

Attribution 4.0 International (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

https://creativecommons.org/licenses/by/4.0/
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

����������
�������

Citation: Islam, R. Feasibility

Prediction for Rapid IC Design Space

Exploration. Electronics 2022, 11, 1161.

https://doi.org/10.3390/

electronics11071161

Academic Editor: Anna Richelli

Received: 20 February 2022

Accepted: 5 April 2022

Published: 6 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Feasibility Prediction for Rapid IC Design Space Exploration
Riadul Islam

Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County,
Baltimore, MD 21250, USA; riaduli@umbc.edu

Abstract: The DARPA POSH program echoes with the research community and identifies that
engineering productivity has fallen behind Moore’s law, resulting in the prohibitive increase in IC
design cost at leading technology nodes. The primary reason is that it requires many computing
resources, expensive tools, and even many days to complete a design implementation. However, at
the end of this process, some designs could not meet the design constraints and become unroutable,
creating a vicious circuit design cycle. As a result, designers have to re-run the whole process after
design modification. This research applied a machine learning approach to automatically identify
design constraints and design rule checking (DRC) violation issues and help the designer identify
design constraints with optimal DRCs before the long detailed routing process through iterative
greedy search. The proposed algorithm achieved up to 99.99% design constraint prediction accuracy
and reduced 98.4% DRC violations with only a 6.9% area penalty.

Keywords: design rule check; electronic design automation (EDA); decision tree; IC design; design
constraints

1. Introduction

In recent years, information technology is experiencing tremendous growth due to
the remarkably low sensor price and a sea of devices connected to the internet, including
mobile phones, wristwatches, TVs, cars, washing machines, etc. [1–3]. On the other hand,
computational power has increased significantly, and researchers are struggling to meet
the market demand at low-cost, especially at low-technology nodes (i.e., below 20 nm
technologies) [4,5]. The primary reasons are the increasing number of design rules, design
complexity, high-performance, and lower area budget. After considering all those issues,
implementing a design rule checking (DRC) violations clean design is exceptionally chal-
lenging. The primary reason is the existing global routing-based congestion maps do not
adequately correlate with the DRC violations maps after the detailed routing phase [6].

1.1. Motivation

The conventional IC design flow uses hardware descriptive language and then uses
logic synthesis and place and route tools for implementation. Depending on the size of
a design, this implementation process may take several days to weeks [7]. Moreover,
the DRC violations are only visible to designers after the final step of the design and
require critical technical expertise to resolve those with specific instructions or manually.
Moreover, meeting several design constraints can lead to many implementation iterations
and consequently increasing the chip price.

At low-technology nodes, researchers identified several issues such as compact design
rules, constraint in via placements, and metal routing orientations [8]. The severity of
those issues could lead to design to a point where the benefits of technology scaling even
could diminish. Furthermore, there are several reasons why high-end process technology
developers cannot accurately measure sophisticated IC design rules. One of the crucial
reasons is electronic design automation (EDA) companies allow only close co-development
with customers resulting in a long time-consuming process that creates a vicious cycle. In

Electronics 2022, 11, 1161. https://doi.org/10.3390/electronics11071161 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11071161
https://doi.org/10.3390/electronics11071161
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4649-3467
https://doi.org/10.3390/electronics11071161
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11071161?type=check_update&version=1

Electronics 2022, 11, 1161 2 of 11

addition, the library exchange format (LEF) standards are not consistent among different
vendors. All those factors again increase design and development time. As a result, research
started applying machine learning approaches in the IC design process [9].

1.2. Related Work

Machine learning (ML) algorithms have widespread use in every abstraction layer of
computation, including edge computing [10], cloud computation [11], internet of things
(IoTs), conventional feature space exploitation for performance estimation [12]. However,
ML applications on EDA have a much more significant impact due to electronics in every
aspect of our life. Researchers primarily consider standard design layout features that have
a significant impact on DRC violations. A congestion predictor uses pin shape layouts and
their density to identify local routing hotspots [13]. Researchers use a supervised machine
learning approach to improve detailed routing considering global routing features [14].
Chan et al. [6] proposed a supervised machine learning-based white space allocation
approach at the detailed routing stage to improve routability and reduce the number of
DRC violations. However, this approach requires additional legalization after new cell
placements. Islam et al. [15] used unsupervised machine learning algorithms for clock tree
synthesis (CTS). Kahng et al. proposed a multi-armed bandit (MAB) algorithm considering
the area, slack time, and the number of tool runs thresholds to reduce tool noise and
increase profitability [16]. However, this method requires an exhaustive tool run to identify
the optimal frequency of a design.

A deep learning approach uses a convolutional neural network (CNN) for DRC
hotspots prediction [17]. This approach uses trial route and pin density features and
constructs a single tensor image size of 224 × 224 × 2. However, the CNN approach
suffers from low prediction accuracy. Another J-Net-based CNN architecture predicts DRC
hotspots using high-resolution pin configuration images and low-resolution tile-based
feature maps [18]. However, this approach also suffers from low prediction accuracy.
Another attractive deep learning-based model uses pin-related features to identify metal-
related issues in the layouts. However, this approach ignores issues related to other physical
properties of a layout [19].

1.3. Contributions

This research used ensemble ML methods and heuristic greedy algorithms to improve
synthesis tool performance by predicting optimal design constraints and DRC violations.
A large dataset was collected using extremely time-consuming industrial synthesis and im-
plementation tools. The proposed EDA synthesis flow can target both application-specific
integrated circuit (ASIC) and field-programmable gate array (FPGA) implementations. In
particular, the key contributions in this work are:

• To the best of the author’s knowledge, this is the first-ever approach to improv-
ing synthesis tool performance by combining ensemble learning algorithms and a
greedy approach.

• To the best of the author’s knowledge, this is the first-ever approach to guide inexperi-
enced designers with efficient design choices to reduce the precious design time.

• This research collected 74 design features from layouts and identified the design
constraints those influence DRC violations.

2. Background

Figure 1 shows the vicious cycle of EDA tools flow, since each stage of tools flow
creates tremendous stress to the circuit designer in order to optimize the Pareto optimal
parameters such as performance, power, area, cost, and design time to launch the imple-
mented design [20–22]. At the beginning of the traditional system on chip (SoC) hardware
design flow, the behavioral description of the design systems needs to be written using the
hardware description language [7], which is the register transfer level (RTL) of abstraction.
Recently, due to the increasing popularity of hardware accelerators, the abstraction level

Electronics 2022, 11, 1161 3 of 11

is rising from RTL to the algorithmic level, which is described using high-level languages
such as C, C++, SystemC, or Simulink and then followed by an automated high-level syn-
thesis (HLS) flow to synthesize these descriptions to generate RTL [23–26]. These multiple
processes of system description allow designers to evaluate multiple alternatives, which is
known as design space exploration (DSE) [27,28]. Then, to meet the functional requirements
of design, we need to run the functional simulation until it meets the requirements.

DesignWare
Library

Technology
Library

Constraints

Logic Synthesis
Constraints Violations

Constraints Meet

Gate Level Netlist
Static Timing Failure
Static Timing Meet

Place & Route
Static Timing Failure
Static Timing Meet

Overall Design Specifications
Not Meet

Meet

DRC/ERC/LVS
Violations

No Violations

Design Specification

Behavioral Model
HDL

Chip
Fabrication

Figure 1. A vicious cycle in circuit design often begins with a hardware description of a new design
and end-up after sending the tape-out to the fabrication lab by addressing several stressful iterative
processes to meet the complex design rules, high-performance, and low area budget.

After successful RTL translation from the behavior description, we resort to EDA tools
to translate RTL to gate-level netlist through a logical synthesizer for formal verification [29].
The translated gate-level netlist contains timing information in terms of basic gates. Such
information helps EDA tools to perform static timing analysis for checking several design
constraints such as setup and hold times, process corners variation, temperature variations,
and interconnect variations [30]. Failure to meet these criteria requires tedious effort to fix
the HDL description of the given design.

After successful gate-level synthesis, EDA tools initiate the physical design steps,
where partitioning is the first step. In the partitioning step, EDA tools separate the whole
gate-level netlist into different partitions in order to facilitate parallel implementation of
each sub-system. However, this partitioning introduced several constraints in the design,
such as communication cost among the sub-system, timing budgets, and inter-dependency
among the sub-system [31]. Hence, several optimization techniques, as well as the machine
learning model, were introduced to deal with these constraints [31–33].

After partitioning, EDA tools perform floorplanning to estimate the rough area of the
logic cells and modules, power network, and I/O pads through optimization of several con-
straints such as minimization of area, limitation of aspect ratio, reducing routing, minimum

Electronics 2022, 11, 1161 4 of 11

voltage islands, and distribution of heat map throughout the chip. After estimating the
rough area, EDA tools perform clock tree synthesis (CTS), routing, DRC violation cleaning,
and Layout Versus Schematic (LVS) in the placement step before sending it for fabrication.

3. Proposed Methodology

In order to correlate design choices with the layout features, this research considers
empirical design constraints. For example, clock period (CP), aspect ratio (AR), total wire
length (TWL), total area (TA), core utilization (CU), etc. All those features have a significant
impact on the routability of a design and help us to build a large dataset. The proposed
methodology automatically identifies the set of optimal design constraints for the designer
to reduce design time by ensuring routability of a design before the most expensive detailed
routing phase, as shown in Figure 2.

DesignWare
Library

Technology
Library

Constraints

Logic Synthesis
Constraints Violations

Constraints Meet

Gate Level Netlist
Static Timing Failure
Static Timing Meet

Overall Design Specifications
Not Meet

Meet

DRC/ERC/LVS
Violations

No Violations

Design Specification

Behavioral Model
HDL

Chip
Fabrication

Partitioning / Floorplanning /
Placement / CTS

Violations
No Violations

Global Routing
Violations

 No Violations

Detailed Routing
Violations

 No Violations

Prediction & IGS
Violations

 No Violations

Breaking the Vicious Cycle

Figure 2. The proposed ML-based prediction and IGS methodology integrated with the existing
EDA synthesis flow breaks the most expensive vicious cycle path from detailed routing to the
behavioral algorithm.

Electronics 2022, 11, 1161 5 of 11

First of all, the proposed algorithm uses a decision tree regression (DTR) algorithm to
predict CU, AR, TA, CP, the number of DRC, and TWL. The DTR is a standard supervised
learning algorithm used for both classification and regression [34–37]. The decision tree
considers an independent set of rules, and the top-down approach is the ensemble of many
attribute tests from root to each leaf node. This method uses a criterion function considering
either mean squared error (MSE) or mean absolute error (MAE).

Unlike existing block-based or grid-based DRC violation prediction, the proposed
method predicts design constraints and violations in a design. From many design imple-
mentations (D1, D2, , Dx) and design features (F1, F2, , Fy), we can define objec-
tive or cost functions to determine the optimal model. When we want to maximize two
features F1 and F2, our objective function will try to maximize(F1[index] + F2[index]).
Similarly, when we want to minimize two features, the objective function will try to max-
imize (−F1[index] − F2[index]). On the contrary, when we try to increase one feature
and decrease the other, then the objective function tries to increase the differences using
(F1[index]− F2[index]).

Algorithm 1 shows the optimal design cost computation model. This algorithm uses a
set of designs, a set of associated features, and an optimization type (OptType) as inputs
and returns the optimal cost. The algorithm iterates through each design from Dx and
associated features from Fy and computes the maximization, minimization, and maximum
difference using maxObjective(), minObjective(), and di f f Objective() functions, respec-
tively, from Line 5 to Line 24. It is worth mentioning that depending on the OptType
only one of the conditional blocks (i.e., Line 7 or Line 12 or Line 17) will be true. Then
Algorithm 1 returns the optimal cost in Line 25.

Algorithm 1 Optimal design cost algorithm

1: Input: Dx, set of designs; Fy, set of features; OptType;
2: Output: The optimal cost, OptCost;
3:
4: OptCost = OptCostmax = OptCostmin = OptCostdi f f = −∞ . initializing optimal cost values
5: for all x ∈ Dx : do
6: for all y ∈ Fy : do
7: if (OptType == maximization) then
8: OptCostmax = maxObjective(Dx, Fy)
9: if (OptCostmax > OptCost) then

10: OptCost = OptCostmax

11: end if
12: else if (OptType == minimization) then
13: OptCostmin = minObjective(Dx, Fy)

14: if (OptCostmin > OptCost) then
15: OptCost = OptCostmin

16: end if
17: else(OptType == di f f erentiation)
18: OptCostdi f f = di f f Objective(Dx, Fy)

19: if (OptCostdi f f > OptCost) then
20: OptCost = OptCostdi f f

21: end if
22: end if
23: end for
24: end for
25: return OptCost

Once the proposed methodology computes the optimal cost function associated with
an optimal design, it can guide the researchers to set the right set of constraints for their
design using the proposed greedy approach. The proposed iterative greedy search (IGS)
algorithm correlates the features with the results in optimal design constraints and the
number of DRC. To be precise, it used an iterative method to identify the optimal set of
design constraints.

Electronics 2022, 11, 1161 6 of 11

The proposed IGS takes a set of features and a feature priority list as inputs and
returns the optimal design constraints, as shown in Algorithm 2. The objectiveEvaluation()
function iteratively computes the optimized results depending on the Cartesian product of
x and y pairs and given the priority list in Line 6, utilizing Algorithm 1. The sort() function
computes the optimal design constraints in Line 8. Finally, Algorithm 2 returns the efficient
design constraints in Line 9. For n number of feature constraints; the for loop in Line 5 uses
n(n−1)

2 iterations. However, the proposed methodology has a limited number of feature
constraints, so the algorithm is very time-efficient.

Algorithm 2 Iterative greedy search algorithm

1: Input: Fi
c, set of features; Fi

pr, feature priority list;
2: Output: The optimal design constraints;
3:
4: {xList, yList} = Fi

c
5: for all x ∈ xList and y ∈ yList do :
6: objectiveList[i] = objectiveEvaluation(x, y, Fi

pr) . Objective computation based on the
Cartesian product of x and y pairs and a features priority.

7: end for
8: sIndexList = sort(objectiveList) . Sort index based-on objective values.
9: return sIndexList

4. Experimental Results and Discussion
4.1. Experimental Setup

The proposed methodology considered the open-source implementation of arithmetic
cores, cryptographic cores, processors, co-processors, memory cores, ECC cores, communi-
cations and system controllers, DSP cores, video controllers from OpenCore [38]. It varied
in its different high-level features and implemented 589 designs, and each design contained
74 features, resulting in v60.8 K data.

This research used a Synopsys Design Compiler for logic synthesis and an IC Compiler
for placing and routing with a 28 nm CMOS technology library. For synthesis and placing
and routing, it used our custom tool command language (TCL) script. This research
considered 80% data for training and 20% data for the test. In addition, it used the Python
programming language to implement the proposed algorithms on an Intel Xeon(R) Silver
3.2 GHz 20-core processor with 48 GB random access memory (RAM).

4.2. Results

To determine design feature dependencies, we consider several design constraints
including, CP, CU, DRC violations, and TWL, as shown in Figure 3a, Figure 3b, Figure 3c,
and Figure 3d, respectively. Empirically, clock period variation has a non-linear relationship
with CU and DRC violation and mostly worsens DRC issues. However, the proposed
algorithm identifies the best suitable CU, DRC violations, and TWL for a specific CP.
The best solutions exhibit that reduction in CP reduces the CU and DRC violation, but it
increases the TWL. A 21–30% reduction in CP resulted in a significant 53% reduction in
DRC violations. The increase in core utilization had an adverse impact on DRC violations
and CP, as shown in Figure 3b. In general, a decrease in DRC violations requires a reduction
in CU and an increase in TWL, as shown in Figure 3c. An increase in TWL reduces the
DRC violations. However, it improves the clock frequency and confirms the non-linear
relationship among those constraints, as shown in Figure 3d, resulting in a non-trivial task
in the designer hand.

Electronics 2022, 11, 1161 7 of 11

0-
10

11
-2

0

21
-3

0

31
-4

0

Decrease in clock period (%)

-50

0

50

100

A
v

er
a

g
e

ch
a

n
g

e
(%

)

 Core utilization

 DRC violation

 TWL

(a)

0-
25

26
-5

0

51
-7

5

76
-1

00

Increse in core utilization (%)

0

50

100

A
v

er
a

g
e

ch
a

n
g

e
(%

)

Clk period

DRC violation

TWL

(b)

0-
25

26
-5

0

51
-7

5

76
-1

00

Decrease in DRC (%)

0

50

A
v

er
a

g
e

ch
a

n
g

e
(%

)

Core utilization

Clk period

TWL

(c)

0-
1.

25

1.
25

-2
.5

2.
5-

3.
75

3.
75

-5
.0

0

Decrease in TWL (%)

-25

0

25

A
v

er
a

g
e

ch
a

n
g

e
(%

)

Core utilization

Clk period

DRC

(d)

Figure 3. Illustration of inter-dependency among several constraints of EDA tool flow, varying one
constraint while observing the effect on others, (a) performance variation, (b) area variation, (c) DRC
variation, and (d) total wire length variation.

The proposed methodology performed analysis considering our maximization, mini-
mization, and differentiation functions, as shown in Figure 4. The optimal solutions are
represented by the largest blue, red, and black circles, considering maximization, minimiza-
tion, and subtraction functions, respectively.

0 50 100 150

Sample index

-20

0

20

40

V
a
lu

es

Features addition

Features subtraction

Features negation
Solution

Figure 4. Objective evaluation based on various feature combinations, where the enlarged circle
represents the solution for a particular objective.

This research defines the constraints prediction problem as a DTR algorithm. In this
analysis, it considered 42 random_state for the splitting and MSE criteria function.

The proposed algorithm predicted the CU, AR, TA, CP, number of DRC violations,
and TW using the DTR algorithm, as shown in Table 1. The proposed methodology has a
prediction accuracy of 99.99%, 99.57%, 99.99%, 99.44%, 88.9%, and 99.96% for CU, AR, TA,
CP, DRC violations, and TW, respectively.

Electronics 2022, 11, 1161 8 of 11

Table 1. For the 589 input designs, using the proposed technique and suggested design constraint, a designer can reduce up to 87% DRC violations with only a 2.6%
extra TWL.

Type CU CU AR AR TA (µm2) TA (µm2) CP (ns) CP (ns) # of DRC # of DRC TWL (µm) TWL (µm)
(Predicted) (Actual) (Predicted) (Actual) (Predicted) (Actual) (Predicted) (Actual) (Predicted) (Actual) (Predicted) (Actual)

baseline 0.80 0.80 1.00 1.00 355.777.23 355.777.23 0.75 0.75 320 368 2,374,846.70 2,374,846.70

proposed 0.90 0.90 0.50 0.50 336,415.23 336,415.23 0.80 0.80 . 41 89 2,040,688.31 2,040,688.31

baseline 0.80 0.80 0.50 0.50 307,640.32 307,640.32 0.70 0.70 167 127 2,050,751.55 2,050,751.55

proposed 0.60 0.60 1.00 1.00 310,037.22 310,037.22 1.00 1.00 10 27 2,328,562.86 2,328,562.86

baseline 0.70 0.70 1.17 1.17 5111.52 5112.64 0.74 0.50 0 0 19,698.92 19,698.92

proposed 0.99 0.99 0.48 0.48 4634.52 4636.42 0.90 0.90 8 8 18,114.38 18,114.38

baseline 0.70 0.70 1.17 1.17 5112.64 5112.64 0.74 0.70 0 0 19,698.92 19,698.92

proposed 0.56 0.56 1.73 1.73 4678.47 4678.47 0.50 0.50 8 8 21,622.39 21,622.39

baseline 1.00 1.00 1.50 1.50 313,209.11 313,209.11 0.90 0.90 1398 1969 1,957,889.80 1,957,889.80

proposed 0.80 0.80 0.50 0.50 336,415.23 336,415.23 0.70 0.70 32 32 2,120,044.18 2,120,044.18

baseline 0.80 0.80 0.50 0.50 6306.32 6306.32 0.80 0.80 1 0 25,689.45 25,689.45

proposed 0.71 0.71 0.49 0.49 4636.42 4636.42 0.65 0.65 8 9 21,005.49 21,005.49

Electronics 2022, 11, 1161 9 of 11

Table 1 shows the greedy-based design-space exploration algorithm results. It com-
pared these research results with the existing industry-standard synthesis tools (baseline).
Each pair of rows of results uses single priority constraints (bold fonts). For example, when
one sets CU as a priority, the proposed method shows 11.2% CU improvement and 75.8%
DRC reduction. Similarly, the proposed algorithm reduces 98.4% DRC violations with only
a 6.9% area penalty.

4.3. Discussion

Following an ensemble DTR algorithm, we proposed a optimal design cost algorithm
(i.e., IGS) that used physical design-related features and performance-related features to
identify the optimal set of design parameters. A priority-based design space-exploration
allow designers to capture best solutions for a given set of constraints. The proposed
DTR algorithm exhibits 88.9% DRC hotspot prediction accuracy compared to existing
CNN-based model’s [17] 73% prediction accuracy.

The proposed DTR algorithm has a training time complexity of O(dF n log(n)), where
dF is dimensions or features, and n is the data points. The testing time complexity of the
proposed DTR algorithm is O(Dt), where (Dt) is the depth of the tree. The performance of
Algorithm 1 is almost constant in time due to the use of a limited number of designs and
design features. The proposed DTR algorithm requires 31.8 ms training time and 0.72 ms
inference time, while the existing J-Net-based CNN model [18] has 2 h of training time and
1 min of inference time.

The inclusion of the proposed methodology with the existing EDA tools has the
potential to reduce days of engineering costs. In addition, it will pave the designer’s way
to building a better constraint model for area and performance optimizations.

5. Conclusions

This paper proposed a searching algorithm by combining both ensemble and heuristic
greedy search methods to explore the design space quickly and efficiently in order to
improve the synthesis tool flow performance. To explore large search space as well as
to illustrate the efficacy of proposed algorithm, this research collected a large number of
features (i.e., 74) from various designs and identified the features those influence DRC
violations. The proposed algorithm achieved up to 99.99% design constraint prediction
accuracy before tedious detailed-routing and reduced 98.4% DRC violations with only a
6.9% area penalty.

Funding: This research was funded in part by UMBC start up grant, Rezonent Inc. award number:
CORP-0061, National Science Foundation (NSF) award number: 2138253, and Office of Naval
Research (ONR) award number: N00014-21-1-2531.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge M. K. Devnath and M. Galib’s contributions to data analysis
and figure generations.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Bahar, R.; Jones, A.K.; Katkoori, S.; Madden, P.H.; Marculescu, D.; Markov, I.L. Workshops on Extreme Scale Design Automation

(ESDA) Challenges and Opportunities for 2025 and Beyond. arXiv 2020, arXiv:2005.01588.
2. Sinha, S.; Xu, X.; Bhargava, M.; Das, S.; Cline, B.; Yeric, G. Stack up your chips: Betting on 3D integration to augment Moore’s

Law scaling. arXiv 2020, arXiv:2005.10866.
3. Lopera, D.S.; Servadei, L.; Kiprit, G.N.; Hazra, S.; Wille, R.; Ecker, W. A Survey of Graph Neural Networks for Electronic Design

Automation. In Proceedings of the 2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD), Raleigh, NC, USA,
30 August–3 September 2021; pp. 1–6.

Electronics 2022, 11, 1161 10 of 11

4. Ji, Z.; Chen, H.; Li, X. Design for reliability with the advanced integrated circuit (IC) technology: Challenges and opportunities.
Sci. China Inf. Sci. 2019, 62, 1–4. [CrossRef]

5. Hou, C. 1.1 A smart design paradigm for smart chips. In Proceedings of the 2017 IEEE International Solid-State Circuits
Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 8–13.

6. Chan, W.T.; Ho, P.H.; Kahng, A.; Saxena, P. Routability Optimization for Industrial Designs at Sub-14nm Process Nodes Using
Machine Learning. In Proceedings of the 2017 ACM on International Symposium on Physical Design, Portland, OR, USA, 19–22
March 2017; pp. 15–21.

7. Taraate, V. ASIC Design Flow. In ASIC Design and Synthesis; Springer: Berlin/Heidelberg, Germany, 2021; pp. 13–26.
8. Han, K.; Kahng, A.B.; Lee, H. Evaluation of BEOL design rule impacts using an optimal ILP-based detailed router. In Proceedings

of the ACM/EDAC/IEEE Design Automation Conference, San Francisco, CA, USA, 8–12 June 2015; pp. 1–6.
9. Mirhoseini, A.; Goldie, A.; Yazgan, M.; Jiang, J.; Songhori, E.; Wang, S.; Lee, Y.-J.; Johnson, E.; Pathak, O.; Bae, S.; et al. Chip

Placement with Deep Reinforcement Learning. arXiv 2020, arXiv:cs.LG/2004.10746.
10. Li, X.; Ma, Z.; Zheng, J.; Liu, Y.; Zhu, L.; Zhou, N. An Effective Edge-Assisted Data Collection Approach for Critical Events in the

SDWSN-Based Agricultural Internet of Things. Electronics 2020, 9, 907. [CrossRef]
11. Mohammad, A.S.; Pradhan, M.R. Machine learning with big data analytics for cloud security. Comput. Electr. Eng. 2021,

96, 107527. [CrossRef]
12. Ferianc, M.; Fan, H.; Manocha, D.; Zhou, H.; Liu, S.; Niu, X.; Luk, W. Improving Performance Estimation for Design Space

Exploration for Convolutional Neural Network Accelerators. Electronics 2021, 10, 520. [CrossRef]
13. Taghavi, T.; Li, Z.; Alpert, C.; Nam, G.; Huber, A.; Ramji, S. New placement prediction and mitigation techniques for local routing

congestion. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, USA, 7–11
November 2010; pp. 621–624.

14. Qi, Z.; Cai, Y.; Zhou, Q. Accurate prediction of detailed routing congestion using supervised data learning. In Proceedings of the
IEEE International Conference on Computer Design (ICCD), Seoul, Korea, 19–22 October 2014; pp. 97–103.

15. Islam, R.; Guthaus, M.R. HCDN: Hybrid-Mode Clock Distribution Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2019,
66, 251–262. [CrossRef]

16. Kahng, A.B.; Kumar, S.; Shah, T. A No-Human-in-the-Loop Methodology Toward Optimal Utilization of EDA Tools and Flows.
In Proceedings of the ACM/EDAC/IEEE Design Automation Conference, San Francisco, CA, USA, 24–29 June 2018; pp. 1–6.

17. Li, L.; Cai, Y.; Zhou, Q. An Efficient Approach for DRC Hotspot Prediction with Convolutional Neural Network. In Proceedings
of the IEEE International Symposium on Circuits and Systems, Daegu, Korea, 22–28 May 2021; pp. 1–5. [CrossRef]

18. Liang, R.; Xiang, H.; Pandey, D.; Reddy, L.; Ramji, S.; Nam, G.J.; Hu, J. DRC Hotspot Prediction at Sub-10 nm Process Nodes Using
Customized Convolutional Network; Association for Computing Machinery: New York, NY, USA, 2020; pp. 135–142.

19. Tabrizi, A.F.; Darav, N.K.; Rakai, L.; Kennings, A.; Behjat, L. Detailed routing violation prediction during placement using
machine learning. In Proceedings of the International Symposium on VLSI Design, Automation and Test, Hsinchu, Taiwan, 24–27
April 2017; pp. 1–4.

20. Givargis, T.; Vahid, F.; Henkel, J. System-level exploration for pareto-optimal configurations in parameterized systems-on-a-chip.
In Proceedings of the IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of
Technical Papers (Cat. No. 01CH37281), San Jose, CA, USA, 4–8 November 2001; pp. 25–30.

21. Palesi, M.; Givargis, T. Multi-objective design space exploration using genetic algorithms. In Proceedings of the Tenth International
Symposium on Hardware/Software Codesign, Estes Park, CO, USA, 8 May 2002; pp. 67–72.

22. Barbareschi, M.; Barone, S.; Mazzocca, N. Advancing synthesis of decision tree-based multiple classifier systems: An approximate
computing case study. Knowl. Inf. Syst. 2021, 63, 1577–1596. [CrossRef]

23. Qamar, A.; Muslim, F.B.; Iqbal, J.; Lavagno, L. LP-HLS: Automatic power-intent generation for high-level synthesis based
hardware implementation flow. Microprocess. Microsyst. 2017, 50, 26–38. [CrossRef]

24. Muslim, F.B.; Qamar, A.; Lavagno, L. Low power methodology for an ASIC design flow based on high-level synthesis. In
Proceedings of the 2015 23rd International Conference on Software, Telecommunications and Computer Networks (SoftCOM),
Split, Croatia, 16–18 September 2015; pp. 11–15.

25. Liu, H.Y.; Carloni, L.P. On learning-based methods for design-space exploration with high-level synthesis. In Proceedings of the
50th Annual Design Automation Conference, Austin, TX, USA, 29 May 2013; pp. 1–7.

26. Ravi, S.; Joseph, M. High-level test synthesis: A survey from synthesis process flow perspective. ACM Trans. Des. Autom. Electron.
Syst. (TODAES) 2014, 19, 1–27. [CrossRef]

27. Cong, J. From design to design automation. In Proceedings of the 2014 on International Symposium on Physical Design,
Petaluma, CA, USA, 30 March–2 April 2014; pp. 121–126.

28. Deshwal, A.; Jayakodi, N.K.; Joardar, B.K.; Doppa, J.R.; Pande, P.P. MOOS: A Multi-Objective Design Space Exploration and
Optimization Framework for NoC Enabled Manycore Systems. ACM Trans. Embed. Comput. Syst. 2019, 18, 1–23. [CrossRef]

29. Zaki, M.H.; Tahar, S.; Bois, G. Formal verification of analog and mixed signal designs: A survey. Microelectron. J. 2008,
39, 1395–1404. [CrossRef]

30. Kahng, A.B. New directions for learning-based IC design tools and methodologies. In Proceedings of the 2018 23rd Asia and
South Pacific Design Automation Conference (ASP-DAC), Jeju, Korea, 22–25 January 2018; pp. 405–410. [CrossRef]

http://doi.org/10.1007/s11432-019-2643-5
http://dx.doi.org/10.3390/electronics9060907
http://dx.doi.org/10.1016/j.compeleceng.2021.107527
http://dx.doi.org/10.3390/electronics10040520
http://dx.doi.org/10.1109/TCSI.2018.2866224
http://dx.doi.org/10.1109/ISCAS51556.2021.9401274
http://dx.doi.org/10.1007/s10115-021-01565-5
http://dx.doi.org/10.1016/j.micpro.2017.02.002
http://dx.doi.org/10.1145/2627754
http://dx.doi.org/10.1145/3358206
http://dx.doi.org/10.1016/j.mejo.2008.05.013
http://dx.doi.org/10.1109/ASPDAC.2018.8297357

Electronics 2022, 11, 1161 11 of 11

31. Kahng, A.B. Reducing time and effort in IC implementation: A roadmap of challenges and solutions. In Proceedings of the 55th
Annual Design Automation Conference, San Francisco, CA, USA, 24–29 June 2018; pp. 1–6.

32. Ren, H. Toward Intelligent Physical Design: Deep Learning and GPU Acceleration. In Proceedings of the 2019 International
Symposium on Physical Design, San Francisco, CA, USA, 14–17 April 2019; pp. 91–92.

33. Kahng, A.B.; Lienig, J.; Markov, I.L.; Hu, J. VLSI Physical Design: From Graph Partitioning to Timing Closure; Springer Science &
Business Media: Berlin/Heidelberg, Germany, 2011.

34. Islam, R.; Shahjalal, M.A. Soft Voting-Based Ensemble Approach to Predict Early Stage DRC Violations. In Proceedings of the
2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 4–7 August 2019;
pp. 1081–1084. [CrossRef]

35. Somvanshi, M.; Chavan, P.; Tambade, S.; Shinde, S.V. A review of machine learning techniques using decision tree and support
vector machine. In Proceedings of the 2016 International Conference on Computing Communication Control and automation
(ICCUBEA), Pune, India, 12–13 August 2016; pp. 1–7. [CrossRef]

36. Islam, R.; Shahjalal, M.A. Predicting DRC Violations Using Ensemble Random Forest Algorithm. In Proceedings of the Annual
Design Automation Conference 2019, Las Vegas, NV, USA, 2–6 June 2019; ACM: New York, NY, USA, 2019; pp. 1–2.

37. Onan, A.; Korukoğlu, S.; Bulut, H. A multiobjective weighted voting ensemble classifier based on differential evolution algorithm
for text sentiment classification. Expert Syst. Appl. 2016, 62, 1–16. [CrossRef]

38. OpenCores: Open Source IP-Cores. Available online: http://www.opencores.org (accessed on 10 November 2018).

http://dx.doi.org/10.1109/MWSCAS.2019.8884896
http://dx.doi.org/10.1109/ICCUBEA.2016.7860040
http://dx.doi.org/10.1016/j.eswa.2016.06.005
http://www.opencores.org

	ScholarWorksCoverSheet2 (2)
	electronics-11-01161
	Introduction
	Motivation
	Related Work
	Contributions

	Background
	Proposed Methodology
	Experimental Results and Discussion
	Experimental Setup
	Results
	Discussion

	Conclusions
	References

