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ABSTRACT
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Electrical Engineering

Deep learning algorithms have gained a lot of popularity in recent years due to

their state-of-the-art results in computer vision applications. Despite their success,

studies have shown that neural networks are vulnerable to attacks via perturbations

in input images in various forms, called adversarial examples. Adversarial examples

pose a severe security threat because they expose a flaw in machine learning systems.

In this thesis, we propose a method to generate image-agnostic universal adversarial

patches for attacking image classification and object detection using latent contextual

information. Our experiments show that for classification, replacing a small part of

an image with a universal adversarial patch can cause misclassification of more than

40% images. In object detection, we attack each category of objects individually and

the best patch causes approximately 20% images to be misclassified when attacking

images of the bird category. We also demonstrate that photos taken of adversarial

examples containing the adversarial patch on a cell-phone, can also fool the network.

Thus, we show that adversarial examples exist in the physical world which can cause

harm to AI-based systems.

Keywords: Adversarial examples, Image Classification, Convolutional Neural

Networks, Object Detection
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Chapter 1

INTRODUCTION

Image understanding tasks such as image classification and object detection

(Szegedy et al. 2013) are closing in on human level performance since 2013 due

to the immense success of deep learning algorithms. However, a lot of recent research

has shown that neural networks are vulnerable to attacks via small, almost impercep-

tible perturbations induced in the input. These perturbations of the input, known as

adversarial examples, are deliberately generated to push the network to misclassify

images with high confidence. The fact that such a small perturbation can change the

network’s output shows that neural networks learn very differently from how humans

learn, and they are somehow unable to understand the underlying concepts in images

the way we do.

Adversarial examples are like optical illusions for computers, and they pose a

severe threat to AI-based systems. Adversarial examples can either be targeted,

where the network is pushed towards an incorrect target class, or non-targeted where

the network is pushed away from the correct class. One of the methods of generating

adversarial examples is by solving an optimization problem, by maximizing the loss

function rather than minimizing it. (Szegedy et al. 2013), (Goodfellow, Shlens,

& Szegedy ), (Moosavi-Dezfooli et al. 2016) show ways of generating adversarial
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examples. (Kurakin et al. 2017) even demonstrate that it is possible to capture

photos of adversarial examples. Taking cell-phone pictures of adversarial examples

printed out on paper, and passing them as input to trained neural networks still

results in these photos being misclassified. Therefore, adversarial examples exist in

the digital world as well as the physical world.

Fig. 1.1. Example of a universal adversarial patch. The first image shows the original

image which is classified as a Panda. The second image contains the adversarial patch

in the corner, and is therefore classified as a St. Bernard by Alexnet. The third image

shows the Universal Adversarial Patch which simply needs to be applied to an image

to fool a network.

In this thesis, we propose a non-targeted approach for creating adversarial exam-

ples by generating an image-agnostic universal adversarial patch, which could poten-

tially be used in real-world attacks. Earlier methods have concentrated on making the

perturbation vector small in terms of the magnitude of difference between the origi-

nal image and the adversarial image, and push the network boundaries by tweaking
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the physical appearance of objects in the images. In contrast to earlier methods, we

introduce a patch which is small in terms of size, in an image, as shown in figure

1.1. These patches are successful in fooling the image classifier, Alexnet (Krizhevsky,

Sutskever, & Hinton ) and to some extent an object detector, YOLOv2 (?). Our

adversarial patch works because image classifiers and object detectors rely on context

information for making accurate predictions. To explain Context with an example:

a classroom contains a board, a podium, tables and chairs, but you wouldn’t expect

a bear to be present there. Therefore, if a bear is actually present in a classroom

setting, a neural network may get confused by the apparent mismatch in context,

and would probably not classify it as a bear, but as a human. Thus, using the patch,

we aim to change the context of the image and confuse CNNs. The patch which we

use occupies a small part of the image and it is non-additive, that is, it replaces the

pixels of the original image where it is applied. It is small enough, such that humans

can recognize all objects present in the image after the patch is applied. The patch

is universal across all the input data and is, therefore, image agnostic, not network

agnostic. As a practical application, if the patch could be printed out and stuck on a

car or stop sign, it could cause a lot of harm to self-driving cars.

Thus, to summarize, the following are the main contributions of this thesis:

1. We propose a method for generating an image-agnostic universal adversarial

patch which can fool state-of-the-art deep neural networks.

2. We show that we can learn patches to fool image classification, as well as, to

some extent object detection.

3. With extensive analysis, we show that context plays a big part in image under-

standing tasks.
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4. We show that cell-phone images of adversarial patches can also be used in the

real-world to deceive computer vision algorithms.

The remainder of the thesis has been organized as follows. Chapter 2, Back-

ground and Related Work, discusses convolutional neural networks for classification

and detection, and relevant research of adversarial examples. Chapter 3, Algorithm

and Methodology, delves into the details of our experimental setup and our algorithm

for generating adversarial patches. Chapter 4, Datasets, describes the datasets used

for our experiments. In Chapter 5, Evaluation and Experimental Results, we evaluate

the robustness of image classification and object detection to our patch. We conclude

and discuss future work in Chapter 6, Conclusion.



Chapter 2

BACKGROUND AND RELATED WORK

Adversarial examples are trending in deep learning research, as they expose a

flaw in machine learning models. There is a tremendous amount of research taking

place to attack as well as defend deep networks. In this chapter, we talk briefly

about convolutional neural networks for image classification and object detection;

and relevant research carried out in adversarial examples.

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) came back to life after decades of ex-

istence when it was feasible to train them on a large number of images in compar-

atively less processing time, due to the availability of high-performance computing

hardware and a large amount of data helped. In 2012, (CNNs) became popular after

(Krizhevsky, Sutskever, & Hinton ) used a CNN based model to win ILSVRC 2012

(ImageNet Large-Scale Visual Recognition Challenge). Since then, CNNs have diver-

sified to tackle several visual understanding, natural language processing as well as

problems in other deep learning areas.

Image classification has been immensely successful since the advent of Alexnet,

VGG-16, VGG-19 (Simonyan & Zisserman 2015) and so on. Some models such as

5
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Inception (?) and Resnet (He et al. ) have achieved higher accuracy than human

performance for classification. Object Detection techniques have steadily improved

since (Girshick et al. ) used CNNs for object detection. He proposed a method to

generate region proposals in an image, compute CNN feature vectors for each of the

regions and then classify the regions using a linear SVM. Faster R-CNN (?) goes a

step further and produces region proposals using CNNs as well. YOLOv2 (You only

look once), which is an improved version of YOLO (Redmon et al. ), is a real-time

object detection system which gives a mean average precision (mAP) of 78.6% on the

20 categories of the Pascal VOC dataset.

2.2 Adversarial Perturbations

Despite the impressive performance of CNNs, they fall prey to adversarial at-

tacks. Adversarial examples were discovered when (Szegedy et al. 2013) was trying

to understand how CNNs work by finding the transformation of an image belonging

to one class into another class. He found instead, images which could fool the network

into believing that it belonged to the target class by adding an undetectable amount

of noise. Since then, many attacks and defenses for adversarial examples have been

devised within a short span of time.

2.2.1 Attacks

(Goodfellow, Shlens, & Szegedy ) in 2015 proposed a fast method for comput-

ing adversarial perturbations, Fast gradient-sign method (FGSM). FGSM defines an

adversarial perturbation as the direction in image space which maximises the cost

function by taking a step of gradient ascent in the direction of sign of gradient.

(Moosavi-Dezfooli et al. 2016) found a single universal adversarial perturbation
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which can fool a large number of images while being imperceptible to humans. In the

paper they have explained how the perturbation can generalize to different network

architectures as well.

(Lu et al. 2017) demonstrated how classifiers and detectors are different and ex-

plained why standard object detectors aren’t fooled by adversarial examples, whereas

classifiers are easily fooled. They showed experimental results on YOLOv2 and Faster

R-CNN, using printed stickers stuck on stop signs as well as adversarial noise hidden

in graffiti and art. Their method is based on their earlier paper by (?).

2.2.2 Defences

While a lot of ways of generating adversarial examples have been found, the cause

of their existence is still not certain. However, there are some researches dedicated

to mitigating the effect of adversarial examples.

(Papernot et al. ) used a methodology for defending against adversarial examples

based on knowledge distillation by (Hinton, Vinyals, & Dean 2015) called Defensive

distillation. They leverage the knowledge extracted from the output predictions of a

CNN to increase the network’s robustness to adversarial samples. However (Carlini

& Wagner ) show that defensive distillation is in fact, not more robust to adversarial

examples.

Adversarial training is one of the strategies used for defending against adversarial

examples, where the network is trained on original as well as adversarial images.

(Kurakin et al. ) apply adversarial training at a largescale on the ImageNet dataset.

They show that adversarial training proves beneficial, especially in case of single-step

adversarial attacks. (Tramèr et al. ) extend the adversarial training idea to training

an ensemble adversarial training method to increase the network’s robustness to black-

box attacks.
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(Metzen et al. ) and more recently Safetynet by (Lu, Issaranon, & Forsyth

) devised a defence against adversarial examples which uses an adversary detector

which classifies an image as adversarial or not adversarial by looking at the internal

layers and representations of the network. If an image is classified as adversarial, it

is rejected from further processing.
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Chapter 3

ALGORITHM AND METHODOLOGY

The main idea behind our attack is to introduce a small patch in the image such

that a classifier or detector will be blind to the attacked class in the image. We need

to search for a perturbed patch which pushes the representation vector for each class

of the image into a different class. Our search is an optimization problem where we

optimize the patch to maximize the cost function instead of minimizing it. We find

the universal perturbed patch by extending the Gradient step method provided by

(Szegedy et al. 2013).

While training, we learn the patch by iterating over each image in the dataset

and taking a step of gradient ascent for each image (or batch). While training, we also

carry out validation on a small set of images taken from the testing dataset. During

validation, we obtain the network prediction for original images and compare it with

the prediction for adversarial images, and report the number of misclassified objects

or the fooling rate. After training the patch for a sufficient number of iterations, we

use the patch which reported the best fooling rate for the validation dataset.

While iterating over each image in the dataset, we perform the following steps:

1. Initialize the adversarial patch with random values within permissible limits of

the image at the beginning of the first iteration.
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2. Add the adversarial patch to the image by replacing the respective pixels in the

image.

3. Find the direction where we minimize the likelihood of specified class or max-

imise the loss function. We find this by taking the loss gradient with respect to

the image.

4. Crop the gradient to 30×30 pixels around the noise patch location

5. Update all parameters in the noise vector by taking a step of gradient ascent

6. Repeat this process on each image in the dataset for a sufficient number of

iterations over the dataset

Thus, at each data point we are taking one step away from predicting the correct

class. Also, we have to clip the intensity of the outlier patch pixels after each updation

to contain them within the limits of RGB image. This procedure is shown in Fig. 2.

In our attack we can adjust three parameters: Learning rate, Batch size and

Patch location. For both classification and detection, we train the patch on a pre-

trained network and keep the network weights fixed, while adjusting the perturbed

patch.
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Fig. 3.1. Procedure for training the adversarial patch

Fig. 3.2. Testing the adversarial patch against the original input
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3.1 Classification

For our classification experiments, we use the Alexnet CNN model, which has

ve convolutional layers, two fully connected layers and an output layer having nodes

corresponding to the number of classes in the dataset. We use the Imagenet (ILSVRC

2012) dataset, which has 1000 categories. The 30×30 noise patch is initialised with

random values before the first iteration and it is applied to each input image, thus

creating an adversarial image. This 224×224 adversarial image is given as input to

Alexnet and the output of forward propagation on the network is the prediction of

the class of the adversarial image.

The loss function used in classification is cross-entropy loss. The gradient of

cross-entropy loss is back propagated onto the input image and we thus we the per-

turbed patch. The Equation 3.1 represents the loss function for image classification:

(3.1) loss = − log

(
exp(x[class])∑

j exp(xj)

)

3.2 Detection

For attacking object detection, we use the YOLOv2 model whose architecture

is based on GoogleNet (?) and has 24 convolutional layers. The output vector

of this network contains predictions for each object detected in the image. The

output contains offsets x, y, w, h where x and y are the center coordinates of the

predicted object, and w, h are the width and height. The output also contains

an ’objectness confidence’ score, which denotes the probability that the predicted

bounding box contains an object. The last output is a probability vector which

provides the probabilities of the object belonging to each category in the dataset.
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This probability vector is the output we are interested in. The loss function for YOLO

consists of Mean Square Error losses for the offsets and Objectness confidence, and

a Cross-entropy loss for classification. We are only concerned with the classification

loss so, this is the loss whose gradient we back-propagate onto the image to update

our patch. Just like classification, we add our randomly initialized patch to the input

image and we find the class probabilities and cross-entropy loss for this adversarial

image. We proceed to do a gradient ascent step with cross-entropy loss obtained.

Cross-entropy loss can be defined as follows:

(3.2) class loss = Prob
(
class(x) == A

)
= − log

(
exp(xA)∑
j exp(xj)

)

Equation 3.2 shows the Probability of the class of the image x being equal to

A, the attacked or actual class. The summation over j shows the summation of

probabilities of x belonging to all the classes in the dataset.

When we simply used the cross-entropy loss function, there is a possibility that

the patch itself may be predicted as the attacked class. To suppress the patch from

learning features of the attacked class, we introduce another cross-entropy loss which

penalizes the patch for being predicted as the attacked class. This can be accom-

plished by adding the patch location to the ground truth vector for object detection,

where the data is the patch itself, and the label is the attacked class. Thus, if the

patch is predicted as the attacked class, it will be penalized according to our gradient

ascent algorithm. The loss function for penalizing the patch can be written as follows:

(3.3) patch loss = Prob
(
class(patch) == A

)
= − log

(
exp(patchA)∑
j exp(patchj)

)
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Equation 3.3 shows the Probability of the class of the image x being equal to

A, the attacked or actual class. The final loss that we use for object detection is the

sum of these two losses 3.2 and 3.3 respectively in Equation 3.4.

(3.4) loss = class loss+ patch loss

3.3 Algorithm

Consider a model M which is the neural network we are trying to fool. X =

{x1, x2, ..., xm} is the set of input images to M and Y = {y1, y2, ..., ym} is the set

of ground truths for each X. Let p be the perturbed patch which replaces a part

of the image x, and let us call this perturbed image xp. Let m be a binary mask

corresponding where the part of the image to which the patch is added is made 0.

Thus, the image region has a value of 1 and the noise region has a value of 0. On

element-wise multiplication of x with m and then adding p to the image, we obtain

xp. The patch is initialized with random values before the first iteration. The patch

is bounded by the permissible limits of an image (0 to 1 or 0 to 255). The main

idea is to use gradient ascent instead of gradient descent and train the patch p such

that every step of gradient ascent takes the network away from predicting the correct

output for the image. If J is the cost function for training M and W are the model

M’s weights, we can formalize the patch p for one image as:

• Replace a patch on the image with noise patch (x1)p0 = x1 �m+ p0

• p1 = p0 + α × ∇(x1)p0
J
(
W, (x1)p0 , y1

)
; p0 is initialized to random permitted

values for an RGB image

To make the patch universal, we train it on all the input images and keep accumulating

the loss. Thus the patch for the ith image will be:
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pi = pi−1 + α×∇(xi)pi−1
J
(
W, (xi)pi−1

, yi

)
We evaluate our model based on the reduction in precision or the number of

predictions changed from the predictions made on the original image.

Algorithm 1: calculate universal adversarial patch

input : set of images X, set of corresponding targets Y and pre-trained

model M on the given images X, coordinates of patch C

output: universal adversarial patch p

Initialization: patch p is initialized to random permitted values for an RGB

image.

1: for sufficient number of iterations over X do

2: for image xi ∈ X with label yi ∈ Y do

3: (xi)pi−1
= xi �m+ pi−1

4: pi = α×∇(xi)pi−1
J
(
W, (xi)pi−1

, yi

)
5: pi =(Crop pi at C, coordinates of patch, to 30x30)

6: pi = pi + pi−1

7: clamp pi between 0 and 1

8: end for

9: end for



Chapter 4

DATASETS

This chapter briefly describes the datasets we have used. For classification, we

use the Imagenet ILSVRC 2012 (Deng et al. ) dataset and its characteristics are

described in section 4.1. For object detection, we use the Pascal VOC (Everingham

et al. 2015) dataset to train and test our patch. We have described this dataset below

in section 4.2.

4.1 ImageNet

The Imagenet dataset is a vast collection containing 14197122 images gathered

from multiple sources such as Google, Yahoo, Flickr etc. These images have been

annotated by humans using Amazon’s crowd-sourcing platform for human intelli-

gence tasks: Mechanical Turk. Imagenet has organized into a hierarchy based on

Wordnet and has 1000 categories. We use the flat labels, without leveraging the

hierarchy information. Imagenet is used every year for the ImageNet Large Scale Vi-

sual Recognition Challenge (ILSVRC) evaluates different object detection and image

classification algorithms.

For our image classification experiments, we use approximately 1280000 images

for training and 50000 images for testing.

16
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4.2 Pascal VOC

The Pascal Visual Object Challenge (VOC) dataset was another challenge, to as-

sess object recognition from various data sources. It was started in the year 2005. The

object classes of Pascal dataset have been organised as into the following categories.

• Person: person

• Animal: bird, cat, cow, dog, horse, sheep

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

• Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

Pascal VOC dataset has been annotated for object detection, specifying localis-

tion information for each object within the image. It provides the coordinates of the

center of the image, height and width of objects which can be used for training object

detection systems.

Since the number of images in the Pascal dataset is limited, we combine the

training images from the years 2008-2012, as well as the validation images to form

our training data. There is a separate dataset for testing. We are not explicitly

provided the ground truth for the test images. We have to upload the predictions for

test images on to the Pascal VOC challenge server to get the mean average precision

results. This can be done by using the script provided by the organisers of the

challenge.

Combining the training and validation sets, we get 23988 training images, and

7010 testing images from the test dataset. Since we attack each class in object

detection separately, we train the patch to fool the class only on the images containing

objects belonging to the attacked class. In table 4.1 given below, we enlist the training

and testing images we have used according to each individual class.
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task aero bicycle bird boat bottle bus car cat chair cow

training 908 795 1095 689 950 607 1874 1417 1564 444

testing 204 239 282 172 212 174 721 322 417 127

task table dog horse mbike person plant sheep sofa train tv

training 738 1707 769 771 6095 772 421 736 805 831

testing 190 418 274 222 2007 227 97 223 259 229

Table 4.1. Images by category in Pascal VOC Dataset



Chapter 5

EVALUATION AND EXPERIMENTAL

RESULTS

In Chapter 3, we have described the algorithm for generating the universal adver-

sarial patch. In this chapter, we use the algorithm to train patches for classification

and detection, and show detailed results of the performance of classifiers and detectors

after introducing the adversarial patch in the image at various locations.

5.1 Classification

We have used Alexnet as the classifier model for our experiments and measured

its performance on a patch trained on the Imagenet dataset. As mentioned in chapter

4, we used 1281000 training images and 50000 validation images. We pretrain Alexnet

on Imagenet to obtain a top-1 accuracy of 52.3% and top-5 accuracy of 76.81%. To

train the patch for classification, we do only one iteration over the entire training

dataset using the pre-trained Alexnet model. We tuned training parameters, such as

batch size and learning rate. We also conducted experiments by placing the patch in

different locations. As shown in the algorithm in chapter 3, we found the perturbed

patch by back-propagating the gradient of loss with respect to the image. To evaluate

the learned patch, we added the patch onto the image after masking, and report the
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result of the ratio of images whose labels changed when comparing the predictions of

the original image and the adversarial image. We carried out experiments by placing

the patch in the center of the image, in the top left corner of the image and in random

locations all over the image. After some experimentation, we settled on a learning

rate = 0.1 and batch size = 16. The size of the input image is 224×224 and patch

size is 30×30.

5.1.1 Placing the patch in the top-left corner

In this experiment, we train the patch by placing it in the top-left corner of the

image. The x and y coordinates of the starting point (top-left corner) of the patch on

the image in this experiment are (10, 10). The patch is initialized randomly within

the permissible range for an RGB image. When we get the gradient of each image

with respect to the adversarial image, we crop it to a 30×30 square at (10, 10) to get

the gradients at the patch location and do gradient ascent by adding the gradient to

our patch. The best fooling ratio that we achieved for the top-left corner patch was

after seeing about 650000 images. With a patch of size 30×30, we have achieved a

fooling rate of 42.1% when placing the patch in the top-left corner. When the same

patch is placed randomly along the edge of the image at test time, we obtain a label

change ratio of 27%. This shows that the patch is not sensitive to the location where

it has been trained, and works well even when placed at a different location.

5.1.2 Placing the patch at a random location on the edge of the image

This experiment is exactly like the top-left corner experiment, except that we

placed the patch randomly between the edge and bordering 20 pixels of the image.

We obtain a label change ratio of 32.97% in this experiment. We found the best patch

after seeing approximately 300000 images. We conduct this experiment to show that
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the patch we have learned is robust to change in location and can be placed any where

in the image.

5.1.3 Placing the patch at random location anywhere in the image

In this experiment too, we place the patch randomly, but the patch can be placed

uniformaly all over the image. We obtained a label change ratio of 44.54% in this

experiment. We found the best patch after seeing approximately 840000 images.

5.1.4 Placing the patch at the center of image

On training the patch by placing it in the center of the image, we obtain the

best fooling ratio, i.e. 64.59%. However, in this scenario a portion of the object is

covered by the patch, since Imagenet centers the objects. The best patch was after

seeing approximately 520000 images.

Thus, in classification, we show that even though our patch is not overlapping

on the object and is placed in a corner, it is capable of changing the class label of

the image. This shows that somehow the context of the image is being changed in a

way that the prediction of the network is pushed into a different class which fits the

context better.

The results of the classification experiments are reported in table 5.1. The table

specifies the patch location along with the ratio of labels changed for input images

from the training dataset and testing dataset. We show some positive results on

applying the random patch in figure 5.2 and some negative results in figure 5.3. The

first picture shows the original image and the second picture is the adversarial image.
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Classification Experiment Training Data Testing Data

Patch in the top left corner of the image 79.89 42.10

Patch located randomly on edge of the image 84.02 32.97

Patch located randomly in the image 76.56 44.54

Patch located at the center of the image 99.73 64.59

Table 5.1. Classification results: ratio of predicted labels changed after adding the

learned patch on training and testing data

(1) Random locations on the image edge (2) Top-left corner

(3) Random locations on the image (4) Center of the image

Fig. 5.1. Adversarial patches learned for classification on the Imagenet dataset
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(1) original: stingray; adversarial: doormat, welcome mat (2) original: shower cap; adversarial: Chesapeake Bay

retriever (dog breed, also UMBC Mascot)

(3) original: radiator; adversarial: paintbrush (4) original: sliding door; adversarial: pay-phone,

pay-station

Fig. 5.2. Positive results for adversarial patches learned for classification on the

Imagenet dataset

(1) original: Arabian camel, dromedary, Camelus

dromedarius ; adversarial: Great Dane

(2) original: vine snake; adversarial: tree frog, tree-frog)

Fig. 5.3. Negative results for adversarial patches learned for classification
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5.2 Detection

As described in secton 3.2, we generated adversarial patch for YOLO object

detection algorithm. We trained as well as measured its performance on the Pascal

VOC dataset, consisting of 16000 training images and 5000 validation images. While

training we do several iterations over the entire training dataset. We first pre-trained

Yolo on the Pascal VOC training data, and then used this pre-trained model to learn

our patch. The mAP each class and average precision achieved on the pre-trained

Yolo model is given in table 5.2.

aero bicycle bird boat bottle bus car cat chair cow table

76.82 78.38 72.59 63.41 48.05 78.49 79.35 87.03 51.45 78.72 72.1

dog horse mbike person plant sheep sofa train tv mAP

81.57 80.29 78.94 75.3 49.07 77.14 72.75 86.17 73.52 73.06

Table 5.2. mAP and AP achieved on pre-trained Yolo network on Pascal-VOC

dataset

Object Detection is different from Classification. Firstly, the number of cate-

gories is far less than the classification dataset categories (20 as compared to 1000)

and therefore the network may learn better representations of each class. Also, de-

tection predicts a localization component as well as an objectness confidence score,

which is the probability whether a detection is an object or not. This additional

information reduces the effect of any adversarial perturbation. Therefore, we attack

each class of Object Detection separately and train patches for each category, and use

the latent contextual information used by the detection system to predict the class

of the objects accurately.

Just as we did in classification, we tune various parameters, such as batch size,
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learning rate. We found the perturbed patches for each class by back-propagating the

gradient of sum of class loss and patch loss with respect the image, for all the images

belonging to the specified class. We applied the perturbed patch to the image after

masking and report the result of detection on the adversarial examples by running

the Pascal evaluation scripts. To evaluate the performance of our patch on object

detection, we compare the performance of mAP(mean average precision) over all

classes and AP (average precision) of each class of the original images versus the

adversarial images. We report the difference between the corresponding values for

original and adversarial images.

5.2.1 Patch in center

We place the patch in the center of the image and evaluate the performance of

YOLO on the adversarial input. For training we use batch size = 32 and learning

rate = 1. The results of this experiment have been shown in table 5.3. The values in

the table show the difference between the performance of original images on the pre-

trained Yolo model and the performance of adversarial images on the same. Figure

5.4 vizualises this difference with a bar chart.

In the results table 5.3, the first row shows the change in precision in the attacked

class. The highest change in Precision that we achieved is 21.32% for bird class,

second highest for cat (15.1%) and third for horse (13.35%). The second row shows

the average precision values of all classes achieved for the on applying the bird class

patch, as this is the class having the best change in precision. The car class precision

can be ignored in this case because the patch itself is detected as a car in several

cases, which affects the precision of the car class.

Although we experimented with placing the patch randomly without obstructing

any images, the results of the experiment were very poor.
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method aero bicycle bird boat bottle bus car cat chair cow table

cls loss 11.29 3.55 21.32 7.48 6.03 5.86 0.61 15.1 2.88 9.51 6.05

best loss 24.48 2.84 21.32 23.83 5.75 1.93 43.81 15.56 4.95 10.53 5.61

method dog horse mbike person plant sheep sofa train tv mAP

cls loss 10.55 13.35 2.31 3.02 9.05 6.87 8.24 12.64 11.98 8.72

best loss 15.62 12.68 5.71 7.86 9.32 11.14 10.61 25.05 13.19 11.46

Table 5.3. Object detection results of our adversarial patch

aero bicycle bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
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Fig. 5.4. Visualization of average precisions of the original Images versus

adversarial images

The trained patches for each category are shown in Figure 5.5 and figure 5.6

shows the image results we achieve after applying the patch which works best (Patch

obtained on attacking the bird class) on Pascal VOC dataset. 5.7 shows some negative

examples for the same. A lot of the learned patches start look like other objects. This

makes sense if we consider how the presence of an object changes the context of a

scene. For example, in Figure 5.6 (6), the adversarial patch is above the aeroplanes,

and the aeroplanes are not predicted after applying the patch, which looks like a car.

In the real-world, you don’t see a car flying above an aeroplane, and therefore by
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virtue of placement of the patch, the prediction of the network is changed. Similarly,

in Figure 5.6 (1), The patch itself is predicted as a car, but the train object is not

predicted because the size of the car and the train do not fit the same context.

(1) aero (2) bicycle (3) bird (4) boat (5) bottle (6) bus (7) car

(8) cat (9) chair (10) cow (11) table (12) dog (13) horse (14) mbike

(15) person (16) plant (17) sheep (18) sofa (19) train (20) tv

Fig. 5.5. Adversarial patches learned for each class in the Pascal-VOC dataset
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(1) (2)

(3) (4)

(5) (6)

Fig. 5.6. Positive results of adversarial patches learned for object detection on the

Pascal VOC dataset
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(1)

(2)

Fig. 5.7. Negative results of adversarial patches learned for object detection on the

Pascal VOC dataset

5.2.2 Importance of Context

It is interesting to see how attacking one class affects the other classes. We

plotted the line graphs of average precision versus attacked class for some categories

which we thought had similar context. By examining these graphs we can see that

context is important for object detection. Figure 5.2.2 shows the change in average

precision for the aeroplane, bird and boat categories for each class attack. We see that

aeroplane and bird move in a very manner and whichever attack hurts aeroplane class
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hurts bird class as well. We noticed that the boat class moves similar to aeroplane

class too, and we think it might be due to the similarity in appearance and background

color as the sky and the ocean are both blue.

The second graph, Figure 5.9 compares dogs, cats and sheep performance when

attacked. As expected, cat and dog graphs lie close to each other and an attack on one

affects the other. Figure 5.10 (1) compares the performance of horse and cow classes,

which we thought may be comparable, but they are not as similar as we expected.

This could be because humans occur on top of horses a lot of times but never on top

of cows. After generating these three graphs, we noticed the similarity between cow

and sheep class as well, as shown in Figure 5.10 (2).

aero bicycle bird boat bottle bus car cat chair cow table dog horse mbikeperson plant sheep sofa train tv
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Fig. 5.8. Comparision of average precisions when attacking aeroplane, bird and boat

classes
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aero bicycle bird boat bottle bus car cat chair cow table dog horse mbikeperson plant sheep sofa train tv
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Fig. 5.9. Comparision of average precisions when attacking cat, dog and sheep

classes
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Fig. 5.10. Comparison of average precisions of classes
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5.3 Demonstration of adversarial examples in the physical world

So far we have shown how digitally generated adversarial images are able to fool

the network. In this section we show that we can take a photo of an image containing

an adversarial patch, and this photo is also able to confuse the network.

We obtained images from the classification and detection datasets which were

able to fool the network. We then took photos of the original image and the photos of

the adversarial images with a Nexus 4x phone, and passed these through the network.

We found that more than 30% of the time, the adversarial photos images are also

misclassified by the network. Figure ?? and 5.11 show examples of photographs

taken of original images which are classified correctly, and photographs of adversarial

examples which are misclassified.

(1) original image (2) adversarial image)

Fig. 5.11. Real world adversarial example for fooling object detection
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(1) original: stingray (2) adversarial: purse

(3) original: toilet tissue, toilet paper, bathroom tissue (4) adversarial: axolotl, mud puppy, Ambystoma

mexicanum

Fig. 5.12. Real world adversarial examples for fooling classification



Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we presented a novel way of generating adversarial examples, by

introducing a small patch in an image which can confuse image classification and

object detection systems. For classification, placing the patch in the top-left corner

of the image, we were able to change 42.1% of the network predictions from the testing

data; while training and placing the patch in random locations along the edge of the

image, we were able to fool the network 33% of the time. Although object detection

we placed the patch in the center of the image, we were able to reduce the average

precision of the bird class by 21.3%, cat by 15.1% and horse by 13.35%, which are

our top three results for object detection. Along with this, we also demonstrated that

cell-phone pictures of adversarial examples with the patch also fool the network.

6.2 Future Scope

There is a lot of scope for improvement and future work in this thesis. A way

which could help improve the object detection performance could be to suppress the

best detection for the targeted class by adding a max-pooling layer to the existing

Yolo model. This loss function minimizing the probability of the best attacked object

34
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detection combined with the exiting cross-entropy loss for classification could help

increase the fooling ratio for object detection. Also, owing to the small size of the

patch, this algorithm could be used to realize out real-time blackbox attacks against

CNNs, as it will take lesser time to compute gradient with respect to 900 pixels

(30x30) rather than 224x224 or 416x416 pixels.

It will be interesting to see performance of this algorithm on other classification

and object detection models; performance of the same patch since it has been show

n that adversarial examples are transferable, and also performance of the algorithm

on other models. Lastly, using a patch may help to train the network better with

respect to context and help the network to understand good and bad context.
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