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We demonstrate a self-induced topological transition and the formation of topologically protected edge states
in a two-dimensional array of coupled resonant cavities placed on a Kagome lattice with saturable nonlinearity
introduced in the interconnecting bonds. The dynamic response of the structure is shown to be governed by an
intensity-dependent band topology. Our findings uncover prospects for generating and controlling topologically
nontrivial edge modes in nonlinear metasurfaces, and delineate a roadmap towards self-reconfigurable robust
signal transport in various dynamic systems, ranging from acoustics to electronics and optics.
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I. INTRODUCTION

Topological insulators, the recently discovered exotic
states of matter, were originally proposed and studied in
the context of condensed matter physics. In the bulk, these
materials behave as conventional insulators, with electrons
subject to a bulk band gap, while, on the surface of a sam-
ple they support the conduction of electrons that are not
scattered or dissipated regardless of the presence of surface
impurities or how the surface is cut or distorted. This is
a consequence of a topological-invariance mechanism, and
thereby the effect is termed topological protection [1–10]. In
photonics, similar concepts have been subsequently explored
to design, for example, waveguides that allow light to flow
around large defects and other imperfections without back-
reflection [11,12]. Photonic protected states have been lately
realized, among others, in a two-dimensional array of coupled
optical-ring resonators [13], in photonic crystals [14], and in
metamaterials [15]. Other studies have also extended these
concepts to the acoustic and mechanical realms [16–20].

One of the simplest systems that give rise to topologi-
cal effects is the one-dimensional (1D) Su-Schrieffer-Heeger
(SSH) model, which describes electrons hopping on a 1D
chain with staggered hopping amplitudes. This model has
been initially used to describe the spontaneous dimerization
of polyacetylene [21] and, owing to its relative simplicity, it
has been extensively investigated in connection with many
interesting phenomena, such as fractional charge, nontrivial
edge states, and self-induced nonlinear transitions [22–30].
In particular, it has been predicted [28] and experimentally
demonstrated [29] that the 1D SSH model with alternating,
linear and nonlinear bonds gives rise to self-induced topo-

*giusdag@umbc.edu
†To whom correspondence should be addressed: aalu@gc.cuny.edu

logical transitions with exceptional edge-states that decay
to a nonzero plateau level. Topologically protected moving
solitons have also been semianalytically predicted and their
unprecedented immunity against either local or global defects
has been numerically studied in the framework of the 1D
SSH model [30] and for helical waveguide arrays [31]. In the
nonlinear acoustic domain, dynamically tunable metasurfaces
have been studied in Ref. [32], amplitude-dependent topolog-
ical edge states in Ref. [33], and topological transitions in a
1D, nonlinear, spring-mass chain, similar to the SSH model,
in Ref. [34]. In this paper we show that nonlinear metasurfaces
can support topological transitions and the generation of
protected edge states of pure nonlinear origin. We consider a
two-dimensional (2D) metasurface made of coupled resonant
cavities placed on a Kagome lattice when a saturable non-
linearity in the interconnections is introduced. These results
are an important milestone towards the realization of optical,
electronic, and acoustic self-reconfigurable and passive wave
systems that are immune to disorder effects, opening path-
ways towards both fundamental and technological research in
the area of topological research based on nonlinearities.

II. MODEL AND RESULTS

A. Discrete tight-binding model of the nonlinear Kagome lattice

An array of coupled cavities arranged in a Kagome lat-
tice [35–37], as sketched schematically in Fig. 1(a), can be
considered, to some extent, as the 2D analog of the 1D SSH
model. The unit cell constitutes of a trimer composed of
three identical resonators, each with resonance frequency ω0.
The intracell and intercell coupling coefficients, both with
dimension of frequency, are denoted by κ and ν, respectively.
Two principal axes of the lattice are chosen along x̂ and
ŝ = (1/2)x̂ + (

√
3/2)ŷ. We associate each resonator in the

lattice with a modal amplitude a( j)
m,n, where (m, n) are the
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FIG. 1. (a) Elementary cell of the Kagome lattice consisting of
three interconnected resonators (trimer) with intracell coupling κ and
intercell coupling ν. (b) Effective coupling coefficient vs intensity
αI . (c) Evolution of the upper and lower band at the Dirac points vs
αI . (d) Width of the bandgap (�ω̄gap) at the Dirac points vs αI . The
gap closes at I = Ith.

integer indices of the specific unit cell, and j = 1, 2, 3 is
the number of the resonator within the (m, n)’s trimer. The lat-
tice vector is thus defined by rm,n = maŝ + nax̂, where a is the
lattice constant. The time evolution of the coupled resonators
is described by the set of nonlinear differential equations

i
d

dt

⎛
⎜⎝

a(1)
m,n

a(2)
m,n

a(3)
m,n

⎞
⎟⎠ =

⎛
⎜⎝

ω0 κ (2,1)
m,n κ (3,1)

m,n

κ (1,2)
m,n ω0 κ (3,2)

m,n

κ (3,1)
m,n κ (2,3)

m,n ω0

⎞
⎟⎠

⎛
⎜⎝

a(1)
m,n

a(2)
m,n

a(3)
m,n

⎞
⎟⎠

+ ν

⎛
⎜⎝

a(2)
m+1,n−1 + a(3)

m+1,n

a(1)
m−1,n+1 + a(3)

m,n+1

a(1)
m−1,n + a(2)

m,n−1

⎞
⎟⎠. (1)

Here, we assume that the intercell coupling ν is linear,
while the nonlinear response is introduced in the intracell
bonds. The intensity-dependent intracell coupling coefficient
is taken in the form

κ (i, j)
m.n = κ ( j,i)

m,n = κ∞ + κ0 − κ∞

1 + α
∣∣a( j)

m,n − a(i)
m,n

∣∣2

implying a saturable nonlinearity with the nonlinear pa-
rameter α > 0 in units of inverse of power per unit area.
This nonlinearity models well the type of nonlinear coupling
achievable with back-to-back varactors or related electronic
or photonic implementations [29,30]. We emphasize that, as
opposed to the common nonlinear lattice problems where the
resonators are assumed to be nonlinear and the bonds are
taken as linear, here we assume the opposite, namely that
the nonlinearity is introduced only in the coupling bonds
(intracell) and that it depends on the intensity on them as
|a( j)

m,n − a( j)
m,n|2. As function of the intensity on the bond, the

effective nonlinear coupling coefficient varies from κ0 at very
low intensities to κ∞ at high intensities. If the linear intercell
coupling ν is chosen so that κ0 < ν < κ∞, intensity-induced
topological transitions take place, thus giving rise to self-
induced topologically protected edge-states that are immune
against certain defects in the lattice. In the next sections, we
study different aspects of this behavior, beginning with the
topological properties of the infinite nonlinear lattice, moving
to frequency domain nonlinear eigenvalue-eigenvector analy-
sis of a finite strip and concluding with numerically exact time
domain simulations of a finite nonlinear sample.

B. Quasilinear dispersion analysis of the infinite lattice

Assuming no resonances at higher harmonics of the fun-
damental resonance frequency ω0, the Manley-Rowe rela-
tions ensure, to sufficiently good extent, frequency mixing
due to the nonlinearity can be neglected, and thus a time
harmonic analysis of the structure is justifiable in a linearized
framework. Under this assumption, the bulk dispersion of the
infinite, shift-invariant structure can be found by plugging
the following ansatz of time harmonic Bloch-like solutions,
a( j)

m,n = √
Ia( j)ei(mθ+nφ−ωt ), into Eqs. (1). Here, φ = kxa, φ ∈

[−π,+π ), and θ = [(1/2)kx + (
√

3/2)ky]a, θ ∈ [−π,+π )
are Bloch phases along the x̂ and the ŝ axis, respectively, kx,y

are the wave-vector components, and I = ∑3
j=1 |a( j)

m,n|2 is the
total intensity in the trimer. By choosing the Bloch amplitudes
a( j) to be subject to the normalization,

∑3
j=1 |a( j)|2 = 1, the

system of Eqs. (1) is reduced to the nonlinear eigenvalue prob-
lem ĤTBa = ω̄a, with the tight-binding Hamiltonian within
each unit cell given by

ĤTB =

⎛
⎜⎝

0 κ (2,1)(a(2), a(1) ) + νei(θ−φ) κ (3,1)(a(3), a(1) ) + νeiθ

κ (1,2)(a(1), a(2) ) + νe−i(θ−φ) 0 κ (3,2)(a(3), a(2) ) + νeiφ

κ (1,3)(a(1), a(3) ) + νe−iθ κ (2,3)(a(2), a(3) ) + νe−iφ 0

⎞
⎟⎠, (2)

where ω̄ = ω − ω0 denotes the frequency detuning be-
tween the excitation frequency and the resonance fre-
quency of a single isolated resonator, the column vec-
tor a = [a(1), a(2), a(3)]T denotes the relative distribution of
the modal amplitudes at the m, n = 0, 0 reference trimer,
and k(i, j)(a(i), a( j) ) = κ∞ + κ0−κ∞

1+αI |a( j)−a(i)|2 is the nonlinear,

amplitude-dependent, coupling coefficient on the reference
trimer. For real κ0, κ∞ and ν, the 3 × 3 matrix (2) is
Hermitian, and hence its eigenvalues are real.

In the linear limit (α = 0), the respective eigenvalue prob-
lem is solved analytically. For positive κ = κ0, ν > 0, the
band structure features three pass bands, with two dispersive
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bands (lower band ω̄− and upper band ω̄+) given by

ω̄±(θ, φ)

= 1
2 {κ + ν ±

√
δ + 8κν[cos θ + cos (θ − φ) + cos φ]},

(3)

where δ = 9κ2 − 6κν + 8ν2, and a lowest flat band of
constant frequency ω̄flat = −(ν + κ ). At the � point,
i.e., (θ, φ) = (0, 0), the lower and flat bands are degenerate
for any choice of the intercell and intracell coupling parame-
ters. Near the Dirac points (θD, φD) = (∓2π/3,±2π/3), the
dispersion relation (3) can be rewritten as (ω̄± − κ+ν

2 )2 =
9
4 (κ − ν)2 + 3

4κνa2(k̃2
x + k̃2

y ), where k̃x,y are small devia-
tions. At k̃x = k̃y = 0, it reduces to ω̄± = κ+ν

2 ± 3
2 (κ − ν),

and thereby the spectral width of the bandgap between
ω̄+ = 2κ − ν and ω̄− = 2ν − κ is found in closed form
as �ω̄gap ≡ |ω+ − ω−| = 3|κ − ν|. For κ = ν, two bands
intersect ω̄+ = ω̄− = ν, locally exhibiting Dirac crossings
(ω̄± − ν)2 = 3

4ν2a2(k̃2
x + k̃2

y ). The linear topological proper-
ties of this system can be unveiled by calculating the general-
ized winding number for two bands w±, which is regarded as
the generalization to the 2D scenario of the winding number
for the 1D SSH [38]. A nonzero value of this topological
invariant indicates the existence of a nontrivial gap and, along-
side, the emergence of topologically protected edge states.
Following Ref. [37], we obtain w± = ± 1

2 [1 − κ−ν
|κ−ν| ]. Hence,

at κ > ν the band structure admits a trivial gap (w± = 0),
while for κ < ν the gap becomes nontrivial (w± = ±1). In
the nontrivial case, two edge modes per frequency emerge
in the band gap. As discussed in the subsequent sections,
these modes are chiral with either right-handed or left-handed
circular polarization, and are topologically protected against
defects that preserve their chiral symmetry, which is at the
root of their topological properties.

The nonlinear response is more challenging to tackle an-
alytically. However, in order to get some physical insights
into the topological properties of the structure as a function
of intensity it is enough to focus on the intensity-induced
band structure dynamics at the Dirac points in the wave-
number plane (φ, θ ). The linear eigenvalues at the Dirac
points are given by aflat = (1/

√
3)[1, e

i2π
3 , e− i2π

3 ]T for the flat
band, a− = (1/

√
3)[1, e− i2π

3 , e
i2π

3 ]T for the lower band and
a+ = (1/

√
3)[1, 1, 1]T for the upper band. Now, as a first

approximation, we substitute the expression of the linear
eigenvalues at the Dirac points into the nonlinear coupling
coefficient of the reference trimer k(i, j)(a(i), a( j) ) and solve
the ensuing eigenvalue problem defined by Eq. (2). For
κ0 > ν > κ∞, we obtain three resonance frequencies, one
that corresponds to the flat band ω̄flat = −(κeff (I ) + ν), and
additional two frequencies ω̄+ and ω̄− that depend on the
intensity, whether it is above or below the threshold in-
tensity Ith = 3(κ0 − ν)/α[3ν − 2κ0 − κ∞] at which the gap
closes. For intensities below the threshold I < Ith we find
ω̄− = 2ν − κeff (I ) and ω̄+ = 2κ0 − ν, while for intensities
above the threshold I > Ith the solutions flip and we find
ω̄− = 2κ0 − ν and ω̄+ = 2ν − κeff (I ). Here, κeff (I ) = κ∞ +
(κ0 − κ∞)/(1 + αI ) is an effective nonlinear intracell cou-
pling dependent on the control parameter αI .

The nonlinear bandgap dynamics at the Dirac points is
illustrated in Figs. 1(b)–1(d). Figure 1(b) shows the variation
of the effective coupling coefficient as function of intensity.
Figure 1(c) shows the corresponding frequency solution evo-
lution vs intensity. This result is then used to calculate the
bandgap width, shown in Fig. 1(d), demonstrating that the
bandgap closes and reopens at the threshold intensity Ith. We
emphasize, however, that this analysis is strictly valid only in
the vicinity of the Dirac point and for not-too-large intensities
so that the substitution of the linear eigenvalues in the non-
linear coupling of the reference trimer is justified. The above
analysis serves the purpose of providing physical insights
in the nonlinear topological transition. The problem will be
numerically tackled without approximations in the subsequent
sections and a more refined semianalytical analysis will be
given in the Appendix.

C. Study of an infinite strip

As pointed out in the literature [39], an effective approach
to obtain topologically protected edge modes is to first identify
the points in momentum space where the frequency spectrum
is gapless, and then properly tune the system parameters to
reopen the gap in a different topological state. The new band
structure can then change topological phase, and one conse-
quence of this is the emergence of topologically protected
gap modes. Generally the points where the gap can be closed
and then reopened are points of degeneracy, i.e., cusps, in the
band structure. In 2D geometries, the most common points of
degeneracy are Dirac points. In our geometry, the fact that
at a certain threshold intensity the bandgap can close and
reopen at the Dirac points as a function of applied intensity
is an indication that the system topology is not preserved
intact, giving rise to edge modes with topological protection.
To explore these modes, we next study the wave dynamics in
the vicinity of the boundaries of a strip, which is finite along
the slanted axis and infinite along the other principal axis, or
vice-versa. Figure 2 shows two different strip geometries that
we consider. Since translational invariance is preserved along
the x (s) axis, the Bloch phase φ (θ ) can be used, reducing
the infinite strip problem to a finite chain problem along the
s(x) axis. We denote two different cuts by Edge j,φ (Edge j,θ )
with j = 1, 2. These two arrangements are equivalent under
the transformations φ → θ , 2 → 1, 1 → 2.

The band structure of the infinite strip in Fig. 2(a) in the
low intensity limit (linear lattice limit) is shown in Fig. 3(a).
In this case we set the intensity αItot = 0.01 � 1, where Itot

is the total intensity in the finite chain along the slanted axis
(sum over the intensities in all the N = 25 trimers). Since
the strip is finite along the slanted axis, the band structure
is one-dimensional with Bloch phase φ and contains 3 × M
dispersion bands, which should be studied in the first Brillouin
zone φ ∈ [−π, π ]. Along the slanted axis, the strip is finite
and the mode amplitudes are found as the elements of the
eigenvectors, which are bulk modes distributed over the entire
strip width. For example, Fig. 3(b) shows the eigenvector
that corresponds to the frequency-wave-number point marked
by the red dot in Fig. 3(a). The field distribution exhibits a
typical bulk-mode cosine-like shape. For different frequency-
wave-number points the amplitude distribution changes, but
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FIG. 2. Finite strip geometries made of M = 25 trimers along the
slanted axis (a), and N = 25 trimers along the x̂ axis (b). On both
edges forward and backward waves are supported.

it always fills the entire strip width. As opposed to the low
intensity limit, by increasing the intensity parameter so that
αItot 	 1, saturation is achieved and the band structure of
the lattice dramatically changes. This is shown in Fig. 3(c),
where we observe that the band gap widens near the Dirac
points, turning the two band edge dispersion lines into in-
gap edge modes. Now, the red point in the frequency-wave-
number space falls onto a topologically nontrivial edge-mode
dispersion branch, and it corresponds to the field profile shown
in Fig. 3(d). This field becomes localized near Edge1,φ and
drops away from the edge along the slanted axis. However,
as the local intensity declines, the band structure is locally
modified, and consequently the field decay rate changes un-
til a plateau-like level at about αIth = 15 is reached. The
plateau level coincides with the intensity threshold at which
the bandgap is completely closed, and the lattice topology is
locally at the borderline between trivial and nontrivial. The
field intensity difference from the asymptotic prediction is
only near the other edge (2, φ), due to edge effects. It is
important to emphasize here that, while in the low and high
intensity limits the structure dynamics can be described using
quasilinear analysis based on band structure study, strictly
speaking this kind of analysis cannot be justified in the inter-
mediate range of intensities when αItot ∼ 1. In this range one
cannot avoid a study of the full nonlinear dynamics in order to
have a complete picture of the wave species supported by the
structure. In this case, soliton solutions may be expected [30],
possibly together with bistability and multistability effects.
These features, which may arise in the range of intensities
that fall between the two extreme scenarios (low and high

FIG. 3. (a) Band structure for the strip geometry depicted in
Fig. 2(a) in the quasilinear regime, Itot = 0.1, α = 0.1. The pa-
rameters used for the saturable nonlinearity are: κ∞ = 0.2ω0, κ =
0.45ω0, and ν = 0.4ω0. (b) Bulk-mode field distribution calculated
for the point marked by the red dot in panel (a). This point located
at the lower-frequency band-edge dispersion line is characterized
by ω̄ = 0.3ω0 and the backward momentum φ = −2.33. (c) Band
structure in the nonlinear case at αItot 	 1, at α = 0.1 and Itot =
9 × 108. The red dot now falls onto the topological edge-mode
dispersion line. (d) Field localization of the edge mode. The field
localization tends to the threshold value Ith = 15 predicted by the
Bloch analysis of the infinite lattice.

intensities) on which we focus this paper, are not considered
further. Finally, the results for the case of Fig. 2(b) coincide
with those described above, under the transformation φ → θ ,
a2 → a1, a1 → a2.

D. Chirality of the edge modes

The chiral nature of the edge modes is essential to de-
fine and support their topological properties. Based on their
chirality, it is possible to give an under-the-hood explana-
tion for the topological protection of the in-gap edge modes
against certain types of defects. We calculate the chiral-
ity for both forward and backward-propagating edge modes
along the four edges by expanding the fields over any trimer
in the basis⎡

⎢⎣
a1

a2

a3

⎤
⎥⎦ = CCM√

3

⎡
⎢⎣

1

1

1

⎤
⎥⎦ + C+√

3

⎡
⎢⎣

1

e
i2π

3

e
i4π
3

⎤
⎥⎦ + C_√

3

⎡
⎢⎣

1

e− i2π
3

e− i4π
3

⎤
⎥⎦, (4)

where C+ and C− are the amplitudes of the left-handed and
right-handed polarized modes, respectively, and CCM is the
amplitude of the common mode. The chirality χ = |C+|−|C−|

|C+|+|C−| .
We find that at the corner between Edge1,φ and Edge1,θ

chirality is conserved between the backward propagating edge
mode (φ < 0) along the x̂ axis and the forward propagating
edge mode (θ > 0) along the ŝ axis, and, vice versa, between
the forward propagating edge mode (φ > 0) along the x̂ axis
and the backward propagating edge mode (θ < 0) along the
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FIG. 4. Chirality conservation properties along the four edges
and at the different corner types.

ŝ axis. Likewise, chirality does not change at the corner
between Edge2,φ and Edge2,θ , while it is never conserved at
the corner between Edge1,(2),φ and Edge2,(1),θ . Importantly,
chirality conservation generally implies zero scattering of an
edge mode upon interaction with the corner, whereas in the
case of chiral mixing back scattering should be expected.
The results of this study are summarized in Fig. 4: a defect at
the edge that preserves the chirality of the edge mode will not
create scattering in the bulk, since the edge mode is in the gap,
whereas it will also not create reflection to an edge mode that
propagate to the opposite direction, due to the conservation of
chirality.

E. Spatiotemporal dynamics in finite arrays with defects

Up to now our analysis involved a frequency-domain anal-
ysis based on a quasilinear approach. In this section, we verify
these results and conclusions based on a numerically exact
time-domain simulation of the system of equations (1) for
a finite Kagome lattice with defects. The lattice contains 20
trimers along m and 25 along n, as shown in Fig. 5. All
trimers in the lattice, except for those in the defected region,
are identical and characterized by the same self-resonance
frequency, and linear and nonlinear coupling coefficients.
The defected region is the rhombus area in the upper left
corner of the lattice, with resonators depicted by red dots.
In this region, the self-frequency of each resonator is set
to be zero.

The lattice is excited through a wave port that is coupled
to resonator number 3 in the trimer at the upper-right corner
of the lattice, namely, to resonator a(3)

1,25. The input port point
is specified in Fig. 5 by the red arrow. To have a source that
can achieve steady state, we modify the equation describing
the time evolution of resonator a(3)

1,25 as follows. First, we add
a source coupling term idSin, where Sin = S0e−iωt , with ω̄ =
ω − ω0 = 0.3ω0 and d being the input coupling coefficient.
Second, we set the self-resonance frequency of this resonator
to be complex rather than real, ω0 → ω0 − iγ , to model the
effect of back reflection from the port. We found numerically

FIG. 5. Self-induced topological transition and protection in a
finite-size lattice with defects. The defective resonators are delin-
eated with red dots. The real part of the mode amplitude Re{a}
is color coded. The simulation parameters, as before, are κ∞ =
0.2ω0, κ0 = 0.45ω0, ν = 0.4ω0, α = 0.1. (a) At low input-port
intensity S0 = 1 a bulk mode profile is excited, being affected by the
defect region shape. (b) At the input intensity S0 = 100, the lattice
topology is nontrivial, giving rise to reflection-less propagation of the
localized edge mode despite the corners (see Supplemental Material
Ref. [40]).

that γ = 0.092ω0 yields impedance matching, with optimal
coupling efficiency and minimal reflection. Additionally, en-
ergy conservation requires d = √

2γ . Therefore, the reflected
field reads Sout = −Sin + da(3)

1,25.

Once the structure is excited, we let the fields evolve for
long enough time and then we take a snapshot capturing the
instantaneous fields a(i)

m,n(t ) at each resonator in the lattice.
Figure 5(a) shows the excitation of a bulk mode in the
lattice at low input intensity S0 = 1. As discussed above,
this is the only type of mode supported in the quasilinear
topologically trivial structure. However, the bulk mode is
seen to be significantly altered by the corners present in the
lattice because of the defect area. The dynamics drastically
changes as we increase the input port intensity by two or-
ders of magnitude to S0 = 100. Here, we observe propaga-
tion of the wave localized to the edge. This wave experi-
ences no reflections despite the presence of several corners,
manifesting chirality conservation. In this case, the lattice
topology has experienced a self-induced transition to become
nontrivial.
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III. CONCLUSIONS

In this paper, we have demonstrated the emergence and
routing of topologically nontrivial edge states of pure non-
linear origin in a two-dimensional metasurface supporting
an intensity-induced topological transition. Given that non-
linear interactions are ubiquitous and our model based on
nonlinearly coupled oscillators is applicable to a variety of
physical systems, there are expectations for experimental ob-
servations of the predicted effects in a wide range of metasur-
faces, including optical, electronic, acoustic, and mechanical
structures. An experimental demonstration of nonlinearity-
induced corner modes in a different circuit platform has
been recently presented [41]. The different symmetry in the
considered array in Ref. [41] would not support the emergence
of nonlinearity-induced topological edge modes, but it does
sustain higher-order topological states pinned to the corners.
Our work opens several opportunities to experimentally re-
alize topological transitions, self-induced topological edge
propagation in a variety of platforms. In electronic circuits,
for instance, generalizing the platform introduced in Ref. [29]
to two dimensions, it may be possible to implement self-
reconfigured multiplexed lines with topological robustness.
In radio frequencies and in optics, it may be possible to ob-
serve these effects using nonlinear metasurfaces. Of particular
interest would be to explore the unusual dynamics of these
nonlinear systems in the range of intensities around the topo-
logical transition, not analyzed in the present work. We expect
the insurgence of bistability or multistability regimes, and
the excitation of topological solitons associated with moving
domain walls, as analyzed in the 1D scenario in Ref. [30].
These opporunities pave the way for future advances in the
implementation of robust wave transport based on nontrivial
topological states.
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APPENDIX: NEAR DIRAC-POINT ANALYSIS

To gain a better understanding of the simulated topological
transition, we have developed a semianalytical model for the
nonlinearity-induced topological edge states. We first refer
to the linear implementation of Hamiltonian (2) obtained
within the tight-binding model [37]. We then perform the
transformation Ĥ = UĤTBU −1 with the matrix

U = 1√
3

⎛
⎜⎝

1 1 1
1 e− 2iπ

3 e
2iπ

3

1 e
2iπ

3 e− 2iπ
3

⎞
⎟⎠. (A1)

Note that the matrix U in Eq. (A1) is composed of the
common monopolar mode as well as of the right- and left-
hand circular modes introduced in Sec. II B to study the chiral

phenomena. The Hamiltonian expanded near K (K ′) up to
first-order in wave number k̃ is recast to

Ĥ =
(

κ+ν
2 + 3

2 (κ − ν)
√

3
2 νa(±k̃x + ik̃y)

√
3

2 νa(±k̃x − ik̃y) κ+ν
2 − 3

2 (κ − ν)

)
, (A2)

where we denote the effective mass term m = 3(κ − ν)/2,
the midgap frequency ω̄0 = (κ + ν)/2 and the Dirac velocity
V = √

3νa/2. Here, we assume a nearly degenerate sce-
nario κ ≈ ν, changing the basis to the two-component vector
[ψ1, ψ2]T associated with the monopolar and circularly polar-
ized dipolar modes supported by the trimer, and the second
dipolar mode is eliminated as being remote in frequency from
the degeneracy point [37].

The previous analysis [37] suggests that the linear case
with κ < ν, or equivalently m < 0, is nontrivial and an edge
state crossing the gap arises. Considering the boundary of the
nontrivial crystal (y > 0) and vacuum, we apply two consis-
tent approaches to calculate the dispersion branches of edge
modes (the (a2, a3) cut, termed Edge 1, φ above, is considered
here): (i) numerical, using the three-site tight-binding model
for the cut Kagome lattice, and (ii) analytical, exploiting the
reduced two-band model. In the latter instance, we accept
the ansatz ∼ exp(ik̃xx − κy) for the edge-bound solution and

FIG. 6. (a) Band structure of the linear nontrivial Kagome lattice
(two upper bands) and branches of the edge states residing in
different valleys. Parameters are κ = 1, ν = 1.05. (b) Vicinity of
the Dirac point: gapped linear bulk dispersion (solid black curves),
nonlinear bulk dispersion (solid blue) in the infinite lattice at the
intensity I = 1.1Ith with the inverted topological bands, and edge
state dispersion calculated at I (0) = 1.1Ith (solid red). Dashed gray
and red lines mark the frequencies ω̄ = (κ̃ + ν )/2 and ω̄ = ν, re-
spectively. The inset shows the edge state profile I (y) calculated at
wave number k̃x = 0.01, specified by the red point. Parameters are
κ̃ = 1.05, ν = 1, α̃ = 1. The edge solution decays to the plateau level
Ith = (κ̃ − ν )/α̃ = 0.05.
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formally utilize the effective boundary condition of the form
ψ2(0) = −ψ1(0) at y = 0, leading to

ψ1(0)

ψ2(0)
= V (±k̃x − κ)

� − m
= −1, (A3)

where the decay factor κ =
√

V 2k̃2
x + m2 − �2/V , and � =

ω̄ − ω̄0 is a deviation from the midgap frequency. By both
methods, the dispersion of the edge state near the Diract
point is found to be linear, � = ∓V k̃x (opposite signs in
different valleys), see Fig. 6(a). Remarkably, Eq. (A3) can
be satisfied only if |m| = −m, i.e., for negative masses. The
applicability of the effective boundary condition is confirmed
by the transformation [ψ1(0), ψ2(0), 0]T = U [a1, a2, a3]T

y=0 ,
where [a1, a2, a3]T

y=0 is the amplitude vector in the trimer
at the boundary row calculated numerically, with a2 =
|a2|exp( iπ

6 ) = a∗
3, |a1| ≈ 0. Therefore, this boundary condi-

tion is employed in the following nonlinear generalization of
the two-band model.

We assume almost equal bonds in-between the cavities of
the trimer, tracing back our analysis to the case of nonlinear
intracell coupling κ (I ) of nonlocal nature uniform over the
unit cell. Following the procedure outlined in Ref. [37],
but extended here to the nonlinear problem, we find the
expression for the winding number in the nonlinear case
w± = ± 1

2 [1 − κ (I )−ν

|κ (I )−ν| ], and deduce that the band structure
admits a trivial gap (w± = 0) for I < Ith, where the threshold
intensity Ith is determined from the condition κ (Ith ) = ν. The
gap becomes nontrivial (w± = ±1) for I > Ith, implying the
appearance of protected edge modes.

We examine closer the nonlinear case of intensity-
dependent intracell coupling κ (I ) = κ̃ − α̃I , where κ̃, α̃ > 0
are coefficients that are used to approximate the saturable
nonlinear model we originally consider, and the total intensity
in the trimer is expressed by I = |ψ1|2 + |ψ2|2. Here, we
utilize a simplified formula for κ (I ), given the weak non-
linearity sufficient to close the gap in the nearly degener-
ate case κ >∼ ν. Accordingly, the coupled-mode equations are
modified as

(
2κ̃ − ν − 2α̃(|ψ1|2 + |ψ2|2) − ω̄ V (k̃x + ik̃y)

V (k̃x − ik̃y) 2ν − κ̃ + α̃(|ψ1|2 + |ψ2|2) − ω̄

)(
ψ1

ψ2

)
= 0. (A4)

System (A4) comprises two coupled nonlinear ordinary
differential equations,

dψ2

dy
= −V k̃xψ2 − (2κ̃ − ν − ω̄ − 2α̃[|ψ1|2 + |ψ2|2])ψ1,

dψ1

dy
= V k̃xψ1 + (2ν − κ̃ − ω̄ + α̃[|ψ1|2 + |ψ2|2])ψ2.

(A5)

Here we can assume ψ1,2 real. Condition ∂y = 0 in
Eqs. (A5) yields the steady states ψ1,2(ω, k̃x ) or the non-
linear dispersion ω̄(k̃x, I ) in infinite arrays, which reveals
that for κ > ν with increasing intensity, the bandgap grad-
ually closes and reopens. At the threshold intensity defined
as α̃Ith = κ − ν, the bulk dispersion is gapless and linear
ω̄ = ν ± V k̃x.

Next, we look for the edge state solutions ψ1,2(y)eik̃xx

bound to the interface y = 0 with boundary condition ψ2(0) =
−ψ1(0) imposed. Taking k̃x = 0, from Eqs. (A5) we find that
an edge state arises in the topological bandgap at frequency
ω̄ = ν for interface intensities larger than the threshold value,
I (y = 0) > Ith. In contrast to the linear case, the decay in
the bulk sits on the steady-state background |ψ1|2 + |ψ2|2 =
(κ̃ − ν)/α̃. For nonzero wave vectors k̃x, the edge wave de-
cays asymptotically to the same plateau level away from the
boundary.

The dispersion of the nonlinear topological edge state is
found by solving Eqs. (A4) at the above-threshold intensity
I (0), see Fig. 6(b). No solutions of this type can be obtained
in the quasilinear trivial case. It is clear that this nonlinearly-
induced band inversion, and corresponding topological transi-
tion, is responsible for the emergence of the topological edge
modes.
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