real numbers typically representing vector coordi-

nates, integer values such as node ID and node “reporting order” should also be transmit-

ted. Transmission of node IDs is needed, for example, to allow the root to cluster nodes.

To minimize communication load nodes in smaller clusters report violations of node con-

straints first, and the reporting order is assigned and communicated to nodes by the root

that knows all cluster sizes.

Since every vector v associated with a node belongs to a simplex, the sum of its co-

ordinates adds up to 1. We may use the integer part of these real numbers for transmission

of integers. There is a variety of coding and compression techniques that can be used to

transmit a set of real numbers as a single real. The discussion of these methods is beyond

the scope of this thesis. In order to be able to compare different monitoring techniques we

shall count a number of broadcasts, where by a broadcast we mean a single communica-

tion between two nodes. As an illustration, below we compute the number of broadcasts

needed for one iteration of Algorithm 1 triggered by violation of a node constraint. We

first assume that the violator node n is different from the root.

1. The root notifies all other nodes (except the the violator node n) about the violation

(n− 2 broadcasts).

2. Each node n broadcasts its vector vn to the root (n− 1 broadcasts).

47

3. The root recomputes δ(r) and sends it to each node (n− 1 broadcasts).

This leads to 3(n− 1)− 1 broadcasts. If the violator node n is the root itself, the number

of broadcasts becomes 3(n− 1) (at step 1 above the root has to make n− 1 broadcasts).

Next we turn to monitoring with clustering (Algorithm 3). The monitoring proce-

dure starts with each node n sending its initial vector vn(t0) to the root r (that requires

n − 1 broadcasts). The root computes the mean 1
n

∑
n vn(t0) of the initial vectors, com-

putes δ(r), and broadcasts δ(r) to each node (n− 1 broadcasts). After exchanging

2(n− 1) (.0.5)

broadcasts the monitoring proceeds with each node being a singleton cluster.

1. As long as the inequality

|vn(t)− vn(t0)| < δ(r) holds true for each node n

the nodes are silent. At the first time instance t when the inequality is violated for

at least one node n, the following actions are triggered:

(a) the node n (if the node itself is not the root) broadcasts its ID and vector vn(t)

to the root (1 broadcast),

(b) the root issues n − 2 requests for ID and vn(t) to the other nodes (n − 2

broadcasts),

(c) n− 2 nodes report their IDs and vn(t) vectors to the root (n− 2) broadcasts).

This brings the number of broadcasts to 2n−3. If the violating node is the root, then

this number is 2n − 2. To simplify the computations we select the largest number

2n− 2.

48

At this step, and keeping in mind (.0.5), the total number of broadcasts needed to

be exchanged is

2(n− 1) + 2n− 2 = 4(n− 1). (.0.6)

2. Next the root recomputes δ(r), clusters nodes, and broadcasts to each node (n − 1

broadcasts) its updated local constraint δ(n), the ID of its coordinator, and the re-

porting order. If a node is also a coordinator, then IDs of its nodes, and coordinator

reporting order are provided to the coordinator by the root. Keeping in mind (.0.6),

the total number of broadcasts right after the first root mean update and first clus-

tering is

5(n− 1). (.0.7)

Clusters are now formed, and we shall count the number of broadcasts needed to be

exchanged for each of the three types of possible violations:

1. A node constraint is violated in a singleton cluster.

(a) the violating node n reports its ID, vn(t), Wn, and the history vector hn to the

root (1 broadcasts),

(b) the root requests all other n − 2 nodes to provide their input (ID’s, vn(t)

vectors, Wn weights, and history vectors hn, total of n− 2 broadcasts),

(c) the n − 2 nodes report ID’s, vn(t) vectors, Wn weights, and history vectors

hn to the root ((n− 2) broadcasts),

(d) the root recomputes the constraint δ(r), node constraints δ(n), and reports to

each node its coordinator ID, δ(n), and the node “reporting order.” Cluster

coordinators also receive IDs of the nodes in their respective clusters (n − 1

broadcasts).

This leads to 3(n − 1) − 1 broadcasts if the violating node is not the root, and

3(n−1) broadcasts if the violation is at the root. To compute the broadcasts we use

49

the larger number

3(n− 1). (.0.8)

2. A node constraint is violated in a non singleton cluster π with coordinator c.

(a) the violator n reports its ID, ∆n = vn(t)−vn(tk), and δ(n) to the coordinator

c (1 broadcast),

(b) the coordinator c sends request for ∆n vectors and node constraints δ(n) for

all nodes in its cluster π other then n and itself (|π| − 2 broadcasts)

(c) the nodes broadcast their vectors ∆n and constraints δ(n) to the coordinator

(total of (|π| − 2) broadcasts). The total comes to 2|π| − 3, and this number

is 2|π| − 2 when the violating node is the coordinator.

The total of broadcasts needed is:

2|π| − 2. (.0.9)

3. A coordinator constraint is violated. First we assume the coordinator c is not the

root:

(a) the coordinator c of cluster π broadcasts requests to all nodes (except itself

and the root) to provide the root with their IDs, vectors vn(t), weights Wn,

and history vectors hn (n− 2 broadcasts).

(b) n − 1 nodes (n − 2 nodes requested by the coordinator and the coordinator

itself) send the requested information to the root (n− 1 broadcasts).

(c) the root recomputes δ(r), clusters nodes and provides each node with updated

local constraint δ(n), the new cluster affiliation (i.e. ID of a new coordinator),

and the node “reporting order.” Coordinators are also provided with the IDs

of their nodes (total of n− 1 broadcasts).

50

This brings the number of broadcasts to 3(n − 1) − 1. If c is the root, then this

number is 3(n− 1), and this is the number we use to compute broadcasts

3(n− 1). (.0.10)

51

Bibliography

Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering
with Bregman divergences. The Journal of Machine Learning Research, 6:1705–1749,
2005.

Maria Barouti, Daniel Keren, Jacob Kogan, and Yaakov Malinovsky. Monitoring dis-
tributed data streams through node clustering. In Machine Learning and Data Mining
in Pattern Recognition, pages 149–162. Springer, 2014a.

Maria Barouti, Daniel Keren, Jacob Kogan, and Yaakov Malinovsky. Adaptive clustering
for monitoring distributed data streams. Proceedings of the Workshop on Exploratory
Data Analysis, (held in conjunction with the 2014 SIAM International Conference on
Data Mining), SIAM, Philadelphia, pages 13–16, 2014b.

Maria Barouti, Daniel Keren, Jacob Kogan, and Yaakov Malinovsky. Clustering for mon-
itoring distributed data streams. In Partitional Clustering Algorithms, pages 387–415.
Springer, 2015.

Daniel Boley. Principal direction divisive partitioning. Data mining and knowledge dis-
covery, 2(4):325–344, 1998.

Peter Brucker. On the complexity of clustering problems. In Optimization and operations
research, pages 45–54. Springer, 1978.

M Emre Celebi, Hassan A Kingravi, and Patricio A Vela. A comparative study of effi-
cient initialization methods for the k-means clustering algorithm. Expert Systems with
Applications, 40(1):200–210, 2013.

Inderjit Dhillon, Jacob Kogan, and Charles Nicholas. Feature selection and document
clustering. In Survey of Text Mining, pages 73–100. Springer, 2004.

Inderjit S Dhillon, Yuqiang Guan, and Jacob Kogan. Iterative clustering of high dimen-
sional text data augmented by local search. In Data Mining, 2002. ICDM 2003. Pro-
ceedings. 2002 IEEE International Conference on, pages 131–138. IEEE, 2002.

Edwin Diday. The dynamic clusters method in nonhierarchical clustering. International
Journal of Computer & Information Sciences, 2(1):61–88, 1973.

Mark Dilman and Danny Raz. Efficient reactive monitoring. Selected Areas in Commu-
nications, IEEE Journal on, 20(4):668–676, 2002.

Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley &
Sons, 2012.

Edward W Forgy. Cluster analysis of multivariate data: efficiency versus interpretability
of classifications. Biometrics, 21:768–769, 1965.

Robert M Gray. Entropy and information theory. Springer Science & Business Media,
2011.

Daniel Keren, Izchak Sharfman, Assaf Schuster, and Avishay Livne. Shape sensitive
geometric monitoring. Knowledge and Data Engineering, IEEE Transactions on, 24
(8):1520–1535, 2012.

Jacob Kogan. Feature selection over distributed data streams through convex optimiza-
tion. In SDM, pages 475–484. SIAM, 2012.

Jacob Kogan and Yaakov Malinovsky. Monitoring threshold functions over distributed
data streams with clustering. In Proceedings of the Workshop on Data Mining for
Service and Maintenance (held in conjunction with the 2013 SIAM International Con-
ference on Data Mining), pages 5–13, 2013.

Stuart P Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transac-
tions on, 28(2):129–137, 1982.

James MacQueen et al. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA., 1967.

Samuel Madden and Michael J Franklin. Fjording the stream: An architecture for queries
over streaming sensor data. In Data Engineering, 2002. Proceedings. 18th Interna-
tional Conference on, pages 555–566. IEEE, 2002.

A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently) frequent
items in distributed data streams. In Data Engineering, 2005. ICDE 2005. Proceedings.
21st International Conference on, pages 767–778, April 2005. doi: 10.1109/ICDE.
2005.68.

Boris Mirkin. Clustering: a data recovery approach. CRC Press, 2012.

Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620, 1975.

P. Semenov. Private communication, 2014.

Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric approach to monitor-
ing threshold functions over distributed data streams. ACM Transactions on Database
Systems (TODS), 32(4):23, 2007.

H Spath. Cluster dissection and analysis: theory, fortran programs, examples. horwood,
1985.

53

Helmuth Spath. Cluster analysis algorithms for data reduction and classification of ob-
jects. Ellis Horwood, Ltd. Chichester, England, 1980.

H Steinhaus. Sur la divisi on, des corps materials en perties. Bulletin de LAcademie
Polonaise des sciences, 1956.

Marc Teboulle, Pavel Berkhin, I Dhillon, Yuqiang Guan, and Jacob Kogan. Cluster-
ing with entropy-like k-means algorithms. In Grouping Multidimensional Data, pages
127–160. Springer, 2006.

54

	Introduction
	Text Mining Application
	Related Work
	Motivation and Contribution
	Overview of Dissertation

	Conventional Clustering Algorithms
	PDDP
	Batch k-means
	Incremental k-means
	Batch k-means followed by incremental k-means
	Node Clustering with Classical Clustering Algorithms

	Adaptive Clustering for Monitoring Distributed Data Streams
	Mathematical Formulation
	Implementation

	Experimental Results
	Data
	Monitoring with Incremental Clustering

	Discussion
	Appendices
	Appendix 1: First and Second Moments
	Appendix 2: Broadcast Count

	References

