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Abstract
Radiation-induced cognitive dysfunction is increasingly recognized as an important risk for human
exploration of distant planets. Mechanistically-motivated mathematical modeling helps to interpret and
quantify this phenomenon. Here we considered two general mechanisms of ionizing radiation-induced
damage: targeted effects (TE), caused by traversal of cells by ionizing tracks, and non-targeted effects
(NTE), caused by responses of other cells to signals released by traversed cells. We compared the
performances of 18 dose response model variants based on these concepts, �tted by robust nonlinear
regression to a large published data set on novel object recognition testing in rats exposed to multiple
space-relevant radiation types (H, C, O, Si, Ti and Fe ions), covering wide ranges of linear energy transfer
(LET) (0.22-181 keV/µm) and dose (0.001-2 Gy). The strongest support (by Akaike information criterion)
was found for an NTE+TE model where NTE saturate at low doses (~0.01 Gy) and occur at all tested
LETs, whereas TE depend on dose linearly with a slope that increases with LET. The importance of NTE
was also found by additional analyses of the data using quantile regression and random forests. These
results suggest that NTE-based radiation effects on brain function are potentially important for astronaut
health and for space mission risk assessments.   

Introduction
Radiation-induced central nervous system (CNS) damage and consequent cognitive dysfunction are
increasingly recognized as important risks for astronauts on long-distance space missions such as
exploration of Mars 1–7. Mechanistically-motivated mathematical modeling of this phenomenon can
provide much needed insight into interpreting the growing amount of relevant experimental data in
laboratory animals, generating and testing mechanistic hypotheses, and producing quantitative
predictions for radiation quality effects and risk magnitudes for space mission scenarios 4,6.

Here we developed and used several model variants based on two general categories of radiation-induced
damage: targeted effects (TE), caused by traversal of cells by ionizing tracks, and non-targeted effects
(NTE), caused by responses of nearby or even distant cells to signals released by traversed cells. The
NTE-based terms used in these formalisms were motivated by our previous work 8–10, where we assumed
that NTE signals cause sensitive cells to enter into a prolonged stressed state (e.g. persistent oxidative
stress) which increases the risk of adverse health effects such as carcinogenesis or cognitive
dysfunction. A commonly-observed property of NTE is a non-linear concave dose response shape that
increases steeply at low doses (where, for high linear energy transfer (LET) radiation exposures, not all
cell nuclei are traversed by ionizing tracks) and becomes shallower or saturates at higher doses. In
contrast, TE dose responses generally exhibit linear or linear-quadratic (convex) dose response shapes.

NTE-based models were previously applied to a variety of radiation damage endpoints such as
carcinogenesis, cell survival, and chromosomal aberrations 8,11–18. Although the mechanisms of
radiation-induced CNS dysfunction are not yet fully understood and are being actively studied, we
hypothesize that NTE may be involved in this phenomenon. Experimental evidence supporting this
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hypothesis includes the �nding that body-only exposure to space-relevant radiation, which does not
directly traverse the brain by ionizing tracks, can nevertheless affect cognitive functioning in rodents 19,20.
The molecular mechanisms of this phenomenon likely involve radiation-induced oxidative stress and
neuroin�ammation, which, in turn, affect neuronal function 20. They may be mediated by blood-borne
factors (e.g. cytokines), immune system involvement, the vagus nerve, or radiation-induced intestinal
microbiome alterations 19,20.

These �ndings, that direct effects of HZE particles on neurons are not necessary to produce changes in
neuronal function, 20 can be viewed in a more general context, where the types of signals that propagate
NTE between cells are very diverse 21–24. They include small molecules capable of moving through gap
junctions (e.g. lipid peroxide products, inosine nucleotides), long-range signals like pro-in�ammatory
cytokines (e.g. tumor necrosis factor-α) 24, and possibly micro RNAs 24 and exosomes 25. Such signaling
could be involved in a variety of diseases including CNS dysfunction and carcinogenesis. The types of
radiation damage that trigger NTE signal production can include unrepaired/misrepaired DNA double
strand breaks, protein and lipid oxidation by radiation-induced reactive oxygen and nitrogen species, and
mitochondrial damage. These events may lead to chronic in�ammation, oxidative stress, and microglia
activation 7.

Based on this reasoning, we applied TE- and/or NTE-based dose response models to a large data set on
novel object recognition testing in rats exposed to a variety of space-relevant radiation types and doses,
published by Rabin et al.26. Our primary goals were: (1) To set up a modeling framework for evaluating
combined TE and NTE mechanisms using available CNS dysfunction data. (2) To evaluate whether or not
some degree of discrimination between model assumptions (e.g. TE vs NTE-dominant explanations for
the observed radiation responses, modulated by dose and LET) could be made based on such data, and
what this could imply for quantifying the risks and radiation quality dependences of this phenomenon in
relation to space exploration. As more biological information about radiation effects on the CNS becomes
available, more detailed hypothesis can be developed and tested using combinations of speci�c TE and
NTE models with experimental studies.

Materials And Methods
Data set

We selected the data set published by Rabin et al.26 for the following reasons: (1) One strain of laboratory
animals (male Sprague-Dawley rats) was exposed to a broad range of space-relevant radiations (H, C, O,
Si, Ti, and Fe ions), and cognitive performance was assessed using the same behavioral endpoint – novel
object recognition. This consistency should minimize the variability due to differences between animal
strains/species and test types, potentially allowing the effects of radiation to be evaluated more clearly.
(2) The LET range was broad, from 0.22 to 181 keV/µm, which covers most of the spectrum seen in
space. (3) The dose range was also wide, including very low doses (0.001 to 0.05 Gy) as well as high
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doses (1-2 Gy). (4) The effects of time after exposure were assessed by performing the novel object
recognition test at two time points after irradiation (1 to 17 months since exposure). The full data for
each rat and study condition were kindly provided by Dr. Rabin, which we combined and processed for
analysis (923 samples, Supplementary Data File online).

Data processing

The outcome (dependent) variable in the analyzed data set was the fraction of time that a rat spent
exploring the novel object 26. Because these data are by de�nition fractions between 0 and 1, we log-
transformed them to bring the distribution closer to normal and performed subsequent dose response
modeling on the transformed scale, conceptually analogous to modeling of cell survival dose responses.
In this way, we generated the outcome variable “Response” as follows, where Fnov is the fraction of time

spent exploring the novel object reported in Rabin et al.26:

This log-transformation changed the data scale from a fraction between 0 and 1 to a continuous number
≥0, which is more amenable to dose response analysis using models such as linear or linear quadratic.

Radiation response modeling

We considered three variables – dose, LET, and time since exposure (irradiation) – as the most
reasonable potential predictors of the response in this data set. To assess their relative strengths, we
calculated Spearman’s correlation coe�cients of each of these variables with the response variable
(Response) using R 4.0.2 software. The correlation coe�cient for time with the response was close to
zero (0.00102) and not statistically signi�cant, suggesting that time was the least important variable to
consider. If time was added as a predictor in the models described below, it did not reach statistical
signi�cance, and therefore we did not include it in further analysis. To investigate the issue of radiation
quality dependence, LET was binned into four categories (identi�ed by index i): low (labeled L, 0.22 keV/
µm), medium (labeled M, 13-16 keV/µm), high (labeled H, 41-50 keV/µm) and very high (labeled VH, 106-
181 keV/µm). Radiation dose (in Gy) was treated as a continuous variable.

We modeled the radiation response using several model structures that differ in their assumptions about
the dose dependences (e.g. linear or quadratic) and LET dependences of the TE and/or NTE components.
Exploratory calculations showed poor support for complex models that included different TE (with linear
and/or quadratic dependences on dose) along with different NTE coe�cients for each LET category. In
the �ts of such models, many parameters – particularly the TE terms – had very large uncertainties. For
example, the only TE term in these highly parametrized models that achieved statistical signi�cance (p-
value = 0.0375) was the one representing a quadratic dependence on dose for the highest (VH) LET
category. To reduce parameter uncertainties and clarify differences in performance between different sets
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of model structure assumptions, we generated 18 less parametrized simpler model variants (listed in
Table 1) for more detailed evaluation. In our notation, D is radiation dose (in Gy), B is the baseline
response parameter in unirradiated rats, and kTE and kNTE are parameters that represent TE and NTE,
respectively. The TE or NTE parameters were allowed to differ by LET category (Table 1). In some
simpli�ed models (labeled S1 to S4), TE parameters were allowed to be adjustable only for speci�ed LET
categories (e.g.i=LM, H, VH indicates that TE parameters were the same for L and M LET categories, but
different for H and VH categories) and/or set to zero for certain LET categories (e.g.i=VH indicates that
TE parameters were non-zero only for the VH LET category).

The structure of the NTE terms in the tested models (Table 1) is based on our previous publications 8,9.
We assume that stress response signals from irradiated cells propagate to other cells and cause them to
enter into a stressed “activated” state, which can be persistent. This NTE process is assumed to be binary
(“on/off”), so that the probability of the effect (but not its magnitude) increases with dose. In the NTE
state, cells can experience oxidative stress, elevated rate of DNA damage, along with other modi�cations
of functioning. The total radiation effect is assumed to be the sum of TE and NTE components.

Based on these assumptions, the commonly observed tendency of NTE dose responses to have a steep
initial “rise” at low doses, followed by saturation towards a “plateau” at higher doses, was modeled by the
following mathematical expression, where D is radiation dose, kNTEr is the “rise” parameter and kNTE is
the “plateau” parameter: kNTE×(1 – exp[-kNTEr×D]). Preliminary �tting attempts showed that kNTEr

attained a very high value with a very large uncertainty. Consequently, we �xed kNTEr at 103 Gy-1 instead
of allowing it to be freely adjustable. In essence, using this large constant allows the response to rapidly
increase from the background value and saturate at low doses, but retains the model’s properties as a
smooth function instead of a biologically implausible step function.

Each formalism described in Table 1 was �tted to the data by a robust nonlinear regression algorithm
(the nlrob function in R). The robust �tting approach was chosen instead of ordinary least squares (OLS)
to reduce the in�uence of outlier data points in this data set, where the data “scatter” is considerable (OLS
regression on these data violated the assumption of normally-distributed residuals, assessed by Shapiro-
Wilk normality test).

Assessments of model performance

The performances of different models were compared by information theoretic analysis using the Akaike
information criterion with sample size correction (AICc) 27,28. This approach is useful because it takes
into account not only the closeness of model �t to the data (the maximized likelihood value), but also
model complexity (the number of adjustable parameters) and the sample size. More complex models are
“penalized” more strongly, compared with simpler models, and the penalty increases at small sample
sizes. ∆AICc, de�ned as the given model’s AICc score minus the minimum AICc score across all tested
models, indicates relative information theoretic support for a given model. This relative support is
quanti�ed by the equation exp[-∆AICc/2]. Therefore, the best-supported model has ∆AICc=0, and
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∆AICc>6 suggest poor support (i.e. >20-fold lower, relative to the best model). In addition, for each model
we calculated the coe�cient of determination (R2), root mean squared error (RMSE), and mean absolute
error (MAE).

To test the stability of the best-supported model variant (the one with ∆AICc=0) behaviors under random
perturbations of the data, we performed 300 random 50:50 splits of the data set into training and testing
parts. In each split, the model was �tted to the training data and the predictions from this �t were tested
on the testing data. R2, RMSE, MAE, and model parameter values were also calculated and compared on
the training and testing data.

Quantile regression

For the best-supported model variant (the one with ∆AICc=0), we performed quantile regression (using
the quantreg R package) to model the median (50th percentile), as well as the 25th and 75th percentiles of
the radiation response. This approach provides additional information about model uncertainties and
data spread without some of the stringent assumptions of OLS regression and is therefore quite useful
for this data set.

Mixed effects modeling

Since the novel object recognition test was repeated for most rats twice at different time points,
correlations of the responses shown by the same rat at different times could be potentially important, but
were not accounted for by the robust and quantile regressions. In other words, although time since
irradiation apparently did not play an important role in response magnitudes, a given rat could
consistently exhibit higher than average (or lower than average) responses whenever it was tested,
causing the data points corresponding to this rat not to be statistically independent. To address this
issue, we implemented nonlinear mixed effects modeling (nlme R package) using the best-supported
model variant. This approach is commonly used in situations such as the one here, where repeated
measurements are made on the same individuals. In addition to the �xed effects, random effects by rat
were included for the model parameters.

To reduce potential outlier data point effects on the mixed effects model �t, we �rst analyzed the data set
by the OutlierDetection R package and removed 40 outliers (883 samples were retained). The data set
version without these outliers (provided in Supplementary Data File online) was used for the mixed
effects modeling, whereas the full data set was used for all other analyses. The Fligner-Killeen test for
homogeneity of response variances was signi�cant for radiation dose (D) and LET (p-values 0.00017 and
0.016, respectively), but not for time (p-value 0.080). Consequently, in the mixed effects model the
variance function (weights in nlme) was allowed to vary by D and LET. The following analyses of model
residuals were used to diagnose potential violations of the main assumptions: plot the residuals, regress
residuals vs D and time, boxplot by LET, Shapiro-Wilk normality test, qq plot, calculate skewness and
kurtosis, and plot the autocorrelation function.
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Machine learning analysis

To assess whether or not the NTE functional form (NTEf = 1-exp[-103×D]) is important for describing the
data outside of the parametric regression framework described above, we performed a machine learning
analysis based on random forests (RF). RF is a powerful and frequently utilized machine learning
method, which captures complex dependences in the data by generating ensembles of decision trees 29.
The techniques of bootstrap aggregation or “bagging” (randomly selecting samples from training data
with replacement) and “feature randomness” (selecting a subset of predictors randomly for each tree) are
used in RF to improve performance. For regression problems such as the one considered here, predictions
from all trees are averaged.

For the machine learning analysis, we considered radiation dose (D), energy (in MeV/n), time since
exposure, LET (in keV/µm), and NTEf as predictors for the response. The data set was split randomly into

training and testing halves. The Boruta feature selection algorithm 30 (Boruta package in R) was
implemented on the training data to generate a ranking of importance scores for the predictor variables.
Boruta iteratively compares the RF-based importance score of each predictor with the importance score
of its randomly shu�ed “shadow”. The Boruta analysis was repeated 100 times with different initial
random number seeds, and the predictor variables were ranked by the median value of median
importance scores across all repeats. This procedure was intended to identify the most important
predictors and/or the least important ones, which could potentially be discarded from further analysis.

Using the retained important predictors, we implemented RF (2000 trees), optimizing its parameters
(number of variables to possibly split at in each node mtry, splitting rule splitrule, and minimal node size
min.node.size) by RMSE using repeated cross-validation (3-fold, 30 repeats) on the randomly-selected
training half of the data. Performance (R2, RMSE and MAE) was measured on the testing half of the data.
This approach, designed to minimize the probability of “over�tting”, was implemented by the caret and
rangerR packages. Robustness of RF predictions and performance metrics to random data �uctuations
was assessed by applying the algorithm (with previously optimized parameters) to 300 random
training/testing splits of the original data set.

Results
The NTE_TE_lin_S2 formalism outperformed all other models based on AICc scores (Table 1). This
formalism assumes that NTE saturate at low doses (~0.01 Gy) and occur at all tested LETs, whereas TE
depend on dose linearly with a slope that increases with LET. The best-supported model’s parameters and
performance metrics are provided in Table 2. These parameter values remained relatively stable when the
model was �tted to randomly-selected training parts of the data set and tested on the corresponding
testing parts (Table 2).

Three other model variants had support values close to the best model (ΔAICc <6): NTE_TE_lin_S1,
NTE_TE_lin, and NTE_TE_quad_S2 (Table 1). The �rst two of these models assume more detail for the linear
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TE slope variation by LET categories, and the last one assumes a quadratic TE dose response (Table 1).
Other performance metrics besides AICc (R2, RMSE, MAE) were very similar for these models and for the
best model (Table 1). These results suggest that the data set and analysis methods do not provide strong
con�dence in the details of TE dependences on dose and LET. However, they do provide a strong
indication that the NTE model terms are important because these terms are present in all model variants
with the best support (ΔAICc <6).

Visualizations of the best-supported NTE_TE_lin_S2 model’s predictions, compared with the data points, are
shown in Fig. 1. The contributions of the TE and NTE components to the predicted radiation response are
shown in Fig. 2. Based on this model, NTE dominate at low radiation doses (e.g. <0.5 Gy), whereas TE
dominate only at high doses of very high LET (≥106 keV/µm) radiation (Fig. 2).

Quantile regression using the best-supported NTE_TE_lin_S2 model showed that the TE parameter for LET

values <106 keV/µm had large uncertainties (including zero) across quantiles (25th and 75th percentiles).
In contrast, the NTE parameter and the TE parameter for LET values ≥106 keV/µm were relatively stable
(Table 3).

Mixed effects modeling provided support for random effects (i.e. variability of parameter values by rat)
only for baseline responses in non-irradiated rats (parameter B). Adding random effects for the NTE
and/or TE parameters resulted in poor convergence and/or negligibly small standard deviations (<10-3)
for the random effects. The mixed effects model variant with random effects for B only had the following
parameter values. Fixed effects: B = 0.432 (standard error, SE: 0.014, p-value: <10-5), NTE = 0.165 (SE:
0.019, p-value: <10-5), TE for LET values <106 keV/µm = 0.032 (SE: 0.015, p-value: 0.028), TE for LET
≥106 keV/µm = 0.060 (SE: 0.046, p-value: 0.20). The random effects standard deviation for B was 0.073,
suggesting substantial variation in baseline responses among rats. These mixed effect model parameter
values (especially NTE terms) are generally similar to those produced by the robust and quantile
regressions (Tables 2-3). Most of the variation between rats appeared to occur in baseline responses, not
in radiation effects. However, we note that the mixed effect model residuals violated the normality
assumption (Shapiro-Wilk test p-value 4.3×10-9, skewness 0.53, kurtosis 3.40), so the parameter
estimates from this model may have limited reliability.

Machine learning analysis by the Boruta feature selection algorithm calculated the following median
importance scores for the considered predictors: NTE term (NTEf) = 15.2, radiation dose (D) = 14.6, ion
energy = 9.0, LET = 8.9, time since exposure = 6.9. All of these variables outperformed randomized
“shadow” features >90% of the time, so all were retained for further analysis by random forest (RF). RF
with optimized parameters also ranked NTEf and D as the two most important predictors with relative
importance scores of 100.0 and 69.4, respectively. Due to its �exibility in describing nonlinear
relationships and interactions between predictors by tree ensembles, RF achieved higher performance
metrics than the parametric models: mean R2 on testing data over 300 random training/testing splits was
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0.19 (standard deviation, SD=0.02, range: 0.13-0.29), RMSE was 0.23 (SD=0.007, range: 0.21-0.25), MAE
was 0.17 (SD=0.004, range: 0.16-0.18).

Discussion
We analyzed a large data set on novel object recognition testing in rats exposed to a wide range of space
radiation types and doses 26 using several dose response model variants with TE or NTE terms, and
several techniques with different underlying assumptions. The model formalisms used here are based on
the framework developed in our previous publications 8,9. This approach allows for assessment of
distance for NTE signal propagation 8, but in situations relevant for space exploration missions, such as
the one here, radiation exposure was assumed to be homogeneous throughout the target organ/organism
on a macroscopic scale. Consequently, the concentration of NTE signals throughout the organ/organism
was also assumed to be homogeneous, and the NTE dose response in such situations depends on the
probability of cells to enter and stay in a stressed state. This set of assumptions is consistent with a dose
response function with a steep initial “rise” at low doses, where the probability of NTE signal release and
response to these signals increases, followed by saturation towards a “plateau” at higher doses, where
most susceptible cells respond to the signals. Conceptually similar approaches were also used by other
authors 11,31,32.

Our results show that models with NTE terms described the data much better than those with only TE
terms (Table 1). The detailed structure of the NTE dependence on dose and LET could not be determined
using this data set and analysis methods, but the importance of including NTE terms (in addition to TE
terms) for describing this data set is clear based on the results. The �nding that NTE may saturate at very
low doses is not unique to this data set, but is consistent with other studies 9,17,32. Biologically, it
suggests that signals released from a cell heavily damaged by radiation can affect large numbers of
surrounding cells. This cell “group” response to radiation damage caused in only a small fraction of
group members can explain a very steep dose response at very low doses.

In summary, our analysis suggests that radiation effects on novel object recognition can be induced even
at low doses of space radiations, and that the dose response in this space-relevant dose range is not
linear (concave) and is likely dominated by NTE rather than TE. Importantly, the radiation effects were
persistent and not signi�cantly affected by time since exposure, which spanned a substantial portion of
the rat lifetime. This provides evidence that radiation-induced cognitive decline may not just occur during
a space exploration mission, but can potentially last over a lifetime. Our �ndings are of course based on a
single (although large) data set in laboratory animals. However, we believe that they have potentially
important implications for assessing CNS dysfunction risks for astronauts on interplanetary space
missions.
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Tables
Table 1. Comparisons of all tested model formalisms. D is the radiation dose, R is the response variable,
B is the baseline response parameter, kTE is a parameter for targeted effects, kNTE is a parameter for
non-targeted effects, and i is an index that represents the LET category (L=0.22, M=13-16, H=41-50,
VH=106-181keV/µm). In some simpli�ed models (labeled S1 to S4), TE parameters were allowed to be
adjustable only for speci�ed LET categories (e.g. i=LM, H, VH indicates that TE parameters were the same
for L and M LET categories, but different for H and VH categories) and/or set to zero for certain LET
categories (e.g. i=VH indicates that TE parameters were non-zero only for the VH LET category ). ∆AICc
indicates relative information theoretic support for a given model. The best-supported model has
∆AICc=0 (indicated in bold font), and ∆AICc>6 suggest poor support (i.e. >20-fold lower, relative to the
best model). Coe�cient of determination (R2), root mean squared error (RMSE) and mean absolute error
(MAE) represent absolute goodness of �t metrics.
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Table 2. Performance of the best-supported NTE_TE_lin_S2 model (Table 1). As described in Materials and
Methods, the full data set was randomly split 300 times into training and testing halves. The model �ts to
training data were used to calculate R2, RMSE and MAE metrics on both training and testing data. SE =
standard error, SD = standard deviation.
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Parameter or
metric

Value for full data set
(SE, p-value)

Mean value on training
data (SD) [range]

Mean value on testing data
(SD) [range]

B 0.424 (0.020, <2×10-16) 0.424 (0.011) [0.393, 0.455] -

kNTE 0.166 (0.025, 6.7×10-

11)
0.166 (0.017) [0.125, 0.204] -

kTEi=LMH 0.027 (0.017, 0.12) 0.026 (0.016) [0, 0.077] -

kTEi=VH 0.127 (0.035, 2.6×10-4) 0.126 (0.031) [0.023, 0.233] -

R2 0.109 0.112 (0.016) [0.068, 0.157] 0.104 (0.016) [0.067,
0.148]

RMSE 0.242 0.240 (0.007) [0.218, 0.260] 0.243 (0.007) [0.223,
0.262]

MAE 0.183 0.182 (0.004) [0.166, 0.194] 0.184 (0.004) [0.173,
0.200]

 

Table 3. Parameters for quantile regression using the best-supported NTE_TE_lin_S2 model (Table 1). SE =
standard error.

Parameter Best-�t value (SE, p-value)

  50th percentile 25th percentile 75th percentile

B 0.424 (0.015, <10-6) 0.310 (0.013, <10-6) 0.511 (0.025, <10-6)

kNTE 0.166 (0.030, <10-6) 0.147 (0.021, <10-6) 0.220 (0.037, <10-6)

kTEi=LMH 0.027 (0.023, 0.25) 0 (0.020, 1.0) 0.053 (0.031, 0.093)

kTEi=VH 0.127 (0.045, 5.1×10-3) 0.074 (0.047, 0.12) 0.182 (0.064, 4.7×10-3)
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