




ABSTRACT

Title of dissertation: Analysis of Stability and Noise in
Passively Modelocked Comb Lasers

Shaokang Wang, Doctor of Philosophy, 2018

Dissertation directed by: Curtis R. Menyuk, Professor,
Department of Computer Science and Electrical
Engineering, University of Maryland, Baltimore County

The search for robust, low-noise modelocked comb sources has attracted sig-

nificant attention during the last two decades. Passively modelocked fiber lasers are

among the most attractive comb sources. The most important design problems for

a passively modelocked laser include: (1) finding a region in the laser’s adjustable

parameter space where it operates stably, (2) optimizing the pulse profile within

that region, and (3) lowering the noise level. Adjustable parameters will typically

include the cavity length, the pump power, and the amplifier gain, which may be

a function of the pump power, the pump wavelength, and both the material and

geometry of the gain medium.

There are two basic computational approaches for modeling passively mode-

locked laser systems: the evolutionary approach and the dynamical approach. In

the evolutionary approach, which replicates the physical behavior of the laser, one

launches light into the simulated laser and follows it for many round trips in the

laser. If one obtains a stationary or periodically-stationary modelocked pulse, the

laser is deemed stable and, if no such pulse is found, the laser is deemed unstable.

The effect of noise can be studied by using a random number generator to add com-

putational noise. In the dynamical approach, one first obtains a single modelocked

pulse solution either analytically or by using the evolutionary approach. Next, one

finds the pulse parameters as the laser parameters vary by solving a root-finding

algorithm. One then linearizes the evolution equations about the steady-state solu-

tion and determines the eigenvalues of the linearized equation, which we refer to as



the equation’s dynamical spectrum. If any eigenvalue has a positive real part, then

the modelocked pulse is unstable. The effect of noise can be determined by calcu-

lating the noise that enters each of the modes in the dynamical spectrum, whose

amplitudes are described by either a Langevin process or a random walk process.

The evolutionary approach is intuitive and straightforward to program, and

it is widely used. However, it is computationally time-consuming to determine the

stable operating regions and can give ambiguous results near a stability boundary.

When evaluating the noise levels, Monte Carlo simulations, which are based upon

the evolutionary approach, are often prohibitively expensive computationally. By

comparison, the dynamical approach is more difficult to program, but it is computa-

tionally rapid, yields unambiguous results for the stability, and avoids computation-

ally expensive Monte Carlo simulations. The two approaches are complementary

to each other. However, the dynamical approach can be a powerful tool for system

design and optimization and has historically been under-utilized.

In this dissertation, we discuss the dynamical approach that we have developed

for design and optimization of passively modelocked laser systems. This approach

provides deep insights into the instability mechanisms of the laser that impact or

limit modelocking, and makes it possible to rapidly and unambiguously map out the

regions of stable operation in a large parameter space. For a given system setup,

we can calculate the noise level in the laser cavity within minutes on a desktop

computer.

Compared to Monte Carlo simulations, we will show that the dynamical ap-

proach improves the computational efficiency by more than three orders of magni-

tude. We will apply the dynamical approach to a laser with a fast saturable absorber

and to a laser with a slow saturable absorber. We apply our model of a laser with a

slow saturable absorber to a fiber comb laser with a semiconductor absorbing mir-

ror (SESAM) that was developed at National Institute of Standards and Technology

(NIST), Boulder, CO. We optimize its parameters and show that it is possible to

increase its output power and bandwidth while lowering the pump power that is

needed.
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CHAPTER 1

Introduction

Since their invention in the 1960s, passively modelocked lasers have played

an important role in a wide range of fields [5, 6]. The scope of potential applica-

tions has increased drastically in the past two decades and spans commercial, basic

science, and military applications. These applications include particle accelerators,

light detection and ranging, optical coherence tomography and other medical ap-

plications, spectroscopy and chemical analysis, micromachining, communications,

and the generation and transfer of highly accurate time and frequency. Compact,

robust, and inexpensive modelocked sources are in high demand, which has led to

the development of fiber laser sources that are competitive with solid state lasers

for many applications.

Despite their importance, computational tools that are sufficiently accurate

to do a priori design of passively modelocked fiber lasers have not received the

attention that they deserve. Most theoretical studies either use computationally

time-consuming solutions of the evolution equations [7,8] or highly-approximate an-

alytical models [4,9]. These approaches are intuitive and straightforward. However,
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they are inadequate to address the key problems of determining the laser parame-

ter ranges within which a comb exists stably, understanding the physical sources of

instability, finding the limits on peak pulse powers and durations, and calculating

the power spectral density over a broad parameter range to optimize the system

performance. One goal of this dissertation is to describe the computational tools

that we have developed [10, 11] and which are sufficiently accurate and efficient for

a priori design.

There are three basic tasks in designing a passively modelocked laser. The

first task is to determine the parameter ranges where stable pulses exist within the

set of the laser’s adjustable parameters. Adjustable parameters typically include

the length of the gain medium, the output coupling ratio, and the magnitude of

the chromatic dispersion. More than one region of stable operation can exist, and

they can overlap. If two regions overlap, then stable modelocked pulses with different

pulse parameters can be found with the same laser parameters. Which pulse appears

depends on the history of the pulse generation. Once a stable modelocked pulse

has been found, the second task is to determine the impact of noise on the pulse.

Amplified spontaneous emission noise from the gain medium will always be present.

This noise will lead to fluctuations in the power spectral density of the pulse’s

amplitude and phase. It is usually desirable to minimize this noise. The third

task is to optimize the pulse parameters by adjusting the laser parameters. The

appropriate metric for optimization depends on the application. In some cases, high

power is desirable. In other cases, low noise is desirable.
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Frequency Domain

Time Domain
TR ~ 10 ns

τp ~ 100 fs

1/TR

Figure 1.1: An illustration of the output of a passively modelocked

laser.

1.1 Passively Modelocked Lasers

Passively modelocked lasers are attractive sources of ultra-short, high-energy,

and stable optical pulses. In Fig. 1.1, we show a schematic illustration of the output

of a passively modelocked laser. The duration of the output modelocked pulses τp

are typically on the order of 100 fs, and the time interval between two consecutive

pulses, which equals the round-trip time of the laser TR, is typically on the order of

10 ns. Passively modelocked lasers have been important source of frequency combs

since the 1990s [12, 13]. In the frequency domain, the output spectrum consist of

a set of comb teeth [14]. The envelope of the comb teeth is the Fourier transform

of a single output pulse. When there only exists a single pulse in each round trip,

the separation of two successive comb teeth is the free spectral range, which equals

3



1/TR.

The Haus modelocking equation (HME) is one of the oldest and most widely

used models for passively modelocked lasers. The HME is an averaged model in

which all cavity components that contribute to modelocking are homogenized over

a single round trip. The HME may be written as

∂u

∂T
=

[
− iφ− l

2
− iβ′′

2

∂2

∂t2
+ ts

∂

∂t
+
g(|u|)

2

(
1 +

1

2ω2
g

∂2

∂t2

)
+ iγ|u|2 + fsa(|u|)

]
u,

(1.1)

where u(t, T ) is the complex field envelope, t is the retarded time, T is the slow

time, φ is the phase rotation per unit time T , l is the linear loss coefficient, g(|u|) is

the saturated gain, ts is the shift in t of the pulse centroid

tc =

∫
t′|u(t′)|2dt′∫
|u(t′)|2dt′

, (1.2)

β′′ is the group delay dispersion, γ is the Kerr coefficient, ωg is the gain bandwidth,

and fsa(|u|) is the fast saturable absorption. In the HME, it is assumed that the

gain response of the medium is much longer than the round-trip time TR, in which

case the saturable gain becomes

g(|u|) = g0/[1 + Pav(|u|)/Psat], (1.3)

where g0 is the unsaturated gain, Pav(|u|) is the average power, and Psat is the

saturation power. We may write Pav(|u|) =
∫ TR/2
−TR/2 |u(t, T )|2dt/TR. In the HME, we

have

fsa(|u|) = δ|u|2, (1.4)
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where δ is the fast saturable absorption constant.

It is useful to normalize Eq. (1.1) [15, 16]. The complex field envelope u(t) is

normalized with respect to its peak U0, the propagation variable T is normalized

with respect to the round-trip time TR, and the retarded time t is normalized with

respect to a characteristic pulse time t0. Letting un = u/U0, Tn = T/TR, and

tn = t/t0, Eq. (1.1) becomes

∂un
∂Tn

=

[
− iφTR −

lTR
2

+ tsTR
∂

∂tn
+
g(|u|)TR

2

(
1 +

1

2ω2
gT

2
R

∂

∂t2n

)
− iβ′′TR

2t20

∂

∂t2n
+ iγTRU

2
0 |un|2 + δTRU

2
0 |un|2

]
un.

(1.5)

Defining normalized parameters, φn = φTR, ln = lTR, gn(|u|) = g(|u|)TR, ωgn =

ωgTR, β′′n = β′′TR/t20, γn = γTRU
2
0 , and δn = δTRU

2
0 , we obtain a normalized version

of Eq. (1.1). From hereon, we will use these normalized parameters, and we drop

the subscript “n.”

1.2 Saturable Absorption

Saturable absorption, which preferably attenuates the lower amplitude part

of a pulse, plays an important role in passively modelocked lasers. By compressing

the pulse in the time domain, a saturable absorber balances spectral narrowing in

the frequency domain. Saturable absorbers are classified by their response time

TA relative to the pulse duration τp. Fast saturable absorbers are those for which

TA < τp, while slow saturable absorbers are those for which TA > τp [17–19].

We illustrate the two types of saturable absorption in Fig. 1.2. For both

the fast and the slow saturable absorption, we assume that the system gain obeys
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Propagating

Pulse
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Saturable
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Slow
Saturable
Absorption

Loss

Loss
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Gain

z (round trips)

k k + 1

Figure 1.2: Illustration of gain and loss dynamics due to (a) a pulse

train. The laser is assumed to include slow saturable

gain and either (b) a fast saturable absorber or (c) a slow

saturable absorber.

Eq. (1.3), which implies that the recovery time is longer than the round trip time

so that the average gain appears to remain unchanged, as illustrated in Fig. 1.2.

With a fast saturable absorber, the loss instantaneously saturates and recovers once

the pulse is gone. So, the gain window in which the local gain is greater than the

local loss has the same time duration as the pulse, as shown in Fig. 1.2(b). By

comparison, as shown in Fig. 1.2(c), the loss of a slow saturable absorber has a long

recovery time, which leads to a gain window after the pulse passes through, and the

gain window is longer than the pulse duration. As a consequence, background noise

6



can grow in the wake of the pulse.

Examples of a passively modelocked laser with a fast saturable absorber in-

clude fiber lasers that use nonlinear polarization rotation [1,20] and solid-state lasers

that use a Kerr lens [21, 22]. The saturable absorption in the HME, which is given

by Eq. (1.4), is fast. By comparison, examples of passively modelocked lasers with

a slow saturable absorber include lasers that use semiconductor saturable absorber

mirrors (SESAMs) [23], nanotubes [24], and graphene [25]. In this dissertation, we

will analyze stability and noise in passively modelocked lasers with both fast and

slow saturable absorbers.

1.3 Laser Models and Computational Approaches

Laser models
full/lumped

distributed/averaged

Computational approaches
evolutionary

dynamical/spectral

Table 1.1: A summary of the terminology for laser models and com-

putational approaches.

The two computational approaches that we will use are the evolutionary ap-

proach and the dynamical approach. The models and approaches are summarized

in Table 1. In the evolutionary approach, which replicates the physical behavior of
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the laser, one launches light into the simulated laser and follows it for many round

trips in the laser. If one obtains a stationary or periodically-stationary modelocked

pulse, the laser is deemed stable and, if no such pulse is found, the laser is deemed

unstable. The effect of noise can be studied by adding computational noise from a

random number generator on each pass through the amplifier in a lumped model,

in which all the laser devices are treated independently, or on each propagation step

in an averaged model.

Modelocked pulses can be treated as equilibria (or fixed-points) of high-dimen-

sional dynamical systems. We will take advantage of algorithmic advances that have

been made within the past two decades in determining the stability and optimizing

the performance of such systems, while carrying out further advances as needed to

accurately model passively modelocked laser systems. The first step of the dynam-

ical approach is to obtain a single steady-state solution either analytically or by

using the evolutionary approach. Next, we find the pulse parameters as the laser

parameters vary by solving a root-finding problem. We then linearize the evolution

equations about the stationary solution and determines the eigenvalues of the lin-

earized equation, which we refer to as the equation’s dynamical spectrum. If any

eigenvalue has a positive real part, then the modelocked pulse is unstable. The effect

of noise can be determined by calculating the noise that enters each of the modes

in the dynamical spectrum, whose amplitudes are described by either a Langevin

process or a random walk process.

The evolutionary approach is intuitive and straightforward to program, and

it is widely used. However, it is computationally time-consuming to determine the
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stable operating regions and can give ambiguous results near a stability bound-

ary [10]. When evaluating the laser’s output noise, Monte Carlo simulations, which

are based upon the evolutionary approach, are often prohibitively expensive compu-

tationally. By comparison, the dynamical approach is more difficult to program, but

it is computationally rapid, yields unambiguous results for the stability, and avoids

computationally expensive Monte Carlo simulations. The two approaches are com-

plementary to each other. However, the dynamical approach can be a powerful tool

for system design and optimization and has historically been under-utilized.

1.4 Outline of the Dissertation

In Chapter 2, we present the stability analysis for a passively modelocked

laser with fast saturable absorption. This analysis is built on dynamical systems

theory—in particular linear stability analysis. This analysis is the basis of the

boundary tracking algorithms, which we use to map the regions of stable operation

in a wide range of parameter space, as well as the calculation of the dynamical

spectrum and the corresponding modes, which we use to analyze the noise impact

on statistical quantities of interest like the timing jitter and the power spectral

density of the energy and phase. In Chapter 3, we model a SESAM fiber comb laser

that was developed by our collaborators at NIST. The SESAM fiber laser is locked

using a SESAM, which is a slow saturable absorber. Using a lumped model, we

simulate the laser output pulse and the radio-frequency (RF) spectrum in which the

wake mode sidebands appear. The wake modes sidebands corresponds to amplitude

9



modulations to the output pulse train, which is due to that the absorption recovery

of the SESAM is slow comparing the pulse duration. In Chapter 4, we discuss the

wake mode instability in the SESAM fiber comb laser. Using the boundary tracking

algorithms to the SESAM laser model, we find its region of stable operation in

the system parameter space. In Chapter 5, we describe the algorithmic details of

analyzing the noise impact for both the dynamical and Monte Carlo approaches. In

Chapter 6, we present an optimization study in which we present a design of the

SESAM fiber comb laser in which the output power of the laser is increased by a

factor of five, while the pulse duration is decreased by 10%, and the wake mode

sidebands are well suppressed compared to the current experiments.
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CHAPTER 2

Stability of Passively Modelocked Lasers

with Fast Saturable Absorbers

Despite the vast quantity of both experimental and theoretical work that has

been published on passively modelocked laser systems [5,6,26], little theoretical work

has been done to investigate the stability of these systems over a broad parameter

range. Typical theoretical studies solve the evolution equation, starting from noise

or some other initial conditions and allow the solution to evolve until it either

settles down to a stationary or periodically-stationary state or fails to settle down

after a long evolution time [7]. This approach is ambiguous, since it is often not

clear how long it is necessary to wait for a pulse to settle down, and the computation

times approach infinity in principle when the system parameters approach a stability

boundary.

In this section, we describe the boundary tracking algorithms, which we have

developed [10] based on dynamical systems theory [27] to address this issue. A

modelocked pulse can be viewed as a stationary solution or an equilibrium of a
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nonlinear dynamical system. If any possible perturbation grows exponentially, then

the system is unstable. The stability can be determined by solving a linear eigenvalue

problem. Once a single modelocked solution has been found for a single set of

parameters either analytically or using the evolution equations, we can rapidly trace

the solution as parameters vary by solving a root-finding problem and determine

the solution’s stability without solving the evolution equations. Once a stability

boundary is encountered, we can then track its location in the parameter space.

This approach allows us to rapidly determine the existence and stability of pulses

over a broad parameter range.

This dynamical approach has been used with great success in other areas of

physics and engineering—including in particular fluids and plasmas [28,29]—but it

has not been systematically applied to modelocked laser systems. To our knowledge,

it has only been applied to modelocked laser pulses in special cases with known

analytical solutions [15].

In this chapter, we discuss the stability analysis of passively modelocked laser

models with fast saturable absorption using the boundary tracking algorithms.

Hence, we will focus on the HME and the cubic-quintic modelocking equation

(CQME) [10].

2.1 The Cubic-Quintic Modelocking Equation

The HME only predicts a narrow stability range in the pulse parameters that

is inconsistent with what has been observed experimentally [15, 30]. Motivated by
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this observation—and in an effort to more accurately model the laser physics—

other models of the fast saturable absorption have been introduced. A model whose

stability range is more consistent with experiments is the cubic-quintic modelocking

equation (CQME) [16], which is an extension to the HME, described in Eqs (1.1)–

(1.4). In this equation, the fast saturable absorption is modeled as

fsa,cq(|u|) = δ|u|2 − σ|u|4, (2.1)

with σ > 0. As a consequence, the gain saturates as |u|2 increases.

There are two physics-based models of fast saturable absorption from which the

cubic-quintic model in Eq. (2.1) is derived [31]. The first and oldest of these models

is due to Haus [26,32]. In this model, it is assumed that the absorbing medium is a

two-level system in which the response time of the medium is fast compared to the

pulse duration, so that the population of the upper state is proportional to |u(t)|2.

In this case, we find that [26,32]

∂u

∂T

∣∣∣∣
ab

= fab(|u|)u = − f0u

1 + |u(t)|2/Pab

, (2.2)

where ∂u/∂T |ab is the contribution to the loss from the absorbing mechanism, f0 is

a constant, and Pab is the saturation power of the absorber. If |u(t)|2 � Pab, then

we find

fab(|u|) = −f0 +
f0

Pab

|u(t)|2 − f0

P 2
ab

|u(t)|4 − · · · . (2.3)

If we truncate this expansion at the order |u|4, we find that l/2 in Eq. (1.1) equals

α + f0, where α denotes the total loss that is not due to the material absorber,
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such as losses from the end mirrors and couplers. We also find δ = f0/Pab and

σ = f0/P
2
ab.

The second physics-based model, due to Chen et al. [33], assumes that sat-

urable absorption is due to a combination of nonlinear polarization rotation and

polarization selective elements that attenuate low intensities more than high inten-

sities. In this model, we find that [33–36]

∂u

∂T

∣∣∣∣
ab

= fab(|u|)u = −f0u+ f1 cos
(
µ|u|2 − ν

)
u, (2.4)

where the constants f0, f1, µ, and ν depend on the settings of the polarization

selective elements and the amount of nonlinear polarization rotation in one pass

through the laser. If we may assume µ|u|2 � 1, then

fab(|u|) =− f0 + f1 cos ν + µf1(sin ν)|u|2 − (µ2f1/2)(cos ν)|u|4 − · · · . (2.5)

The combination −f0 + f1 cos ν may be absorbed into the total linear loss, and we

find δ = µf1 sin ν and σ = (µ2f1/2) cos ν.

We first develop the boundary tracking algorithms to computationally study

the stability of pulse solutions of the CQME [10]. Our study focuses on the anoma-

lous dispersion regime, i.e, β′′ < 0, and we allow the strength of both the cubic

coefficient δ and the quintic coefficient σ to vary relative to the chromatic disper-

sion.

2.1.1 Finding a Pulse Solution

The boundary tracking algorithms begin by finding a modelocked pulse so-

lution (a stationary or equilibrium solution) at a single point in the (σ, δ) plane
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by starting from an initial condition that we expect is close to a modelocked pulse

solution. We do that by solving the evolution equation using the split-step Fourier

method that we have described in [37]. We then find solutions at nearby points in

(σ, δ) by solving a root-finding problem, which is roughly three orders of magnitude

faster than solving the evolution equations. We can then rapidly track the solution

as (σ, δ) varies over a broad parameter range. With the equilibrium solution, we

have ∂u/∂T = 0 in Eq. (1.1), and we find that Eq. (1.1) becomes

[
− iφ0 −

l

2
+
g(|u0|)

2

(
1 +

1

2ω2
g

d2

dt2

)
− iβ′′

2

d2

dt2
+ (iγ + δ)|u0|2 − σ|u0|4

]
u0 = 0,

(2.6)

where [u0(t), φ0] denotes the equilibrium solution, and g(|u0|) is given by Eq. (1.3).

Note that in the CQME, the function of saturable absorption fsa(|u|) is an even

function in t, and thus we know a priori that ts0 = 0, where ts0 is the value of ts in

Eq. (1.1) for the equilibrium solution.

2.1.2 Linear Stability Analysis

To determine the linear stability of the system, once [u0(t), φ0] has been found

for a given set of parameters, we linearize Eq. (1.1). We write u(t, T ) = u0(t) +

∆u(t, T ), ū(t, T ) = u∗0(t) + ∆ū(t, T ), and we obtain

∂∆u

∂T
=

[
− iφ0 −

l

2
+
g(|u0|)

2

(
1 +

1

2ω2
g

∂2

∂t2

)
− iβ′′

2

∂2

∂t2
+ 2 (iγ + δ) |u0|2

− 3σ|u0|4
]
∆u− g2(|u0|)

2g0TRPsat

Ju0, ∆uK
(

1 +
1

2ω2
g

∂2

∂t2

)
u0

+
[
(iγ + δ)u2

0 − 2σ|u0|2u2
0

]
∆ū,

(2.7)
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where Ju0, ∆uK =
∫ TR/2
−TR/2 (u∗0∆u+ u0∆u∗) dt. We obtain a similar expression for

∂∆ū/∂T . We now write ∆u(t, T ) = exp(λT )∆u(t), where λ is a constant and

∆u = [∆u,∆ū]T , where T denotes the transpose. Substituting this expression into

the equation for ∂∆u/∂T and ∂∆ū/∂T , we obtain an eigenvalue equation

∂

∂T
∆u = L0∆u = λ∆u, (2.8)

where the linear operator L0 is formulated using the corresponding operations on

∆u and ∆ū,

L0 =

 L11 L12

L21 L22

 , (2.9)

where L11 = δF/δu, L12 = δF/δu∗, L21 = δF ∗/δu, and L22 = δF ∗/δu∗ are functional

derivatives. A detailed discussion of our computational implementation for solving

this eigenvalue problem is given in [10].

The quantity λ is an eigenvalue and ∆u = eλ = [eλ, ēλ]
T is the eigenmode

corresponding to λ. We are also assuming that L0 can be decomposed into a complete

set of eigenmodes, i.e., it is not defective. That is not necessarily the case; for

example, the operator for the linearized nonlinear Schrödinger equation is defective

[38]. However, this situation never occurs in the laser models that we have studied.

In these laser models, the linear stability of the equilibrium solution is determined by

the dynamical spectrum of all the eigenvalues on the complex plane. If ∆u(t, T =

0) = ∆u∗(t, T = 0), so that ∆ū and ∆u are initially complex conjugates, then

they remain complex conjugates at all z. However, it is not generally the case that

ēλ = e∗λ.
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Linear Stability Analysis: Stable Equilibrium

A modelocked pulse is an equilibrium of a complex dynamical system

Its stability is determined by the spectrum of the linearized equations

Im(λ)

Re(λ)λφ

λtλf

λa

continuous
spectrum

The soliton
spectrum

The system is unstable when any part of the spectrum becomes
positive

IMACS 2015: UMBC Stability of modelocked lasers 15 / 18

Figure 2.1: Illustration of the dynamical spectrum when the pulse

solution of the modelocking equation is linearly stable.

Figure 2.1 shows an illustration of the distribution of the eigenvalues that

is evaluated for a given stable pulse solution. The eigenvalues include the two

branches of the continuous spectrum that are complex conjugates and four real

discrete eigenvalues that correspond physically to the perturbations of the pulse

solution’s central time (λt), central phase (λφ), amplitude (λa), and central frequency

(λf ) [9,38]. When the system is stable, the real part of all the eigenvalues are non-

positive. The system becomes unstable if any eigenvalue becomes positive as the

system parameters vary. It is also possible for a stationary solution to cease to exist

due to a saddle-node bifurcation. The CQME is invariant when time and phase are

shifted, so that λt = 0 and λφ = 0 in all cases.
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Figure 2.2: Illustration of tracking the stability boundary of the con-

tinuous eigenmodes using boundary tracking algorithms.

In this case, the most unstable continuous eigenmodes

we track correspond to an eigenvalue λ that satisfies

Re (λ) = g − l.

2.1.3 Tracking Stability Boundaries

We vary (σ, δ) until we encounter a stability boundary, and we then track the

boundary of stable operation. The boundary tracking algorithms track the stabil-

ity boundaries by determining the variation of the target eigenvalue as the system

parameters vary. In Fig. 2.2, we show schematically how to apply boundary track-

ing algorithms to track a stability boundary in the case that unstable stationary

solutions exist on the opposite side of the boundary from the stable solutions. We

implement the boundary tracking algorithm in this case by first varying the cubic

coefficient δ, while the quintic coefficient σ remains fixed (σ = σk), and deter-

mining the variation of the λk. Eventually, we encounter a case p1 = (σ1, δ1) in
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which we cross the stability boundary, as shown schematically in Fig. 2.2(a), indi-

cating that the corresponding equilibrium solution has become unstable via a Hopf

bifurcation [10, 27]. We may then use two nearby stable points, here denoted by

p2 = (σk, δ2) and p3 = (σk, δ3), to find the boundary using quadratic interpolation.

At a nearby value of σ, σk+1, we once again find one unstable and two stable points

and again interpolate to find the stability boundary. From these two points on the

stability boundary, we obtain an estimate for the slope of the boundary dδ/dσ,

which allows us to predict where the three points surrounding the boundary will be

when σ = σk+2. We quadratically interpolate to find the boundary at σ = σk+2, we

correct these predictions, and we obtain a new prediction for the slope. In this way,

we accurately and rapidly map out the entire boundary.

If the solution ceases to exist on the other side of the boundary, then we use

three points on the same side of the boundary and extrapolate to the boundary

location. Otherwise, the algorithm remains the same.

A detailed description of the boundary tracking algorithms can be found

in [10].

2.1.4 Stable Regions of the CQME

Figure 2.3 shows the stability regions of the CQME. One pulse solution is stable

in the blue-hatched region [2l], and another is stable in the red-hatched region [2h].

Two solutions co-exist in a triangular-shaped region (marked by [3]) in the middle,

in which the energy of the solution in the red-hatched region is always greater than
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eigenmode becomes unstable via a saddle-node bifurcation. The LAS and the HAS coexist and
remain stable in region [3] which is bounded by C2 and C3, and these two solution merge into
one single solution in region [2h/l ] in which it remains stable. The HAS does not exist for the
HME, which is the reason the behavior of the GHME is qualitatively different from the HME.

δ

σ

0.06

0.04

0.02

0 0.005 0.01

C1

C2

C3

[2l ]

[2h]

[2h/l ]

[3]

[1]

P

Figure 1. The stability regions of the GHME with a cubic-quintic saturable absorber
fsa,cq(|u|). The stability boundaries are marked by three curves, C1, C2, and C3.

Curve Equilibrium Instability Mechanism
C1 LAS Essential
C2 LAS Saddle-node
C3 HAS Saddle-node

Table 2. Instability mechanisms of the GHME shown in Fig. 12, where LAS represents the
low-amplitude solution, and HAS represents the high-amplitude solution.

We show in Fig. 2 an example of the pulse profiles of both the LAS and the HAS when
σ = 0.004 and δ = 0.036, which is indicated by the point P in Fig. 12. We write the stationary
pulse profile as

u0(t) = |u0(t)|exp[θ0(t)], (5)

where θ0(t) is the phase across the pulse. The pulse envelopes of both the LAS and the HAS
have a nearly hyperbolic secant profile, in which the amplitude decays exponentially as t→±∞.
Compared to the LAS, the amplitude of the HAS is visibly higher, and the pulse width is
smaller. In addition, the HAS has a stronger chirp than does the LAS.

To compare the effect of the three absorber models in the GHME on the pulse profiles of the
stationary solutions and their stability, we first show in Fig. 3 the nonlinear gain fsa of the three
models where the input |u| is assumed to be the instantaneous amplitude of the input pulse. We
illustrate the variation of the nonlinear gain using four sets of values of (σ ,δ ). We find that
the nonlinear gain of all three models is almost identical when the input |u| is small, and they
become increasingly different as |u| grows. The difference also become more significant when δ
and σ increase. Comparing the three models, we find that the nonlinear gain is the greatest and
grows monotonically as |u| grows when using the algebraic model. Hence, the algebraic model
leads to greater nonlinear gain and thus generates equilibrium pulses with higher energies than
the other two models. Meanwhile, the nonlinear gain saturates when |u| becomes sufficiently
large with either the cubic-quintic model or the sinusoidal model, and starts to decrease when
the input |u| further grows. The nonlinear gain is the smallest with the sinusoidal model.

Figure 2.3: The stability regions of the pulse solutions of the CQME.

the solution in the blue-hatched region. We refer to the solution in the blue-hatched

region as the low-amplitude solution (LAS) and the solution in the red-hatched

region as the high-amplitude solution (HAS). The LAS and the HAS merge together

in region [2h/l] that is colored green so that there is only one solution. In region

[1], which is unhatched, the radiation modes are unstable. In general, we have

found that the stability regions are characterized by three curves C1, C2, and C3

in the parameter range that we studied. Each curve indicates a different instability

mechanism, which we summarize in Table 2.1. The δ-axis of Fig. 2.3 corresponds

to the HME in which the quintic nonlinearity is zero (σ = 0). A known analytical

solution is stable with 0.01 < δ < 0.0348 [15]. In [10], the equilibrium solution

that we refer to as the low-amplitude solution (LAS) is a continuation of this HME

solution when σ > 0, and it is stable in the blue-hatched region that is labeled [2l].
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The LAS becomes unstable in region [1] (below the curve C1), where the continuous

modes become unstable via a Hopf bifurcation or the essential instability [39]. The

amplitude eigenmode becomes unstable when we cross C3 from region [2l], which

corresponds to a saddle-node bifurcation in which the equilibrium solution ceases

to exist. By contrast, the HAS does not exist for the HME even though the blue-

hatched region extends to σ = 0, so that the behavior of the CQME is qualitatively

different from the HME. We note, however, that the HAS becomes increasingly

singular as σ → 0, which we show in detail in [40].

Curve Equilibrium Instability Mechanism

C1 LAS Essential

C2 HAS Saddle-node

C3 LAS Saddle-node

Table 2.1: Instability mechanisms of the CQME shown in Fig. 2.3,

where LAS stands for the low-amplitude solution, and

HAS stands for the high-amplitude solution.

Figure 2.4 shows an example of the pulse profiles of both the LAS and the

HAS when σ = 0.004 and δ = 0.036, which is at the point P in Fig. 2.3. The pulse

envelopes of both the LAS and the HAS have a nearly hyperbolic secant profile, in

which the amplitude decays exponentially as t → ±∞. Compared to the LAS, the

amplitude of the HAS is visibly higher, and the pulse duration is smaller.
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Figure 2.4: The pulse solution profiles of the low-amplitude solu-

tion (LAS) and the high-amplitude solution (HAS) of the

CQME with (σ, δ) = (0.004, 0.8036).

In summary, we have developed a boundary tracking algorithm that allows us

to rapidly and accurately find the stability boundaries in a passively modelocked

laser system as the system parameters vary. We have applied this approach to

determine the stability boundaries for the CQME as the parameters that govern

the staturable absorption, σ and δ, are allowed to vary. This model is one of the

most commonly used models for passively modelocked lasers and includes the even

more commonly used Haus modelocking equation as a special limit corresponding

to σ = 0.

We have found a rich dynamical structure in which, depending on the parame-
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ter, no stable solutions exist, one stable solution exists, or two stable solutions exist.

Additionally, we have found that in some extreme parameter ranges, new discrete

modes appear in the dynamical spectrum, which then become unstable via a Hopf

bifurcation, and which we will describe in Sec. 2.2.1.

The boundary tracking algorithm enables us to track the stability boundary of

modelocked lasers with much better computational efficiency than is possible using

the evolutionary approach. On a desktop computer, tracing the stability boundary

for the amplitude eigenmode requires a few hours (about 1.5–2 hours in our case) in

two parameter dimensions due to the rapid variation of the equilibrium solution at

the boundary. By contrast, tracing the other stability boundaries typically requires

only minutes on a desktop computer. However, our estimate of the time that would

be required to find the boundaries using the evolutionary method is in the order of

days.

2.2 On the High-amplitude Solution

A significant difference between the CQME and the HME is that (by adding

a quintic nonlinearity) the stability region of the modelocked pulse is broadened

significantly as shown in Fig. 2.3. This result is consistent with previous claims

that the stability region for the HME is unrealistically small [16, 41]. The low-

amplitude solution that appears is an extension of the previously reported HME

solution, while the high-amplitude solution is a new solution that only exists when

the quintic nonlinearity coefficient σ 6= 0. Here, we describe some unique features
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Figure 2.5: Illustration of the emergence and destablization of the

corresponding eigenmodes of new discrete eigenvalues as

δ grows: from (a) an edge bifurcation to (b) a Hopf bi-

furcation.

of the high-amplitude solution.

2.2.1 Appearance of New Discrete Modes

The high-amplitude solution is stable over a range of δ that is hundreds of

times larger than the range over which the LAS is stable. However, when δ ≈ 9.51,

we find that a pair of new discrete eigenvalues, λe and λ∗e, emerge via an edge

bifurcation from the continuous spectrum. Here, we will use λe to denote the new

discrete eigenvalue whose imaginary part is positive and λ∗e to denote its complex

conjugate. With a small additional increase in δ, ∆δ ≈ 0.001, the eigenmodes

become unstable via a Hopf bifurcation. We show this process schematically in

Fig. 2.5. As δ increases, further edge bifurcations occur, so that more discrete

eigenmodes appear and then go unstable via Hopf bifurcations.
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Figure 12. An illustration of the emergence and destabliza-
tion of the corresponding eigenmodes of new discrete eigen-
values as δ grows: from (a) an edge bifurcation to (b) a Hopf
bifurcation.
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Figure 13. (a) The amplitudes of the equilibrium pulse solu-
tions when δ = 9.509 and δ = 13 while the quintic coefficient
σ = 0.003 for both. We use T = 0.842 and T = 0.845, re-
spectively in computation. The pulse amplitudes are shown
in both logarithmic and linear coordinates. The amplitudes
decays exponentially on the wings as |t| increases. (b) Ac-
cording to the pulse amplitude, we split the computational
window into three regions: Rp, where the pulse amplitude is
significant, as well as Rl and Rr, where u0(t) ≈ 0.

eigenmodes for which the eigenmodes corresponding to
λt and λω are odd and real, while those corresponding
to λφ and λa are even and real. When δ = 9.509, which
is shortly after the edge bifurcation has occurred, the
decay as |t| increases is barely visible. By contrast, the
decay is clearly visible when δ = 13.

Accurately finding the eigenmodes and eigenvalues
that appear right after the edge bifurcation is a difficult
computational problem. On one hand, the analytical
approach that we used to obtain the continuous spec-
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Figure 14. The shape of the eigenmodes corresponding to λe:
when σ = 0.003, (a) δ = 9.509, and λe = −0.40+1.05×104i;
(b) δ = 13, and λ∗e = (0.31 + 1.33i)× 104.
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Figure 15. An illustration of setting t.

trum is no longer applicable. On the other hand, as
discussed in more detail in Appendix B, very large com-
putational windows are needed to obtain accurate re-
sults — too large to be feasible. If the linear eigenvalue
problem could be formulated as a differential equation,
then we could use shooting methods. However, that is
also not possible in this case because of the gain depen-
dence on the pulse energy, so that the linear equation is
an integro-differential equation that is non-local in time.
We avoid these difficulties by formulating the eigenvalue
problem as an overdetermined set of linear equations
L [λe,∆u(t);σ, δ] = 0, where we demand that the solu-
tion is exponentially decaying as t→ ±∞. Given a pair
(σ, δ) and a choice of λe that matches these boundary
conditions, the equation L = 0 will not, in general, have
a solution. However, if we have a good initial guess for

Figure 2.6: The eigenmodes corresponding to λe with σ = 0.003 and

(a) δ = 9.509, λe = −0.40 + 1.05 × 104i; (b) δ = 13,

λ∗e = (0.31 + 1.33i)× 104.

As δ continues to increase, so do the real parts of λe and λ∗e, and these corre-

sponding eigenmodes become increasingly narrow. In Fig. 2.6 we show a comparison
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of the corresponding eigenmodes for λe respectively when (σ, δ) = (0.003, 9.509) and

(σ, δ) = (0.003, 13). We note parenthetically that it is more computationally effi-

cient to use ∆v = (∆u + ∆ū)/2 and ∆w = (∆u − ∆ū)/2i in place of of ∆u and

∆ū since both ∆v and ∆w are real when ∆u∗ = ∆ū [10]. We note that both ∆v

and ∆w are even and complex in contrast to the original four discrete eigenmodes

for which the eigenmodes corresponding to λt and λω are odd and real, while those

corresponding to λφ and λa are even and real. When δ = 9.509, which is shortly

after the edge bifurcation has occurred, the decay as |t| increases is barely visible.

By contrast, the decay as |t| increases is clearly visible when δ = 13.

Accurately finding the eigenmodes and eigenvalues that appear right after the

edge bifurcation is a difficult computational problem. Very large computational win-

dows are needed to obtain accurate results—too large to be feasible. If the linear

eigenvalue problem could be formulated as a differential equation, then we could use

shooting methods. However, that is also not possible in this case because of the gain

dependence on the pulse energy, so that the linear equation is an integro-differential

equation that is non-local in t. We avoid these difficulties by formulating the eigen-

value problem as an overdetermined set of linear equations H [λe,∆u(t);σ, δ] = 0,

where we demand that the solution is exponentially decaying as t→ ±∞. Given a

pair (σ, δ) and a choice of λe that matches these boundary conditions, the equation

H = 0 will not, in general, have a solution. However, if we have a good initial guess

for [λe,∆u(t)], we can find this pair iteratively using a root-finding procedure. The

details of this computational approach are described in [10].
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Figure 19. The evolution of CQME for the case (σ, δ) =
(0.006, 0.0413). We start from different initial conditions: (a)
0.8uh

0 (t); (b) 0.9uh
0 (t), where uh

0 (t) is the high-amplitude so-
lution. In the first case, the low-amplitude solution emerges.
In the second case, the high-amplitude solution emerges.

large range of both σ and δ. The lower bound of the
stability region is shown by the curve C2 as in Fig. 16,
and is bounded on the left by the δ-axis. As we will
discuss in detail elsewhere, a self-similar solution of the
CQME always exists when σ > 0 until δ ≈ 9.51, which is
larger than the boundary for the low-amplitude solution
and hence for the HME to become unstable by almost a
factor of 280. The upper bound of the stability region of
the high-amplitude solution is the onset of edge bifurca-
tion, followed shortly thereafter as δ increase by a Hopf
bifurcation of the new discrete modes.

We show this stability boundary in Fig. 20, and we see
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Figure 20. The stability boundary of the high-amplitude
solution due to the edge bifurcation as illustrated in Fig. 12.
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Figure 21. The pulse evolves to a shelf-like envelope when
the eigenmode corresponding to λe becomes unstable.

that the boundary for δ increases slightly as σ increases.
When this system becomes unstable, the solution de-
velops a shelf-like envelope as shown in Fig. 21 for the
parameter set (σ = 0.003, δ = 13). We do not show the
stability boundary for σ < 7 × 10−3 because the equi-
librium pulse shape change rapidly as δ and σ vary, and
tracking the boundary becomes computationally time-
consuming. Indeed, the parameter set at this relatively
large value of δ is sufficiently extreme that it seems un-
likely that they correspond to any physical laser system.
We present these results here because they illustrate the
power of the algorithms that we have developed. The
scenario that we have described here in which new dis-
crete modes appear via an edge bifurcation and then
become unstable via a Hopf bifurcation appear in prac-
tice, for example, when relaxation oscillations appear
and then become unstable [33].

6. Conclusion

We have developed boundary-tracking algorithms that
allow us to rapidly and accurately find the stability
boundaries in a passively modelocked laser system as the
system parameters vary. We have applied this approach
to determining the stability boundaries for the cubic-
quintic modelocking equations as the parameters that
govern the staturable absorption, σ and δ, are allowed
to vary. This model is one of the most commonly used
models for passively modelocked lasers and includes the

Figure 2.7: Stability boundary of the high-amplitude solution due to

the edge bifurcation as illustrated in Fig. 2.5.

2.2.2 Stability Boundary of the Hopf Bifurcation

We find that the high-amplitude solution remains stable for a very large range

of both σ and δ. The lower bound of the stability region is shown by the curve

C2 as in Fig. 2.3, and is bounded on the left by the δ-axis. We have discussed this

boundary in [40]. The upper bound of the stability region of the high-amplitude

solution is the onset of edge bifurcation, followed shortly thereafter as δ increases

by a Hopf bifurcation of the new discrete modes. We show this stability boundary

in Fig. 2.7, and we see that the boundary for δ increases slightly as σ increases.

We do not show the stability boundary for σ < 7 × 10−4 because the equilibrium

pulse shape change rapidly as δ and σ vary, and tracking the boundary becomes

computationally time-consuming. Indeed, the parameter set at this relatively large

value of δ is sufficiently extreme that it seems unlikely that it corresponds to any
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physical laser system. However, our results show that modelocked pulses with high

energy can be obtained if the quintic coefficient σ is decreased. Additionally, these

results show the power of the algorithms that we have developed.

2.3 Agreement with Experiments

In Sec. 2.1.4, we showed that two stable stationary pulse solutions of the

CQME coexist with an arbitrarily small value of σ, as long as σ > 0, in contrast

to the HME, where there is only one stable solution in a very limited range of the

cubic nonlinearity δ. Since any real system is likely to have a quintic component

in its saturable absorber [42], the solutions of the CQME with higher nonlinearities

should provide a better approximation to output pulses that have been observed in

experiments than does the HME. In this section, we will perform this comparison.

We show in Table 2.2 the parameters that we use in the comparative study.

Set 1 of the parameters corresponds to a fiber laser with nonlinear polarization

rotation [1, 2], and set 2 of the parameters corresponds to a Cr:LiSAF laser that

uses Kerr-lens modelocking [3].

We show a comparison of the computational stationary pulses and the corre-

sponding experimental results in Fig. 2.8. The fiber laser in [1] generates a comb

output with chirped pulses that have a duration of 210 fs and a peak power of 435 W.

Using the CQME, we are able to obtain a computational pulse duration an FWHM

duration of 271 fs and peak power of 421 W. By comparison, using the HME, we

achieve the closest match to the experimental pulse by setting δ = 0.705 kW−1,
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Parameter g0 l γ ωg β′′ TRPsat δ σ

set 1
value 2.00 1.65 4.10 8.66 −0.04 0.30 0.87 0.55

unit 1 1 kW−1 rad/ps ps2 nJ kW−1 kW−2

set 2
value 0.241 0.045 0.65 1257 −8.0 3.4 0.043 0.114

unit 1 1 MW−1 rad/ps 10−5 ps2 nJ MW−1 MW−2

Table 2.2: Values of the parameters that we use to validate the com-

putational results.

where the stationary pulse has a FWHM duration of 32.8 fs and a peak power of

287 W. When δ further increases, a saddle-node bifurcation occurs, and the HME

solution ceases to exist. The match of the CQME solution to the experimental pulse

is visibly better than the HME solution. The accuracy of the CQME model can be

further improved by a more accurate measurement of the parameters. In particu-

lar, the value of dispersion given in [1] neglects the contribution from some cavity

components.

In Fig. 2.8(b), we show a comparison of the computational pulse with the

experimental pulse corresponding to the solid state laser of [3]. In the experiment,

a gain-matched output coupler is used to overcome the gain filtering effect. Using

the transmission profile of the output coupler given in [3], we are able to obtain

accurately the pulse profile inside the laser cavity, where the pulse energy is 14.8

nJ and the FWHM width is 30 fs. We estimate that the saturation power of the

saturable absorption Pab is 363 kW, and the saturable loss f0 is 3%. The system
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CQME

Figure 2.8: Comparison of the computational stationary pulses with

the experimental pulses using parameters in (a) set 1 [1,2]

and (b) set 2 [3].

parameters are estimated following the approach in [43]. An algebraic model was

used to model the fast saturable absorption. By matching the cubic and the quintic

coefficients, as seen from Fig. 2.8(b), we are able to obtain a computational pulse

of 14.9 nJ with an FWHM width 29.2 fs, for which the match is excellent. By

comparison, no stable solution exists for the HME when we set σ = 0.

Compared to the HME, where at most only one stable solution exists for any

set of system parameters, the CQME can have two stable stationary pulse solutions

that both exist for the same set of system parameters with an arbitrarily small value

of σ, as long as σ > 0. When σ → 0, the low amplitude solution tends to the stable

solution of the HME, where an analytical expression is available, as long as δ is

below the HME’s stability limit. By comparing our calculations with experimental
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results, we show that the CQME can provide a better approximation to the pulse

shape than does the widely-used HME model. This result is not surprising since

a quintic nonlinearity appears in any real fast saturable absorber. Combined with

the existence of a large stability region for the CQME, which is consistent with

the existence of a large region of stability that has been reported in modelocked

lasers [44], we conclude that models of the fast saturable absorption that include

high-order nonlinearities should be preferred to the HME.

2.4 Comparison of Different Models of Fast Saturable Absorption

As previously noted, there has been considerable controversy concerning which

model is “best” to use in the sense that it best reproduces the large stability region

that is observed in experiments [30,44]. We mentioned in Sec. 2.1 that the CQME is

derived from two physics-based models of saturable absorption: the algebraic model

in Eq. (2.2) and the sinusoidal model in Eq. (2.4). We have compared the stability

regions that are predicted by these models of fast saturable absorption,

fsa,cq(|u|) = δ|u|2 − σ|u|4,

fsa,al(|u|) =
δ|u|2

1 + (σ/δ) |u|2 ,

fsa,sn(|u|) =
δ2

2σ

[√
2 sin

(
2σ

δ
|u|2 +

π

4

)
− 1

]
.

(2.10)

A comprehensive stability study is described in [31] that applies the boundary

tracking algorithms that we described in Sec. 2.1.3 to Eq. (1.1) with these three

different models of saturable absorption, i.e., fsa(u) in Eq. (2.10). For each of the

three models, we found that the stability region is greatly increased relative to the
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HME. The behaviors of these models are qualitatively similar but quantitatively

different, and the difference becomes more significant as the input power increases.

The applicability of the boundary tracking algorithm to different laser models indi-

cates that it can be extended to experimental systems whose physical components

can be characterized with sufficient accuracy. The details of this comparison can be

found in [31].

2.5 Summary

In this chapter, we have shown that the CQME provides a more general de-

scription of passively modelocked lasers with fast saturable absorption than does

the HME. More importantly, we have shown that the boundary tracking algorithms

can find the regions of stable operation in a wide range of the parameter space both

rapidly and unambiguously. Next, we will perform a stability analysis of a comb

laser with a slow saturable absorber.
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CHAPTER 3

Modelocking with Slow Saturable Absorp-

tion

We introduced two different types of saturable absorption models depending on

the ratios of saturable absorber response time TA to the modelocked pulse duration

τp. In Chapter 2, we discussed the stability of a passively modelocked laser with a

fast saturable absorber. In this chapter, we will focus on a passively modelocked laser

with a slow saturable absorber. In particular, we will focus on a modelocked fiber

comb laser that uses a semiconductor saturable absorption mirror (SESAM). This

laser was built in the Fiber Sources and Applications Group at National Instititute of

Standard and Technology (NIST), Boulder, CO, USA [23], led by Dr. N. Newbury.

The structure of this laser is illustrated in Fig. 3.1.

The SESAM laser that we will study is built with telecom-grade polarization-

maintaining (PM) components, and it is able to generate highly stable 300-MHz

combs [23]. The cavity components include a 22.4-cm-long segment of highly-doped

erbium-doped fiber, a segment of highly non-linear PM fiber that is 12.2 cm in length,
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Figure 3.1: Illustration of the SESAM fiber laser.

and a semiconductor saturable absorber mirror (SESAM) with a response time of

2 ps. The pump signal is a 980-nm CW solid-state laser, and the pump is launched

into the cavity via a wavelength-division-multiplexing (WDM) coupler. The output

pulse duration is about 250 fs, the round trip time is 5 ps, and the gain recovery

time is 1–10 ms.

The SESAM is a slow saturable absorber with a response time TA = 2 ps,

which is longer than the modelocked pulse duration τp ≈ 311 fs [45]. We illustrated

the two types of saturable absorption in Fig. 1.2, and we described a mechanism by

which this laser can become unstable that is not present in lasers with fast saturable

absorbers. Background noise can grow in the wake of the pulse due to a long recovery

time, which leads to a gain window that follows the pulse and is longer than the

pulse duration. We refer to this instability as the wake mode instability [46,47].

In this chapter, we first model the SESAM fiber laser using a lumped model,

from which we extract the set of parameters that we will use in our later modeling,

using averaged models. In addition, we will provide an initial stability analysis, and

we will then introduce the wake mode instability. We will further show the Fourier
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of the gain medium. However, in a fiber laser, large intra-cavity power can lead to instabilities
that are avoided by reducing the gain fiber length, which leads to under-utilization of the pump
and poor power efficiency. From the standpoint of power efficiency, it is better in these cases to
increase the gain fiber length and the output coupling. That is the case for the SESAM laser that
we studied here.

Appendix A: A Lumped Model

Here, we describe the mathematical formulation of the lumped model for the laser system shown
in Fig. 1. We model each component in the laser cavity independently, and the effects of the
components on the propagating pulse are cascaded consecutively, as shown in Fig. 17.

output couplersingle-mode PM fibererbium-doped PM fiberSESAM

z = z0

Figure 17. The propagation of the pulse inside the laser cavity. The black dot at the output z0
indicates the location where we obtain the pulse profile.

All fibers in the laser are polarization-maintaining, so, we only consider a single polarization
state. We describe the propagation of the pulse inside the fibers using a variant of the nonlinear
Schrödinger equation

∂u(t, z)
∂z

= − l
2

u +
ĝ(u, z)

2
u − i

β2
2
∂2u
∂t2 + iγ |u|2u + s(t, z), (4)

where u is the pulse envelope, t is the retarded time, z is the propagation distance, l is the linear
loss, ĝ is the saturated gain operator, β2 is the second-order group velocity dispersion, γ is the
Kerr nonlinearity coefficient, and s(t, z) is the amplified spontaneous emission (ASE) noise. For
the single-mode fiber, both the gain operator ĝ and the ASE noise s(t, z) equal zero. For the
erbium-doped fiber, ĝ is a nonlinear operator that represents a band-limited gain coefficient that is
saturated by the forward and backward propagating optical signals. We calculate ĝ(u, z) and the
amplified spontaneous emission (ASE) noise using the Giles-Desurvire model [23]. The model
can be written as

dPp(z)/dz =
[
(αp + g

∗
p)n2 − (αp + lp)

]
Pp,

±dP±k (z)/dz =
[
(αk + g

∗
k )n2 − (αk + lk )

]
P±k ,

±dP±sk (z)/dz =
[
(αk + g

∗
k )n2 − (αk + lk )

]
P±sk + 2g∗kn2hν∆ν,

(5)

where Pp, Pk , and Psk are the pump power, the average pulse power, and the ASE noise power
inside the k-th bandwidth, respectively, the indices “p” and “k” indicate the pump and the k-th
frequency band, α, g∗, and l are the fiber absorption, gain, and background loss, respectively; n2
is the propagation dependent normalized upper state population,

n2 =
Ppαp/(hνpζ ) +

∑
k P±

k
αk/(hνkζ ) +

∑
k P±

sk
αk/(hνkζ )

1 + P±p (αp + g
∗
p)/(hνpζ ) +

∑
k P±

k
(αk + g

∗
k
)/(hνkζ ) +

∑
k P±

sk
(αk + g

∗
k
)/(hνkζ )

, (6)

∆ν is the bandwidth of the frequency bands, ζ = πa2N/τ is the fiber saturation parameter, in
which a is the index-core radius; and τ is the metastable lifetime. The saturated gain is written in
the frequency domain as

˜̂gk (u, z) = (1/2)
[
(αk + g

∗
k )n2(u, z) − αk

]
. (7)

Figure 3.2: Propagation of the modelocked pulse inside the laser cav-

ity. The black dot indicates the location at which we

compare the pulse profile to determine stability.

spectrum of the wake mode sidebands. Additionally, we describe a model of the

spectrum analyzer, which allows us to calculate the output radio frequency (RF)

spectrum of the comb laser, and hence to demonstrate the agreement between our

computational model and the experimental observations.

3.1 Modeling the Laser Cavity

In the SESAM fiber comb laser that we show in Fig. 3.1, the light is almost en-

tirely in a single transverse mode because polarization-maintaining fibers are used to

construct the laser cavity. Here, we simulate our comb laser using a lumped model,

in which the operation of each component on the incoming pulse is considered inde-

pendently, and the operations are cascaded consecutively [11]. We first characterize

each component in the laser cavity, and we present the complete model at the end

of this section.

We show a schematic illustration of the laser cavity in Fig. 3.2. We start from

a pulse that is close in amplitude and pulse duration to the experimentally-measured
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pulse, and we let the pulse be acted on successively by each component. After the

output coupler, we compare the pulse amplitude with that of the last round trip

εn =

∫ −TR/2
TR/2

(|un(t, z0)| − |un−1(t, z0)|)2 dt∫ −TR/2
TR/2

|un(t, z0)|2dt
, (3.1)

where un represents the complex light field at the end of the nth round trip, and

z0 is the location inside the laser cavity where the comparison is made, as shown

in Fig. 3.2 as a black dot. We consider the system to be stable if the difference εn

becomes less than 10−3 after 4000 round trips in the cavity. We use a hyperbolic-

secant pulse as our initial condition,

u0(t) =
√
U0/τ0 sech(t/τ0), (3.2)

where the pulse energy U0 = 183 pJ, the full-width-at-half-maximum (FWHM) pulse

duration τ0 = 260 fs, and the pump power is 234 mW. The values of the physical

parameters that we use are listed in Table 3.1.

3.1.1 Output Coupling

The reflectance of the output coupler that we used is 91%, while the loss of

the output coupler is 12%. Hence, we find that the output coupling ratio is 9%,

and there is a 3% loss of cavity energy at the output coupler. Here, we assume that

the loss of 3% is evenly distributed between the incident and the reflected waves, as

shown in Fig. 3.3. The output power that we use is 4.9 mW.
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Parameter Value

Roundtrip time TR 3.33 ns

Output coupling loss loc 12%

Stationary Pulse
FWHM Pulse Duration τ0 250 fs

Pulse Energy U0 186 pJ

Single Mode Fiber

Length LSMF 0.122 m

Background loss l0 1.15× 10−4 m−1

Second-order dispersion β2 0.300 ps2/m

Kerr nonlinearity coefficient γ 1.8× 10−3 W−1m−1

Coupling loss at the fiber splice −0.2 dB

Er-doped Fiber

Length of the erbium fiber LEDF 0.224 m

Pump wavelength λp 0.98 nm

Background loss of the pump lp 2.30× 10−3 m−1

Background loss of the pulse ls 5.30× 10−4 m−1

Gain spectrum g∗p,s See [48]

Absorption spectrum αp,s See [48]

Second-order dispersion β2 0.300 ps2/m

Kerr coefficient γ 1.80×10−3 W−1m−1

Pump power (can vary) Pp 234 mW

Density of Er3+ N 3.47× 1025 cm−3

Index-core radius a 3.50 µm

Florescent lifetime τ 14.7 ms

SESAM [49]

Nonsaturable Loss lns 6%

Saturable Loss ρ 8%

Response time TA 2 ps

Saturation Energy wA 157 mW

Table 3.1: Physical parameters of the laser oscillator.

37



output ratio is 9%

loss of 1.5%

loss of 1.5%

incident wave

reflected wave

Figure 3.3: The allocation of the loss at the output coupler.

3.1.2 Single-mode fiber

The single mode polarization-maintaining fiber that is used in the experiment

is a PANDA PM-1550 fiber. We use a partial differential equation that is based on

the nonlinear Schrödinger equation (NLSE) to describe the propagation of the pulse

inside the optical fiber,

∂u(t, z)

∂z
= − l

2
u− iβ2

2

∂2u

∂t2
+ iγ|u|2u, (3.3)

where u is the pulse envelope, t is the retarded time, z is the propagation distance,

l is the linear loss, β2 is the second-order dispersion of the SMF, and γ is the Kerr

nonlinearity coefficient.

In our simulation, we keep a time window Tw surrounding the pulse, and we

use the split-step Fourier method [37, 50] to solve Eq. (3.3). In order to eliminate

the influence of dispersive waves during the evolution, we use absorbing boundary

conditions, setting

l(t) = l0 + A exp

[
−
(
t+ Tw/2

τ0

)2
]

+ A exp

[
−
(
t− Tw/2

τ0

)2
]
, (3.4)

where l0 is the background loss of the single-mode fiber, and we choose values of A
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and τ0 that ensure that the boundary absorption does not affect the evolution of a

stationary pulse.

3.1.3 Erbium-Doped Fiber

We describe the propagation of the pulse inside the EDF using a variant of

the nonlinear Schrödinger equation

∂u(t, z)

∂z
= − l

2
u+

ĝ(u, z)

2
u− iβ2

2

∂2u

∂t2
+ iγ|u|2u+ s(t, z), (3.5)

where u is the pulse envelope, t is the retarded time, z is the propagation distance,

l is the linear loss, ĝ is the saturated gain operator, β2 is the second-order group

velocity dispersion, γ is the Kerr nonlinearity coefficient, and s(t, z) is the amplified

spontaneous emission (ASE) noise. The nonlinear gain operator ĝ represents a band-

limited gain coefficient that is saturated by the forward- and backward-propagating

optical signals. We calculate ĝ(u, z) and the amplified spontaneous emission (ASE)

noise using the Giles-Desurvire model [51]. The model can be written as

dPp(z)/dz =
[
(αp + g∗p)n2 − (αp + lp)

]
Pp,

±dP±k (z)/dz = [(αk + g∗k)n2 − (αk + lk)]P
±
k ,

±dP±sk(z)/dz = [(αk + g∗k)n2 − (αk + lk)]P
±
sk + 2g∗kn2hν∆ν,

(3.6)

where Pp, Pk, and Psk are the pump power, the average pulse power, and the ASE

noise power inside the k-th bandwidth, respectively, the indices “p” and “k” indicate

the pump and the k-th frequency band, α, g∗, and l are the fiber absorption, gain,

and background loss, respectively; n2 is the propagation dependent normalized upper
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state population,

n2 =
Ppαp/(hνpζ) +

∑
k P
±
k αk/(hνkζ) +

∑
k P
±
skαk/(hνkζ)

1 + P±p (αp + g∗p)/(hνpζ) +
∑

k P
±
k (αk + g∗k)/(hνkζ) +

∑
k P
±
sk(αk + g∗k)/(hνkζ)

,

(3.7)

∆ν is the bandwidth of the frequency bands, ζ = πa2N/τ is the fiber saturation

parameter, in which a is the index-core radius; and τ is the metastable lifetime. The

saturated gain is written in the frequency domain as

˜̂gk(u, z) = (1/2) [(αk + g∗k)n2(u, z)− αk] . (3.8)

We substitute Eq. (3.8) in Eq. (3.5) which we solve using a variant of the split-step

method [37]. The ASE noise is added to the signal after the EDF [52]

s̃k = Psk exp(iφk), (3.9)

where the phase φk is a random phase for each frequency band.

3.1.4 Semiconductor Saturable Absorption Mirror (SESAM)

We use a two-level model to characterize the dynamics of the upper state

population. We assume that it induces loss at a single point in the fiber, so that

uout = exp

{
−
[
ρ

2
n(t) +

lns

2

]}
uin,

∂n

∂t
= −n− 1

TA
+
|u|2
wA

n,

(3.10)

where ρ is the saturable loss, lns is the non-saturable loss, n is the normalized lower

state population, TA is the response time, and wA is the saturation energy of the

SESAM. The values of the SESAM parameters that we use in Eq. (3.10) are listed

in Table. 3.1.
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3.2 Output of the Comb Laser

Figure 3.4: (a) The computational evolution of the stationary pulse,

in which color indicates the pulse’s amplitude; (b) the

stable pulse’s amplitude and phase in the time domain

and the frequency domain, where f = 0 corresponds to

λ = 1570 nm.

In Fig. 3.4, we show the stationary cavity pulse in both the time domain, u0(t),

and the frequency domain, ũ0(f),

ũ0(f) =

∫ TR/2

−TR/2
u0(t) exp(−2iπft) dt. (3.11)

The FWHM pulse duration is 311 fs, and the cavity pulse energy is 186 pJ. The

profile of the stationary pulse is visibly asymmetric about t = 0; the pulse amplitude

when t > 0 is visibly higher than when t < 0. This asymmetry is due to the slow

absorption recovery of the SESAM after the pulse [46]. The wings of the stationary
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pulse decay exponentially both in the time domain and the frequency domain, which

indicates that we are operating in the soliton regime. The FWHM bandwidth is

2.08 THz or 17 nm, with a central wavelength of 1564 nm, as shown in Fig. 3.4.

3.3 RF Spectrum Analysis

We now describe our model of the RF detection system, illustrated in Fig. 3.5.

We first define the input signal to the spectral analyzer, I(T ).

As shown in Fig. 3.4, the stationary pulse has bandwidth of 2.08 THz. The

repetition frequency of the comb laser is 300 MHz. By comparison, the response

time of a typical photodetector is ∼10 ps which corresponds to a bandwidth of 100

GHz [53, 54]. However, the cut-off frequency of the low-pass filter in the spectram

analyzer is expected to be no higher than ∼1 GHz. In addition, during the experi-

ments, the frequency range of interest is only about 30 MHz, which is far below the

repetition frequency of the comb laser (300 MHz). Hence, the frequency components

that we detect are below 100 MHz, and in our computations, we set the input signal

to the spectrum analyzer in Fig. 3.5 equal to the integrated energy over each round

trip

I(T ) =


η
∫ TR/2
−TR/2 |up(t, T )|2dt, T = 0, 1, 2, · · · ,

0, otherwise.

(3.12)

Since we do not have an absolute calibration available for the output current, we

set η = 1 in our computations for convenience.
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TR

u(t,T )  
up(T )

SESAM laser 

Photodetector I (T )
Spectrum 
Analyzer

Figure 3.5: Illustration of unwrapping the optical field u(t, T ) to ob-

tain up(T ) and I(t), where Tw is the computational time

window and TR is the round trip time.

3.3.1 The Heterodyne Spectrum Analyzer

In Fig. 3.6, we show a schematic illustration of the heterodyne spectrum ana-

lyzer that we model [55].

The spectral analyzer model includes two basic components: (1) the RF signal

processing unit and (2) the detection and display unit. During RF signal process-

ing, the input signal I(T ) first passes through a low-pass filter to eliminate the fast

oscillations that are outside the bandwidth of interest. Then, the filtered signal is

mixed with a local oscillator, SLO, whose frequency can be tuned during the mea-

surements. Next, the mixed signal Im(T ) passes through an intermediate-frequency

filter (IF), which is a fixed narrow pass-band filter that extracts a single frequency

component in the mixed signal. The bandwidth of the IF filter is called the reso-

lution bandwidth (RBW), BIF. The envelope detector and the low-pass video filter

detect the magnitude of each signal component that is extracted, and converts the

signal to a current signal IV (T ). Finally, the signal IV (t) is detected and displayed
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on the monitor of the spectrum analyzer.

Intermediate- 
frequency filterMixer

Local oscillator

Video filterEnvelope
detector Detection

& Display

Low-pass filter

I 
Im IIF

sLO

IV

Figure 3.6: Illustration of a heterodyne spectrum analyzer.

Next, we describe in more detail our mathematical model of each of these

components. The system parameters of the heterodyne spectrum analyzer that we

use in our computations are listed in Table 3.2.

1. RF signal processing

An RF heterodyne spectrum analyzer uses a sweep-tune procedure. By

tuning the frequency of the local oscillator in a given time duration, referred

to as a time bucket, the magnitude of the corresponding frequency component

of the input signal is measured. The duration of the time bucket should be

sufficiently long to capture the oscillation within the resolution bandwidth.

The number of trace points Ntr on a display screen implies the appropriate

time bucket duration

Time bucket duration = Tsweep/Ntr, (3.13)
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Parameter Value

Sweep time, Tsweep 3.33 ms (1× 106 round trips)

Display trace points, Ntr 400

Frequencies of measurement Fmin = 0, Fmax = 100 MHz

Frequency bucket width 250 KHz

Time bucket 8.33µs (2500 round trips)

Local oscillator
Frequency tuning range fLO 7.75 MHz – 100 MHz

Tuning increment ∆f 125 KHz

IF filter
Center frequency fIF 100 MHz

Resolution bandwidth BIF 300 KHz

Video filter
Center frequency fV 0

Video filter bandwidth BV 300 KHz

Table 3.2: Modeling parameters of the heterodyne spectrum ana-

lyzer.

where Tsweep is the sweep time, which is the time duration that is required to

record the frequency spectrum of interest

Tsweep = k (Fmax − Fmin) /B2
IF, (3.14)

in which Fmin = 0 and Fmax = 100 MHz defines the entire frequency range

of measurement, k = 3 is the proportionality parameter [55, 56], and BIF =

300 KHz is the bandwidth of the IF filter.
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As shown in Fig. 3.6, the input signal I(T ) is first mixed with a local oscil-

lator

Im(T ) = I(T )sLO(T ) = I(T ) cos(2πfLOT ), (3.15)

where Im is the mixed signal and fLO is the oscillation frequency. The mixed

signal Im(T ) then passes through an intermediate-frequency (IF) filter

IIF(T ) = Im(T ) ~ hIF(T ), (3.16)

where hIF(T ) is the impulse response of the IF filter and the symbol ~ rep-

resents convolution. Here, we use a 13th-order Bessel band-pass filter [57] as

the IF filter.

The signal IIF(T ) is then converted to a video signal IV (T ) using an envelope

detector and a video filter

IV = Re
{[

2 |IIF(T )|2 ~ hV (T )
]1/2}

, (3.17)

where hV (T ) is the impulse response of the video filter. In our simulation, we

set hV (T ) = hIF(T ).

2. Detection and display

The local oscillator is tuned by an increment ∆f so that the measurement

can cover the entire frequency range of interest. Every increment of the local

oscillator will eventually lead to a measurement IV l, where l = 1, 2, · · · . The

number of frequency increments from the measurements is usually greater than

the screen resolution, i.e., the number of trace points Ntr for the frequency

components.
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The rule that the spectrum analyzer uses to decide the magnitude of the fre-

quency components that are displayed is determined by the detection mode [56].

The frequency range is divided into Ntr frequency buckets. Thus, the width

of the frequency bucket is set as

Frequency bucket width = (Fmax − Fmin) /Ntr. (3.18)

In our simulations, we set the total number of measurement inside each fre-

quency bucket as J = 2. In our simulations, we use the average detection

mode, in which the magnitude for the kth trace point is obtained as

I
(k)
V =

1

J

J∑
j=1

IV j, (3.19)

where IV j is the jth measurement inside the kth frequency bucket.

3.3.2 The output RF spectrum

In Fig. 3.7, we show the experimental display trace of the spectrum analyzer in

the experiments [58]. We also show the simulated spectrum I(t, T ). The sidebands

are clearly visible. As the pump power increases, the offset frequency shifts, and the

power in the wake mode sidebands increases. The laser becomes unstable when the

pump power Ppump > 255 mW. When Ppump = 255 mW, the sidebands are centered

at 19.5 MHz, and the magnitude of the sidebands is about −10 dBm above the

background noise.
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which the response is instantaneous, and thus the optical field is directly converted to the output
current Ip ,

Ip (T ) = η |u(T ) |2, (1)

where η is the conversion efficiency of the photodetector.

Tw TR

u(t,T )
u(T )SESAM laser 

Photodetector I (T )
Spectrum 
Analyzer

Figure 3. An illustration of unwrapping the optical field u(t,T ) to u(T ), where Tw is the
computational time window and TR is the roundtrip time.

We show in Fig. 5 the obtained display trace of the spectrum analyzer in experiments. We
show the RF spectrum of the photocurrent I (t,T ) where the sidebands’ profiles are apparent. As
the pump power increases, in addition to the shifts of the offset frequency, the power of the wake
mode sidebands also increases. We have shown in prior computation a qualitative agreement [17].
The laser becomes unstable when the pump power Ppump > 255mW. When Ppump = 255mW,
the sidebands is centered at 19.5MHz, and the magnitude of the sidebands is about 13 dB above
the background noise.

-45

-42

-39

-36

-33

-303

0

−3

−6

−9

−12

RF
Sp

ec
tru

m
(d
B/
H
z)

Frequency (MHz)

5 10 15 20 25

Figure 4. The display of the spectrum analyzer as the pump power increases and our
computational simulations. The agreement is excellent.

3. Optimizing the Laser Cavity

The lumped model accurately captures the behavior of each cavity component and thus provides
good reference to further optimization study. However, the computational results we have shown
in Fig. 5 is obtained using evolutionary approach, in which the computation time for each

Figure 3.7: Comparison of the experimentally-observed and the

computationally-calculated RF spectrum. The agree-

ment is excellent.

3.4 Summary

In this section, we used a lumped model and a heterodyne spectrum analyzer

model to compute the RF spectrum for a SESAM laser. We compared the result to

the experimentally observed RF spectrum and agreement was excellent. In particu-

lar, we reproduced both the frequency shift of the wake mode sidebands, and their

relative power.

In principle, we could use this result as the starting point for a detailed system

optimization. In practice, the lumped model is too computationally slow to be used

for this purpose. Using a high-performance computational cluster [59] in which

we used up to 256 computing cores in parallel, we found that calculating the RF
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spectrum for one set of parameters requires approximately two hours.

In the next three chapters, we use an averaged model for the SESAM fiber

comb laser. In combination with dynamical methods that we described in Chap-

ter. 2, the averaged model allows us to determine the stable operating regime and

to optimize the parameters of the SESAM laser system. We then use the lumped

model to verify the results of the averaged model in particular cases.
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CHAPTER 4

Stability of Passively Modelocked Lasers

with Slow Saturable Absorbers

In Chapter 2, we described boundary tracking algorithms to rapidly determine

the stability and map out the regions of stable operation for passively modelocked

lasers with fast saturable absorption. In Chapter 3, we described passively mode-

locked lasers with slow saturable absorbers using an example of a SESAM fiber comb

laser. In this chapter, we find the conditions for stable operation of this laser.

The SESAM fiber comb laser operates in the soliton regime where, to lowest

order, the pulse shape is determined by the balance between the Kerr nonlinearity

and chromatic dispersion [45, 60]. Kärtner et al. [45] used soliton perturbation

theory to study the stability of this laser, and they first predicted the wake mode

instability. We have examined the wake mode instability computationally using

realistic pulse parameters [60] in order to determine the parameters at which it

sets in and its evolution. We find that this instability leads to a quasi-periodic

appearance and disappearance of pulses in which a new pulse grows in the wake of
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an already-existing pulse and ultimately steals energy from it, causing it to decay

and ultimately disappear. This instability sets a lower limit on the magnitude of

the chromatic dispersion and an upper limit on the pump power, which in turn set

a lower limit on the pulse duration and an upper limit on the pulse energy.

4.1 An Averaged Model

The starting point for an averaged model of the SESAM laser is Eq. (1.1),

where the saturable absorber function fsa(|u|) becomes [45,60]

fsa(|u|) = −ρ
2
nu, (4.1)

and the parameter n obeys the equation

∂n(t, T )

∂t
=

1− n
TA

− |u(t, T )|2
wA

n, (4.2)

where ρ is a constant, and wA is the saturation energy of the SESAM. This equation

is similar to Eq. (3.10), but is averaged over one round trip in the laser. Physically,

the parameter n corresponds to the fraction of absorbing ions that are in the lower

state of a two-state system, while ρ is the absorption coefficient of the SESAM.

The system parameters are the same as in Chapter 3 and are listed in Table 4.1.

The values of parameters TR and β′′ are measured experimentally and the values of

l, TA, and ρ are evaluated based on the SESAM datasheet [49]. The Kerr coefficient

is obtained using γ = 2πκL/(λAeff), where we estimate κ = 2.5 × 10−20 m2/W,

the total fiber length L = 70 cm, λ = 1560 nm, and the average beam diameter

in the fiber is 9µm. We estimate the gain saturation power Psat based on the
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TR 3.33 ns wA 157 pJ Psat 9.01 mW

g0 7.74 ρ 0.0726 β′′ −0.0144 ps2

ωg 30 ps−1 TA 2.00 ps γ 0.00111 W−1

l 1.05

Table 4.1: Value of parameters we use in Eqs. (1.1), (1.3), (4.1),

and (4.2).

the pump power vs. output power (shown later in Fig. 4.6), and we evaluate the

SESAM saturation energy using ωA = ΦsatAeff,SESAM, where the saturation fluence

is reported as Φsat = 50µJ/cm2 [49], and the measured spot area inside the SESAM

is Aeff,SESAM = 314µm2. We select the values for g0 and ωg that provide the best

agreement with the experimentally-measured average output power.

We use a modified split-step Fourier method [37] to solve Eqs. (1.1) and (4.1)

when using the evolution method. Starting from noise, we obtain the evolution

profile that is shown in Fig. 4.1. Due to the asymmetric temporal response of the

SESAM, the cavity net gain Gn = exp [g(|u|)− l − ρn(t)] is also asymmetric, as

shown in Fig. 4.2, so that the centroid tc in the computational time window moves.

We have removed the centroid motion in Fig. 4.1. In Fig. 4.1(a) we show that a stable

modelocked pulse appears after about 500 round trips (1.67µs). In the frequency

domain, shown in Fig. 4.1(b), only a narrow spectrum is present under the gain

peak—corresponding to a noisy continuous wave—for about 250 round trips. At

that point, the power in the exponentially growing noise is sufficiently large that
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Figure 4.1: Starting from noise, the system of Eq. (1.1) evolves to a

stable profile in the (a) time domain and (b) frequency

domain, where ũ(f) =
∫ TR/2
−TR/2 u(t) exp(−2iπft) dt.

Figure 4.2: The stationary pulse u0 and the net gain, Gn =

exp
[
g(|u0|) − l − ρn(t)

]
, which exhibits an asymmetric

profile due to the SESAM. A net gain window exists when

Gn > 1.

sidebands are generated nonlinearly, and a stable pulse forms.

The full-width-at-half-maximum (FWHM) of the stable pulse in Fig. 4.2 is

254 fs, the peak amplitude is 25.0 W1/2, and the pulse energy is 181 pJ. The experimen-
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tally-measured average laser output power is 4.88 mW with a pump power of 234

mW. The output coupling ratio is 9% [23], from which we estimate that the cavity

pulse energy is 185 pJ.

4.2 Wake Mode Instability

As we previously discussed, wake modes can grow inside the net gain window

that is visible in Fig. 4.2. As a wake mode grows, the dispersion carries it away

from the pulse, so that it ultimately experience loss. Thus, dispersion is necessary

to attenuate the wake modes [46]. The long response time of the SESAM relative to

the pulse duration plays an important role here. When the SESAM response time

becomes comparable to the pulse duration, as is the case in picosecond bulk lasers,

the wake instability is no longer observed [61].

The pulse is destablized by wake modes when the unsaturated gain becomes

sufficiently large or the group-delay dispersion (GDD) β′′ becomes sufficiently small.

In Fig. 4.3, we show an example in which g0 is increased to 13.5. We observe a quasi-

periodic evolution in the time domain, as shown in Fig. 4.3(a). We show in four

sub-figures, Figs. 4.3 (c), (d), (e), and (f), an example of the amplitude evolution

profile in detail. A second pulse, 2©, forms in the wake of the original pulse, 1©, and

grows at its expense, ultimately leading to the disappearance of the original pulse.

A third pulse, 3©, then begins to grow in the wake of pulse 2©, and the process

continues indefinitely [46]. We show the frequency domain in Fig. 4.3(b). The spec-
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Figure 4.3: The evolution profile of the wake mode instability (a) in

the time domain, and (b) in the frequency domain, (see

Visualization 1), and the pulse amplitude profile at (c)

T = 823, (d) T = 948, (e) T = 1073, and (f) T = 1198.

The locations of profiles (c), (d), (e), and (f) are marked

by white lines in (a).

trum has approximately the same width as in Fig. 4.1(b), but undergoes a complex

and incoherent evolution. We show an animation of this evolution in Visualization

1. Thus, this instability sets a lower limit on the magnitude of the group velocity

dispersion and an upper limit on the pump power (unsaturated gain) for stable op-
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eration, which in turn set a lower limit on the pulse duration and an upper limit on

the pulse energy. Hence, modelocked lasers that use slow saturable absorbers gen-

erally become unstable as the group delay dispersion approaches zero. By contrast,

lasers using fast saturable absorbers can operate with net zero dispersion [7,62–64].

We can accurately determine the threshold for the onset of the wake instability

using the boundary tracking algorithms that are described in Chapter 2. In this

approach, we find a stationary solution [u0, φ, ts] of Eq. (1.1), which corresponds

to a modelocked pulse. We then linearize Eq. (1.1) about this solution, and we

determine the eigenvalues (dynamical spectrum) and eigenvectors of this linearized

equation. Accurately calculating these wake mode eigenvalues and the wake mode

profiles is similar to solving the discrete modes that we have described in Sec. 2.2.1.

We have shown an example of the eigenmode profiles in [11].

In Fig. 4.4, we show the dynamical spectrum near the origin for the SESAM

laser with the same parameters that we used in Table 4.1. The spectrum has two

branches corresponding to continuous wave perturbations, as well as four discrete

eigenvalues that correspond to perturbations of the stationary pulse’s central time

(λt), central phase (λφ), central frequency (λf ), and amplitude (λa), respectively,

similar to what is found in soliton perturbation theory [65]. However, there are two

additional discrete eigenvalues λw+ and λw− that correspond to the wake modes [11],

as shown in Fig. 4.4.

As we mentioned in Chapter 2, the stationary pulse is unstable when any

eigenvalue(s) have a positive real part [10]. Both λt and λφ remain at the origin

due to the time and phase invariance of Eq. (1.1). We see from Fig. 4.4 that when
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Figure 4.4: The variation of the dynamical spectrum when the un-

saturated gain g0 increases from 1.90 to 2.70. We find

that λw± = −7.75 × 10−4 ± 0.352i when g0 = 7.74 and

λw± = 9.09 × 10−3 ± 1.19i when g0 = 13.5. The dashed

arrows indicate how the spectrum shifts as g0 increases

from 7.74 to 13.5. The eigenvalue λa < −0.90 is not

shown here.

g0 = 7.74, the real parts of the continuous spectrum are negative and the discrete

eigenvalues λf and λa are both negative. In addition, the wake mode eigenvalues

are given by λw± = −7.75×10−4±0.352i, as shown in Fig. 4.4. Hence, the system is

stable and close to the stability boundary in the parameter space. The wake modes

are bounded modes that decay slowly in T than the repetition rate 1/TR, where the

decay rate is given by

fdecay =
Re(|λw±|)

2πTR
. (4.3)
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The stationary pulse becomes unstable when the unsaturated gain g0 becomes

sufficiently large. In Fig. 4.4, we use dashed arrows to show how the dynamical

spectrum shifts when g0 increases up to 13.5. We find that all eigenvalues have

negative real parts except for the wake mode eigenvalues, for which λw± = 9.09 ×

10−3± 1.19i. The positive real part of λw± indicate that the wake modes will grow,

destablizing the stationary pulse.

In Fig. 4.5, we show the stable regions in the (g0, β
′′) parameter space. When

the group delay dispersion coefficient β′′ varies from−0.03 ps2 to zero, there exist two

stability boundaries. For a given value of β′′, the pulse becomes unstable due to the

background radiation (continuous modes) [10] (when g0 becomes sufficiently small).

In this case, the system gain is below the modelocking threshold. When g0 becomes

sufficiently large, the pulse becomes unstable due to the wake modes. The instability

threshold for g0 decreases as the system approaches zero dispersion. When β′′ = 0,

the pulse is in principle stable in a very narrow range of g0, 1.14 < g0 < 1.18.

In practice, this range is so narrow that a laser that operated within it would

be destablized by noise and other perturbations. In addition, the pulse width of

the stationary pulse is τp > 3 ps, which is longer than the SESAM recovery time,

TA = 2 ps. This operating state of the SESAM is inefficient because the saturable

absorption that the pulse experiences is strongly offset by the lower-level population

recovery.

The real parts of the dynamical spectrum that we show in Fig. 4.4 indicate

the growth rate of the eigenmodes, while the imaginary part of the spectrum indi-

cates their phase shift per round trip with respect to the stationary pulse. In the

58



Figure 4.5: Stability boundaries in the parameter space of the un-

saturated gain g0 and the group velocity dispersion β′′.

The points (i) and (ii) indicates the cases g0 = 7.74 and

g0 = 13.5, respectively, with β′′ = −0.0144 ps2.

presence of noise, the eigenmodes with non-zero imaginary eigenvalues introduce a

frequency modulation of the modelocked spectrum, which can be observed in the

power spectrum as sidebands. We have shown the profile of the sidebands in [58]

when observed using a radio frequency (RF) spectrum analyzer. We described our

model of the spectrum analyzer in Chapter 3.

Here, we show that the dynamical method with an averaged model accurately

predicts the locations of the wake mode sidebands. The frequency offset of the wake

mode sidebands can be predicted from the value of the imaginary part of λw±,

fsb =
Im(|λw±|)

2πTR
. (4.4)

In Fig. 4.6, we show the variation of the output power of the SESAM laser, as

well as the frequency offset of the sidebands with respect to each comb line as the

unsaturated gain increases. We see that, as the pump power Ppump increases from
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Figure 4.6: The variation of the output power Pout and the sidebands’

frequency offset fsb as the unsaturated gain g0 increases.

The stationary pulse becomes unstable when g0 = 8.5.

180 mW to 250 mW, the laser output power Pout, exp increases almost linearly from

3.6 mW to 5.3 mW. Meanwhile, the frequency offset of the wake mode sidebands

fsb, exp increases from about 9 MHz to about 20 MHz. There is good agreement

between theory and experiment. We find that the laser becomes unstable due to the

wake mode instability when g0 > 8.5. In addition, we observe that the pump power

is linearly proportional to g0, i.e., Ppump ≈ 30 mW × g0. The linear scale suggests

that the upper state population of the erbium-doped fiber is not completely depleted

in this case.

4.3 Summary

In this chapter, we have described the wake modes and their effect on sta-

tionary pulses in modelocked lasers with slow saturable absorbers using an averaged

model. A gain window forms behind the pulse, and wake modes can grow in this
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gain window. The modelocked pulses become unstable when the wake modes are

not swept away from the pulse by dispersion or attenuated by the background loss.

Using a dynamical analysis, we show that this instability occurs when the eigenval-

ues in the dynamical spectrum that correspond to the wake modes have a positive

real part. When the laser parameters are close to the stability boundary for the

wake modes, the wake modes generate sidebands in the output RF spectrum. We

demonstrate that the dynamical spectrum can accurately predict the frequency off-

set of the wake mode sidebands. In the next chapter, we quantitatively model the

growth of the sidebands’ magnitude as the pump power increases using both the

evolutionary approach and the dynamical approach.
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CHAPTER 5

Evaluating the Impact of Noise

We will now add a perturbative noise source s(t, T ) to our modelocked laser

models. The system equation of a modelocked laser system is a stochastic nonlinear

equation,

∂u

∂T
= F̂ (u)u+ s, (5.1)

where F̂ is a deterministic nonlinear operator and s(t, T ) is a random process. In

the particular case of the HME, Eq. (1.1), we have

F̂ (u) = −iφ− l

2
+ ts

∂

∂t
+
g(|u|)

2

(
1 +

1

2ω2
g

∂2

∂t2

)
− iβ′′

2

∂2

∂t2
+ iγ|u|2 + fsa(u), (5.2)

where s(t, T ) is a wide-sense stationary Gaussian process that represents the ampli-

fied spontaneous emission (ASE) noise from the gain medium [9].

When the noise term s(t, T ) is neglected in Eq. (1.1), and we assume that the
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parameters satisfy the relations

δβ′′

γ
=
g(|u0|)

2ω2
g

,

ts = β′′ωoffωg,

g(|u0|)− l = −g(|u0|)
2ω2

g

(γA2
0 − β′′ω2

0),

(5.3)

then we find that Eq. (1.1), or F̂ (u) = 0 as in Eq. (5.2), has the stationary solu-

tion [26],

u0(t, T ) = A0sech(t/τ0) exp [−iω0(t− t0) + iθ0] ,

ω0 = ωoffωg,

φ =
1

2
(γA2

0 − β′′ω2
0),

τ0 =
√
|β′′|/γ/A0,

(5.4)

where A0 > 0 is an arbitrary variable that determines both the amplitude and the

duration of the stationary pulse, and where t0 and θ0 are the initial pulse centroid

in t and the initial optical phase which can be arbitrary values. Given this special

choice of parameters, soliton perturbation theory [38] can be applied to the HME to

determine the stability of the stationary solution [9,15,45,66]. In addition, with the

same parameter choice, the HME can be reduced to two pairs of Gordon processes

that describe the propagation dynamics of the pulse energy, phase, frequency, and

central time, from which the phase jitter, timing jitter, frequency jitter, and energy

fluctuations can be calculated analytically [9,67]. These analytical results have been

widely used to estimate the noise performance of passively modelocked laser systems.

There are two difficulties with this approach. The first is that the expression

for fsa(u) in Eq. (1.4) is too simple to be realistic, and it predicts that the pulse
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solution is stable in only a small region in the parameter space, which is contrary

to experimental results [15,44,68]. More complex models that predict larger regions

of stability and that better match the experiments have been studied [4, 18, 33–36,

69, 70]. However, with the exception of the work in [70], all this work relies on

an evolutionary approach, which can be computationally inefficient and can lead

to ambiguous results. Second, even given the expression for fsa(u), there is no

reason to expect the special parameter relation that is given in Eq. (5.3) to hold. In

fact, short-pulse lasers vary widely—using different types of gain media, saturable

absorbers, and cavity designs. There is a need for computational tools that are

sufficiently powerful to be able to cope with the broad range of short-pulse laser

designs.

Despite the importance of characterizing the noise in short-pulse lasers, there

have been relatively few computational studies of their noise performance. The

computational studies that have been carried out use Monte Carlo simulations in

which the evolution equations are repeatedly solved with different noise realiza-

tions [67,71–73]. Convergence of this procedure is slow, and it is too computationally

intensive to be used for systematic optimization.

In this chapter, we extend the work in [11] to study the noise performance

of short-pulse lasers using dynamical methods. We describe in detail the computa-

tional procedure and quantitatively compare the computational performance of our

dynamical approach with Monte Carlo simulations.

64



5.1 The Dynamical Method

In this section, we will briefly review the dynamical method that we have

described thus far.

In the laser systems that we are considering, the evolution of the pulse envelope

can be described by a nonlinear equation that has the form

∂u(t, T )

∂T
= F̂ [u(t, T ), u∗(t, T )] + s(t, T ), (5.5)

where F̂ (u, u∗) is a nonlinear function of the wave envelope u and its complex con-

jugate u∗. In nearly all cases, the variable u∗ appears with one power less than u

in each term of F . That is the case for Eq. (1.1) as well as for the models of fast

saturable absorption that were considered in [70]. It is also implicitly the case for

the model of a slow saturable absorber as we discussed in Eqs. (4.1) and (4.2).

Following the discussion in Sec. 2.1.2, we obtain the linearized equation and

the eigenvalue problem

∂∆u

∂T
= L∆u + s = λ∆u + s, (5.6)

where

∆u =

∆u

∆ū

 , L =

L11 L12

L21 L22

 , s =

 s
s∗

 , (5.7)

and where L11 = δF/δu, L12 = δF/δu∗, L21 = δF ∗/δu, and L22 = δF ∗/δu∗ are

functional derivatives. Again, if any eigenvalue(s) have a positive real part, the

system is unstable.
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In any practical laser system, the noise s(t, T ) is a small perturbation. Indeed,

it is typically so small that is necessary to artificially increase it in order to obtain

reliable results from Monte Carlo simulations [4]. The essence of our method is that

the amplitudes of the spectral components—the solutions to Eq. (5.6)—obey simple

Langevin equations that can be solved for all times T . The means and variances of

these amplitudes can then easily be found. After expanding the statistical quantities

of interest such as the phase jitter, the timing jitter, and the energy fluctuation as a

linear sum of these amplitudes, we obtain the means and variances of these statistical

quantities.

5.1.1 Discretization

When we descretize the time domain t for computation, we use an evenly

spaced grid of N points in t, whose spacing we denote as ∆t, where ∆t = Tw/N and

Tw is the duration of the computational time window.

Issues related to choosing ∆t and N as well as discretizing the operator L to

ensure the accuracy of the solution have been discussed in [10]. Here, in order to

ensure reasonable accuracy, we choose Tw so that it is approximately 100 times the

duration of the modelocked pulse, and we choose N ≥ 1024. We always choose Tw

and N sufficiently large so that the visible impact on any plotted result is negligible.

In analytical studies of the stability and noise performance of passively mode-

locked lasers, it is usual to choose an infinite domain in the fast time t, in which

case the spectrum of L has both continuous components (essential spectrum) as well
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as discrete components (point spectrum) [10, 39]. In real-world lasers, the actual

domain is periodic in the round trip time TR, and in computational work, it is usual

to study a time domain Tw that is small compared to TR, so that Tw � TR. As a

consequence, the computational problem only has a point spectrum.

Once the system has been discretized, both ∆u(t) and ∆ū(t) become N -

dimensional vectors in which ∆ul = u(tl) and ∆ūl = ū(tl), l = 1, 2, · · · , N . The

vector ∆u in Eq. (5.6) becomes a 2N -dimensional vector ∆u in which the first N

elements correspond to ∆ul, l = 1, 2, · · · , N and the last N elements correspond to

∆ūl, l = 1, 2, · · · , N , i.e., ∆u = [∆u1,∆u2, · · · ,∆uN ,∆ū1,∆ū2, · · · ,∆ūN ]T , where

T denotes the transpose. The operator L becomes a 2N × 2N matrix [10].

5.1.2 Spectral Decomposition

We will denote a set of independent eigenvectors as ej = [ej, ēj]
T , where T

denotes the transpose and ejl = ej(tl) and ējl = ēj(tl), so that each eigenvector ej is

a 2N -dimensional vector. In all the laser problems that we have considered, the set

of eigenvectors ej is complete, i.e., there are 2N independent eigenvectors, which

span the 2N -dimensional complex vector space upon which L operates [74], so that

we may decompose any ∆u as

∆u =
2N∑
j=1

cjej, (5.8)

where the cj are complex constants. We find that if λj is an eigenvalue, then so is

λ′j = λ∗j and if ej = [ej, ēj]
T , then the eigenvector corresponding to λ′j = λ∗j is given

by e′j = [ē∗j , e
∗
j ]
T [11]. In general ēj 6= e∗j . However, when λj is real, then we find
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ēj = e∗j .

In order to find the cj, given ∆u, we must define an inner product. For any

two given vectors p and q in the 2N -dimensional space, the natural inner product

becomes

N∑
j=0

(
p∗jqj + p̄j q̄

∗
j

)
∆t = pHq∆t, (5.9)

where pH is a 2N -dimensional row vector whose elements are complex conjugates

of the vector p.

We will denote the dual eigenvectors of the matrix L as êj. These are equal to

the eigenvectors of L†, the complex conjugate transpose of L. The dual eigenvectors

are normalized so that

ej
H êk∆t = δjk, (5.10)

where δjk is the Krönecker delta-function. We now find that

cj = êHj ∆u. (5.11)

Since L 6= L†, so that L is not self-adjoint, it is NOT generally the case that êHj êk∆t =

δjk.

5.1.3 Noise Evolution

In this dissertation, we will consider white noise sources for which

〈s(t, T )s∗(t′, T ′)〉 = Dδ(t− t′)δ(T − T ′), (5.12)

where 〈·〉 denotes the emsemble average, and D is the diffusion coefficient. We also

have 〈s(t, T )s(t′, T ′)〉 = 〈s∗(t, T )s∗(t′, T ′)〉 = 0. More complex noise sources can in
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principle be built up using Eq. (5.12) as a starting point [75]. After discretization

in t, Eq. (5.12) becomes

〈sl(T )s∗m(T ′)〉 = 〈s(tl, T )s∗(tm, T
′)〉 =

D

∆t
δlmδ(T − T ′), (5.13)

where sl = s(tl), and the 2N -dimensional vector s becomes s = [s, s̄]T , where s̄l = s∗l .

After discretization, we can write the 2N -dimensional vector s at any slow

time T as

s(T ) =
2N∑
j=1

sj(T )ej, (5.14)

so that sj(T ) = êHj s(T ). We now define Djk using the relationship

〈sj(T )s∗k(T
′)〉 = (D∆t) êHj êkδ(T − T ′) ≡ Djkδ(T − T ′), (5.15)

where we note Dkj = D∗jk.

In the presence of noise, the amplitudes of the spectral components of ∆u that

are defined in Eq. (5.8) evolve according to the simple Langevin equation

dcj
dT

= λjcj + sj, (5.16)

where we note that Re(λj) ≤ 0 in order for the modelocked pulse to be stable. Since

we start from a stationary solution, we now have 〈cj(T = 0)〉 = 0.

The covariances, which can be obtained by integrating Eq. (5.16) using the

method of stochastic differential equations [76], become

〈cj(T )c∗k(T )〉 = − Djk

λj + λ∗k

[
1− e(λj+λ∗k)T2

]
, (5.17)
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where we assume that the covariances are zero at T = 0. In the special case when

λj = λk = 0, we obtain

〈cj(T )c∗k(T )〉 = DjkT. (5.18)

In the long-time limit as T →∞, Eq. (5.17) becomes

〈cj(T )c∗k(T )〉 = − Djk

λj + λ∗k
. (5.19)

The corresponding two-time correlation function as T →∞ is given by [76]

Rjk(τ) = − Djk

λj + λ∗k

[
eλ

∗
kτΘ(τ) + e−λjτΘ(−τ)

]
, (5.20)

where Θ(τ) is the Heaviside step function that equals zero when τ < 0, 1/2 when

τ = 0, and 1 when τ > 0. The corresponding power spectral density is given by the

Fourier transform of Rjk(τ),

Sjk(f) =
Djk

(λj − 2iπf) (λ∗k + 2iπf)
, (5.21)

Using Eqs. (5.17)–(5.19), it is possible to compute quantities of statistical interest

such as the timing jitter and the phase jitter. Using Eqs. (5.20) and (5.21) it is then

possible to calculate the power spectral densities of these quantities.

5.1.4 Noise Impact on Statistical Quantities of Interest

Given a statistical quantity of interest, ∆x(T ), we begin by writing it as an

inner product of an appropriate vector hx and the perturbation ∆u(T ),

∆x(T ) = hHx ∆u(T )∆t, (5.22)

Some examples follow:
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1. Energy jitter ∆w(T ):

The energy jitter is given by

∆w(T ) =

∫ TR/2

−TR/2
dt
[
|u(t, T )|2 − |u0(t)|2

]
=

∫ TR/2

−TR/2
dt [u0(t)∆u∗(t, T ) + u∗0(t)∆u(t, T )] ,

which becomes after discretization

∆w(T ) =
N∑
l=1

∆t [u0(tl)∆u
∗(tl, T ) + u∗0(tl)∆u(tl, T )]

= hHw∆u(T )∆t

(5.23)

where hw = [u0, u
∗
0]T .

2. Frequency jitter ∆fc(T ) [77]:

We can calculate the change in the central frequency as

∆fc(T ) =
1

2iw0

∫ TR/2

−TR/2
dt

[
∂u∗0
∂t

∆u(t, T )− ∂u0

∂t
∆u∗(t, T )

]
, (5.24)

which after discretization becomes

∆fc(T ) = hHfc∆u(T )∆t, (5.25)

where hfc = (i/w0) [Dtu0,Dtu
∗
0]T , and Dt is a first-order differentiation matrix,

which we obtain by using the Fourier transform to compute u0 in the frequency

domain, multiplying by the frequency, and then computing the inverse Fourier

transform [78].

3. Timing and phase jitter:
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The central time of a modelocked pulse is given by

∆tc =
1

w0

∫ TR/2

−TR/2
dt t
[
u∗0(t)∆u(t, T ) + u0(t)∆u∗(t, T )

]
, (5.26)

which after discretization becomes

∆tc = hHt ∆u(T )∆t, (5.27)

where ht = (1/w0)[tu0, tu
∗
0]T .

From the timing jitter, we can define a phase jitter,

∆ψ = 2π∆tc/TR, (5.28)

which corresponds to the phase jitter that is observed at radio frequencies after

an optical signal is detected in a photodetector. In most experimental work,

this quantity is simply referred to as the phase jitter. Paschotta [4] refers to

it as the timing phase jitter to avoid confusion with the optical phase jitter,

and we will do the same.

In general, for any vector hx, we can write

hx =
2N∑
j=1

hxj êj, (5.29)

and combined with Eq. (5.22), the corresponding statistical quantity can be written

as

∆x(T ) = ∆t

(
2N∑
j=1

hxj êj

)H 2N∑
k=0

ck(T )ek =
2N∑
j=1

h∗xjcj(T ), (5.30)

where the hxj are defined by the expression

hxj = eHj hx∆t. (5.31)
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Following Eqs. (5.21) and (5.30), we can now calculate the power spectral

density of ∆x(T ),

Sx(f) =
2N∑
j=1

2N∑
k=1

h∗xjhxkSjk(f) =
2N∑
j=1

2N∑
k=1

h∗xjhxkDjk

(λj − 2iπf) (λ∗k + 2iπf)
, (5.32)

in which we require hxl = 0 when λl = 0.

Defining δcj = dcj/dT , we have

d∆x

dT
= δx(T ) =

2N∑
j=0

h∗xjδcj(T ), (5.33)

which approximates the change in ∆x(T ) from one round trip to the next, since all

statistical quantities of interest change slowly compared to the repetition time. The

power spectral density of δx(T ) becomes

Sδx(f) = (2πf)2Sx(f). (5.34)

The formalism in Eqs. (5.32) and (5.34) includes the contribution of the eigenvectors

that correspond to the continuous spectrum, whose effects were neglected in the

computational results in [79].

5.2 Noise Level Evaluation and Computational Efficiency Tests

Here, we compare the results of the Haus-Mecozzi method [9], the Monte Carlo

method [67], and the dynamical method that we have described in Sec. 5.1. The

statistical quantities that we will study are the energy jitter ∆w(T ) = w(T )−w0, the

frequency jitter ∆fc(T ) = fc(T )− f0, and the timing phase jitter ∆tc = tc(T )− tc0,

where w0, f0, and tc0 are the unperturbed energy, central frequency, and the central
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time of the modelocked pulse. We first give a brief review of the three methods

that we will compare. We then apply all three methods to the widely-used Haus

modelocking equation (HME) and an averaged model of a SESAM fiber laser [23].

We show that the dynamical method provides significantly better agreement with

the Monte Carlo method than does the Haus-Mecozzi method. We further show

that the dynamical method is several orders of magnitude more computationally

efficient than the Monte Carlo approach, where our metrics are the computational

time and the memory (RAM) and storage usage.

5.2.1 Calculation Methods

We first review the three methods we use to calculate the noise impact on the

statistical quantities of interest. These are: (1) the Haus Mecozzi method, which

is analytical, (2) the Monte Carlo simulation method, which repeatedly solves the

evolution equations with different noise realizations, and (3) the dynamical methods

that we described in Sec. 5.1.

5.2.1.1 The Haus-Mecozzi Method

The Haus modelocking equation (HME) is the simplest and most widely used

model for modelocked laser systems. We have presented the HME in Eqs. (1.1)–

(1.4). In their analytical method, Haus and Mecozzi begin by assuming that the

modelocked pulse u0(t) has a hyperbolic-secant pulse shape and—like the soliton

solutions for the nonlinear Schrödinger equation—is completely characterized by
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four parameters: the pulse energy and its central time, central phase, and central

frequency. They next apply soliton perturbation theory to calculate the phase evo-

lution in the presence of noise, and they show that the evolution of the pulse energy

fluctuation ∆w, the central optical phase fluctuation ∆θ, the central frequency fluc-

tuation ∆fc, and the central time fluctuation ∆tc are governed by four stochastic

differential equations [4, 9],

d∆w/dT = rw∆w + sw,

d∆θ/dT = rθ∆w + sθ,

d∆fc/dT = rf∆fc + sf ,

d∆tc/dT = rt∆fc + st,

(5.35)

where the growth/decay coefficients are all real quantities,

rw = 2δA2
0 − g1w0 + 2g1A

2
0/
(
6ω2

gτ0

)
,

rθ = γA2
0/w0,

rf = −gsat/
(
3ω2

gτ
2
0

)
,

rt = β′′,

(5.36)

and for which g1 = g2
sat/(g0PsatTR), gsat = g(|u0(t)|), and w0 = 2A2

0τ0 is the energy

of the modelocked pulse. The diffusion coefficients are defined as 〈sx(T ), s∗x(T
′)〉 =

Dxδ(T − T ′) for x = w, θ, f, t,

Dw = 2w0D,

Dθ = 2D(1 + π2/12)/ (3w0) ,

Df = 2D/
(
3w0τ

2
0

)
.

Dt = π2τ 2
0D/ (6w0) ,

(5.37)
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where D is defined in Eqs. (5.12) and (5.13).

The stochastic differential equations in Eq. (5.35) can be solved analytically.

The variances of ∆w(T ), ∆fc(T ), and ∆tc(T ) become

σ2
w(T ) =

〈
|∆w(T )|2

〉
= −Dw(1− e2rwT )/(2rw)

T→∞−−−→ −Dw/(2rw),

σ2
fc(T ) =

〈
|∆fc(T )|2

〉
= −Df (1− e2rfT )/(2rf )

T→∞−−−→ −Df/(2rf ),

σ2
tc(T ) =

〈
|∆tc(T )|2

〉
= (r2

tDf/r
2
f +Dt)T + 2r2

tDt(1− erfT )/r3
f

− r2
fDt(1− e2rfT )/(2r3

f )
T→∞−−−→ DtT + (1/3)Dfr

2
fT

3,

(5.38)

which indicates that the variances of energy and the frequency will remain con-

strained as T → ∞, while the variance of the central time is unbounded. In ex-

periments, the timing phase jitter is defined by the central time drift between two

consecutive round trips [4], which we approximate as δtc = d∆tc/dT .

The Langevin equations that we introduced in Eq. (5.16) and the variances

of the statistical quantities that we introduced in Eq. (5.19) effectively generalize

Eqs. (5.35) and (5.38) to any modelocked pulse waveform and any governing equation

that has the form of Eq. (5.5). The power spectral densities for ∆w, ∆fc, and the

phase jitter—which can be derived from the timing phase jitter δtc—become [4,9],

Sw(f) =
Dw

r2
w + (2πf)2

,

Sfc(f) =
Df

r2
f + (2πf)2

,

Sψ(f) =
Sδtc(f)

(TRf)2
=

r2
tDf

(TRf)2
[
r2
f + (2πf)2

] +
Dt

(TRf)2
.

(5.39)

76



5.2.1.2 The Monte Carlo Simulation Method

For a given set of parameters, we carry out a large number of Monte Carlo

simulation runs with independent noise realizations. In each simulation run, we solve

the laser evolution equation, Eq. (1.1), using a variant of the split-step method [37].

We use the local error to adjust the propagation step sizes [50]. We use Nmc to

denote the number of simulation runs, and we use NR to denote the number of

round trips in each run. For a given statistical quantity ∆x(T ), we obtain a time

series ∆x[k] = ∆x(kTR), k = 1, 2, · · · , NR.

We finally evaluate the power spectrum of a given time series ∆x[k] using the

discrete-time Fourier transform and the ensemble average over all the runs,

S̄h(f) =
1

NmcNR

Nmc∑
n=1

|DTFT {∆x[k]}|2 , (5.40)

where in this study we set Nmc = 600, and NR = 12000.

5.2.1.3 The Dynamical Method

In Sec. 5.1, we have described the derivation and the implementation of the

dynamical method.

5.2.2 Application to Modelocked Systems

We now compare the three different methods that we summarized in Sec. 5.2.1.

In Secs. 5.1 and 5.2.1.1, we formulated the dynamical method and the Haus-Mecozzi

method in terms of the normalized frequency. In order to plot the noise spectrum
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in terms of the physical frequency fphys, we substitute

f = fphysTR. (5.41)

5.2.2.1 The Haus Modelocking Equation

We first perform a comparison of the computational efficiency of these three

methods with the HME [9], given in Eqs. (1.1)–(5.4), and setting

D = g(|u0|)hν0TR, (5.42)

where h is Planck’s constant, and ν0 is the central frequency of the optical field.

The computations are carried out using Matlab R© on a desktop workstation, Dell R©

Precision Tower 7910 which uses an Intel R© Xeon(R) CPU E5-2630 v4 with 10 cores.

The system memory is 16 GB. The operation system is Ubuntu 16.04 LTS. Matlab R©

uses about 500 MB when it is started without running any programs. We use the

parameters from [4] and show them in Table 5.1.

We propagate the laser system for 15000 round trips and we observe that the

statistical properties of the noise-related quantities—the pulse energy, the central

frequency, and the rate of change of round trip time—appear stationary after 3000

round trips. The propagation of the variances of ∆w, ∆fc, and ∆tc are shown in

Fig. 5.1. The variances of ∆w and ∆fc eventually reach an asymptote, while the

variance of ∆tc grows indefinitely, which agrees with Eq. (5.38).

In Fig. 5.2 we show the power spectral densities that we obtain. All spectra are

single-sided spectra [4]. In Fig. 5.2(a) we plot the energy noise as 10 log10 [Sw(f)/w2
0].

the frequency noise as 10 log10 [Sfc(f)/ν2
0 ], and the phase noise as 10 log10 [Sψ(f)]
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Parameter Value Parameter Value Parameter Value

TR 10 ns g0 0.603 ωg 20 T rad/s

γ 1/MW ν0 282 THz l 0.0563

PsatTR 2 nJ β′′ −0.003 ps2 δ 0.046/MW

w0 20 nJ A0 182.5
√

W τ0 0.3 ps

Table 5.1: The parameters we use to evaluate the noise levels. These

parameters are the same as in [4].

which is consistent with Fig. 1 in [4]. For all three power spectral densities, the

agreements of the three methods is excellent.

In Fig. 5.2, we plot the spectrum from 1 Hz to 108 Hz. The Haus-Mecozzi

method produces analytical predictions and thus can be used at any frequency

resolution. The dynamical method can also be used at any frequency resolution.

When evaluating the noise spectrum in the Monte Carlo method, we assign Nmc =

600 and NR = 12000, which enables us to show the frequency range from about

8 kHz to 50 kHz. Any increase in the frequency resolution greatly increases the

computational load when using the Monte Carlo method, which imposes a practical

limit on the frequency resolution that can be obtained.

The time and memory cost performances of the Monte Carlo and dynamical

methods are summarized in Table 5.2. We obtain a good agreement with the Haus-

Mecozzi and dynamical methods when we use the Monte Carlo method with 600
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Approach # of cores Time cost Memory usage Storage usage

A single run 1 7.8 s 535 MB 1.1 MB

600 runs 6 784 s 2.87 GB 245.8 MB

Dynamical 1 < 3 sec 967 MB 141.5 MB

Table 5.2: Comparison of the computational efficiency of the Monte

Carlo and dynamical methods for evaluating the noise per-

formance of the Haus modelocking equation. We inte-

grate the system for 15000 round trips on each simulation

run of the Monte Carlo method. The tests are coded in

Matlab R©, which has a memory overhead of 500 MB that

is included in the memory usage.
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Figure 1: Comparison between the Haus-Mecozzi and Monte Carlo methods, where σ2
w(T ),

σ2
fc

(T ), and σ2
tc

(T ) are propagation-dependent variances of the pulse energy w, central fre-

quency fc, and the central time tc. The results of the Haus-Mecozzi method are from Eq. (42).

resolution. The dynamical method can also be used at any frequency resolution.

When evaluating the noise spectrum in the Monte Carlo method, we assign

Nmc = 600 and NR = 12000, which enables us to show the frequency range

from about 8 kHz to 50 kHz. Any increase in the frequency resolution greatly230

increases the computational load when using the Monte Carlo method, which

imposes a practical limit on the frequency resolution that can be obtained.

The time and memory cost performances of the Monte Carlo method and the

dynamical method are summarized in Table 2. We achieve a good agreement

with the Haus-Mecozzi and the dynamical methods when we use the Monte235

Carlo method with 600 simulations. The total CPU time cost is about (784×6 =

xviii

Figure 5.1: Comparison between the Haus-Mecozzi and Monte

Carlo methods, where σ2
w(T ), σ2

fc
(T ), and σ2

tc(T ) are

propagation-dependent variances of the pulse energy w,

central frequency fc, and the central time tc. The Haus-

Mecozzi method results are from Eq. (5.38).

simulation runs. The total CPU time cost is about (784 × 6 = 4704) sec, which is

about 1 hour and 18 min. The memory usage per core (2870/6 ≈ 478) MB, which is

less than that for a single run (535 MB) because the overhead of parallel computing

is spread when more nodes are used. More memory might be required if a finer

81



(a)

S
w

(f
)

(d
B

c/
H

z)
−200

−190

−180

−170

(b)

S
f
c
(f

)
(d

B
c/

H
z)

−240

−220

−200

−180

(c)

100 102 104 106 108

Frequency (Hz)

S
ψ

(f
)

(d
B

c/
H

z)

−300

−250

−200

−150

−100

Fig. 3. The noise spectra of (a) the energy jitter, (b) the frequency jitter, and (c) the timing

phase jitter that we obtain from the Monte Carlo approach, the Haus-Mecozzi formulae,

and the spectral method. The agreements are excellent, and the results in (c) agrees with

Fig. 1 in [2].

lytical predictions and thus can easily cover any frequency resolution. The spectral methods

can also cover a equally fine frequency resolution due to its compact form. When evaluating

the noise spectrum in Monte Carlo approach, we assign Nmc = 600 and NR = 12000, which

enables us to show the frequency range from about 8 kHz to 50 kHz. Any increment of fre-

quency resolution will greatly increase the computational load when using the Monte Carlo

approach, which might poses a limit of its usage due to limited computational resources. We

can see a more detailed comparison by performing a computational efficiency study.

The time and memory cost performance is summarized in Table. 3. We achieve a good

agreement with the other two approaches using Monte Carlo method with 600 runs. The

total CPU time cost is about (784 × 6 = 4704) sec, which is about 1 hour and 18 min.

The memory usage per core (2870/6 ≈ 478) MB, which is less than the case of a single run

19

Figure 5.2: Noise spectra of (a) the energy jitter, (b) the frequency

jitter, and (c) the timing phase jitter that we obtain from

the Monte Carlo, Haus-Mecozzi, and dynamical methods.

The agreement is excellent and the results in (c) agree

with Fig. 1 in [4].
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discretization of u(t, T ) in both t and T is needed. The storage usage is low (less

than 1 GB) in the Monte Carlo simulations since we only save the pulse parameters,

fc, w, and tc, instead of saving the pulse profile for each iteration.

The dynamical method has a far greater computational efficiency than does

the Monte Carlo method. The dynamical method is able to cover a larger frequency

range than does the Monte Carlo method in less than 3 sec of computational time.

In the example shown here, we calculated 80 frequencies from 1 Hz to 80 Hz. The

dynamical method uses more memory in a single core than does the Monte Carlo

method, but the total memory use is still less than 1 GB.

5.2.2.2 The SESAM Laser

Next, we consider a case that has no known analytical solution. Here, we

model a laser with a semiconductor saturable absorption mirror (SESAM), in which

saturable absorber responds slowly compared to the time duration of the modelocked

pulse [45] Typical time scales are picoseconds for the response time of the SESAM

and 100–200 femtoseconds for the pulse duration, as we show in Table 5.3 [47]. The

central wavelength of the output pulse is 1564 nm. The system can be described

using Eqs. (1.1), (1.3), (4.1), (4.2) and (5.42), which we re-write as

∂u

∂T
=− iφu+ ts

∂u

∂t
+
g

2

(
1 +

1

2ω2
g

∂2

∂t2

)
u− l

2
u− iβ

′′

2

∂2u

∂t2

+ iγ |u|2 u− ρ

2
nu+ s(t, T ),

g(|u|) = g0/[1 + Pav(|u|)/Psat],

∂n

∂t
=

1− n
TA

− |u(t, T )|2
wA

n,

(5.43)
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Parameter Value Parameter Value Parameter Value

TR 3.33 ns wA 157 pJ Psat 9.01 mW

g0 7.74 ρ 0.0726 β′′ −0.0144 ps2

ωg 30 ps−1 TA 2.00 ps γ 0.00111 W−1

l 1.05

A0 25.2
√

W τ0 143 fs w0 0.182 nJ

Table 5.3: The values of parameters we use in Eq. (5.43). The sta-

tionary pulse parameters A0, τ0, and w0 are obtained com-

putationally and thus are separated from the rest.

where Pav(|u|) =
∫ TR/2
−TR/2 |u(t, T )|2dt/TR.

In Fig. 5.3, we show the evolution of the variances of ∆w, ∆fc, and ∆tc.

To compute the variances using the Haus-Mecozzi method, we use the stationary

pulse parameters that we obtained computationally by propagating the evolution

equations. The Haus-Mecozzi method makes an accurate prediction for the variances

of the energy ∆w and and the frequency ∆fc. However, the Haus-Mecozzi method

underestimates the variance of the central time ∆tc by a factor of 300, as shown in

Fig. 5.3.

In Fig. 5.4, we show the power spectral densities of ∆w, ∆fc, and ∆tc that

we derived using these three methods. Both the Haus-Mecozzi method and the

dynamical method yield good agreement for the background noise level with the
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Figure 3: The comparison between the Haus-Mecozzi model and the Monte Carlo results

for the SESAM fiber laser, where σ2
w(T ), σ2

fc
(T ), and σ2

tc
(T ) are propagation-dependent

variances of the pulse energy fluctuation ∆w, central frequency ∆fc, and the central time ∆tc

(or equivilently, the round trip time). We obtain the Haus-Mecozzi results by substituting

the computational stationary pulse solution parameter from Table 3 into Eq. (41).

which increases the memory and post-processing load.

We again carry out a computational efficiency test, and we show the results280

in Table 4. Here, the Monte Carlo experiments are carried out using Matlab R©
and 512 cores on a cluster [53]. The CPUs are all quad-core Intel Nehalem

X5560 processors (2.8 GHz, 8 MB cache) with 3 GB per core on average. All

nodes are running Red Hat Enterprise Linux 6.4. We propagate the pulse for

15,000 rountrips, and we only save the data for the pulse parameters instead of285

the entire pulse. The entire computation requires about 20 min and uses 256

computing cores. Each simulation takes more than 300 MB on each computing

xxii

Figure 5.3: Comparison between the Haus-Mecozzi and Monte Carlo

methods for the SESAM fiber laser, where σ2
w(T ), σ2

fc
(T ),

and σ2
tc(T ) are propagation-dependent variances of the

pulse energy ∆w, central frequency ∆fc, and the central

time ∆tc. We obtain the Haus-Mecozzi method results by

substituting the computational stationary pulse solution

parameter from Table 5.3 into Eq. (5.38).

Monte Carlo method. However, the Haus-Mecozzi method completely misses the

sideband that is present in each of the power spectral densities. We have shown [58]
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that the output power spectrum of the SESAM fiber laser features a sideband that is

located between 15 MHz to 20 MHz as the pump power changes. In the Monte Carlo

simulations, the sideband appears in all three power spectral densities, as shown in

Fig. 5.4. The dynamical method is able to predict the height of the sidebands

successfully. Hence, the dynamical method provides an accurate calculation of the

noise levels for a wider group of modelocked lasers than does the Haus Mecozzi

method.

We observe that the Monte Carlo method consistently overestimates the noise

level at higher frequencies, which is due to aliasing. We have defined the output

signals of the laser cavity as a continuous-time random process. However, in order to

calculate the discrete-time Fourier transform, given in Eq. (5.40), the output signal

of the laser is recorded once per round trip, which sets an upper limit equal to the

Nyquist frequency, which equals 1/(2TR) = 150 MHz. Since our noise source is wide-

band, noise with frequencies higher than 150 MHz will leak into our evaluation band

and cause the evaluated noise level to raise. The Monte Carlo results will converge

to the noise level that is obtained using the dynamical method when we record more

times during one round trip, which increases the memory and post-processing load.

We again carry out a computational efficiency test, and we show the results

in Table 5.4. Here, the Monte Carlo experiments are carried out using Matlab R©

and 512 cores on a cluster [59]. The CPUs are all quad-core Intel Nehalem X5560

processors (2.8 GHz, 8 MB cache) with 3 GB per core on average. All nodes are

running Red Hat Enterprise Linux 6.4. We propagate the pulse for 15000 rountrips,

and we only save the data for the pulse parameters instead of the entire pulse.
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Fig. 4. The comparison between the Haus-Mecozzi predictions and the Monte Carlo results

for the SESAM fiber laser, where σ∆w, σ∆fc , and σδtc are time-dependent variances of the

pulse energy w, central frequency fc, and the central time tc (or equivilently, the roundtrip

time). The results from Haus-Mecozzi predictions are derived from Eqs. (6) and (13) using

the computational stationary pulse solution.
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Fig. 5. The noise spectra of (a) the energy jitter, (b) the frequency jitter, and (c) the timing

phase jitter that we obtain from the Monte Carlo approach, the Haus-Mecozzi formulae,

and the spectral method. The agreements are excellent, and the results in (c) agrees with

Fig. 1 in [2].

22

Figure 5.4: The power spectral density of (a) the energy jitter, (b) the

frequency jitter, and (c) the timing phase jitter that we

obtain from the Monte Carlo, Haus-Mecozzi, and dynam-

ical methods.

The entire computation requires about 20 min and uses 256 computing cores. Each

simulation takes more than 300 MB on each computing core, and we saved 1.7 MB
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Approach # of cores Time cost Memory usage Storage usage

256 runs 256 20 min 314 MB/process 1.7 MB/process

Dynamical 1 < 4 min 900 MB 144 MB

Table 5.4: Comparison of the computational efficiency of the Monte

Carlo and dynamical methods for evaluating the noise per-

formance of the SESAM modelocking model. We integrate

the system for 2× 105 round trips in each simulation run

of the Monte Carlo method.

of data on the hard drive.

By comparison, the dynamical method is carried out on the same desk worksta-

tion as in Sec. 5.2.2.1: a Dell R© Precision Tower 7910 that uses an Intel R© Xeon(R)

CPU E5-2630 v4 and has 10 cores. The combined computational cost of solving

for the stationary solution and obtaining the power spectral density is less than

4 min, and the computation uses very reasonable memory and storage. Again, the

improvement in the computing efficiency is large. Compared to the Monte Carlo

simulation method, the dynamical method requires only 1/1280 of the CPU time,

1/90 of the memory, and 1/3 of the storage space.
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5.3 Conclusions

Over the last three decades, short-pulse lasers—and more particularly pas-

sively modelocked lasers—have been the subject of continued experimental interest.

Robust and low-noise passively modelocked lasers are key components in frequency

combs. As passively modelocked lasers have become more complex, the Haus-

Mecozzi method has become increasingly inadequate to analyze the noise perfor-

mance of these lasers. As one example, we studied a SESAM fiber laser and showed

that this method greatly underestimates the timing phase noise. By contrast, Monte

Carlo simulations can yield accurate results, and this method is intuitive and easy

to implement. However, it requires large computing resources, which makes its use

for parameter optimization difficult.

Based on dynamical systems theory, we have developed a dynamical meth-

odsystems theory thatible to calculate the noise impact accurately and rapidly. As

we have shown in our examples, it is as accurate as Monte Carlo simulations, and is

about three orders of magnitude faster computationally, while requiring less mem-

ory and storage. Therefore, this dynamical method is a powerful tool that can play

a useful role in optimizing the design of short-pulse lasers.

As an example, the Matlab R© code that calculates the power spectral density

of the timing phase jitter, shown in Fig. 5.4(c), is available at

[ http://photonics.umbc.edu/software.html ].
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CHAPTER 6

Laser Cavity Design Optimization

As we stated in the Introduction, key goals when modeling a passively mode-

locked laser are to find a region in the laser’s adjustable parameter space where

the laser can operate stably and then to produce an output pulse with an optimal

profile. For the SESAM fiber laser that we model [23, 47], our goal is to optimize

the cavity design to achieve higher output power, larger bandwidth, and lower side-

bands than in the experiments. In this chapter, we carry out parameter studies using

the root-finding method and the dynamical method that we developed in previous

chapters.

In Chapter 4, we showed that the wake mode instability can occur when the

response time of a saturable absorber is longer than the output pulse duration and

when the unsaturated gain, g0, becomes sufficiently large or the group delay disper-

sion, β′′, becomes sufficiently close to zero [45,47]. In Fig. 4.5, we showed the region

of stable operation in the parameter space of (g0, β
′′). In this chapter, we further

quantify how the output power and power spectral density (PSD) of the SESAM

laser is limited by the wake mode instability. We also showed in Chapter 5 that the
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wake modes are primarily responsible for the experimentally-observed sidebands in

the PSD for both energy and phase. In this chapter, we further quantify how the

output power and power spectral density (PSD) of the SESAM laser is limited by

the wake mode instability and quantify the energy PSD due to the wake modes.

In Fig. 4.5, we showed that the wake mode instability occurs when the un-

saturated gain becomes sufficiently large. Thus, this limit on the unsaturated gain

increases when the cavity loss increases, which happens, for example, when the out-

put coupling ratio increases. Here, we show in detail how this stability limit, the

output power, and the noise are affected by increasing the output coupling ratio.

We finally show that this modification can lead to smaller wall-plug powers and

better power efficiency.

6.1 Optimizing the Laser Cavity

The lumped model that we describe in chapter 3 accurately captures the be-

havior of each cavity component and thus provides a good reference for checking

specific parameters in our optimization study. However, the computational results

for wake mode sidebands in the RF spectrum that we have shown in Fig. 3.7 requires

a computation time for each set of parameters that is about 2 hours on a desktop

computer. By comparison, the dynamical method that we developed to evaluate

the noise level of a modelocked laser—an averaged model in which we average the

action of the components over one round trip in the laser—takes only minutes on

a desktop computer [11, 80]. A more detailed discussion of a lumped model and an
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averaged model can be found in [11]. Using the averaged model that we describe in

Chapter 4, we earlier found and showed in Fig. 4.5 the region of stable operation as

the unsaturated gain g0 and the group delay dispersion β′′ vary [47], which we show

again in Fig. 6.1.

β′′ (ps2)
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(due to wake modes)

•

Figure 5. When t = 9%, the stability boundaries in the parameter space of the unsaturated
gain g0 and the group delay dispersion β′′. The purple dot indicates the cases g0 = 7.74 and
β′′ = −0.0144 ps2 which corresponds to the experimental pulse as Ppump = 237mW. In
Sec. 3.1, we perform parameter studies along the directions as indicated by the blue arrows.

that this procedure is orders of magnitudes faster computationally than techniques that solve the
evolution equations [18].
In this section, we use the results of our parameter study to optimize the comb parameters.

Our goal is to increase the average output power, Pout, while not significantly narrowing the
comb bandwidth, i.e., broadening the pulse duration. We first use the stable output pulse that we
obtained using the averaged model in [10] as the reference pulse, for which toc = 9%, g0 = 7.74,
and β′′ = −0.0144 ps2, as indicated by the purple dot in Fig. 5. This pulse has an output power
of 4.9mW and a FWHM duration of 260 fs. In Sec. 3.1, we will show how the pulse profiles and
noise level change as we change g0 and β′′, as indicated by the blue arrows in Fig. 5.
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Figure 6. An illustration of the parameter space and an example of the search directions that
we used to perform the optimization study in Sec. 3.2.

In prior work [14], we showed that the output power can be increased by increasing the pump
power and the output coupling ratio, toc. Here, in Sec. 3.2, we adapt this technique for use with
the averaged model in Eq. (11) in order to obtain a more energetic, shorter, and less noisy pulse
solution. We show an illustration of the parameter space in Fig. 6. We choose four different
values of toc (10%, 20%, 40%, and 60%) and calculate the variation of profiles and the PSD of

Figure 5. When toc = 9%, the stability boundaries in the parameter space of the unsaturated
gain g0 and the group delay dispersion β′′. The purple dot indicates the case g0 = 7.74
and β′′ = −0.0144 ps2, which corresponds to the reference pulse with Ppump = 237mW. In
Sec. 3.1, we perform parameter studies along the directions that are indicated by the blue
arrows.

solution. The eigenvalues of this linear equation constitute the dynamical spectrum [16,21]. If any
eigenvalues have a positive real part, the modelocked pulse is stable. For this spectrum, when the
pulse is stable, we can calculate the power spectral density (PSD) of any quantity, including the
energy [17], which is the focus of this paper. We have demonstrated that this procedure is orders
of magnitudes faster computationally than techniques that solve the evolution equations [18].

In this section, we use the results of our parameter study to optimize the comb parameters. Our
goal is to increase the average output power, Pout, which equals the output pulse energy divided
by the round-trip time

Pout =
toc
TR

∫ TR/2

−TR/2
|u0(t) |2dt, (3)

while not significantly narrowing the comb bandwidth, i.e., broadening the pulse duration. We
first use the stable output pulse that we obtained using the averaged model in [10] as the reference
pulse, for which toc = 9%, g0 = 7.74, and β′′ = −0.0144 ps2, as indicated by the purple dot in
Fig. 5. This pulse has an average output power of 4.9mW and a FWHM duration of 260 fs. In
Sec. 3.1, we will show how the pulse profiles and noise level change as we change g0 and β′′, as
indicated by the blue arrows in Fig. 5.

In prior work [14], we showed that the average output power can be increased by increasing the
pump power and the output coupling ratio, toc. Here, in Sec. 3.2, we adapt this technique for use
with the averaged model in Eq. (12) in order to obtain a more energetic, shorter, and less noisy
pulse solution. We show an illustration of the parameter space in Fig. 6. We choose four different
values of toc (10%, 20%, 40%, and 60%) and calculate the variation of profiles and the energy
PSD of the stable pulse. In this paper, when we refer to the PSD, it is always the energy PSD. For
a given value of toc, we will vary either g0 or β′′ and compare the pulse energy, duration, and the
PSD.

3.1. When toc = 9%
We first show how the pulse profiles and the PSD, Sw ( f ), change for a given output coupling
ratio, toc = 9%, i.e., we perform parameter studies along the directions as indicated by the blue
arrows that we show in Fig. 5.

Figure 6.1: When the output coupling ratio toc = 9%, the stabil-

ity boundaries in the parameter space of the unsaturated

gain g0 and the group delay dispersion β′′. The purple

dot indicates the cases g0 = 7.74 and β′′ = −0.0144 ps2

which corresponds to the experimental pulse as Ppump =

237 mW. In Sec. 6.1.1, we perform parameter studies

along the directions as indicated by the blue arrows.

In Chapter 5, we have demonstrated that this procedure is orders of magni-

tudes faster computationally than techniques that solve the evolution equations [80].

In this section, we use the results of our parameter study to optimize the comb pa-

rameters. Our goal is to increase the average output power, Pout, which equals the
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output pulse energy divided by the round-trip time

Pout =
toc

TR

∫ TR/2

−TR/2
|u0(t)|2dt, (6.1)

while not significantly narrowing the comb bandwidth, i.e., broadening the pulse

duration. We first use the stable output pulse that we obtained using the averaged

model in [47] as the reference pulse, for which the output coupling ratio toc = 9%,

g0 = 7.74, and β′′ = −0.0144 ps2, as indicated by the purple dot in Fig. 6.1. This

pulse has an average output power of 4.9 mW and a FWHM duration of 260 fs. In

Sec. 6.1.1, we will show how the pulse profiles and noise level change as we change

g0 and β′′, as indicated by the blue arrows in Fig. 6.1.

3. Optimizing the Laser Cavity

The lumped model accurately captures the behavior of each cavity component and thus provides
a good reference for checking specific parameters in our optimization study. However, the
computational results that we have shown in Fig. 4 requires computation time for each set of
parameters that is about 2 hours on a desktop computer. By comparison, the dynamical method
that we developed to evaluate the noise level of a modelocked laser — an averaged model in
which we average the action of the components over one round trip in the laser — takes only
minutes on a desktop computer [17, 18].
Using the averaged model that we describe in Appendix B, we earlier found the region of

stable operation as the unsaturated gain g0 and the group delay dispersion β′′ vary [10]. Here,
we further show the variation of the pulse profiles and the noise level in this parameters space.

In the dynamical approach, we do not have to solve the evolution equations once we have
identified a modelocked solution that we use as stationary point. As the cavity parameters (g0,
β′′, toc) vary, we calculate the pulse parameter (for example, the pulse energy w0 and the pulse
duration τ0) by solving a root-finding problem. For any set of parameters, we then linearize the
system equation (Eq. (9)) around this pulse solution. The eigenvalues of this linear equation
consist of the dynamical spectrum [16, 19]. If any eigenvalues have a positive real part, the
modelocked pulse is stable. For this spectrum, when the pulse is stable, we can calculate the
power spectral density (PSD) of any quantity, including the energy [17]. We have demonstrated
that this procedure is orders of magnitudes faster computationally than techniques that solve the
evolution equations.

β′′ (ps2)
0−0.02

g0

0

20

Stable

Unstable due
to wake modes

toc

β′′

g0

toc = 10%

toc = 20%

toc = 40%

toc = 60%

Figure 5. An illustration of the parameter space and an example of search direction with
which we perform the optimization study.

In this section, we use the results of our parameter study to optimize the comb parameters.
Our goal is to increase the output power, Pout while not significantly narrowing the comb
bandwidth, i.e., broadening the pulse duration. We use the stable output pulse that we obtained
using the averaged model in [10] as the reference pulse, for which toc = 9%, g0 = 7.74, and
β′′ = −0.0144 ps2. This pulse has an output power of 4.9mW and a FWHM duration of 260 fs.
Meanwhile, in prior work [14], we showed that the output power can be increased by increasing
the pump power and the output coupling ratio, toc. Here, we adapt this technique for use with
the averaged model in Eq. (9) in order to obtain a more powerful, shorter, and less noisy pulse

Sec. 3.2

A
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Figure 6. Illustration of the parameter space and an example of the search directions that we
use to perform the optimization study in Sec. 3.2.

the stable pulse. For a given value of toc, we will vary either g0 or β′′ and compare the pulse
energy, duration, and the PSD.

3.1. When toc = 9%
We first show how the pulse profiles and the PSD of the energy fluctuations, Sw ( f ), change for a
given output coupling ratio, toc = 9%, i.e., we perform parameter studies along the directions as
indicated by the blue arrows that we show in Fig. 5.

3.1.1. Variation of Pulse Profiles When g0 Changes

In Fig. 7, we show the variation of the pulse profiles, in which w0 is the intra-cavity pulse energy
and τp is the full-width-half-maximum (FWHM) pulse duration. We vary the unsaturated gain
with three different values of β′′, −0.015 ps2, −0.020 ps2, and −0.025 ps2. When g0 ≥ 9.0 and
β′′ > −0.015 ps2, the laser becomes unstable due to the wake modes. When β′′ < −0.015, the
laser remains stable for some values of g0 > 9.0 as we will show in the next section. For given
values of β′′, we observe that the pulse energy w0 increases linearly in Fig. 7(a), and the pulse
duration τp decreases as the unsaturated gain g0 increases. We also observe that the pulse energy
w0 stays almost unchanged when β′′ varies, while the FWHM pulse duration τp increases by a
factor of 1.6 as β′′ changes from −0.015 ps2 to −0.025 ps2.
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Figure 6.1: The variation of the pulse profiles, (a) the intra-cavity pulse energy and

(b) the FWHM pulse duration, when the unsaturated gain g0 changes with given

values of chromatic dispersion β′′.

duration τp decreases, as the unsaturated gain g0 increases. We also observe that in

Fig. 6.1(a), the pulse energy w0 stays almost unchanged when β′′ varies, while the

FWHM pulse duration τp increases about 1.6 times as β′′ changes from −0.015 ps2

to −0.025 ps2 for given values of g0, as shown in Fig. 6.1(b).

We further show such behavior in Fig. 6.2 with an example. when g0 = 7.74,

the pulse energy stays around 180 pJ, which corresponds to an output power of

about 4.9 mW when the output coupling ratio is 9%. The FWHM pulse duration

increases almost linearly — from about 510 ps to about 180 ps — as β′′ changes

from −0.010 ps2 to −0.030 ps2. In comparison, we can also observe that, for given
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The wake modes can induce sidebands that are visible in the PSD as we show in Fig. 4. In
Fig. 8, we show that the PSD Sw ( f ) of the optical pulse energy as a function of g0 which we
computed using the dynamical method [17]. Here, we describe the PSD in dBc,

Sw ( f )(dBc) = 10 log
Sw ( f )
w0 fFSR

, (3)

where the repetition frequency fFSR = 1/TR = 300MHz.
In Fig. 8, we show the energy jitter spectrum Sw ( f ) when the unsaturated gain g0 increases

for a fixed value of the group delay dispersion, β′′ = −0.015. We find that the wake modes
become unstable when g0 ≥ 9.0. As the g0 increases from g0 = 5.5 and approaches the stability

Figure 7. (a) The intra-cavity pulse energy w0 and (b) the FWHM pulse duration τp as a
function of the unsaturated gain g0, for three values of group delay dispersion β′′.

3.1.1. Variation of Pulse Profiles When g0 Changes

In Fig. 7, we show the variation of the pulse profiles, in which w0 is the intra-cavity pulse energy
and τp is the full-width-half-maximum (FWHM) pulse duration. We vary the unsaturated gain
with three different values of β′′, −0.015 ps2, −0.020 ps2, and −0.025 ps2. When g0 ≥ 9.0 and
β′′ > −0.015 ps2, the laser becomes unstable due to the wake modes. When β′′ < −0.015,
the laser remains stable for some values of g0 > 9.0 as we will show in the next section. For
given values of β′′, the pulse energy w0 increases linearly in Fig. 7(a), and the pulse duration τp
decreases as the unsaturated gain g0 increases. We also observe that the pulse energy w0 stays

Sec. 6.1.2

Figure 6.2: An illustration of the parameter space and an example of

the search directions that we used to perform the opti-

mization study in Sec. 6.1.2.
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In [81], we showed that the average output power can be increased by increas-

ing the pump power and the output coupling ratio, toc. Here, in Sec. 6.1.2, we adapt

this technique for use with the averaged model in order to obtain a more energetic,

shorter, and less noisy pulse solution. We show an illustration of the parameter

space in Fig. 6.2. We choose four different values of toc (10%, 20%, 40%, and 60%)

and calculate the variation of profiles and the PSD of the stable pulse. The smallest

value of toc is close to the experimental value of 9%. For a given value of toc, we will

vary either g0 or β′′ and compare the pulse energy, duration, and the PSD.

6.1.1 When toc = 9%

We first show how the pulse profiles and the PSD of the energy fluctuations,

Sw(f), change for a given output coupling ratio; toc = 9%, for example, we perform

parameter studies along the directions as indicated by the blue arrows that we show

in Fig. 6.1.

6.1.1.1 Variation of Pulse Profiles When g0 Changes

In Fig. 6.3, we show the variation of the pulse profiles, in which w0 is the

intra-cavity pulse energy and τp is the full-width-half-maximum (FWHM) pulse

duration. We vary the unsaturated gain with three different values of β′′, −0.015 ps2,

−0.020 ps2, and −0.025 ps2. When g0 ≥ 9.0 and β′′ > −0.015 ps2, the laser becomes

unstable due to the wake modes. When β′′ < −0.015, the laser remains stable for

some values of g0 > 9.0, as we will show in the next section. For given values of β′′,
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the pulse energy w0 increases linearly in Fig. 6.3, and the pulse duration τp decreases

as the unsaturated gain g0 increases. We also observe that the pulse energy w0 stays

almost unchanged when β′′ varies, while the FWHM pulse duration τp increases by

a factor of 1.6 as β′′ changes from −0.015 ps2 to −0.025 ps2.

the stable pulse. For a given value of toc, we will vary either g0 or β′′ and compare the pulse
energy, duration, and the PSD.

3.1. When toc = 9%
We first show how the pulse profiles and the PSD of the energy fluctuations, Sw ( f ), change for a
given output coupling ratio, toc = 9%, i.e., we perform parameter studies along the directions as
indicated by the blue arrows that we show in Fig. 5.

3.1.1. Variation of Pulse Profiles When g0 Changes

In Fig. 7, we show the variation of the pulse profiles, in which w0 is the intra-cavity pulse energy
and τp is the full-width-half-maximum (FWHM) pulse duration. We vary the unsaturated gain
with three different values of β′′, −0.015 ps2, −0.020 ps2, and −0.025 ps2. When g0 ≥ 9.0 and
β′′ > −0.015 ps2, the laser becomes unstable due to the wake modes. When β′′ < −0.015, the
laser remains stable for some values of g0 > 9.0 as we will show in the next section. For given
values of β′′, we observe that the pulse energy w0 increases linearly in Fig. 7(a), and the pulse
duration τp decreases as the unsaturated gain g0 increases. We also observe that the pulse energy
w0 stays almost unchanged when β′′ varies, while the FWHM pulse duration τp increases by a
factor of 1.6 as β′′ changes from −0.015 ps2 to −0.025 ps2.
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Figure 6.1: The variation of the pulse profiles, (a) the intra-cavity pulse energy and

(b) the FWHM pulse duration, when the unsaturated gain g0 changes with given

values of chromatic dispersion β′′.

duration τp decreases, as the unsaturated gain g0 increases. We also observe that in

Fig. 6.1(a), the pulse energy w0 stays almost unchanged when β′′ varies, while the

FWHM pulse duration τp increases about 1.6 times as β′′ changes from −0.015 ps2

to −0.025 ps2 for given values of g0, as shown in Fig. 6.1(b).

We further show such behavior in Fig. 6.2 with an example. when g0 = 7.74,

the pulse energy stays around 180 pJ, which corresponds to an output power of

about 4.9 mW when the output coupling ratio is 9%. The FWHM pulse duration

increases almost linearly — from about 510 ps to about 180 ps — as β′′ changes

from −0.010 ps2 to −0.030 ps2. In comparison, we can also observe that, for given
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The wake modes can induce sidebands that are visible in the PSD as we show in Fig. 4. In
Fig. 8, we show that the PSD Sw ( f ) of the optical pulse energy as a function of g0 which we
computed using the dynamical method [17]. Here, we describe the PSD in dBc,

Sw ( f )(dBc) = 10 log
Sw ( f )
w0 fFSR

, (3)

where the repetition frequency fFSR = 1/TR = 300MHz.
In Fig. 8, we show the energy jitter spectrum Sw ( f ) when the unsaturated gain g0 increases

for a fixed value of the group delay dispersion, β′′ = −0.015. We find that the wake modes
become unstable when g0 ≥ 9.0. As the g0 increases from g0 = 5.5 and approaches the stability

Unsaturated gain, g0

Figure 6.3: (a) The intra-cavity pulse energy w0 and (b) the FWHM

pulse duration τp as a function of the unsaturated gain

g0, for three values of group delay dispersion β′′.

The wake modes can induce sidebands that are visible in the energy PSD as

we show in Fig. 3.7. In Fig. 6.4, we show the PSD Sw(f) as a function of g0 that

we computed using the dynamical method [11]. Here, we plot the PSD in dBc/Hz,

Sw(f) [dBc/Hz] = 10 log
Sw(f)

w0fFSR

, (6.2)

where the repetition frequency fFSR = 1/TR = 300 MHz.
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almost unchanged when β′′ varies, while the FWHM pulse duration τp increases by a factor of
1.6 as β′′ changes from −0.015 ps2 to −0.025 ps2.

The wake modes can induce sidebands that are visible in the PSD as we show in Fig. 4. In
Fig. 8, we show that the PSD Sw ( f ) of the optical pulse energy as a function of g0 which we
computed using the dynamical method [17]. Here, we describe the PSD in dBc,

Sw ( f )(dBc) = 10 log
Sw ( f )
w0 fFSR

, (4)

where the repetition frequency fFSR = 1/TR = 300MHz.

The energy jitter ∆w(T ) is defined following Eq. (5.51),

∆w(T ) =

∫ TR/2

−TR/2
dt
[
|u(t, T )|2 − |u0(t, T )|2

]

≈
∫ TR/2

−TR/2
dt [u0(t, T )∆u∗(t, T ) + u∗0(t, T )∆u(t, T )] ,

(6.1)

and we describe the corresponding noise level in dBc,

Sw(f)(dBc) = 10 log
Sw(f)

w0fFSR

. (6.2)

Here, we assume that the repetition frequency fFSR = 1/TR = 300 MHz.
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Figure 6.3: The variation of the wake mode sidebands when the unsaturated gain

g0 increases for given group delay dispersion, β′′ = −0.015 ps2.

We show in Fig. 6.3 the energy jitter spectrum Sw(f) when the unsaturated

gain g0 increases for a given value of group delay dispersion, β′′ = −0.015. We have

calculated that the wake modes become unstable when g0 ≥ 9.0. As the g0 increases

from g0 = 5.5 and approaches the stability limit, we observe that the frequency

offset of the sideband increases from about 7.5 MHz to 20.5 MHz, and the peak

magnitude of the sideband grows from almost invisible to about 9 dBc/Hz about

93

Figure 8. The variation of the wake mode sidebands when the unsaturated gain g0 increases
for given group delay dispersion, β′′ = −0.015 ps2.

limit, we observe that the frequency offset of the sideband increases from about 7.5MHz to
20.5MHz, and the peak magnitude of the sideband grows from nearly zero to about 9 dBc/Hz
above the background noise. The sideband profile is non-Lorentzian, which is consistent with
the RF sideband spectra that we show in Fig. 4. That occurs because both the discrete and the
continuous modes in the dynamical system contribute to the PSD [18].
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Figure 6.2: The variation of the pulse profiles when the group delay dispersion

changes for given unsaturated gain, g0 = 7.74.

values of group delay dispersion β′′, when the unsaturated gain increases, the pulse

energy grows linearly, while the pulse duration decreases monotonically. This implies

that by tuning the group delay dispersion close to 0, one can achieve pulses with

high energy and broad bandwidth. In Fig. 6.1, we can obtain a stable pulse 200 ps

with the intra-cavity energy of 220 pJ, which corresponds to about 5.7 nm when the

central wavelength is 1560 nm with an output power of 6.6 mW.

The wake modes can induce the sidebands that are visible in the energy jitter

spectrum, as we have described with an optical spectrum analyzer in Fig. 3.10. We

can rapidly calculate the power spectrum of the energy jitter using the spectral

method that we have described in chapter 5. In Figs. 6.3 and 6.4, we show the

variation of the sidebands in the energy jitter spectrum when the unsaturated gain

g0 and the group delay dispersion β′′ change.
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Figure 9. The intra-cavity pulse energy w0 and the FWHM pulse duration τp as a function
of the group delay dispersion β′′ with g0 = 7.74.

3.1.2. Variation of Pulse Profiles When β′′ Changes

In Fig. 9, we show how the pulse profiles change as β′′ changes when g0 = 7.74. We observe
that the pulse energy is almost constant at 180 pJ, which corresponds to an output power of
about 4.9mW. The FWHM pulse duration increases almost linearly—from about 510 ps to about
180 ps—as β′′ changes from −0.010 ps2 to −0.030 ps2. By comparison, for given values of group
delay dispersion β′′, we also observe that when the unsaturated gain increases, the pulse energy
grows linearly, while the pulse duration decreases monotonically. Hence, by tuning the group
delay dispersion close to 0, we can obtain pulses with high energy and broad bandwidth. In Fig. 7,
a stable pulse 200 ps with the intra-cavity energy of 220 pJ, which corresponds to about 5.7 nm
when the central wavelength is 1560 nm with an output power of 6.6mW.

In Fig. 10, we show the PSD of the energy fluctuations when β′′ changes and g0 is constant.
As β′′ becomes less negative; increasing from β′′ = −0.025 ps2 to β′′ = −0.015 ps2, we observe
that the frequency offset of the sideband increases from about 10.0MHz to 16.5MHz, and the
peak magnitude of the sideband increases from zero to about 5 dBc/Hz above the background.

From the results in Figs. 8 and 10, we conclude that we can obtain a high-power comb output
by either increasing the system gain or making group delay dispersion more negative, but at the
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Figure 8. Variation of the wake mode sidebands when the unsaturated gain g0 increases with
β′′ = −0.015 ps2.

In Fig. 8, we show the energy jitter spectrum Sw ( f ) when the unsaturated gain g0 increases
for a fixed value of the group delay dispersion, β′′ = −0.015. The wake modes become unstable
when g0 ≥ 9.0. As g0 increases from g0 = 5.5 and approaches the stability limit, the frequency
offset of the sideband increases from about 7.5MHz to 20.5MHz, and the peak magnitude of the
sideband grows from nearly zero to about 9 dBc/Hz above the background noise. The sideband
profile is non-Lorentzian, which is consistent with the RF sideband spectra that we show in
Fig. 4. That occurs because both the discrete and the continuous modes in the dynamical system
contribute to the PSD [18].

The energy jitter ∆w(T ) is defined following Eq. (5.51),

∆w(T ) =

∫ TR/2

−TR/2
dt
[
|u(t, T )|2 − |u0(t, T )|2

]

≈
∫ TR/2

−TR/2
dt [u0(t, T )∆u∗(t, T ) + u∗0(t, T )∆u(t, T )] ,

(6.1)

and we describe the corresponding noise level in dBc,

Sw(f)(dBc) = 10 log
Sw(f)

w0fFSR

. (6.2)

Here, we assume that the repetition frequency fFSR = 1/TR = 300 MHz.
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g0 increases for given group delay dispersion, β′′ = −0.015 ps2.

We show in Fig. 6.3 the energy jitter spectrum Sw(f) when the unsaturated

gain g0 increases for a given value of group delay dispersion, β′′ = −0.015. We have

calculated that the wake modes become unstable when g0 ≥ 9.0. As the g0 increases

from g0 = 5.5 and approaches the stability limit, we observe that the frequency

offset of the sideband increases from about 7.5 MHz to 20.5 MHz, and the peak

magnitude of the sideband grows from almost invisible to about 9 dBc/Hz about
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for given group delay dispersion, β′′ = −0.015 ps2.

limit, we observe that the frequency offset of the sideband increases from about 7.5MHz to
20.5MHz, and the peak magnitude of the sideband grows from nearly zero to about 9 dBc/Hz
above the background noise. The sideband profile is non-Lorentzian, which is consistent with
the RF sideband spectra that we show in Fig. 4. That occurs because both the discrete and the
continuous modes in the dynamical system contribute to the PSD [18].
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changes for given unsaturated gain, g0 = 7.74.

values of group delay dispersion β′′, when the unsaturated gain increases, the pulse

energy grows linearly, while the pulse duration decreases monotonically. This implies

that by tuning the group delay dispersion close to 0, one can achieve pulses with

high energy and broad bandwidth. In Fig. 6.1, we can obtain a stable pulse 200 ps

with the intra-cavity energy of 220 pJ, which corresponds to about 5.7 nm when the

central wavelength is 1560 nm with an output power of 6.6 mW.

The wake modes can induce the sidebands that are visible in the energy jitter

spectrum, as we have described with an optical spectrum analyzer in Fig. 3.10. We

can rapidly calculate the power spectrum of the energy jitter using the spectral

method that we have described in chapter 5. In Figs. 6.3 and 6.4, we show the

variation of the sidebands in the energy jitter spectrum when the unsaturated gain

g0 and the group delay dispersion β′′ change.
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3.1.2. Variation of Pulse Profiles When β′′ Changes

In Fig. 9, we show how the pulse profiles change as β′′ changes when g0 = 7.74. We observe
that the pulse energy is almost constant at 180 pJ, which corresponds to an output power of
about 4.9mW. The FWHM pulse duration increases almost linearly—from about 510 ps to about
180 ps—as β′′ changes from −0.010 ps2 to −0.030 ps2. By comparison, for given values of group
delay dispersion β′′, we also observe that when the unsaturated gain increases, the pulse energy
grows linearly, while the pulse duration decreases monotonically. Hence, by tuning the group
delay dispersion close to 0, we can obtain pulses with high energy and broad bandwidth. In Fig. 7,
a stable pulse 200 ps with the intra-cavity energy of 220 pJ, which corresponds to about 5.7 nm
when the central wavelength is 1560 nm with an output power of 6.6mW.

In Fig. 10, we show the PSD of the energy fluctuations when β′′ changes and g0 is constant.
As β′′ becomes less negative; increasing from β′′ = −0.025 ps2 to β′′ = −0.015 ps2, we observe
that the frequency offset of the sideband increases from about 10.0MHz to 16.5MHz, and the
peak magnitude of the sideband increases from zero to about 5 dBc/Hz above the background.

From the results in Figs. 8 and 10, we conclude that we can obtain a high-power comb output
by either increasing the system gain or making group delay dispersion more negative, but at the

Figure 9. The intra-cavity pulse energy w0 and the FWHM pulse duration τp as a function
of the group delay dispersion β′′ with g0 = 7.74.

3.1.2. Variation of Pulse Profiles When β′′ Changes

In Fig. 9, we show how the pulse profiles change as β′′ changes when g0 = 7.74. The pulse energy
is almost constant at 180 pJ, which corresponds to an average output power of about 4.9mW.

Figure 6.4: Variation of the wake mode sidebands when the unsatu-

rated gain g0 increases with β′′ = −0.015 ps2.

In Fig. 6.4, we show the energy PSD Sw(f) when the unsaturated gain g0

increases for a fixed value of the group delay dispersion, β′′ = −0.015. The wake

modes become unstable when g0 ≥ 9.0. As g0 increases from 5.5 and approaches the

stability limit, the frequency offset of the sideband increases from about 7.5 MHz to

20.5 MHz, and the peak magnitude of the sideband grows from nearly zero to about

9 dBc/Hz above the background noise. The sideband profile is non-Lorentzian, which

is consistent with the RF sideband spectra that we show in Fig. 3.7. This asymmetry

occurs because both the discrete and the continuous modes in the dynamical system

contribute to the PSD [80].

6.1.1.2 Variation of Pulse Profiles When β′′ Changes

In Fig. 6.5, we show how the pulse profiles change as β′′ changes when g0 =

7.74. We observe that the pulse energy is almost constant at 180 pJ, which corre-
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The energy jitter ∆w(T ) is defined following Eq. (5.51),

∆w(T ) =

∫ TR/2

−TR/2
dt
[
|u(t, T )|2 − |u0(t, T )|2

]

≈
∫ TR/2

−TR/2
dt [u0(t, T )∆u∗(t, T ) + u∗0(t, T )∆u(t, T )] ,

(6.1)

and we describe the corresponding noise level in dBc,

Sw(f)(dBc) = 10 log
Sw(f)

w0fFSR

. (6.2)

Here, we assume that the repetition frequency fFSR = 1/TR = 300 MHz.
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Figure 6.3: The variation of the wake mode sidebands when the unsaturated gain

g0 increases for given group delay dispersion, β′′ = −0.015 ps2.

We show in Fig. 6.3 the energy jitter spectrum Sw(f) when the unsaturated

gain g0 increases for a given value of group delay dispersion, β′′ = −0.015. We have

calculated that the wake modes become unstable when g0 ≥ 9.0. As the g0 increases

from g0 = 5.5 and approaches the stability limit, we observe that the frequency

offset of the sideband increases from about 7.5 MHz to 20.5 MHz, and the peak

magnitude of the sideband grows from almost invisible to about 9 dBc/Hz about
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Figure 8. The variation of the wake mode sidebands when the unsaturated gain g0 increases
for given group delay dispersion, β′′ = −0.015 ps2.

limit, we observe that the frequency offset of the sideband increases from about 7.5MHz to
20.5MHz, and the peak magnitude of the sideband grows from nearly zero to about 9 dBc/Hz
above the background noise. The sideband profile is non-Lorentzian, which is consistent with
the RF sideband spectra that we show in Fig. 4. That occurs because both the discrete and the
continuous modes in the dynamical system contribute to the PSD [18].
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changes for given unsaturated gain, g0 = 7.74.

values of group delay dispersion β′′, when the unsaturated gain increases, the pulse

energy grows linearly, while the pulse duration decreases monotonically. This implies

that by tuning the group delay dispersion close to 0, one can achieve pulses with

high energy and broad bandwidth. In Fig. 6.1, we can obtain a stable pulse 200 ps

with the intra-cavity energy of 220 pJ, which corresponds to about 5.7 nm when the

central wavelength is 1560 nm with an output power of 6.6 mW.

The wake modes can induce the sidebands that are visible in the energy jitter

spectrum, as we have described with an optical spectrum analyzer in Fig. 3.10. We

can rapidly calculate the power spectrum of the energy jitter using the spectral

method that we have described in chapter 5. In Figs. 6.3 and 6.4, we show the

variation of the sidebands in the energy jitter spectrum when the unsaturated gain

g0 and the group delay dispersion β′′ change.

92

Figure 9. The intra-cavity pulse energy w0 and the FWHM pulse duration τp as a function
of the group delay dispersion β′′ with g0 = 7.74.

3.1.2. Variation of Pulse Profiles When β′′ Changes

In Fig. 9, we show how the pulse profiles change as β′′ changes when g0 = 7.74. We observe
that the pulse energy is almost constant at 180 pJ, which corresponds to an output power of
about 4.9mW. The FWHM pulse duration increases almost linearly—from about 510 ps to about
180 ps—as β′′ changes from −0.010 ps2 to −0.030 ps2. By comparison, for given values of group
delay dispersion β′′, we also observe that when the unsaturated gain increases, the pulse energy
grows linearly, while the pulse duration decreases monotonically. Hence, by tuning the group
delay dispersion close to 0, we can obtain pulses with high energy and broad bandwidth. In Fig. 7,
a stable pulse 200 ps with the intra-cavity energy of 220 pJ, which corresponds to about 5.7 nm
when the central wavelength is 1560 nm with an output power of 6.6mW.

In Fig. 10, we show the PSD of the energy fluctuations when β′′ changes and g0 is constant.
As β′′ becomes less negative; increasing from β′′ = −0.025 ps2 to β′′ = −0.015 ps2, we observe
that the frequency offset of the sideband increases from about 10.0MHz to 16.5MHz, and the
peak magnitude of the sideband increases from zero to about 5 dBc/Hz above the background.

From the results in Figs. 8 and 10, we conclude that we can obtain a high-power comb output
by either increasing the system gain or making group delay dispersion more negative, but at the

Figure 6.5: The intra-cavity pulse energy w0 and the FWHM pulse

duration τp as a function of the group delay dispersion β′′

with g0 = 7.74.

sponds to an average output power of about 4.9 mW. The FWHM pulse duration

increases almost linearly—from about 510 ps to about 180 ps—as β′′ changes from

−0.010 ps2 to −0.030 ps2. Hence, by tuning the group delay dispersion close to zero,

we can obtain pulses with broader bandwidth.

The FWHM pulse duration increases almost linearly—from about 510 ps to about 180 ps—as
β′′ changes from −0.010 ps2 to −0.030 ps2. By comparison, for given values of group delay
dispersion β′′, we also observe that when the unsaturated gain increases, the pulse energy grows
linearly, while the pulse duration decreases monotonically. Hence, by tuning the group delay
dispersion close to 0, we can obtain pulses with high energy and broad bandwidth. In Fig. 7, a
stable pulse 200 ps with the intra-cavity energy of 220 pJ, which corresponds to about 5.7 nm
when the central wavelength is 1560 nm with an average output power of 6.6mW.

the background noise. The sideband profile appears to be non-Lorentzian, which

are consistent with the experimental observation that we show in Fig. 3.10.
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Figure 6.4: The variation of the wake mode sidebands when the group delay disper-

sion increases for given unsaturated gain, g0 = 7.74.

We can observe a similar behavior of the sideband when we change the group

delay dispersion for given values of the unsaturated gain, as we show in Fig. 6.4. As

the β′′ becomes less negative: from β′′ = −0.025 ps2 to β′′ = −0.015 ps2, we observe

that the frequency offset of the sideband increases from about 10 MHz to 16.5 MHz,

and the peak magnitude of the sideband from almost invisible grows about 5 dBc/Hz

above the background.

Form the results in Figs. 6.3 and 6.4, we conclude that can obtain a high-power

comb output by either increasing the system gain or making group delay dispersion

more negative, but at the cost of narrowing the bandwidth and the comb quality

being downgraded by a increase of the noise level. However, to suppress the noise

levels with less sacrifice, we prefer tuning the group delay dispersion more negative
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Figure 10. The variation of the wake mode sidebands when the group delay dispersion
increases for given unsaturated gain, g0 = 7.74.

cost of narrowing the bandwidth and increasing the wake mode sidebands. We also conclude that
it is preferrable to suppress the sidebands by making the group delay dispersion more negative
rather than by decreasing the pump power. With this choice, the pulse duration increases, but the
pulse energy remains almost unchanged as shown in Fig. 9.

3.2. When toc Changes

The SESAM fiber laser utilizes a piece of erbium-doped fiber (EDF) as the gain medium. In
experiments, the unsaturated gain g0 can be increased by increasing the pump power of the EDF,
the doping concentration, or the geometry and the length of the EDF [23]. We assume that the
length of the EDF is unchanged, and thus the roundtrip time TR—and the repetition frequency
fFSR (300MHz)—is unchanged.

3.2.1. Adjusting the Unsaturated Gain

In Fig. 11, we show how the output pulse’s average power and duration change with respect
to the unsaturated gain g0 for given values of group-delay dispersion β′′. We focus on cases
when g0 increases and the system approaches the onset of wake mode instability, which we mark
using black dots in Fig. 11. We use solid lines to denote the variation of the output power Pout
and dashed lines to denote the variation of the FWHM output pulse duration τp. As indicated
in Fig. 6, we set the output coupling ratio toc as (a) 10%, (b) 20%, (c) 40%, and (d) 60%. The
experimental value of the output coupling ratio is close to 9%.

In each sub-figure of Fig. 11, we observe the wake mode instability occurs as g0 increases with
fixed values of β′′. We see the instability limit on g0 relaxes, i.e., increases, for larger values of
β′′. This result is consistent with the stability region that we have shown in [10]. In addition, we
also observe that the instability limit for g0 is further increased when the output coupling ratio toc
increases. For example, for the case β′′ = −0.015, the largest value of g0 for stable operation is
g0 = 8.5 when toc = 10%, as shown in Fig. 11(a). By comparison, when toc = 20%, this limit
becomes g0 = 11.0 as shown in Fig. 11(b).
In the parameter regimes that we show in Fig. 11, the average output power Pout increases

approximately linearly, while the FWHM pulse duration decreases, with the growth of the
unsaturated gain g0. The shortest pulse we obtained is 153 fs with an average output power of
31mW, which occurs when toc = 20%, β′′ = 0.025, and g0 = 22.5.
When toc = 9%, we showed in Fig. 8 that the magnitude of the wake modes grows when g0

approaches the onset of wake mode instability. A similar behavior appears at other values of toc,
as we show in Fig. 12. We select three values of g0 for each case of (β′′, toc) that we show in
Fig. 11. We observe that both the magnitude and the offset frequency of the sidebands grow as g0

PS
D
,S

w
(f

)
(d
Bc

/H
z)

Figure 10. Variation of the wake mode sidebands when the group delay dispersion increases
with g0 = 7.74.

In Fig. 10, we show the PSD of the energy fluctuations when β′′ changes and g0 is constant. As
β′′ becomes less negative; increasing from β′′ = −0.025 ps2 to β′′ = −0.015 ps2, the frequency
offset of the sideband increases from about 10.0MHz to 16.5MHz, and the peak magnitude of
the sideband increases from zero to about 5 dBc/Hz above the background.

From the results in Figs. 8 and 10, we conclude that we can obtain a high-power comb output
by either increasing the system gain or making group delay dispersion more negative, but at the
cost of narrowing the bandwidth and increasing the wake mode sidebands. We also conclude that
it is preferrable to suppress the sidebands by making the group delay dispersion more negative
rather than by decreasing the pump power. With this choice, the pulse duration increases, but the
pulse energy remains almost unchanged as shown in Fig. 9.

3.2. When toc Changes

The SESAM fiber laser utilizes a piece of erbium-doped fiber (EDF) as the gain medium. In
experiments, the unsaturated gain g0 can be increased by increasing the pump power of the
EDF, the doping concentration, or the geometry and the length of the EDF [22]. We assume that
the length of the EDF is unchanged, so that the roundtrip time TR and the repetition frequency
fFSR = 1/TR (300MHz) is unchanged.

3.2.1. Adjusting the Unsaturated Gain

In Fig. 11, we show the variation of the output pulse’s average power and duration as a function
of g0 for different values of group delay dispersion β′′. We focus on cases when g0 increases and
the system approaches the onset of wake mode instability, which we mark using black dots in
Fig. 11. We use solid lines to denote the variation of the average output power Pout and dashed
lines to denote the variation of the FWHM output pulse duration τp . As indicated in Fig. 6, we set
the output coupling ratio toc equals to (a) 10%, (b) 20%, (c) 40%, and (d) 60%. The experimental
value of the output coupling ratio is close to 9%.

Figure 6.6: Variation of the wake mode sidebands when the group

delay dispersion increases with g0 = 7.74.
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In Fig. 6.6, we show the PSD of the energy fluctuations when β′′ changes

and g0 is constant. As β′′ becomes less negative; increasing from β′′ = −0.025 ps2

to β′′ = −0.015 ps2, we observe that the frequency offset of the sideband increases

from about 10.0 MHz to 16.5 MHz, and the peak magnitude of the sideband increases

from zero to about 5 dBc/Hz above the background.

From the results in Figs. 6.4 and 6.6, we conclude that we can obtain a high-

power comb output by either increasing the system gain or making group delay

dispersion more negative, but at the cost of narrowing the bandwidth and increas-

ing the wake mode sidebands. We also conclude that it is preferrable to suppress

the sidebands by making the group delay dispersion more negative rather than by

decreasing the pump power. With this choice, the pulse duration increases, but the

pulse energy remains almost unchanged as shown in Fig. 6.5.

6.1.2 When toc Changes

The SESAM fiber laser utilizes a piece of erbium-doped fiber (EDF) as the gain

medium. In experiments, the unsaturated gain g0 can be increased by increasing the

pump power of the EDF, the doping concentration, or the geometry and the length

of the EDF [51]. We assume that the length of the EDF is unchanged, and thus the

roundtrip time TR—and the repetition frequency fFSR (300 MHz)—is unchanged.
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6.1.2.1 Adjusting the Unsaturated Gain

In Fig. 6.7, we show how the output pulse’s average power and duration change

with respect to the unsaturated gain g0 for given values of group-delay dispersion

β′′. We focus on cases when g0 increases and the system approaches the onset of

wake mode instability, which we mark using black dots in Fig. 6.7. We use solid lines

to denote the variation of the average output power Pout and dashed lines to denote

the variation of the FWHM output pulse duration τp. As indicated in Fig. 6.2, we

set the output coupling ratio toc as (a) 10%, (b) 20%, (c) 40%, and (d) 60%.

In each sub-figure of Fig. 6.7, we observe the wake mode instability occurs as g0

increases with fixed values of β′′. The instability limit on g0 increases as β′′ increases.

This result is consistent with the stability region that we have shown in [47]. In

addition, we also observe that the instability limit for g0 is further increased when

the output coupling ratio toc increases. For example, for the case β′′ = −0.015 ps2,

the largest value of g0 for stable operation is g0 = 8.5 when toc = 9%, as shown in

Fig. 6.1. By comparison, when toc = 20%, this limit becomes g0 = 11.0 as shown in

Fig. 6.7(b).

In the parameter regimes that we show in Fig. 6.7, the average output power

Pout increases approximately linearly, while the FWHM pulse duration decreases

with the growth of the unsaturated gain g0. The shortest pulse that we obtained

is 153 fs with an average output power of 31 mW, which occurs when toc = 20%,

β′′ = −0.025 ps2, and g0 = 22.5.

When toc = 9%, we showed in Fig. 6.4 that the magnitude of the wake modes
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Figure 6.5: The output pulse profiles when the unsaturated gain g0

varies for given values of the group delay dispersion β′′

and the output coupling ratio toc. Here, we assume the

repetition frequency fFSR = 1/TR = 300 MHz. The black

dots indicate the onset of the wake mode instability. The

magenta and the green circles correspond to the exper-

imental output and Pulse 1 which we show in Fig. 6.7.
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Figure 11. The output pulse profiles when the unsaturated gain g0 varies for given values of
the group delay dispersion β′′ and the output coupling ratio toc. We set the output coupling
ratio toc equal to (a) 10%, (b) 20%, (c) 40%, and (d) 60%. Here, we assume that the repetition
frequency fFSR = 1/TR = 300MHz. The black dots indicate the onset of the wake mode
instability. The magenta and the green circles correspond respectively to the experimental
output and Pulse 1, which we show in Fig. 13.

increases. When toc = 20%, we obtain the output pulse with the shortest duration, but it also has
the highest wake mode sidebands.

One can suppress the wake mode sidebands by decreasing the value of g0, which corresponds
to decreasing the pump power in experiments. In our simulation, we see that the peak of the
sideband decreases to below 5 dBc/Hz above the background noise when g0 = 17.0, toc = 20%,
and β′′ = 0.025, as shown in Fig. 11(b) in green. We call this output “Pulse 1,” and its profile is
shown in Fig. 11.
In Fig. 13, we show a comparison of the magnitudes of Pulse 1, Pulse 2, which we will

introduce in Sec. 3.2.2, and the reference pulse. Pulse 1 has an average output power of 23.4mW
and a FWHM pulse duration of 203.9 fs. This is about 22% shorter and three times more energetic
than the reference pulse, and its maximum PSD is about −265 dBc/Hz, which is about 3 dBc/Hz
lower than the experimental pulse, as shown in Fig. 12(a) and (b).

ReferenceeeeeeeeeeReference

Figure 11. The output pulse profiles when the unsaturated gain g0 varies for given values of
the group delay dispersion β′′ and the output coupling ratio toc. We set the output coupling
ratio toc equal to (a) 10%, (b) 20%, (c) 40%, and (d) 60%. Here, we assume that the repetition
frequency fFSR = 1/TR = 300MHz. The black dots indicate the onset of the wake mode
instability. The magenta and the green circles correspond respectively to the reference pulse
and Pulse 1, which we show in Fig. 13.

As shown in each sub-figure of Fig. 11, the wake mode instability occurs as g0 increases with
fixed values of β′′. The instability limit on g0 increases, for larger values of β′′. This result is
consistent with the stability region that we have shown in [10]. In addition, the instability limit
for g0 increases further when the output coupling ratio toc increases. For example, for the case
β′′ = −0.015, the largest value of g0 for stable operation is g0 = 9.0 when toc = 10%, as shown in
Fig. 11(a). By comparison, when toc = 20%, this limit becomes g0 = 11.0 as shown in Fig. 11(b).
In the parameter regimes that we show in Fig. 11, the average output power Pout increases

approximately linearly, while the FWHM pulse duration decreases, with the growth of the
unsaturated gain g0. The shortest pulse that we obtained is 153 fs with an average output power
of 31mW, which occurs when toc = 20%, β′′ = 0.025, and g0 = 22.5.
When toc = 9%, we showed in Fig. 8 that the magnitude of the wake modes grows when g0

approaches the onset of wake mode instability. A similar behavior appears at other values of toc,
as we show in Fig. 12. We select three values of g0 for each case of (β′′, toc) that we show in
Fig. 11. We observe that both the magnitude and the offset frequency of the sidebands grow as g0
increases. When toc = 20%, we obtain the output pulse with the shortest duration, but it also has

Figure 6.7: The output pulse profiles when the unsaturated gain g0

varies for given values of the group delay dispersion β′′

and the output coupling ratio toc. We set the output

coupling ratio toc equal to (a) 10%, (b) 20%, (c) 40%,

and (d) 60%. The black dots indicate the onset of the

wake mode instability. The magenta and the green circles

correspond respectively to the reference pulse and Pulse

1, which we show in Fig. 6.9.
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Figure 6.6: The energy jitter spectra when g0, β′′, and toc vary. Here,

we set fFSR = 1/TR = 300 MHz. The green line in (b)

shows the energy jitter profile corresponds to Pulse 1

which we shown in Fig. 6.7.
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Figure 12. The energy jitter spectra when g0, β′′, and toc vary. Here, we set fFSR = 1/TR =
300MHz. The green line in (b) shows the energy jitter profile corresponds to Pulse 1 which
we shown in Fig. 13.

3.2.2. Adjusting the Group Delay Dispersion

We have shown that, for a given value of group delay dispersion, we can obtain an output comb
that is more powerful but with a smaller maximum PSD than the experimental pulse by adjusting
the output coupling ratio and the unsaturated gain. We have shown in Fig. 9 that the pulse energy
stays almost unchanged when only the group delay dispersion varies. Thus, we can apply this
approach to obtain an even more energetic output pulses.

ReferenceeeeeeeeeReference
PS

D
,S

w
(f

)
(d
Bc

/H
z)
A
BC

D
EF

G
H
IJ
K

Figure 12. The energy PSDwhen g0, β′′, and toc vary. Here, we set fFSR = 1/TR = 300MHz.
The green line in (b) shows the energy jitter profile corresponds to Pulse 1 which we shown
in Fig. 13.

the highest wake mode sidebands.
It is possible to suppress the wake mode sidebands by decreasing the value of g0, which

corresponds to decreasing the pump power in experiments. In our simulations, the peak of the
sideband decreases to below 5 dBc/Hz above the background noise when g0 = 17.0, toc = 20%,
and β′′ = 0.025, as shown in Fig. 11(b) in green. We call this output “Pulse 1,” and its profile is
shown in Fig. 11.

In Fig. 13, we show the pulse profiles for the reference pulse that corresponds to the experimental

Figure 6.8: The energy PSD when g0, β′′, and toc vary. The green line

in (b) shows the energy PSD that corresponds to Pulse

1, shown in Fig. 6.9.
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grows when g0 approaches the onset of wake mode instability. A similar behavior

appears at other values of toc, as we show in Fig. 6.8. We select three values of g0 for

each case of (β′′, toc) that we show in Fig. 6.7. We observe that both the magnitude

and the offset frequency of the sidebands grow as g0 increases. When toc = 20%, we

obtain the output pulse with the shortest duration, but it also has the highest wake

mode sidebands.

It is possible to suppress the wake mode sidebands by decreasing the value of g0,

which corresponds to decreasing the pump power in experiments. In our simulations,

the peak of the sidebands decrease to below 5 dBc/Hz above the background noise

when g0 = 17.0, toc = 20%, and β′′ = −0.025 ps2, as shown in Fig. 6.7(b) in green.

We call this output “Pulse 1,” and its profile is shown in Fig. 6.9.

In Fig. 6.9, we show a comparison of the magnitudes of Pulse 1, Pulse 2,

which we will introduce in Sec. 6.1.2.2, and the reference pulse. Pulse 1 has an

average output power of 23.4 mW and a FWHM pulse duration of 203.9 fs. This

is about 22% shorter and three times more energetic than the reference pulse, and

its maximum PSD is about −265 dBc/Hz, which is about 3 dBc/Hz lower than the

reference pulse, as shown in Fig. 6.8(a) and (b).

6.1.2.2 Adjusting the Group Delay Dispersion

We have shown that, for a given value of group delay dispersion, we can obtain

an output comb that is more powerful and has smaller sidebands than the reference

pulse by adjusting the output coupling ratio and the unsaturated gain. We have
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Figure 12. The optimal pulses that we find.

In Fig. 13, we show that, for given values of the unsaturated gain g0, how the output pulse’s
power and duration change with respect to group-delay dispersion β′′. For any given (toc, g0), we
see that the output power remains almost unchanged while the FWHM pulse duration decreases
linearly when the group delay dispersion becomes less negative. These results are consistent with
our result in Fig. 8. We see again that among the cases that we investigate, the shortest pulse
(152.8 fs) appears when toc = 20%, g0 = 22.5, and β′′ = −0.025 as shown in Fig. 13(b).

In Fig. 14, we can observe that the variation of the energy jitter spectra. For any given set
of (toc, g0) that we study, we observe that the magnitude of the wake mode sideband decreases
significantly — even vanishes — when the dispersion becomes more negative by 0.010 ps2.
For the case when toc = 20%, g0 = 22.5 — which we mark using blue circles in Fig. 14(b),
we observe that the sideband’s magnitude is less than 5 dBc/Hz above the background when
β′′ = −0.035. More importantly, the FWHM pulse duration is 210.6 fs, which is about 20%
shorter than the experimental pulse ( 260 fs), while the output power remains 31.7mW, which is
about 5 times more powerful than the experimental pulse. This pulse is even more than Pulse 1,
and we call this pulse "Pulse 2". We show a comparison of Pulse 1, Pulse 2, and the experimental
pulse in Fig. 12.

4. Validating the Results

The lumped model can provide a closer approximation to the experimental system more directly
than does the averaged model. In this section, we will validating the optimal output profiles as
shown in Fig. 12 using the lumped model as described in Appendix A.

Our results in the last two sections show that by increasing the output coupling ratio toc, we can
obtain output combs with a large output power and bandwidth than in the reported experiments.
However, our results are based on two assumptions: (1) the length of the gain fiber — and thus
the roundtrip time — remains unchanged, (2) the unsaturated gain increases linearly with the
pump power. These assumption are not necessarily valid in any experimental systems. When the
erbium-doped fiber is well-saturated, the unsaturated gain can not increase indefinitely. Thus, in
the SESAM laser cavity, the erbium fiber is not able to provide sufficient gain due to its limited
length. In order to obtain the large cavity gain without changing the round trip time, in the
Giles-Desurvire model that we use, we increase the doping concentration by 50%.
In Fig. 15, we show the pulse profiles and their RF spectrum using the lumped model that

we describe in detail in Appendix A. Based on the variation of the values of β′′ as suggested in
Fig. 12, we use two more negative values of group velocity dispersion, β2 = −0.0534 ps2/m and
β2 = −0.0730 ps2/m.
In Fig. 15(a), we show the calculated pulse profiles. We have described the case when toc = 9%

Figure 6.9: The optimal pulse profiles that we find using the averaged

model.

shown in Fig. 6.5 that the pulse energy stays almost unchanged when only the

group delay dispersion varies. Thus, we can apply this approach to obtain even

more energetic output pulses.

In Fig. 6.10, we show that the average output power and output pulse duration

change as a function of the group-delay dispersion β′′ for different values of the

unsaturated gain g0. For any given (toc, g0), we find that the average output power

remains almost unchanged while the FWHM pulse duration decreases linearly when

the group delay dispersion increases (decreases in magnitude). These results are

consistent with the results in Fig. 6.5. We see again that among the cases that we

investigated, the shortest pulse (153 fs) appears when toc = 20%, g0 = 22.5, and

β′′ = −0.025 ps2, as shown in Fig. 6.10(b).

In Fig. 6.11, we show the variation of the energy PSD. For any given parameter

pair (toc, g0), we observe that the magnitude of the wake mode sidebands decreases
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Figure 13. The optimal pulse profiles that we have obtained using the averaged model.
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Figure 6.8: The variation of the stable output pulse profile when the

group delay dispersion, β′′, approaches zero for given val-

ues of unsaturated gain, g0 and output coupling ratio,

toc: (a) toc = 10%, (b) toc = 20%, (c) toc = 40%, and

(d) toc = 60%. Here, we assume the repetition frequency

fFSR = 1/TR = 300 MHz. The black dots indicate the

onset of the wake mode instability. The blue circles cor-

respond to Pulse 2 which we show in Fig. 6.7.
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Figure 14. The variation of the stable output pulse profile when the group delay dispersion,
β′′, approaches zero for given values of unsaturated gain, g0 and output coupling ratio, toc:
(a) toc = 10%, (b) toc = 20%, (c) toc = 40%, and (d) toc = 60%. Here, we assume the
repetition frequency fFSR = 1/TR = 300MHz. The black dots indicate the onset of the wake
mode instability. The blue circles correspond to Pulse 2 which we show in Fig. 13.

Figure 6.10: Variation of the stable output pulse profile when the

group delay dispersion β′′, approaches zero for given val-

ues of unsaturated gain g0 and output coupling ratio toc:

(a) toc = 10%, (b) toc = 20%, (c) toc = 40%, and (d)

toc = 60%. The black dots indicate the onset of the

wake mode instability. The blue circles correspond to

Pulse 2, shown in Fig. 6.9.
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In Fig. 14, we show the variation of the average output power and output pulse duration
change as a function of the group-delay dispersion β′′ for different values of the unsaturated gain
g0. For any given (toc, g0), we find that the output power remains almost unchanged while the
FWHM pulse duration decreases linearly when the group delay dispersion increases (decreases
in magnitude). These results are consistent with the results in Fig. 9. We see again that among
the cases that we investigated, the shortest pulse (153 fs) appears when toc = 20%, g0 = 22.5,
and β′′ = −0.025, as shown in Fig. 14(b).
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Figure 6.9: The variation of the wake mode sidebands when the output coupling

ratio tout changes. Here, we assume that fFSR = 1/TR = 300 MHz. The blue line in

(b) shows the energy jitter profile corresponding to Pulse 2 as shown in Fig. 6.7.
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Figure 15. The variation of the wake mode sidebands when the output coupling ratio tout
changes. Here, we assume that fFSR = 1/TR = 300MHz. The blue line in (b) shows the
energy jitter profile corresponding to Pulse 2 as shown in Fig. 13.
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Figure 15. Variation of the wake mode sidebands when the output coupling ratio toc changes.
We set fFSR = 1/TR = 300MHz. The blue line in (b) shows the PSD to Pulse 2, shown in
Fig. 13.

experimental output pulse, and has a pulse duration that is about 10% shorter. This result is
consistent with the prediction for Pulse 2 in Fig. 13.

In Fig. 16(b), we show the calculated RF spectra that correspond to the optimal pulse profiles,
and we also show the experimental pulse spectra for comparison. Compared to the experimental
setup, the output coupling ratio is increased from 9% to 20%, which leads to a increase in the
system loss. Thus, the increased system gain causes the ASE noise level to rise, which raises the
background noise level, as shown in Fig. 16(b). In all three cases we consider, the wake mode

Figure 6.11: Variation of the wake mode sidebands when the output

coupling ratio tout changes. The blue line in (b) shows

the energy jitter profile corresponding to Pulse 2, shown

in Fig. 6.9.
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significantly and can even vanish when the dispersion decreases by 0.010 ps2. For

the case when toc = 20% and g0 = 22.5, which we mark using blue circles in

Fig. 6.11(b), we observe that the sideband’s magnitude is less than 5 dBc/Hz above

the background when β′′ = −0.035 ps2. More importantly, the FWHM pulse dura-

tion is 211 fs, which is about 20% shorter than the reference pulse (260 fs), while the

average output power is still 31.7 mW, which is about five times more energetic than

the reference pulse. This pulse, referred to here as “Pulse 2” is even more energetic

than Pulse 1. We show a comparison of Pulse 1, Pulse 2, and the reference pulse in

Fig. 6.9.

6.2 Validating the Optimization Study

We now return to the lumped model to validate the predictions of the aver-

aged model for the optimized system parameters and more accurately calculate the

predicted pulse profiles.

Our results in Sec. 6.1 show that by increasing the output coupling ratio toc, we

can obtain output combs with a larger average output power and bandwidth than in

the reported experiments. However, our results are based on two assumptions: (1)

the length of the gain fiber—and thus the roundtrip time—remains unchanged, and

(2) the unsaturated gain increases linearly with the pump power. These assumption

are not necessarily valid in experimental systems. When the erbium-doped fiber

is well-saturated, the unsaturated gain cannot increase indefinitely. Thus, in the

SESAM laser cavity, the erbium fiber is not able to provide sufficient gain due to its
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limited length. In order to obtain a larger cavity gain without changing the round

trip time, we increase the doping concentration in the EDF by 50%.

In Fig. 6.12, we show the pulse profiles and their RF spectrum using the

lumped model that we described in Chapter 3. Based on the variation of the pulse

profiles with β′′ as shown in Fig. 6.9, we calculate the pulse profiles using two

more negative values of group velocity dispersion, β2 = −0.0534 ps2/m and β2 =

−0.0730 ps2/m.

In Fig. 6.12(a), we show the calculated pulse profiles. We have described the

case when toc = 9% and β2 = −0.300 ps2/m in Fig. 3.4, in which the average output

power is 4.8 mW, the intracavity pulse energy is 186 pJ, and the FWHM duration

is 311 fs. When we set toc = 20% and β2 = 0.534 ps2/m, we can obtain an average

output power of 18.9 mW, which corresponds to an intracavity pulse with an energy

of w0 = 518.5 nJ and a FWHM duration of 321 fs. This output pulse profile has four

times the energy of the current experimental output pulse and has a similar pulse

duration. This result is consistent with the prediction using the averaged model for

Pulse 1 in Fig. 6.9.

By comparison, when we set toc = 20% and β2 = −0.730 ps2/m, we can

obtain an average output power of 28.9 mW, which features an intra-cavity pulse of

w0 = 617.8 nJ and a FWHM duration of 286 fs. This output pulse profile is about 5

times more energetic than the current experimental output pulse, and has a pulse

duration that is about 10% shorter. This result is consistent with the prediction for

Pulse 2 in Fig. 6.9.

In Fig. 6.12(b), we show the calculated RF spectra that correspond to the

107



(a)

0

5

10

15

20

|u o
ut

(t
)|

(√
W

)

t (fs)
−600 0 600

-45

-42

-39

-36

-33

(b)
0

−3

−6

−9

−12

−15

RF
Sp

ec
tru

m
(d
B/
H
z)

Frequency (MHz)

10 20 30 40 50 60

Figure 16. (a) The calculated optimal pulses and (b) their RF spectrum using the lumped
model. The reference pulse and its RF spectrum are consistent with our results in Sec. 2.
When β2 = −0.0534 and β2 = −0.0730, in order to provide sufficient cavity gain, we
manually set the doping concentration Ne of the erbium fiber equal to 5.21 × 1025 cm−3.

5. Conclusions

In this article, we have carried a computational study to optimize the cavity design of a SESAM
fiber comb laser. The goal was to increase the output power and shorten the output pulse duration,
while suppressing the wake mode sidebands. We have found that by increasing the output coupling
ratio, the unsaturated gain, and the negative group delay dispersion, we can obtain a pulse that is
5 times more energetic and 10% shorter in duration than the observed experimental results while
the sidebands in the PSD remain below 5 dB about the background noise level.

Combined with the simulations that have been done in [14], we find that increasing the output
coupling ratio can both increase the output power and decrease the wall-plug power of comb
sources. In laser design, going back to the earliest lasers, it is usually assumed that it is desirable
to keep the output coupling low in order to maximize the intra-cavity power and make good use

Figure 6.12: (a) The calculated optimal pulses and (b) their RF

spectra using the lumped model. The reference pulse

and its RF spectrum are consistent with our results

in Sec. 6.1. In order to provide sufficient cavity gain,

we set the doping concentration Ne of the erbium fiber

equal to 5.21 × 1025 cm−3 when β2 = −0.0534 ps2 and

β2 = −0.0730 ps2.
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optimal pulse profiles, and we also show the experimental pulse spectra for compar-

ison. Compared to the experimental setup, the output coupling ratio is increased

from 9% to 20%, which leads to a increase in the system loss. The increased system

gain causes the ASE noise level to rise, which raises the background noise level, as

shown in Fig. 6.12(b). In all three cases that we consider, the wake mode sidebands

remain about 4 dB above the background noise level, which is similar to the cur-

rent experimental observation. In addition, the frequency offset increases when β2

increases, which is consistent with the prediction using the averaged model that is

shown in Fig. 6.11. However, there is a difference in the frequency offset of about

15 MHz between the averaged model and the lumped model. This difference is due

to the inaccurate approximation of the gain profile in the averaged model, which is

significantly simpler than the gain spectrum of erbium fibers [51].

6.3 Increasing the Power Efficiency

We use here the lumped model that we have described in Chapter 3, which

is closely related to the experimental parameters. We carry out a computational

study to optimize the power efficiency while maintaining a high average output

power. The parameters we vary include the pump power Ppump, the length of the

erbium-doped fiber LEDF, and the output coupling ratio toc. The doping level Ne

is set as the experimental value as given in Table 3.1. We find that, compared to

current experimental parameters, a higher level of the output coupling ratio and a

longer gain fiber length will improve the power efficiency and the average output
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power. We define the power efficiency as

ηout = Pout/Ppump. (6.3)

Again, our simulation is based on the configuration of the soliton comb laser that is

illustrated in Fig. 4.2.

In Fig. 6.13, we show the results of our optimization study. As shown in

Figs. 2(a) and (b), we set LEDF =15.0 cm and toc = 15% which are consistent with

experiments. When the pump power increases from 60 mW to 120 mW, we find that

Pout increases from about 1.76 mW to 3.80 mW, while ηout only improved slightly

from 2.94% to 3.17%. This level of power efficiency is similar to experimental results.

By comparison, we find that both Pout and ηout increase when we increase the output

coupling ratio, as shown in Figs. 2(a) and (b). For example, when Ppump = 100 mW

and toc increases to 50%, then the average output power increases to 6.33 mW. The

power efficiency is double what is obtained when toc =15%.

Increasing toc yields similar improvements of average output power and effi-

ciency when LEDF = 25.0 cm and 32.5 cm for pump power at which stable output

pulses can be obtained. However, there is a limit on the pump power in each case,

which corresponds to an instability threshold. The instability is due to the wake

modes when the stationary pulse duration τp is much shorter than the SESAM re-

covery time TA [45, 47], i.e., τp/TA � 1, or to continuous wave breakthrough when

τp/TA ' 1 [10]. When we increase the length of the erbium-doped fiber from 15.0 cm

to 25.0 cm and then to 32.5 cm, the gain increases, which indicates that the absorp-

tion of the pump light is not complete when LEDF < 25.0 cm. The under-utilization
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Figure 6.13: The calculated average output power Pout and power ef-

ficiency ηout with different levels of pump power Ppump

and output coupling ratios toc, where the lengths of

erbium-doped fiber LEDF = 15.0 cm in (a) and (b),

LEDF = 25.0 cm in (c) and (d), and LEDF = 32.5 cm

in (e) and (f).

of the pump signal is also confirmed in experiments in which the pump signal is

detected at the output coupler. Hence, one can obtain a similar level of gain by

using a longer piece of erbium-doped fiber while decreasing the pump power, which

leads to improved of power efficiency.

In Figs. 6.13(c) and (d), we also observe that when toc = 15% and when

Ppump > 40 mW, the wake mode instability occurs. This limit increases when the

output coupling ratio toc increases. When LEDF = 25.0 cm and toc = 15%, the

allowed power for the pump signal is less than 60 mW. The pump power thresh-

old increases as toc increases. When toc = 50%, the output comb remains stable
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when Ppump equals 100 mW, leading to an average output power of 10.9 mW. Fixing

Ppump = 40 mW and increasing toc from 15% to 50%, we find that the power effi-

ciency ηout increases from 4.6% to 9.8%. The power efficiency continues to increase

up to about 11% when Ppump increases to 100 mW, beyond which the wake mode

instability occurs.

It is possible to improve the power efficiency by using a longer piece of erbium-

doped fiber while lowering the pump power. However, this approach does not always

lead to a higher average output power. As shown in Figs. 6.13(e) and (f), where

LEDF = 32.5 cm, the highest level of power efficiency that we can achieve is 12.7%

when toc = 50% and Ppump = 60 mW. The wake mode instability occurs when

Ppump further increases, corresponding to Pout = 7.64 mW, which is lower than the

maximum average output power we can obtain when LEDF = 25.0 cm, as shown

in Fig. 6.13(c). A similar behavior occurs with other values of toc that we show

in Figs. 6.13(e) and (f). Our simulations suggest that the length of the erbium-

doped fiber should be increased to 25.0 cm and the output coupling ratio should be

increased to 50%, in which case it should be possible to double the average output

power and triple the power efficiency compared to the current experimental results.

6.4 Conclusions

In this chapter, we have carried a computational study to optimize the cavity

design of a SESAM fiber comb laser. The goal was to increase the average output

power and shorten the output pulse duration while suppressing the wake mode side-
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bands. We have found that by increasing the output coupling ratio, the unsaturated

gain, and the negative group delay dispersion, we can obtain a pulse that is 5 times

more energetic and 10% shorter in duration than the observed experimental results

while the sidebands in the PSD remain below 5 dB above the background noise level.

Combined with the simulations that have been done in [81], we find that

increasing the output coupling ratio can both increase the average output power

and decrease the wall-plug power of comb sources. In laser design, going back to the

earliest lasers, it is usually assumed that it is desirable to keep the output coupling

low in order to maximize the intra-cavity power and make good use of the gain

medium. However, in a fiber laser, large intra-cavity power can lead to instabilities

that are avoided by reducing the gain fiber length, which leads to under-utilization

of the pump and poor power efficiency. From the standpoint of power efficiency, it

is better in these cases to increase the gain fiber length and the output coupling.

That is the case for the SESAM laser that we studied here.
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CHAPTER 7

Conclusion

Modelocked lasers have been, and will continue to be an important optical

source for frequency combs. Accelerating the design and optimization process has

become increasingly important in product development. In this dissertation, we

have conducted research that is aimed at facilitating the design and optimization of

modelocked lasers. We have developed dynamical methods that can greatly improve

the computational efficiency compared to the traditional evolutionary simulation

approaches.

The theoretical background of the dynamical methods is dynamical system

theory. We have developed boundary tracking algorithms to determine the regions

of stable operation of a modelocked laser model rapidly and unambiguously in a large

range of parameter space. By treating the stationary pulse solution of a modelocked

laser as a fixed point in a nonlinear system, we can utilize well-developed root-

finding algorithms, and we can use standard eigen-analysis routines to determine

the stability of the modelocked pulses. We have applied the boundary tracking

algorithm to multiple laser models, and we have found rich dynamical structures.
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These results can provide significant insights into the instability mechanisms of these

modelocked laser systems.

As an extension of this approach, we developed a dynamical method to de-

termine the output noise of modelocked laser systems. By treating the noise source

as perturbations, we can decompose the noise sources into eigenmodes of the lin-

earized system, each of which has a simple evolution Langevin equation that can be

solved analytically. Statistical quantities of interest like the timing phase jitter or

the power spectral density of the amplitude and phase noise can then be evaluated

accurately and rapidly. Compared to the widely used Monte Carlo method, the dy-

namical method is more than 1000 times faster and uses fewer computing resources,

making it possible to evaluate statistical quantities of interest within minutes on a

desktop computer. This approach should make it possible to design optimized laser

sources much more quickly.

To date, the dynamical methods that we have developed are based on averaged

models. At this point, one can think seriously about how to extend this approach

to lumped models to provide a better connection to experimental parameters—

especially those of the gain medium. In this case, the equilibrium solution will

not be stationary as it passes through the laser in one round trip; it will only be

periodically stationary. Thus, it is necessary to perform root-finding, linearization,

and eigen-analysis on a periodic system. Holzlöhner et al. [82] and Deconninck and

Kutz [83] have discussed algorithms for carrying out this task. However, more work

needs to be done to adapt this approach for use in laser design.
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τ0 62 Duration of the stationary pulse u0

122



Bibliography

[1] B. R. Washburn, R. W. Fox, N. R. Newbury, J. W. Nicholson, K. Feder, P. S.

Westbrook, and C. G. Jørgensen, “Fiber-laser-based frequency comb with a

tunable repetition rate,” Opt. Express 12, 4999–5004 (2004).

[2] N. R. Newbury and B. R. Washburn, “Theory of the frequency comb output

from a femtosecond fiber laser,” IEEE J. Quantum Electron. 41, 1388–1402

(2005).

[3] C. Cihan, E. Beyatli, F. Canbaz, L. J. Chen, B. Sumpf, G. Erbert, A. Leiten-

storfer, F. X. Krtner, A. Sennaroglu, and U. Demirbas, “Gain-matched output

couplers for efficient kerr-lens mode-locking of low-cost and high-peak power

cr:lisaf lasers,” IEEE J. Sel. Top. Quant. Electron. 21, 94–105 (2015).

[4] R. Paschotta, “Noise of mode-locked lasers (Part I): Numerical model,” Appl.

Phys. B 79, 153–162 (2004).
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