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Abstract—Compressive sensing (CS) is a mathematical tech-
nique for simultaneous data acquisition and compression. In
this work, we show a CS based architecture for acquiring and
reconstructing transient astrophysical events. This architecture
reconstructs a differenced image, eliminating the need for any
sparse domain transforms, otherwise required for traditional CS
reconstruction. The resulting reconstructed differenced image is
of importance as the information required for generating time-
series photometric light curves is best obtained from an image
differenced with a reference image. This architecture eliminates
the need to 1.) transform an image to a sparse domain, 2.)
reconstruct a dense field, and then apply differencing on the
image to obtain the time-ordered photometry. We study the case
of gravitational microlensing in which a distant source star in
a crowded field is briefly magnified by the passage of a mass
through the line of sight between the source star and observer.
Our results show that this architecture is able to reconstruct the
light curve for magnification factors greater than 1 with error
less than 2% using only 10% of the Nyquist rate samples.

Index Terms—Compressive Sensing, Data acquisition, Image
differencing, Gravitational microlensing, Transient photometry

I. INTRODUCTION

Miniaturization is a dominant new trend in astronomical
mission development. While small space observatories offer an
exciting low-cost approach to obtaining measurements, such
spacecraft are typicality power limited due to available solar
array area. Among other considerations, this has the effect of
placing a hard limit on the distance a small satellite may be
from its receiver due to communications power requirements.
Could CS be profitably employed to reduce telecommunica-
tions bandwidth? What are the implications for the science?
Would systematics associated with the process significantly
impact the information in the data? Here we seek to directly
assess these questions for the case of a rapidly fluctuating
source star in a crowded field.

Here we describe the application of CS to remotely sensed
time-ordered photometric measurements, specifically stars un-
dergoing magnification due to the passage of a mass in the
intervening space - a phenomenon known as gravitational

microlensing. Microlensing events are exceedingly rare thus
requiring wide-field imaging of very dense stellar fields for
detection. As a consequence, microlensing light curves are
typically extracted using optimal image subtraction rather than
aperture photometry or point-spread function fitting photom-
etry. A difference image is created by subtracting a reference
image from the observed image using a convolution kernel.
Differencing and its implications for microlensing are provided
in Section III. The pertinent information required to generate
a microlensing curve, which in turn, gives information about
the lensing body, is obtained through the differenced image.
Importantly, retaining the observed dense spatial image is
not essential for the acquisition of the microlensing signal.
In this paper, we present a novel CS architecture which
applies optimal image subtraction to the CS measurements
themselves, and reconstructs the differenced image as required
for microlensing applications. We begin with a brief back-
ground on microlensing and compressive sensing, followed by
the architecture implementation description. Finally, we show
simulation results, and discuss a summary of the results in the
Conclusions section.

II. GRAVITATIONAL MICROLENSING

There are many sources of stellar variability that are of
interest to the astronomical community. Imaging data and
extracted photometric light curves can take an extraordinary
variety of forms with very subtle features. The features may be
studied to understand the underlying astrophysical processes.
One such source of stellar variability that is particularly apt
for the assessment of the application of CS is gravitational
microlensing.

Gravitational microlensing is a phenomenon that occurs due
to the chance alignment of a distant source star, the observer
and a mass in the intervening space. The mass warps space-
time, causing the light traveling radially away from the source
star to bend inward towards the mass thus following the path
of least time. Images of the source star are created by the
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lensing mass with the ratio of the area of the images to the
apparent area of the source star defined as the magnification.
Flux is conserved in this process, and, as a consequence, the
magnification is manifested as a change in the source star’s
brightness. The rate of change of brightness of the source is
proportional to the rapidity of apparent motion of the source
relative to the lensing mass. If a planetary companion of the
lensing star happens to pass through one of the lensed images
of the source, the magnified light from the source will exhibit
an inflection [1].

The alignment of the source, lensing mass and the observer
must be exquisitely precise to result in significant magnifica-
tion. The amount of magnification varies inversely with the
impact parameter of source and lens, dropping rapidly as it
exceeds the lens’ Einstein ring radius. The Einstein ring radius
varies as the square root of the ratio of the Schwarzschild
radius, rs = 2GM/c2, of the lens and the relative lens-
source distance. For the typical case of a source star in the
Galactic bulge at a distance of about 8 kpc and a ∼ 0.3
solar mass M5 dwarf lens star at 4 kpc, the alignment of
source, lens and observer, measured by the impact parameter,
would need to be less than 300 pico-radians on the sky to
yield a magnification greater than 10 - exquisitely precise. The
consequence of this constraint is that measurable microlensing
events are exceedingly rare thus requiring a high density of
stellar sources to permit a reasonable event rate. Detection
of a planetary companion to a lensing star is even more rare
with a vanishingly small probability of occurrence outside of
the very densest stellar fields. This makes the phenomenology
of gravitational microlensing an ideal laboratory to study the
systematic behavior of CS for crowded images.

III. DIFFERENCE IMAGING

Stellar images are differenced in order to retain only the
star sources experiencing a changing in magnification. Differ-
encing is performed by obtaining a convolution kernel which
matches the point spread function (PSF) of a reference image
to that of an observed image, and then performs subtraction
using the matched image [2].

xdiff = (xo − (xr ? K)) (1)

where xdiff is the differenced image, xo is the observed
image, xr is the reference image, and K is the convolution
kernel. In our work, we represent ? as a convolution operator.
xo can be defined as

xo = xs ? PO (2)

and xr can be define as

xr = xs ? PR (3)

where xs represents a spatial region and PO and PR are the
detector responses as given by the PSF functions for xo and
xr, respectively. In our simulations we use a Gaussian function
spread to define the PSF of both the observed and reference
images. A reference image has a cleaner PSF, that is, the
spread of a point source due to the detector’s response is very

narrow. This is usually generated by registering good seeing
images. Detector optics along with other atmospheric factors
determine the detector seeing, which in turn is characterized
by the PSF. An observed image in our context is any image
output of a detector system, typically with a worse seeing
PSF as compared to a reference image. In this work, we refer
to good seeing images as images produced with a narrow
spread PSF. From hereon, the PSF value can be inferred as
the standard deviation of a Gaussian kernel in both x and y
direction in pixel units for 2D images. The PSF of the observed
and reference image can have a great impact on the effects of
CS on the resulting differenced image.

IV. COMPRESSIVE SENSING BACKGROUND

Compressive sensing is a mathematical theory for sampling
at a rate much lower than the Nyquist rate, and yet, recon-
structing the signal back with little or no loss of information.
The signal is reconstructed by solving an underdetermined
system. This works only when the signal we are solving for
is sparse in the domain we are reconstructing. Hence, if it is
not sparse in the sampling domain, we can transform it to a
sparse domain, perform the reconstruction and then transform
it back to the original domain.

We assume x to be k-sparse signal of length n. A is the
measurement matrix and is of size m x n. The acquired
measurements vector, y, therefore, is of length m. These
dimensions are for 1D signals. Extension to 2D images are
discussed in Section V. A signal whose coefficients decay at
a high rate is sparse [3]. Hence, in an image, pixel values
which have similar ranging values for all, but k pixels, is said
to be k sparse, where the k pixels have significantly higher
values.

In a CS system, we collect m measurements, where m <<
n. Using the acquired measurements vector y and the known
measurement matrix A, we can reconstruct x using various
L1 norm minimization reconstruction algorithms to obtain a
sparse x [4] [5] [6]. Various reconstruction algorithms are
discussed in [7]. We solve for equation (4) to determine x
through the observation y.

y = Ax (4)

In this work, we use a conic optimization algorithm provided
by [8] [9] to solve for our signal of interest.

V. COMPRESSIVE SENSING ARCHITECTURE

In this paper, we discuss a novel CS-based architecture for
acquiring differenced crowded stellar images. Our research
is targeted towards microlensing events, however, it can be
extended to any astronomical events which require differenced
images for observing transient events. Our previous work (
[10], [11]) shows optimistic preliminary results for applying
CS to very sparse spatial images consisting of a star source
experiencing single lens microlensing event. This research
extends to differenced images by applying a novel CS archi-
tecture. Figure 1 shows how CS is used as a data acquisition
technique to obtain a photometric light curve.
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Fig. 1. CS Implementation overview

A traditional CS based architecture will use a sparse do-
main transform φ, to sparsify the crowded stellar field [12]
[13], which would then be reconstructed using optimization
techniques. The architecture overview is shown in Figure 2.

Fig. 2. Traditional CS Architecture for acquiring differenced images
blue: on-board processing, orange: ground processing

In this work, we demonstrate a CS based architecture for
efficiently obtaining only the transient star sources in crowded
stellar fields. Applying this technique to differenced images
over time can help generate the light curve shown in Figure 1.
This architecture, shown in Figure 3, implements differencing
at the CS measurement level. The output of this architecture
is a differenced image. Thus, the original spatial sky image is
not preserved. We study limitations and requirements of this
architecture. The architecture is implemented in the following

Fig. 3. CS Architecture implementing differencing during CS reconstruction
blue: on-board processing, orange: ground processing

manner:
1) Obtain CS based measurements, yo for a spatial image.

CS can be applied by projecting a matrix, A onto the
region of interest, xo. This can be done on a column-by-
column basis for a n x n spatial region, xo. Thus, for
2D images, y0 and A are of size m x n, where m << n.

2) Given A and a clean reference image, xr, construct
measurements matrix yr, where yr = Axr

3) Apply a 2D differencing algorithm on yo and yr to
obtain a differenced image, ydiff , and the corresponding

convolution kernel, M, which is used to match the
observed and reference CS measurement vectors, yo and
yr .

4) Reconstruct the differenced image, x′diff using CS al-
gorithms, given A and ydiff .

This architecture eliminates the need for sparsifying data as
needed by traditional CS architectures since the reconstructed
differenced signal would be sparse. This can reduce
computational power and memory required for transforming
into a sparse domain. As the measurements have a smaller
dimension than the reconstructed images, computational
power can also be reduced while differencing.

In this architecture, we create the differenced measurements
matrix, ydiff by

ydiff = yo − (yr ? M) (5)
= Axo − (Axr ? M) (6)

Here xo and xr are the observed and reference images,
respectively, and M is the obtained convolution kernel using
differencing algorithm. The known parameters are A, yo and
xr. Using differencing algorithms, we solve for M, to obtain
ydiff .
For 2D images, if differencing gives optimal results, ydiff will
have non-zero values in only the columns corresponding to the
non-zero elements in xdiff . Hence, reconstructing ydiff using
CS reconstruction techniques will give a sparse signal back,
corresponding to x′diff . To obtain the best results using CS
techniques, x′diff has to be very sparse. Sparsity of x′diff
in this case is dependent on two factors:

1) PSF: Images with fairly narrow PSFs, and reference and
observed images which have a similar distribution PSF,
give optimal results using differencing algorithms. This
in turn, produces sparser differenced images. If the PSFs
are able to be matched perfectly using a differencing
algorithm, the differenced image will only contain center
pixels with magnitude difference between the two.

2) Magnification: Sparsity in CS can also be viewed as
the rate at which the coefficients decay [3]. The higher
the rate of decay of the coefficients, the sparser the
image. Hence, higher magnification events give a sparser
image compared to lower magnification events. When
magnification factor is 1, ideal differencing should result
in zero magnitude over all pixels. In the case of all
zero magnitude pixels, the sparsity is zero. This can lead
to erroneous results as the CS reconstruction algorithm
searches for k non-zero pixel values.

We want to solve for x′diff as this is the differenced
image, which contains pertinent information for generating
a microlensing light curve. In our simplified case study, we
study the effects of magnification of a source star, depicting a
time sample of the microlensing light curve. Magnification at
the source star with position [p1, p2] is defined as

xo[p1, p2] = mf(xs[p1, p2]) ? PO (7)
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where mf is the magnification factor, ranging from 1 to 1.8
in our experiments.

ydiff = A(xdiff ) (8)

In equation (8), xdiff = xo − (xr ? K).
where δ − ε ≤ K ≤ δ + ε, and δ is defined by equation

(9). For equation (10) to hold true, ε must be 0. For small
quantities of ε, the results are discussed in section VI.

∫ t0b

t0a

∫ t1b

t1a

δ(t0, t1)dt =

{
1, if t0 = p1, t1 = p2

0, otherwise
(9)

where t0a < t0 < t0b and t1a < t1 < t1b
If ε = 0, then

Axo − (Axr ? M) = A(xo − (xr ? K)) (10)

In practical cases, differencing algorithms like Difference
Image Analysis (DIA) are used to find this kernel given two
images. Although a differenced image with no microlensing
events will give sub-optimal results, an image with a mi-
crolensing event should increase image sparsity leading to
better CS reconstruction results. We use a conic optimization
algorithm as described in [8] [9] to solve the optimization
problem shown in equation (11).

minimize ||x′diff ||1 s.t.

(Ax′diff − ydiff ) ≤ 0.001 (11)

VI. SIMULATION RESULTS

Using the proposed CS based architecture for 2D images,
we apply CS on a column-by-column basis for a 2D spatial
crowded stellar field. We use a 128x128 size image with
128 star sources spread across spatially in a random uniform
manner. The flux of these star sources are also generated
uniform randomly within the range of [10000, 50000] units
of pixel magnitude. Figure 4 and Figure 5 show a clean
reference image and an observed image with a worse seeing
PSF, respectively. For CS, a Gaussian normal random mea-
surement matrix is applied. We analyze the average % error
and standard deviation of the error over 100 Monte Carlo
simulations, where the random Gaussian measurement matrix
is varied. Given the CS architecture described in section V, we
reconstruct a differenced image, and then analyze the accuracy
in reconstruction of the microlensing photometric curve over
time. The reconstructed result (sample image shown in Figure
7) is compared to that of the differenced image resulting
from applying DIA on the spatial domain images, xo and xr
(sample image shown in Figure 6). Statistical error analysis
using varying parameters is shown in tables I, II, III, and IV.
As DIA is the current state-of-art differencing algorithm, we
use that as our basis for comparison. The % error is calculated
by

|x′[s0, s1]− x[s0, s1]|
x[s0, s1]

× 100% (12)

Here, s0 and s1 are pixel indices corresponding to the center
pixel of the star experiencing a change in flux. x[s0, s1] is the
DIA output value at position [s0, s1]. Similarly x′[s0, s1] is
the reconstructed differenced image value at position [s0, s1].

Fig. 4. Reference Image with 0.1 pixel units standard deviation PSF

Simulations are performed for a reference image with a
PSF of 0.1 pixel units of standard deviation for a Gaussian
spread PSF in both x and y direction. Similarly, the observed
image has a PSF with standard deviation of 0.1, 0.3 or 0.5
pixel units. In table I, the PSF of the reference image is 0.1
pixel units and PSF of observed image is 0.3 pixel units. In
this case, the kernel is known a-priori. Hence, in equation
(6), M is known. Magnification factor is used to calculate
the amplification value of the source star at position [s0, s1]:

Amplification Value = Source star value x magnification
factor

When the magnification factor is 1, there is no change
in the magnification of the source star. Hence, the resulting
differenced image should have ideally all zero value pixels
if the differencing works perfectly. However, for CS to give
optimal results, the differenced image must be sparse, that is,
the coefficients in the differenced image must decay at a high
rate, which is not the case if all of the pixel values are close
to zero. This results in the higher % error when there is no
change in magnification (magnification factor = 1).

We show that for when the observed image PSF is similar
in characteristics as the reference image PSF, the error in CS

Fig. 5. Observed Image with 0.3 pixel units standard deviation PSF
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Fig. 6. Residual after differencing using DIA

Fig. 7. Reconstructed residual using CS techniques with 10% of Nyquist rate
measurements

reconstruction is significantly lower. A summary plot is shown
in Figure 8. The legends are described in table V.

Fig. 8. Average % Errors for the configureations shown in table V

From the results it is evident that when no magnification
takes place, the differenced image is not sparse, hence, CS
does not work well. A 100% error indicates a false positive,
that is, the differenced image value of the pixels indicating
the presence of the source star is zero, but a non-zero value
is detected. However, as magnification factor increases, CS
results give minimal error. This architecture gives optimal
results in either of three circumstances, given a transient event

TABLE I
AVERAGE % ERROR IN MAGNITUDE OF THE SOURCE STAR AND STANDARD

DEVIATION OF ERROR OVER 100 MONTE CARLO SIMULATIONS.
CONVOLUTION KERNEL, M IS KNOWN.

OBSERVED IMAGE PSF = 0.3
REFERENCE IMAGE PSF = 0.1

Magnification Factor Average % error standard deviation of error

1 100 0.093

1.2 0.73 0.0073

1.4 1.87 0.099

1.6 0.75 0.0077

1.8 0.73 0.0072

TABLE II
AVERAGE % ERROR IN MAGNITUDE OF THE SOURCE STAR AND STANDARD

DEVIATION OF ERROR OVER 100 MONTE CARLO SIMULATIONS.
OBSERVED IMAGE PSF = 0.1

REFERENCE IMAGE PSF = 0.1.

Magnification Factor Average % error standard deviation of error

1 100+ 1244

1.2 1.75 0.0090

1.4 1.70 0.0097

1.6 1.64 0.0090

1.8 1.71 0.0090

is taking place:

1) Convolution kernel for differencing is known a-priori
2) PSF of an observed image has similar characteristics as

the reference image PSF
3) There is a significant change in magnification of a star

source experiencing a transient event

If these requirements are not met, the number of measurements
can be increased to reduce the error. Table IV, shows how the
error can be drastically reduced by increasing the number of
measurements from 10% of n to 50% of n. In cases where
the ratio of PSF of the reference image to observed image is
1 : 5 for a magnification factor of 1.8, the error is reduced to
less than 10% with 50% measurements.

Furthermore, it is evident that CS techniques can work
within 10% accuracy using only 10% of the required samples
for crowded stellar fields when both the reference and observed
image have fairly narrow PSF widths and there is a transient
star source present. The error can significantly reduce, to less
than 2% by increasing the number of measurements to 30%
of the Nyquist sampling rate. For detector read-outs with a
very clean PSF, we can reconstruct the images within 2%
accuracy using only 10% measurements. We also show that
CS techniques fail when the differenced image of interest is
not sparse. As we can see when none of the stars experience
any variation in magnitude, the resulting differenced image
should all have pixel values close to zero. This results in a non-
sparse image. Furthermore, we show that this novel CS based
architecture eliminates the need to find a sparse transformation
domain, while reconstructing only the needed information to
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TABLE III
AVERAGE % ERROR IN MAGNITUDE OF THE SOURCE STAR AND STANDARD

DEVIATION OF ERROR OVER 100 MONTE CARLO SIMULATIONS.
OBSERVED IMAGE PSF = 0.3

REFERENCE IMAGE PSF = 0.1.

Magnification Factor Average % error
(m = 0.1*n, m =
0.3*n)

standard deviation of error
(m = 0.1*n, m = 0.3*n)

1 100+, 100+ 2.6 x 108, 4.86x108

1.2 7.2, 1.76 0.037, 0.0041

1.4 6.2, 0.78 0.099, 0.0017

1.6 4.1, 0.49 0.018, 0.0013

1.8 4.0, 0.28 0.0197, 0.0012

TABLE IV
AVERAGE % ERROR IN MAGNITUDE OF THE SOURCE STAR AND STANDARD

DEVIATION OF ERROR OVER 100 MONTE CARLO SIMULATIONS.
NUMBER OF MEASUREMENTS IS 10% OF N AND 50% OF N, WHERE N =

128
OBSERVED IMAGE PSF = 0.5
REFERENCE IMAGE PSF = 0.1

Magnification Factor Average % error
(m = 0.1*n, m =
0.5*n)

standard deviation of error
(m = 0.1*n, m = 0.5*n)

1 100+, 100+ 14751, 3416

1.2 87.06, 75.13 0.26, 0.38

1.4 47.59, 28.23 0.36, 0.30

1.6 32.13, 15.17 0.22, 0.19

1.8 33.34, 8.96 0.17, 0.13

do transient photometric science.

VII. CONCLUSIONS

To summarize, this study shows promising results for apply-
ing CS on crowded star fields to detect and characterize tran-
sient events, such as the ones produced through gravitational
microlensing. This could be a game-changing technology in
the way we acquire data to efficiently capture and reconstruct
samples which are of importance to science, while discarding
wasteful samples. This process significantly reduces the on-
board storage, power, and transmission requirements. The
results of this study show that for a crowded star field with
clean seeing, we need to acquire only 10% of the Nyquist rate
samples to correctly capture a change in star magnitude over
time. There is a trade-off with the % of measurements required
and the accuracy in reconstruction, which can be studied as
applicable to each science need. Further study in differencing
algorithms for measurement vectors obtained through CS
will produce even better results in CS reconstruction of the
differenced images.
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