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Quantum work is usually determined from two projective measurements of the energy at the beginning and at
the end of a thermodynamic process. However, this paradigm cannot be considered thermodynamically consistent
as it does not account for the thermodynamic cost of these measurements. To remedy this conceptual inconsistency
we introduce a paradigm that relies only on the expected change of the average energy given the initial energy
eigenbasis. In particular, we completely omit quantum measurements in the definition of quantum work, and
hence quantum work is identified as a thermodynamic quantity of only the system. As main results we derive a
modified quantum Jarzynski equality and a sharpened maximum work theorem in terms of the information free
energy. A comparison of our results with the standard approach allows one to quantify the informational cost of
projective measurements.
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Introduction. In classical mechanics and thermodynamics
work is determined by a functional of a force along a
trajectory in phase space [1–3]. For quantum systems the
situation is much more subtle, since trajectories simply do
not exist and a Hermitian work operator cannot be defined
[4,5]. Rather, quantum work is commonly determined as
the difference between two energies projectively measured
at two times: one at the beginning and one at the end of a
thermodynamic process [6,7]. Despite the obvious limitations
of this notion—no truly open systems can be described since
the change of internal energy comprises only work, but no
heat—the two-time energy measurement approach has proven
to be practical and powerful. For instance, this approach has
led to the experimental verification of quantum fluctuation
theorems [8,9] and the development of heat engines at the
nanoscale [10–13].

Nevertheless, quantum work has remained somewhat elu-
sive with many peculiar features and open questions [14,15].
For instance, it has only recently been pointed out that work can
be measured at a single (final) time by means of a generalized
measurement [16], that its probability distribution can be
interferometrically estimated [17–20], that it reduces to the
classical notion of thermodynamic work in high-temperature
[21] and semiclassical [22] limits, and that the paradigm of
two-time energy measurements is also applicable to open
systems as long as the dynamics is unital [23] (see Refs. [24–
30]).

In the following we will motivate and introduce a definition
of quantum work based on a proper characterization of the
role of quantum measurements—a feature not present in the
semiclassical limit [22]. Imagine the typical situation for
which the quantum Jarzynski equality is valid [3]: at t = 0
the system is prepared in a Boltzmann-Gibbs distribution,
ρ0 ∝ exp (−βH0), where H0 is the initial Hamiltonian and
β denotes the inverse temperature. Then the density operator
ρ0 is diagonal in energy basis, and the projective measurement
of the energy simply determines the thermal occupation prob-
abilities p(n0) ∝ exp[−βε(n0)]. After the first measurement,
the system evolves under a time-dependent Hamiltonian H (t)

from t = 0 to t = τ , and the final state, ρτ , is typically a
complicated nonequilibrium state [31–33]. Generally, ρτ is
not diagonal in the energy basis, and therefore a projective
measurement of the energy is accompanied by a back-action
on the system [34]. In many realistic situations one does not
have to worry too much about this back-action. Experimentally
it poses a real challenge to fully isolate a quantum system from
its environment and hence almost all real quantum systems
eventually decohere [35,36]. Interestingly, the energy basis can
be einselected by the environment [37], and hence ρτ quickly
becomes close to diagonal in energy eigenbasis. Hence, we
believe that the methods put forward here will also be useful
in the treatment of open systems (see, e.g., also Ref. [38]). For
the time being, however, we will exclusively focus on isolated
systems.

For fast processes—faster than the time scales over which
decoherence happens—or small systems ρτ is generally not
diagonal, which has been seen explicitly, e.g., in the ion trap
experiment by An et al. [9]. In such situations the back-action
of the measurement on the system does play a role and
results in an increase of von Neumann entropy of the system,
i.e., in a change of information. Information, however, is a
thermodynamic resource [39], which can be related to a free
energy usable to perform additional work [40,41]. Hence,
one would expect this additional (information) free energy
to explicitly show up in the thermodynamic relations [42,43].
However, in the standard treatment [5] and in experiments [8,9]
this informational back-action on the system from the second
projective measurement has not been considered. Hence, the
paradigm of two-time measurements is thermodynamically
incomplete.

In our analysis we will address this issue and resolve
the conceptual inconsistency arising from neglecting the
informational contribution to the laws of thermodynamics.
This will lead to a new notion of quantum work, which relies
only on the internal energy as an average of the time-evolved
energy eigenstates. We will see that this notion is in full
agreement with the first law of thermodynamics—the average
work is given by the change of internal energy—but that we can
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also quantify the informational contribution to the free energy
from projective measurements. As a main result we will derive
a modified quantum Jarzynski equality and an associated
maximum work theorem, in which the thermodynamic free
energy is replaced by the information free energy [41,44–46].

Two-time measurements—notions and issues. We begin by
briefly reviewing the paradigm of the two-time energy mea-
surement approach, and establish notions and notations. Here
and in the following we consider an isolated quantum system
with time-dependent Schrödinger equation i� |ψ̇t 〉 = Ht |ψt 〉.
We are interested in describing thermodynamic processes that
are induced by varying an external control parameter λt during
time τ , with Ht = H (λt ).

Commonly, quantum work is determined by the following,
experimentally motivated protocol: After preparation of the
initial state ρ0 a projective measurement of the energy is
performed; then the system is allowed to evolve under the time-
dependent Schrödinger equation, before a second projective
energy measurement is performed at t = τ .

For the sake of simplicity and to avoid clutter in the
formulas we further assume that the system is initially
prepared in a Gibbs state, ρ0 = exp (−βH0)/Z0, where β is
the inverse temperature and Z0 is the partition function, Z0 =
tr{exp (−βH0)}. Strictly speaking the projective measurement
at t = 0 is superfluous for initially thermal states, since such
ρ0’s are diagonal in the energy basis. The internal energy of
the system, and therefore the full thermodynamic behavior,
can simply be determined by an average over all energy
eigenstates equipped with the thermal occupation probabilities
[47], p(n0) = exp[−βε(n0,λ0)]/Z0.

The first law of thermodynamics determines that the
average work is given by the change of internal energy, 〈W 〉 =
tr{ρτ Hτ } − tr{ρ0 H0}, where ρτ = Uτρ0U

†
τ , and Uτ is the uni-

tary time evolution operator, Uτ = T> exp (−i/�
∫ τ

0 dt Ht ),
and T> denotes time ordering. Accordingly, for a single
realization of the two-time measurement protocol the quantum
work reads

Wn0→nτ
= ε(nτ ,λτ ) − ε(n0,λ0), (1)

where |n0〉 is the initial eigenstate with eigenenergy ε(n0,λ0)
and |nτ 〉 with ε(nτ ,λτ ) describes the final energy eigenstate.

The corresponding quantum work probability distribution
(2) is then given by an average over an ensemble of realizations
of this protocol, P(W ) = 〈δ(W − Wn0→nτ

)〉, which can be
written as [18,48]

P(W ) =
∑∫

n0,nτ

δ(W − Wn0→nτ
)p(n0; nτ ). (2)

In the latter equation the symbol
∑∫

denotes a sum over the
discrete part of the eigenvalues spectrum and an integral
over the continuous part. In Eq. (2) p(n0; nτ ) are the joint
probabilities for detecting n0 and nτ in the two energy
measurements [18,27,48],

p(n0; nτ ) = tr
{
	nτ

Uτ	n0ρ0	n0U
†
τ

}
, (3)

where 	n denotes the projector into the space spanned by
the nth eigenstate, which becomes for nondegenerate spectra
	n = |n〉〈n|. It is then a simple exercise to show that from
the definition of P(W ) in (2) we have the quantum Jarzynski

equality [4,5],

〈e−βW 〉 =
∫

dW P(W ) e−βW = e−β
F , (4)

where 
F = Fτ − F0 and Ft = −(1/β) ln (Zt ).
Neglected informational cost. Generally the final state ρτ is

a complicated nonequilibrium state. This means, in particular,
that ρτ does not commute with the final Hamiltonian Hτ ,
and one has to consider the back-action on the system due to
the projective measurement of the energy [34]. For a single
measurement, 	nτ

, the postmeasurement state is given by
	nτ

ρτ	nτ
/pn, where pn = tr{	nτ

ρτ }. Thus, the system can
be found on average in

ρM
τ =

∑
nτ

	nτ
ρτ	nτ

. (5)

Accordingly, the final measurement of the energy is accompa-
nied by a change of information, i.e., by a change of the von
Neumann entropy of the system


HM = −tr
{
ρM

τ ln
(
ρM

τ

)} + tr{ρτ ln (ρτ )} � 0. (6)

Information, however, is physical [49] and its acquisition
“costs” work. This additional work has to be paid by
the external observer—the measurement device. In a fully
consistent thermodynamic framework this cost has to be taken
into consideration [40], in particular when calculating the
efficiency of thermodynamic devices [10,11].

Quantum work without measurements. To remedy this
conceptual inconsistency arising from neglecting the infor-
mational contribution of the projective measurements, we
propose an alternative paradigm. For isolated systems quantum
work is clearly given by the change of internal energy. As
a statement of the first law of thermodynamics this holds
true no matter whether the system is measured or not.
Quantum measurements, however, can be understood as an
interaction with a “measuring environment”. Moreover, almost
any environment induces decoherence [36]. Thus, defining
work with the help of the environment and ignoring the
effect of decoherence is as thermodynamically inconsistent
as defining work via an external measurement and neglecting
the informational cost of these projective measurements.

For thermal states measuring the energy is superfluous as
state and energy commute. Hence, a notion of quantum work
can be formulated that is fully based on the time evolution of
energy eigenstates [50]. Quantum work for a single realization
is then determined by considering how much the expectation
value for a single energy eigenstate changes under the unitary
evolution [51]. Hence, we define

W̃n0 ≡ 〈n0|U †
τ HτUτ |n0〉 − ε(n0,λ0). (7)

We can easily verify that the so defined quantum work
(7), indeed, fulfills the first law. To this end, we compute
the average work 〈W 〉P̃ for the modified quantum work
distribution P̃(W ), and we obtain

〈W 〉P̃ =
∑∫

n0

〈n0|U †
τ HτUτ |n0〉p(n0) − tr{ρ0H0}

= tr{ρτHτ } − tr{ρ0H0} = 〈W 〉.
(8)
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It is important to note that the average quantum work
determined from two-time energy measurements is identical
to the (expected) value given only knowledge from a single
measurement at t = 0. Most importantly, however, in our
paradigm the external observer does not have to pay a
thermodynamic cost associated with the change of information
due to measurements. Hence, the present paradigm can be
considered thermodynamically consistent and complete.

Modified quantum Jarzynski equality. What we have seen so
far is that the first law of thermodynamics is immune to whether
the energy of the system is measured or not, since projective
measurements of the energy do not affect the internal energy.
However, the informational content of the system of interest,
i.e., the entropy, crucially depends on whether the system is
measured. Therefore, we expect that the statements of the
second law have to be modified to reflect the informational
contribution [40]. In our paradigm the modified quantum work
distribution becomes

P̃(W ) =
∑∫

n0

δ(W − W̃n0 )p(n0), (9)

where as before p(n0) = exp[−βε(n0,λ0)]/Z0. Now, we can
compute the average exponentiated work,

〈e−βW 〉P̃ = 1

Z0

∑∫
n0

e−β〈n0|U †
τ Hτ Uτ |n0〉. (10)

The right side of Eq. (10) can be interpreted as the
ratio of two partition functions, where Z0 describes the
initial thermal state. The second partition function Z̃τ ≡∑∫

n0
exp (−β〈n0|U †

τ HτUτ |n0〉) corresponds to the best pos-
sible guess for a thermal state of the final system given only
the time-evolved energy eigenbasis. This state can be written
as

ρ̃τ ≡ 1

Z̃τ

∑∫
n0

e−β〈n0|U †
τ Hτ Uτ |n0〉Uτ |n0〉〈n0|U †

τ , (11)

which differs from the true thermal state, ρ
eq
τ =

exp (−βHτ )/Zτ .
In information theory the “quality” of such a best possible

guess is quantified by the relative entropy [52,53], which
measures the distinguishability of two (quantum) states.
Hence, let us consider

S
(
ρ̃τ ||ρeq

τ

) = tr{ρ̃τ ln (ρ̃τ )} − tr
{
ρ̃τ ln

(
ρeq

τ

)}
, (12)

for which we compute both terms separately. For the first term,
the negentropy of ρ̃τ , we obtain

tr{ρ̃τ ln (ρ̃τ )}

= − ln (Z̃)−βtr

{
ρ̃τ

∑∫
m0

〈m0|U †
τ HτUτ |m0〉Uτ |m0〉〈m0|U †

τ

}
= − ln (Z̃) − βẼ, (13)

where we introduced the expected value of the energy, Ẽ,
under the time-evolved eigenstates,

Ẽ = 1

Z̃

∑∫
n0

e−β〈n0|U †
τ Hτ Uτ |n0〉〈n0|U †

τ HτUτ |n0〉. (14)

The second term of Eq. (12), the cross entropy of ρ̃τ and ρ
eq
τ ,

simplifies to

tr
{
ρ̃τ ln

(
ρeq

τ

)}
= − ln (Zτ ) − βtr

{∑∫
n0

1

Z̃
e−β〈n0|U †

τ Hτ Uτ |n0〉U |n0〉〈n0|U †Hτ

}
= − ln (Zτ ) − βẼ. (15)

Hence, the modified quantum Jarzynski equality (10) becomes

〈e−βW 〉P̃ = e−β
F e−S(ρ̃τ ||ρeq
τ ), (16)

where as before 
F = −1/β ln (Zτ/Z0). Jensen’s inequality
further implies,

β〈W 〉 � β
F + S
(
ρ̃τ ||ρeq

τ

)
, (17)

where we used 〈W 〉P̃ = 〈W 〉 [Eq. (8)].
Equations (16) and (17) are our main results. By defining

quantum work as an average over time-evolved eigenstates
we obtain a modified quantum Jarzynski equality (16) and
a generalized maximum work theorem (17), in which the
thermodynamic cost of projective measurements becomes
apparent. These results become even more transparent by
noting that similar versions of the maximum work theorem
have been derived in the thermodynamics of information
[40,41,44,54]. In this context it has proven useful to introduce
the notion of an information free energy,

F̃τ = Fτ + S
(
ρ̃τ ||ρeq

τ

)
/β. (18)

This free energy is a true thermodynamic quantity [41,44]
that accounts for the additional capacity of a thermodynamic
system to perform work due to information [40]. Note that
in the present context F̃τ is computed for the fictitious
thermal state ρ̃τ [Eq. (11)], whereas one usually considers
the information free energy for the nonequilibrium state ρτ

[40,41,44,54].
We can rewrite Eq. (17) as

β〈W 〉 � β
F̃ . (19)

Equation (19) constitutes a sharper bound than the usual
maximum work theorem, and it accounts for the extra free
energy available to the system. Free energy, however, describes
the usable, extractable work. In real-life applications one is
more interested in the maximal free energy the system has
available, than in the work that could be extracted by inter-
mediate, disruptive measurements of the energy. Therefore,
our treatment could be considered thermodynamically more
relevant than the two-time measurement approach.

Illustrative example: Parametric harmonic oscillator. For
the remainder of this discussion we will turn to an analytically
solvable example, namely, the parametric harmonic oscillator,

H = p2/2m + mω2
t x

2/2. (20)

This system has been studied extensively in the literature, and
it can be shown that the average work performed by changing
the angular frequency from ω0 to ωτ is given by [21,31]

〈W 〉 = �/2(Q∗ωτ − ω0) coth (β/2�ω0). (21)

The quantity Q∗ is a measure of adiabaticity [21,55], which
fully encodes the dynamics. In particular, we have Q∗ = 1 for
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FIG. 1. Average work 〈W 〉 [Eq. (21)] (blue, solid line), together
with the change of equilibrium free energy 
F [Eq. (22)] (red,
dotted line) and the informational maximum work theorem, β
F +
S(ρ̃τ ||ρeq

τ ) [Eq. (17)] (purple, dashed line) for the parametric harmonic
oscillator (20) with � = 1, β = 1, ω0 = 1, and ωτ = 2.

adiabatic, infinitely slow processes, and Q∗ > 1 for finite time
driving. The change in equilibrium free energy becomes [31]


F = 1

β
ln

(
sinh (β/2�ωτ )

sinh (β/2�ω0)

)
. (22)

Therefore, we merely have to compute the partition function
Z̃, which can be written as

Z̃τ =
∑
n0

exp

(
−

∑
nτ

β�ωτ (nτ + 1/2)pn0,nτ

)
, (23)

where pn0,nτ
= tr{	nτ

Uτ	n0U
†
τ }. Hence, Z̃ is fully deter-

mined by the average final occupation number [31]

〈nτ 〉n0
=

∑
nτ

nτpn0,nτ
= (n0 + 1/2)Q∗ − 1/2, (24)

from which we obtain

Z̃τ =
∑
n0

exp ( − β�ωτQ
∗(n0 + 1/2))

= [2 sinh (β/2Q∗
�ωτ )]−1.

(25)

Accordingly, the informational correction to the maximum
work theorem arising from omitting the second projective
measurement becomes

S
(
ρ̃τ ||ρeq

τ

) = ln

(
sinh (β/2Q∗

�ωτ )

sinh (β/2 �ωτ )

)
, (26)

which is clearly non-negative and a simple function of the
measure of adiabaticity Q∗. Note that for adiabatic processes,
Q∗ = 1, the information free energy (17) becomes identical to
the equilibrium free energy, since we have S(ρ̃τ ||ρeq

τ ) = 0.

�

�

� �

FIG. 2. Average work 〈W 〉 [Eq. (21)] (blue, solid line), together
with the change of equilibrium free energy 
F [Eq. (22)] (red,
dotted line) and the informational maximum work theorem, β
F +
S(ρ̃τ ||ρeq

τ ) [Eq. (17)] (purple, dashed line) for the parametric harmonic
oscillator (20) with � = 1, β = 1, ω0 = 2, and ωτ = 1.

In Figs. 1 and 2 we plot the average work 〈W 〉 [Eq. (21)]
together with the change of equilibrium free energy 
F

[Eq. (22)] and the modified maximum work theorem (17).
We observe that the bound arising from the information
free energy (18) is process dependent and sharper—for some
parametrizations even tight.

Concluding remarks. A conceptually consistent and com-
plete framework of quantum thermodynamics crucially de-
pends on accounting for quantum features and peculiarities
[56]. Indeed, one can hope that a completely quantum approach
based on symmetries of entanglement [57] can help resolve
outstanding problems of the classical and quantum points
of view. In the present analysis we have shown that despite
its success the two-time energy measurement approach to
quantum work neglects the informational back-action of the
projective measurements. This informational contribution to
the laws of quantum thermodynamics has been highlighted
by introducing a paradigm in which quantum work is fully
determined by the change of internal energy as an average
over the initial energy eigenstates. This approach has allowed
us to derive a modified quantum Jarzynski equality and a
modified maximum work theorem, in which the equilibrium
free energy is replaced by the information free energy. In
conclusion, we achieved several important insights: (i) we have
proposed a thermodynamically consistent notion of quantum
work, which does not rely on external observers and projective
measurements and (ii) we have included the thermodynamic
cost of information gain in the paradigm of quantum work, and
hence taken an instrumental step towards a conclusive theory
of quantum thermodynamics of quantum information.
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