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Nonlinear Quasi-static Poroelasticity
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Abstract

We analyze a quasi-static Biot system of poroelasticity for both compressible and incompressible
constituents. The main feature of this model is a nonlinear coupling of pressure and dilation
through the system’s permeability tensor. Such a model has been analyzed previously from
the point of view of constructing weak solutions through a fully discretized approach. In this
treatment, we consider simplified Dirichlet type boundary conditions in both the elastic dis-
placement and pressure variables and give a full treatment of weak solutions. Our construction
of weak solutions for the nonlinear problem is based on a priori estimates, a requisite feature in
addressing the nonlinearity. We utilize a spatial semi-discretization and employ a multi-valued
fixed point argument for a clear construction of weak solutions. We also provide regularity
criteria for uniqueness of solutions.
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1 Introduction

Poroelasticity refers to (Darcy) fluid flow within a deformable, porous medium. The development
of this field has been inspired by geophysics and petroleum engineering problems, in particular,
reservoir, environmental, and earthquake engineering. Mathematically, the subject was initiated in
the 1D work of Terzaghi in the 1920s, and the groundbreaking consolidation theory developed by
Biot in the 1940–50s [4]. It was Biot’s work which instigated the rapid development and progress of
this field. The relevant literature is now abundant, and we only list here representative fundamen-
tal treatments: [2, 3, 7, 11,12,18,22,27]. In all of the works motivated by geophysical applications,
the poroelastic structures considered are soil and/or rock (for instance, in most of the aforemen-
tioned references). However, cartilages, bones, as well as brain, heart, and liver tissue etc., are
also poroelastic structures. Therefore, the theory of poroelasticity can be used and applied to fluid
flows inside cartilages, bones, and engineered tissue scaffolds, as well as in perfusion in the optic
nerve head—see [5, 6, 26] and references and discussion therein.

From a mathematical point of view, poroelastic systems constitute a coupled system of a
(possibly degenerate) parabolic fluid pressure and a hyperbolic (inertial) or elliptic (quasi-static)
system of elasticity for the displacements of the porous matrix containing the fluid. The saturated
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elastic matrix is modeled through homogenization [2, 4], in the sense that the pressure and dis-
placement are distributed quantities throughout the physical domain. In this treatment, we focus
on poroelastic models with specific applications in biomechanics (in contrast to those tailored to
geomechanical systems). Thus we work under the assumptions of full saturation, negligible inertia,
small deformations, and (possibly) compressible mixture components. The applications of interest
give rise to a permeability taken as a nonlinear function of the so called fluid content (a particular
linear combination of pressure and dilation). This type of nonlinear coupling introduces a variety
of complications detailed below, and, in particular, destroys the monotone nature of the problem.

Such a nonlinear poroelastic model was first considered—from a mathematical point of view—
in [7], and shortly after in [5].1 The former reference [7] and sequel [8] focus on the compressible Biot
model and construct weak solutions through a full spatio-temporal discretization, in the mathemat-
ically simplified framework of homogeneous Dirichlet boundary conditions for both fluid pressure
and solid displacement. Those references take the earlier linear theory [2, 21, 22] as their primary
motivation, and use Brouwer’s fixed point theorem at the level of the fully discretized problem.
The latter reference [5] focuses on Biot models with incompressible constituents and constructs
weak solutions (also using discretizations in both time and space [27]) for both poroelastic and
poro-viscoelastic systems with non-homogeneous, mixed boundary conditions that are physically
relevant to opthalmological applications. A key theme in this latter work [5] is the careful analysis
of the requisite boundary and source regularity for the construction of weak solutions, as this
aspect is crucial in understanding the mechanisms leading to tissue damage in the optic nerve
head, and consequent vision loss possibly associated with glaucoma. Both [5, 7] obtain a priori
estimates in the fully discretized setting, and much of the challenge lies in adequately addressing
the nonlinear and non-monotone coupling to obtain a weak solution in the limit. The reference [7]
provides a straightforward regularity criterion for uniqueness of solutions, but does not actually
consider smooth solutions, nor address the permissibility of multipliers used to obtain estimates.

In this treatment, we provide a careful mathematical construction of weak solutions using semi-
discretization in space, in the setting of fully homogeneous boundary conditions. One primary goal
is to clearly elucidate the challenges introduced into the Biot problem by the inclusion of non-
monotone nonlinear coupling. We also include a novel, sharper uniqueness criterion for solutions
of sufficient smoothness. Our approach is based on a priori estimates for the time-dependent
linearization, from which we construct a fixed point correspondence. An interesting feature of this
approach is that we cannot appeal to uniqueness of solutions for the aforementioned linear problem,
as we do not satisfy requisite hypotheses for established theories (e.g., that in [21]). Indeed, weak
solutions themselves are not permissible test functions, presenting a great hurdle in the analysis. To
address this issue, we utilize a multi-valued fixed point approach, along with a careful construction
of the correspondence between the permeability function and the resulting fluid content.

In summary: This paper addresses the existence of weak solutions to a quasilinear Biot
system, based on a fixed point approach that circumvents the lack of monotonicity in the system’s
nonlinear coupling. We believe that the construction given here is quite natural, and illustrative
of the complexities in the analysis that are introduced by the presence of nonlinearity and its
interaction with the boundary conditions.

1We note that in [23] a nonlinear version of the Biot problem is considered, but the structure of the nonlinearity
there is monotone in nature and different from the physical nonlinearity presented here for biological applications.
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1.1 PDE Model

Let Ω be an open, bounded subset of R3 representing the spatial domain occupied by the (fully
saturate) fluid-solid mixture, with smooth boundary Γ = ∂Ω. Let x be the position vector of
each point in the body with respect to a fixed Cartesian reference frame. The symbol n will be
used to denote the unit outward normal vector to Ω. Let Vf (x, t) be the volume occupied by the
fluid component in a representative volume V (x, t) element centered at x ∈ Ω at time t. Then
the porosity φ and the fluid content ζ are given by φ(x, t) = Vf (x, t)/V (x, t) and ζ(x, t) =
φ(x, t) − φ0(x), where φ0 is a baseline (local) value for the porosity.

Balance Equations: Under the assumptions of small deformations, full saturation of the mixture,
and negligible inertia, we can write the balance of linear momentum for the mixture and the
balance of mass for the fluid component as

∂tζ +∇ · v = S(x, t) and −∇ ·T+F(x, t) = 0 in Ω× (0, T ), (1.1)

whereT is the total stress, v is the discharge velocity (also commonly called the Darcy velocity [22]),
F is a body force per unit of volume, and S is a net volumetric fluid production rate.

Constitutive Equations: We complement the balance equations with the constitutive equations:

The total stress of the mixture is given by

T = Te − αpI = 2µeε(u) + λe(∇ · u) I− αpI, (1.2)

where u is the solid displacement, the symmetrized gradient ε(u) = (∇u + ∇uT )/2 gives the
strain tensor, α is the Biot-Willis constant, p is the Darcy fluid pressure, I is the identity tensor,
and λe and µe are the elasticity parameters.

The discharge (Darcy) velocity has the following formula via Darcy’s law [22]:

v = −k(φ)I∇p. (1.3)

The particular form of the relationship between the permeability k and the porosity φ depends on
the geometrical architecture of the pores in the elastic matrix and the properties of the fluid. We
allow for k to be a general continuous function, assuming only that it is bounded above and below
(as discussed below, in Assumption 1.1, and consistent with [5, 7]).

The fluid content is given by
ζ = c0p+ α∇ · u, (1.4)

where c0 is the constrained specific storage coefficient [2,12,22]. Using the relation between porosity
and fluid content, as well as the definition of permeability, we can see that permeability in the
system depends nonlinearly on the fluid content. In the special case of incompressible constituents,
due to the fact that the constrained storage coefficient c0 = 0 and α = 1, the permeability becomes
a nonlinear function of dilation alone. This is the scenario that is specifically addressed in [5].

Boundary Conditions: We consider homogeneous Dirichlet boundary conditions for both the struc-
tural displacement u (and hence ut, when defined) and the fluid pressure p

u = 0, p = 0 on Γ . (1.5)

This choice is in line with the model considered in [7, 16]. In our previous work [5], we consid-
ered complex physical configurations, incorporating both nonhomogeneous Dirichlet and Neumann
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boundary conditions for the elastic displacement and fluid pressure. These physically motivated
mixed boundary conditions could be incorporated here, and this is the subject of future work.

Initial Conditions: Initial conditions are to be specified for the fluid content, ζ, as it is the
only term which appears under the temporal integration in the mass-balance equation (1.1):
ζ(x, 0) = d0 in Ω.

Remark 1.1. In discussing various notions of solutions (as in Section 6), one can find the require-
ment that d0 = ζ(0) = [c0p + α∇ · u](0) for some u(t = 0) = u0 specified independently, taken
in an appropriate space (see [27], as well as [5]). In these works, a different construction for so-
lutions is utilized. We do note that for the linear case, in the most general “weak” setting [22],
only d0 should be needed. In this weak situation, the construction is done independent of a priori
estimates obtained in standard Hilbert spaces such as L2(Ω) and H1

0 (Ω). In [16], solutions are
also constructed in the linear case, but initial data is taken to be smoother than “finite energy”
considerations require.

PDE System: To summarize, below is the nonlinear system under consideration:

−∇ · [2µeε(u) + λe(∇ · u) I − αpI] = F in Ω× (0, T ) (1.6)

ζt −∇ ·
[

k(ζ)∇p
]

= S in Ω× (0, T ) (1.7)

ζ = c0p+ α∇ · u in Ω× (0, T ) (1.8)

u = 0 and p = 0 on Γ× (0, T ) (1.9)

ζ(0) = d0 in Ω, for t = 0 (1.10)

Note that (1.6) can be written equivalently as

−µ∆u− (λ+ µ)∇(∇ · u) + α∇p = F,

where the Laplacian above is interpreted component-wise.

Assumption 1.1. [Bounds on the Permeability Function] We assume that the permeability func-
tion k : R → R is continuous and that there exist constants k1 > 0 and k2 > 0 s.t.

0 < k1 ≤ k(x) ≤ k2, ∀x ∈ R.

Remark 1.2. With a slight abuse of notation, we denote by k(Ψ(·, t)) the Nemytskii operator
associated with k. Using our assumptions on the function k, and the theory of superposition
operators [19,25], we have that the operator k is bounded and continuous from L2(Ω× (0, T )) into
L2(Ω × (0, T )).

In order to obtain uniqueness of solution in Section 6, we will further assume that k is a globally
Lipschitz function, i.e., k ∈ Lip(R).

Assumption 1.2. [Other Assumptions] In what follows, for simplicity, we set to unity non-
essential (from the mathematical point of view) parameters. This is to say, we take λe = µe =
α = 1. The parameter c0 is retained as is, with no dependence on other parameters, as we will take
c0 ց 0 in the construction of weak solutions for the case of incompressible constituents.

2 Main Results

2.1 Notation, Function Spaces, and Conventions

We make the following conventions for the rest of the paper. Norms ‖ · ‖D are taken to be L2(D)
for a domain D. Inner products in L2(D) are written as (·, ·)D, where the subscript will be omitted
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when the context is clear. The standard Sobolev space of order s defined on a domain D [15] will
be denoted by Hs(D), with Hs

0(D) denoting the closure of C∞

0 (D) in the Hs(D) norm (which
we denote by ‖ · ‖Hs(D) or ‖ · ‖s). Vector valued spaces will be denoted as L2(Ω) ≡ [L2(Ω)]n and
Hs(Ω) = [Hs(Ω)]n. We make use of the standard notation for the trace of functions γ : H1(D) →
H1/2(∂D) which generalizes restriction to a lower dimensional manifold. We will make use of the
spaces L2(0, T ;U) and Hs(0, T ;U), where U is a Banach space. These norms (and associated
inner products) will be denoted with the appropriate subscript, e.g., || · ||L2(0,T ;U). We utilize the
Frobenius scalar product for tensors with the Einstein summation convention:

(A,B) =

∫

Ω
(AijBij)dΩ,

sometimes also denoted by
∫

ΩA : B dΩ. Notice that, when A = B, we write

(A,A) =

∫

Ω
A : A dΩ =

∑

i,j

(Aij , Aij) = ||A||2,

the latter norm taken in the Frobenius sense.
The primary spaces in our analysis below are

V ≡ H1
0 (Ω), V ≡ (H1

0 (Ω))
3, (2.1)

for the pressure p and elastic displacement u, respectively. The norms in these spaces are taken
in the natural sense, respectively, accounting for Poincaré’s and Korn’s inequalities [15]. For V ,
we take the standard gradient norm: ||v||V = ||v||H1

0
(Ω) = ||∇v||L2(Ω). We will frequently need

to denote the duality pairing between V and V ′ or V and V′, for which we will use the generic
notation 〈·, ·〉. (For more general spaces B and B′, we may write 〈·, ·〉B′×B for clarity.)

We utilize the notation ∇u as the Jacobian matrix of u and the associated symmetric gradient
ε(u), yielding the following definitions and formal identities:

∇u = (∂ju
i), ∇uT = (∂iu

j); ε(u) =
1

2
[∇u+∇uT ] (2.2)

(∇u,∇w)Ω =

∫

Ω
[∇u : ∇w]dx =

∫

Ω
tr(∇u∇wT )dx =

∫

Ω
tr(∇wT∇u)dx = (∇wT ,∇uT )

(2.3)

(ε(u),∇w) =
1

2
(∇u,∇w) +

1

2
(∇uT ,∇w) = (ε(u), ε(w)). (2.4)

In the simplified setting, the bilinear form associated with the elasticity operator is given by

e(u,w) = (∇ · u,∇ ·w) + (∇u,∇w) + (∇u,∇wT ). (2.5)

We topologize the space V via e(·, ·), which is to say that we take the norm induced by e(·, ·) as
the norm on V, and, via Korn’s inequality and Poincaré, this is equivalent to the full H1(Ω) norm
on V [15], as in [5, 7].

In our estimates below, we utilize the notation of Q1 . Q2 to indicate that there is a constant
C depending only on non-critical quantities such that Q1 ≤ CQ2. In general, throughout the
paper the quantity C represents a generic constant that may change from line to line. If a constant
exhibits a critical dependence, this will be denoted with subscripts or in parentheses, for instance:
||f || ≤ Cp||g|| or A = A(Ω).

Finally, in this analysis we assume that the principal domain Ω is of class C2 [9, 15], so that
elliptic regularity results apply [15].
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2.2 Weak Solutions

As one can see in [2, 7, 16, 22], for instance, there are many different notions of strong and weak
solution to poroelastic systems. Our notion of solution is consistent with that provided in [27], in
the sense that the solution satisfies a weak space-time form of (1.6)–(1.10). Moreover, our weak
solutions are in line with the general notion of weak solution for the time-dependent linear problem
holding in the dual sense (in L2(0, T ;V ′)), as presented [21].

Definition 1 (Weak solutions). A solution to (1.6)–(1.10) with c0 ≥ 0 is represented by the pair of
functions

u ∈ L2(0, T ;V) and p ∈ L2(0, T ;V ),

with ζ = c0p+∇ · u ∈ L2(0, T ;L2(Ω)) ∩H1(0, T ;V ′), such that:

(a) the following variational forms are satisfied for any w ∈ L2(0, T ;V), q ∈ L2(0, T ;V ):

∫ T

0
e(u,w)dt−

∫ T

0
(p,∇ ·w)Ωdt =

∫ T

0
(F,w)Ω dt (2.6)

∫ T

0

(

k(ζ)∇p,∇q
)

Ω
dt−

∫ T

0
〈ζt, q〉V ′×V dt =

∫ T

0
〈S, q〉V ′×V dt (2.7)

(b) for every q ∈ V , the term (ζ(t), q)L2(Ω) uniquely defines an absolutely continuous function on

[0, T ] and the initial condition
(

ζ(0), q)L2(Ω) = (d0, q)L2(Ω) is satisfied.

Remark 2.1. Alternatively to (b) above, one could assume that d0 ∈ L2(Ω) but specify that
ζ ∈ C([0, T ];V ′) and ζ(t)

∣

∣

t=0
= [c0p + ∇ · u](t)

∣

∣

t=0
= d0 in the H−1(Ω) sense. This is precisely

what we will obtain through our constructions.

Remark 2.2. In [5, 27], test functions are taken as space-time products, and all terms are defined
in terms of spatial L2(Ω) inner products. Our formulation is equivalent by density, as the test
functions of the form w(x)f(t), with w ∈ V and f ∈ C∞

0 (0, T ), are dense in L2(0, T ;V); similarly,
test functions of the form q(x)f(t), with q ∈ V and f ∈ C∞

0 (0, T ), are dense in L2(0, T ;V ).

Remark 2.3. We note finally that the above definition of weak solution could certainly be weakened.
For instance, in the weak form of elasticity, the RHS could be replaced by

∫ T
0 〈F,w〉V′×Vdt and the

initial condition d0 could be taken in V ′ (being mindful of the previous approaches in [2,5,7,20,22]).
However, we use Definition 1 based on the regularity required for our construction, predominantly
influenced by the presence of nonlinearity in the problem and a careful treatment of the spatial
regularity of ζ = c0p+∇ · u.

It will be convenient in the estimates below to utilize a notation for “source data” associated
to a priori estimates obtained in the analysis of the pressure equation (2.7).

Definition 2. [Notion of Source Data]

DATA
∣

∣

∣

T

0
≡

∫ T

0

[

||S(t)||2V ′ + ||Ft(t)||
2
V′ + ||F(t)||2V′

]

dt (2.8)

2.3 Main Results and Comparison to Previous Literature

We begin this section with the statements of the principal results, and follow them with an in-depth,
technical discussion of our results in relation to the literature. It is important to note the ways in
which our contributions here represent alternative proofs for similar results in the literature, and
in what ways our approaches here are novel. Indeed, there is a striking amount of subtlety already
present in the analysis of the associated linear Biot system.
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The first auxiliary result we discuss is that of existence of weak solutions—adapted to the
setting at hand and restricted to c0 > 0—for the associated linear problem. Namely, given z ∈
L2(0, T ;L2(Ω)) and associated permeability k(z), we want to solve:























−∆u− 2∇(∇ · u) = −∇p+ F ∈ L2(0, T ;V′)

ζt −∇ · [k(z)∇p] = S ∈ L2(0, T ;V ′)

ζ = c0p+∇ · u ∈ L2(0, T ;L2(Ω))

ζ(0) = d0 ∈ L2(Ω).

(2.9)

Theorem 2.1 (Linear Weak Solution). Let c0 > 0, and assume that the permeability k satisfies
the hypotheses of Assumption 1.1. Let d0 ∈ L2(Ω), z ∈ L2(0, T ;L2(Ω)), F ∈ L2(0, T ;L2(Ω)) ∩
H1(0, T ;V′), and S ∈ L2(0, T ;V ′). Then (2.9) has a weak solution (u(z), p(z), ζ(z)), where u(z) ∈
L2(0, T ;H2(Ω)∩V), p(z) ∈ L2(0, T ;V ), and ζ(z) ∈ L2(0, T ;H1(Ω))∩H1(0, T ;V ′), with associated
estimates:

c0||p||
2
L∞(0,T ;L2(Ω)) + ‖p‖L2(0,T ;V ) . ||d0||

2
L2(Ω) +DATA|T0 (2.10)

||u||2L2(0,T ;H2(Ω)∩V) . ||p||2L2(0,T,V ) + ||F||2L2(0,T ;L2(Ω)) (2.11)

‖[c0p+∇ · u]t‖L2(0,T ;V ′) . ‖p‖L2(0,T ;V ) + ‖S‖L2(0,T ;V ′) (2.12)

A few remarks are in order about the linear result above:

Remark 2.4. We note that nothing in the above result (or its corresponding proof in Appendix B)
changes if, instead of k = k(z) we take k = k(x, t) to be a given L∞(0, T ;L∞(Ω)) - function.

Remark 2.5. The linear result above for k = k(x, t) was obtained earlier in [20] (later exposited
in [21, p.116]). Those results provide the existence of weak solutions for time-dependent implicit
problems. The conditions for existence are quite general and permit c0 ≥ 0. Moreover uniqueness
results are available with the additional hypothesis that kt ∈ L1(0, T ;L∞(Ω)). For the analysis of
the nonlinear problem, we cannot impose additional assumptions on the permeability, as we must
apply results for k(z(t)) in our fixed point construction, precluding additional hypotheses on k.

Next we present our result for the existence of weak solution to the nonlinear system:

Theorem 2.2 (Nonlinear Weak Solution). Consider the nonlinear coupled system (1.6)–(1.10)
with c0 ≥ 0, permeability function k(·) satisfying Assumption 1.1, and distributed sources S ∈
L2(0, T ;V ′) and F ∈ L2(0, T ;L2(Ω)) ∩ H1(0, T ;V′). For initial data ζ(0) = d0 ∈ L2(Ω), there
exists a weak solution u ∈ L2(0, T ;V) and p ∈ L2(0, T ;V ) in the sense of Definition 1. Moreover,
c0p ∈ L∞(0, T ;L2(Ω)) and u ∈ L2(0, T ;H2(Ω) ∩ V), with the same inequalities (2.10)–(2.12)
holding for nonlinear weak solutions.

Remark 2.6. We note from the estimates above that, in the sense of the pressure equation, the
solution is truly “weak.” However, since we have elliptic-parabolic coupling, with the regularity
assumptions placed on F, the solution is “strong” in the sense of the elastic displacement, since
that equation holds a.e. x, a.e. t.

We now address uniqueness of solution through the imposition of additional regularity hy-
potheses. As the problem is fundamentally quasi-linear in nature, such additional regularity for
uniqueness is expected. Our approach to uniqueness is rooted in multiplier estimates, which are
themselves problematic for weak solutions. Hence, we need to restrict our attention to the class of
weak solutions (for fixed data F, S, d0, permeability function, and intrinsic parameters) such that
the solution can properly be used as a test function. Beyond this, additional spatial regularity will
be needed to manipulate the nonlinear permeability term.
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Definition 3. Define the class of solutions WT = WT (F, S, d0, k(·)) as consisting of weak solutions
that have additional time regularity, i.e.:

WT ≡
{

(u, p) is a weak solution in the sense of Definition 4 on [0, T ] | pt ∈ L2(0, T ;L2(Ω))
}

.
(2.13)

Theorem 2.3 (Uniqueness). Let c0 ≥ 0. Suppose that, in addition to Assumption 1.1, we have
k ∈ Lip(R) and assume (u, p) ∈ WT .

• Suppose d0 = ∇ ·u0 + c0p0 ∈ L2(Ω) for some u0 ∈ V. If additionally p ∈ L2(0, T ;W 1,∞(Ω)),
then the solution (u, p) is unique in the class WT .

• If c0 > 0 and p ∈ L2(0, T ;W 1,∞(Ω)), then (u, p) is unique in the class WT .

In each of the above cases, if one solution in WT has the appropriate additional spatial regularity
for p, then all solutions in WT are equal.

Remark 2.7. By the standard Sobolev embeddings [15], it is sufficient for the theorem above to
have p ∈ L2(0, T ;H2.5+δ(Ω)) for any δ > 0.

Remark 2.8. We note the two above cases sacrifice one hypothesis at the cost of another. In the
second bullet point, some compressibility needs to be assumed, but no additional structure of the
data d0 need be assumed. In the first bullet, we can take c0 = 0 but require information about
u(t = 0) to be independently specified. We point out here that these conditions are an improvement
of those in [7]; in that reference they require c0 > 0 and also impose a smallness condition on ∇p
in L∞

(

(0, T )× Ω
)

in terms of the intrinsic parameters. We also mention that, to the best of our
knowledge, no previous work actually constructs strong solutions.

Challenges and Relation to Previous Literature: The main mathematical challenges in this
problem are represented by (i) the implicit, degenerate evolution present in the system, as well as
(ii) the nonlinear coupling (with no evident monotone structure) in the permeability—it being a
function of fluid content. There is substantial mathematical literature focused on well-posedness
analysis for linear poroelastic systems, where the permeability tensor is assumed to be constant.
The key references in the linear setting are [2, 16,20,22,27].

A foundational reference for all of the cited mathematical Biot studies is [27]. This paper pro-
vides a construction of solutions in the 2-D linear case using Rothe’s method (full temporal and
spatial discretization), with the analysis based on a priori estimates. The analysis is done on the
entire (u, p) system, and, as such, requires the specification of initial displacement u(0) ∈ V 2 and
initial pressure p(0) ∈ L2(Ω). In contrast, the seminal work in [2, 21, 22] reduces the full linear
Biot system to an implicit, degenerate evolution. This allows—again in the linear case—a modi-
fied semigroup theory to obtain both weak and strong solutions, and uniqueness is addressed. For
the weak solutions (what [22, Section 6] calls the “holomorphic case”) only specification of the
initial fluid content ζ(0) ∈ H−1 is needed. The implicit semigroup approach works in quotient
and seminormed spaces to reduce the implicit problem to that of a regular explicit Banach-valued
ODE [21, Chapter IV.6]. Estimates in this setting are obtained in the dual domain for associ-
ated resolvents. As such, the approach is not immediately generalizable to time-dependent and/or
quasilinear cases.

We note that in [21, Chapter III.3], a nice formulation for weak solutions to the linear, time-
dependent problem is presented based on a generalized version of Lax-Milgram due to Lions (an
approach that originally appeared in [20]). As pointed out above, that theory is applicable to
the linear problem at hand with comparable results to our Theorem 2.1. Lastly, with respect to
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the linear analysis, the more recent [16] provides a Galerkin-based construction of solutions for
the full Biot problem, making use of an explicit solver for the embedded Stokes-type problem in
the dynamics. There, solutions are clearly constructed without temporal discretization, but strong
assumptions are made on the data in order to obtain good a priori estimates.

In the authors’ previous work [5], the nonlinear problem presented here is addressed with c0 = 0
and allows for the possibility of visco-elastic effects in the Biot structure. Additionally, motivated
by physical considerations, a configuration with mixed boundary conditions on a Lipschitz do-
main, and non-zero boundary sources, is considered. That work is based on full spatio-temporal
discretization (adapting the linear argument in [27]). As such we make use of the stronger as-
sumption on initial data in order to obtain good estimates at the temporally discretized level
and carefully pass with the limit, invoking compactness in the fluid content derived from a small
amount of elliptic regularity. The multipliers approach works there, albeit in the discrete setting,
with two subsequent limit passages required. The accompanying estimates are less natural how-
ever, and the fully discretized nature is neither optimal nor natural for modern numerical analysis
of the nonlinear problem.

In comparison, our goal here is to provide a theory of solutions for the nonlinear poroelastic
coupling in (1.6)–(1.10). As mentioned before, we consider a similar model and set of assumptions
as the ones used in [7]. However, we permit the case of fluid-solid mixtures which may have
incompressible constituents (c0 = 0), with applications to biological tissues. This degeneracy is
rather benign at the linear level, but presents subtle challenges for the analysis here, owing to
the fact that the key operator B (as seen in Section 3.3) is not invertible on L2(Ω), but c0I + B
is. Indeed, we use critically the presence of c0 > 0 to construct solutions, and then produce the
solution for c0 = 0 via a singular limit approach as c0 ց 0. It is also worthwhile to note that, in line
with biological applications, we allow the permeability to depend on the full fluid content, i.e., k(ζ)
for ζ = c0p+α∇·u (also as in [5]). In [7], the construction critically requires c0 > 0 [7, p.1259(line
6), p.1260(line -9)] but there, the permeability depends only on dilation, i.e., k(∇ · u) [7, p.1254];
this distinction is mathematically non-trivial.

We present here what we believe to be the most direct and illustrative approach for existence
of weak solutions. Our approach does not involve the discretization of the balance equations in
both time and space [5,7]. We believe this is beneficial for future considerations, as full discretiza-
tion is cumbersome for a sought-after construction of smooth solutions, and our semi-discretized
approach is perhaps more amenable to numerical treatment. The work in [22] focuses on constant
permeability k (which renders a linear coupling in the system) and develops a semigroup theory
for implicit evolution equations for both strong and weak solutions. The approach is generalized
for the case of nonlinear permeability function dependent on pressure which preserves a monotone
structure in [23]. We note that the strategy developed in [22] can not be directly applied here, as
the model at hand does not exhibit such monotonicity properties. Rather, we build linear time
dependent solutions and carefully construct a functional correspondence that leads to a fixed point.
In constructing weak solutions via estimates in a fixed point argument, we hope to have provided
a framework for the future construction of smooth solutions, which should be unique, according
to the criterion given here.

3 Fundamental Operators and Translation of Momentum Source

In this section we introduce the principal operators that are used in the proofs of the main theorems,
along with their properties. We follow the abstract framework provided in [22]. In the last part
of the section we provide formal “translations” of the linear and nonlinear problems that allow

9



us to consider the problem with null distributed force in the balance of linear momentum, upon
translating the initial data and the pressure source S.

In what follows, it will be necessary to invoke the gradient and divergence operators [22, 24],
and their dual relationship with respect to V = H1

0(Ω) and V′ = H−1(Ω). Namely, from [24], the
standard gradient∇ : L2 → V′ has dual operator −[∇·] : V → L2(Ω), with both acting boundedly
in those settings. More can be said; utilizing the standard (abuse of) notation for the quotient space
L2
0(Ω) =L2(Ω)/R ≡ {f ∈ L2(Ω) :

∫

Ω f = 0}, we note that the divergence [∇·] : V → L2
0(Ω) is

invertible and ∇ : L2
0(Ω) → V′ is an isomorphism.

3.1 Elasticity Operator E

In general, the elasticity operator associated to isotropic homogenous media is given by

−(λe + µe)∇(∇ · u)− µe∆u = −∇ · [2µeε(u) + λe(∇ · u)I].

Since we have taken µe = λe = 1 here, we consider an operator E(u), whose action in distribution
is given by:

E0(u) = −∇ · [2ε(u) +∇ · u] = −2∇(∇ · u)−∆u.

This differential action is naturally associated to the symmetric bilinear form e(·, ·) : V ×V → R

given in (2.5). In the standard way, for u ∈ V, we can define E(u) ∈ V′ by 〈E(u), ·〉V′×V. By
restricting the action of the bilinear form, we can identify an unbounded operator E : L2(Ω) →
L2(Ω) that encodes the homogeneous Dirichlet boundary conditions. This is to say, E is the operator
with domain

D(E) ≡ {u ∈ V : E0(u) ∈ L2(Ω)}.

Indeed, E as above is a V → V′ isomorphism [22], and E : L2(Ω) → L2(Ω) is positive, self-
adjoint, and an isomorphism from D(E) → L2(Ω) (the latter invokes elliptic regularity and is
stated precisely below).

In the analysis of the momentum equation, we consider a given a p ∈ L2(Ω) (and thus ∇p ∈ V′

[22, 24]) and produce a corresponding u ∈ V which satisfies the stationary elasticity equation,
which we will frequently write as

E(u) = −∇p+ F ∈ V′. (3.1)

This leads directly to the following lemma:

Lemma 3.1. Given G ∈ V′, we can consider the elasticity problem

{

E(u) = G ∈ V′

u = 0 on Γ.
(3.2)

This problem is well-posed in the standard weak sense [9, 15], with a solution u ∈ V and stability
estimate

||u||V ≤ Cw||G||V′ , ∀u ∈ V.

Moreover, as Ω is of class C2, classical elliptic regularity applies [9, 24]. Hence, if G ∈ L2(Ω),
then we have that u ∈ H2(Ω) ∩V, and

||u||H2(Ω) ≤ Cr||G||L2(Ω).
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Unlike [5], we are working with a smooth boundary, composed of a single Dirichlet component
upon which both pressure p and displacement u are zero. Thus classic elliptic theory can be used
for displacement u when p ∈ V and F ∈ L2(Ω). When F = 0 in (3.1), we have

p ∈ V =⇒ ∇p ∈ L2(Ω) =⇒ E−1(−∇p) = u ∈ H2(Ω) ∩V =⇒ ∇ · u ∈ H1(Ω). (3.3)

Such regularity was not available in [5], where a more complex, physically-motivated boundary
configuration was considered.

3.2 Diffusion Operator Az(t)

For a smooth z ∈ C1([0, T ]× Ω), we define the linear operator Az(t) : V → V ′ by

Az(t)p = −∇ · [k(z(t))∇p], ∀p ∈ V, (3.4)

where k(z(t)) is interpreted as a Nemitskii operator for the given function z(x, t) as in 1.1.

Remark 3.1. In practice we will consider this operator through its bilinear form (defined below)
when z ∈ L2(0, T ;L2(Ω)), considered a.e. t.

If we assume that z ∈ L2(0, T ;H1(Ω)), then we have an unbounded operator Az(t) : L
2(Ω) →

L2(Ω) with domain D(Az(t)) = H2(Ω)∩ V and action given by (3.4) with associated bilinear form

A[p, q; z(t)] = (k(z(t)∇p,∇q), ∀ p, q ∈ V, a.e. t ∈ [0, T ]. (3.5)

As noted above, the bilinear form associated to the weak form of Az(t) requires only that z ∈
L2(0, T ;L2(Ω)), and can be obtained via density. When k ≡ const, Az(t) is just a multiple of
the standard Dirichlet Laplacian. In the setting at hand, for a.e. t ∈ [0, T ], (i) Az(t) is a maximal
monotone operator, (ii) the bilinear form A[·, ·; z(t)] is continuous and coercive on V , and (iii) Az(t)

is positive and self-adjoint as an unbounded operator on L2(Ω).

3.3 Pressure to Dilation Map

The pressure to dilation map was introduced in the setting of Biot problems in [2], and developed
and used extensively in [21, 22]. It allows one to reduce the (u, p) system in (1.6)–(1.10) to an
implicit evolution problem, such as those studied extensively in [21,22]. This operator is a useful,
descriptive tool in the construction of approximate solutions, and the subsequent analyses.

Consider the map B : L2(Ω) → L2(Ω), defined through the gradient and divergence operators
(as above) by:

Bp = −∇ · E−1(∇p), (3.6)

motivated by the problem above in (3.2). Indeed, we have that p ∈ Hs(Ω) =⇒ ∇p ∈ Hs−1(Ω) with
p 7→ ∇p continuous in that setting [15,24]. In the specific case when p ∈ L2(Ω), ∇p ∈ H−1(Ω) =
V′. Invoking the properties of the elliptic operator E , we see that indeed B ∈ L (L2(Ω)). Similarly,
the action of B extends readily to V . Considering B as above, if p ∈ V , then as above in (3.3),
Bp ∈ H1(Ω) Similarly, we obtain immediately that B ∈ L (Hs(Ω) ∩V,Hs(Ω)) for s ≥ 1 via the
elliptic regularity associated to E . Note that when F ≡ 0 in the elasticity equation, as in (3.3), we
have Bp = ∇ · u.

Remark 3.2. Consider p ∈ V , and, as above Bp = ∇ · u ∈ H1(Ω). Although it is not clear that
∇ · u ∈ V , we do know that Bp = ∇ · u ∈ div[V], which does carry additional information, in
particular that Bp ∈ H1(Ω) ∩ L2(Ω)/R. Moreover, B ∈ L (L2

0(Ω)).
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Consolidating the discussions above we have:

Lemma 3.2. Given p ∈ V and F ∈ L2(Ω), the corresponding solver E−1(−∇p+F) ∈ H2(Ω) ∩V

with associated continuity bound. When F ≡ 0 and p ∈ V , we have Bp = ∇ · u ∈ H1(Ω) for
E(u) = −∇p. From this we obtain that

B : H1
0 (Ω) → H1(Ω), continuously.

We note some kernel and range properties of the B operator (closely following [22] and utilizing
the properties of ∇ and divergence [24]).

Lemma 3.3. Considered as a mapping on H1
0 (Ω), B is injective. Considered as a mapping on

L2(Ω), ker(B) = {constants}, and hence B is injective on L2(Ω)/R.
With respect to ranges, we have the following:

B(L2(Ω)) ⊆ L2(Ω)/R, B(H1
0 (Ω)) ⊆ H1(Ω)/R.

Finally, we have that B is a self-adjoint, monotone operator when considered on L2(Ω) [5,22].

Lemma 3.4. Considering B ∈ L (L2(Ω)), it is a non-negative, self-adjoint operator.

By the standard construction [10, 17], the self-adjoint operator B1/2 ∈ L (L2(Ω)) is obtained
with characterizing property

(Bp, q)L2(Ω) = (B1/2p,B1/2q)L2(Ω) = (p,Bq)L2(Ω), ∀ p, q ∈ L2(Ω).

A central issue in the analysis here is that B ∈ L (L2(Ω)) need not be coercive in that setting.
However, in the case where we consider compressible effects, the operator c0I+B : L2(Ω) → L2(Ω)
is coercive. We will use this critically and repeatedly below.

Corollary 3.5. Let c0 > 0. Then the operator c0I+B : L2(Ω) → L2(Ω) is an isomorphism.

Proof. By positivity, we note that for p ∈ L2(Ω)

([c0I+B]p, p)L2(Ω) = c0||p||
2 + (Bp, p) ≥ c0||p||

2.

Hence, the operator c0I + B is coercive on L2(Ω). Since B ∈ L (L2(Ω)), surjectivity follows
immediately from classical Lax-Milgram applied to the form

β(p, q) =
(

[c0I+B]p, q
)

L2(Ω)
.

Which is to say that
β(p, q) = (f, q)Ω, ∀q ∈ L2(Ω)

is uniquely solvable with associated stability bound.

We conclude this section with some additional remarks about theB operator that arise critically
in the context of previous approaches to the problem at hand.

• Since B implicitly invokes an elliptic solver, its behaviors on V ′ or any H−s(Ω)—regularity
and continuity properties, kernel and range—are not in the realm of standard elliptic theory.

• It is not clear that B ∈ L (H−1(Ω)), or that B(H1
0 (Ω)) ⊂ H1

0 (Ω).
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3.4 Translation to Eliminate Momentum Source F

In this subsection we provide formal “translations” to the linear and nonlinear problems that allow
us to consider the problem with F ≡ 0. In latter sections, to simplify the analysis, we will operate
on the translated problem. After obtaining the principal result in those sections, we will refer to
this section and translate back to obtain (linear and nonlinear) results for the original system.

We first note that it is sufficient to solve the linear problem—where k = k(z) for z ∈ L2(0, T ;L2(Ω))
a given function—with F ≡ 0 by a standard translation. Consider























E(u) = −∇p ∈ L2(0, T ;V′)

ζt +Az(·)p = S ∈ L2(0, T ;V ′)

ζ = c0p+∇ · u ∈ L2(0, T ;L2(Ω))

ζ(0) = d0 ∈ L2(Ω)

(3.7)

Indeed, as the elasticity equation is elliptic and F ∈ L2(0, T ;L2(Ω)), for a.e. t ∈ [0, T ] we can
simply write

uF(t) = E−1(F(t)) ∈ H2(Ω) ∩V. (3.8)

Additionally, with the regularity hypotheses of our main theorem F ∈ L2(0, T ;L2(Ω))∩H1(0, T ;V′),
we have that uF ∈ L2(0, T ;H2(Ω)∩V)∩H1(0, T ;V). Then, considering the variable w = u−uF,
we note that u solves (3.7) if and only if w solves











E(w) = −∇p ∈ L2(0, T ;V′)

c0pt +∇ ·wt +Az(·)p = S +∇ · uF,t ∈ L2(0, T ;V ′)

c0p(0) +∇ ·w(0) = d0 −∇ · uF(0) ∈ L2(Ω).

(3.9)

Hence, by re-scaling S ∈ L2(0, T ;V ′) and d0 = ζ(0) ∈ L2(Ω), we obtain an equivalent linear
problem for a given z with F ≡ 0.

In the case of the nonlinear problem, where Az(t) = Aζ(t) for ζ = c0p+∇·u, an additional step
is needed. We note that if w = u− uF as above, the fluid content has expression

ζ = c0p+∇ · u = c0p+∇ ·w +∇ · uF.

Since ∇ · uF ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)), we have that ∇ · uF ∈ C([0, T ];L2(Ω)) [14,21].
Hence, for any k(·) as in (1.1), we introduce the function kF(·) ∈ C(R) representing the uF-translate
of k(·), namely

kF(·) = k(·+∇ · uF). (3.10)

Since k(·) satisfies 1.1, we obtain immediately that kF(·) satisfies the assumption as well. Then,
from the (abstract) strong form of the original problem,























E(u) = −∇p+ F ∈ L2(0, T ;V′)

ζt −∇ · [k(ζ(·))∇p] = S ∈ L2(0, T ;V ′)

ζ = c0p+∇ · u ∈ L2(0, T ;L2(Ω))

c0p(0) +∇ · u(0) = d0 ∈ L2(Ω),

(3.11)

we can write the system for w = u− uF as follows










E(w) = −∇p ∈ L2(0, T ;V′)

[c0p+∇ ·w]t −∇ · [kF(c0p+∇ ·w)∇p] = S +∇ · uF,t ∈ L2(0, T ;V ′)

c0p(0) +∇ ·w(0) = d0 −∇ · uF(0) ∈ L2(Ω).

(3.12)
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As in the linear case, for a fixed F and k, by re-scaling S and d0 accordingly, and re-labeling
k 7→ kF, we again obtain an equivalent problem with F = 0.

4 Existence of Solutions for the Linear Problem

In this section we recapitulate the relevant linear Theorem 2.1 to be invoked in our fixed point con-
struction. As we noted in the Introduction and Remark 2.5, the abstract theory of time-dependent
linear evolutions from [20, 21] produces an equivalent result. For self-containedness, and to tailor
the analysis to the specific estimates utilized in later sections, we provide a brief discussion of the
setup here, and also a traditional Galerkin construction of solutions in Appendix B.

Recall that we explicitly assume that c0 > 0. In line with the translation introduced in Section
3.4, we consider the problem with F ≡ 0. Moreover, we retain the names for the datum d0 ∈ L2(Ω)
and source S ∈ L2(0, T ;V ′) (after updating them, as discussed in the previous section). Thus we
consider the linear problem (3.7) for a given z ∈ L2(0, T ;L2(Ω)). Interpreting it weakly through
the associated bilinear forms e(·, ·) and A[·, ·; z(t)], and taking the time derivative distributionally
in D ′(0, T ) yields an equivalent formulation to our Definition 1 (see [21]). Namely, we seek u(z) ∈
L2(0, T ;V), p(z) ∈ L2(0, T ;V ) that solve (3.7) weakly.

Using the pressure to dilation operator introduced in Section 3, we equivalently reformulate
3.7 as was done in [7, 22] as the (implicit) initial boundary value problem











[(c0I+B)p]t −∇ · [k(z)∇p] = S, Ω× (0, T )

p = 0, Γ× (0, T )

(c0I+B)p(0) = d0, Ω

(4.1)

Recall that for z ∈ L2(0, T ;L2(Ω)), we defined the bilinear form

A[·, ·; z(t)] : V × V → R by A[p, q; z(t)] = (k(z(t))∇p,∇q)Ω. (4.2)

Let us clearly state a weak formulation for (4.1) above. In the remaining part of this section, the
notation f ′ will denote differentiation in time, and recall the angle brackets represent the duality
pairing between V ′ and V , i.e., 〈φ, g〉 = φ(g) = 〈φ, g〉V ′×V .

Definition 4. Given z ∈ L2(0, T ;L2(Ω)), we say that p ∈ L2(0, T ;V ) with (c0I+B)p ∈ L2(0, T ;H1(Ω))
and [(c0 +B)p]′ ∈ L2(0, T ;V ′) is a weak solution for (4.1) provided that

1. For every q ∈ L2(0, T ;V ),

∫ T

0

〈

[(c0I+B)p]′(t), q(t)
〉

dt+

∫ T

0
A[p(t), q(t); z(t)] dt =

∫ T

0
〈S(t), q(t)〉dt (4.3)

2.
[

(c0I+B)p
]

(0) = d0 in the sense of V ′.

Note that since (c0I + B)p ∈ L2(0, T ;H1(Ω)) and [(c0I + B)p]′ ∈ L2(0, T ;V ′), we have that
(c0I+B)p ∈ C([0, T ];V ′) and thus the initial condition makes sense in V ′.

Remark 4.1. With regard to the initial condition, although we only identify the initial condition in
the sense of V ′ (as is consistent with the general weak formulation for implicit equations) we also
need d0 ∈ L2(Ω) for the construction at hand. Secondly, since we do not know that [c0I+B]p ∈ V ,
we cannot use the standard result [14] to obtain that [c0I+B]p ∈ C([0, T ];L2(Ω)).
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Remark 4.2. Sometimes it is convenient to work with the following equivalent variational formu-
lation for (4.3):

〈

[(c0I+B)p]′, q
〉

+A[p, q; z(·)] = 〈S, q〉, for each q ∈ V and a.e. time t ∈ [0, T ]. (4.4)

We note that the real-valued function t 7→ 〈[(c0I +B)p]′, q
〉

belongs to L1
loc(0, T ) ⊂ D′(0, T ), and

Bochner’s theorem yields

〈

[(c0I+B)p]′, q
〉

=
d

dt
([c0I+B]p(t), q)Ω in D′(0, T ).

Therefore (4.4) can be simply written in the form

d

dt

(

[c0I+B]p(t), q
)

Ω
+A[p, q; z(t)] = 〈S(t), q〉, in D′(0, T ), for all q ∈ V.

We now assert the existence of a weak solution as in Definition 4 to the reduced problem
described above in (4.1). We state this as a lemma, as it will be used in the proof of Theorem 2.2;
its proof is given in Appendix B.

Lemma 4.1. Let z ∈ L2(0, T ;L2(Ω)), S ∈ L2(0, T ;V ′) and d0 ∈ L2(Ω). Then (4.1) has weak
solution, according to Definition 4.

Proposition 4.2. The weak solution constructed in Lemma 4.1 satisfies for a.e. t ∈ [0, T ] the
estimates

c0||p(t)||
2
L2(Ω) + ||B1/2p(t)||2L2(Ω) + ‖p‖L2(0,T ;V ) . ||d0||

2
L2(Ω) + ‖S‖2L2(0,T ;V ′) (4.5)

‖[(c0I+B)p]′‖L2(0,T ;V ′) . ‖p‖L2(0,T ;V ) + ‖S‖L2(0,T ;V ′) (4.6)

‖(c0I+B)p‖L2(0,T ;H1(Ω)) . ‖p‖L2(0,T ;V ). (4.7)

The proof of Theorem 2.1 follows immediately, given the solution to (4.1).

Proof of Theorem 2.1. Given the lemma above, for a given z ∈ L2(0, T ;L2(Ω)), we have obtained
the functions

p(z) ∈ L2(0, T ;V ), ζ(z) = c0p(z) +Bp(z) ∈ L2(0, T ;H1(Ω)),

where we have denoted the dependence of the solution on the given function z. Since∇p(z) ∈ L2(Ω)
a.e. t, we can invoke the elasticity isomorphism as in Section 3.1 to obtain

u(z) = E−1(−∇[p(z))]) ∈ H2(Ω) ∩V, a.e. t.

By the injectivity of B on V = H1
0 (Ω), we can identify B[p(z)] = ∇ · [u(z)] (as in (3.7)). Hence,

we obtain a solution to (3.7).
Finally, with the hypotheses on F and d0, we can translate back to the original case as in (3.9)

to immediately obtain a weak solution for






















E(u) = −∇p+ F ∈ L2(0, T ;V′)

ζt −∇ · [k(z)∇p] = S ∈ L2(0, T ;V ′)

ζ = c0p+∇ · u ∈ L2(0, T ;L2(Ω))

c0p(0) +∇ · u(0) = d0 ∈ L2(Ω).

(4.8)
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5 Nonlinear Problem - Existence of Solutions

This section contains the proof of Theorem 2.2. We divide the proof into two parts. First, we focus
on the case of compressible constituents, i.e., c0 > 0. Our strategy in this scenario is to show that
the map z 7→ ζ provided by Theorem 2.1 has a fixed point. In part two of the proof, we obtain
existence of solutions for the case of incompressible mixture constituents using a limiting process
c0 ց 0.

5.1 Proof of Theorem 2.2 for c0 > 0

We begin by considering the general translated problem with F ≡ 0. By Theorem 2.1, given
z ∈ L2(0, T ;L2(Ω)), the problem (3.7) (with associated regularity of data) has a weak solution,
written as (u(z), ζ(z), p(z)), satisfying the estimates in (4.5)–(4.7). We note that since the solution
to the linear problem provided by Theorem 2.1 is not necessarily shown to be unique, we must
allow the possibility that the solution mapping is multi-valued (in the sense of the Appendix A).
Thus we consider the reduced problem











ζt −∇ · [k(z)∇p] = S ∈ L2(0, T ;V ′)

ζ = c0p+Bp ∈ L2(0, T ;L2(Ω))

ζ(0) = d0 ∈ L2(Ω),

(5.1)

and define a correspondence between the given permeability argument z ∈ L2(0, T ;L2(Ω)) and the
resulting fluid contents ζ taken from weak solutions (in the sense of Definition 4) corresponding
satisfying the a priori estimates in (4.5)–(4.7).

Definition 5. For fixed “data” d0 and S as above, and given z ∈ L2(0, T ;L2(Ω), we define the
correspondence

F : L2(0, T ;L2(Ω)) ։ L2(0, T ;L2(Ω)),

by

F (z) =
{

ζ = [c0I+B]p : (p, ζ) is a weak solution of (5.1) that satisfies (4.5)–(4.7)
}

.

Clearly, using Lemma 4.1 and Corollary 4.2, we have that the set F (z) 6= ∅. Moreover, the fact
that the range of the correspondence R(F ) ⊆ L2(0, T ;L2(Ω)) is immediate, since all the elements
in the set p(z) belong to L2(0, T ;L2(Ω)) trivially, and hence by the boundedness of B ∈ L (L2(Ω))
we have that

[c0I+B]p ∈ L2(0, T ;L2(Ω)), ∀p ∈ p(z).

Note here that by the definition of the correspondence, the satisfaction of the initial condition
is included in the definition of F . Also, note that passing between a ζ(z) and a p(z) simply uses
the invertibility of [c0I+B] on L2(0, T ;L2(Ω)), via Corollary 3.5.

We will use the Bohnenblust-Karlin Fixed Point Theorem for correspondences [1] to obtain
the existence of (at least) one fixed point for F . The statement of the theorem, along with the
relevant background definitions can be found in the Appendix A. We have the following theorem:

Theorem 5.1. The correspondence F : L2(0, T ;L2(Ω)) ։ L2(0, T ;L2(Ω)) defined above has a
fixed point. The set of fixed points of F is compact in L2(0, T ;L2(Ω)).
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Proof of Theorem 5.1. Let d0 ∈ L2(Ω) and S ∈ L2(0, T ;V ′) be given. We consider the correspon-
dence F : L2(0, T ;L2(Ω)) ։ L2(0, T ;L2(Ω)) defined above in Definition 5. By the construction of
linear solutions as given in Lemma 4.1 and the corresponding estimates in Corollary 4.2, we have
that for each z ∈ L2(0, T ;L2(Ω)), the set F (z) 6= ∅. Moreover, for each element ζ ∈ F (z), via 4.1,
we have that

ζ ∈ L2(0, T ;V ), and ζt ∈ L2(0, T ;V ′),

with associated estimates in (4.5)–(4.7).

Step I. First, we show that the correspondence is convex- and closed-valued, i.e., F (z) is convex
and closed, for each z ∈ L2(0, T ;L2(Ω)). Thus let z ∈ L2(0, T ;L2(Ω)) and let ζ1, ζ2 ∈ F (z). This
means that the pairs

(

pi, ζi = [c0I+B]pi
)

satisfy the definition provided in Definition 4 for i = 1, 2,
namely for every q ∈ L2(0, T ;V ), we have

∫ T

0

〈

[c0I+B]p′i(t), q(t)
〉

dt+

∫ T

0
A[pi(t), q(t); z(t)] dt =

∫ T

0
〈S(t), q(t)〉 dt (5.2)

and
[

(c0I+B)pi
]

(0) = d0.
Since the problem is linear in k(z) with A[p, q; z] =

(

k(z)∇p,∇q)Ω, convexity in the weak form
of solutions and initial conditions is immediate by taking the appropriate linear combination of the
above equalities. For the associated inequalities in (4.5)–(4.7), the convexity of norms is sufficient.
Indeed, we show this for (4.5): Suppose for pi(z), i = 1, 2 we have:

c0||pi(z)||
2
L∞(0,T ;L2(Ω)) + ||B1/2pi(z)||

2
L∞(0,T ;L2(Ω)) + ‖pi(z)‖L2(0,T ;V )

≤ C[||d0||
2
L2(Ω) + ||S||2L2(0,T ;V ′)]. (5.3)

Then
||αp1 + (1− α)p2||

2 ≤ α||p1||
2 + (1− α)||p2||

2,

and hence by multiplying the inequality (5.3) by α when i = 1, and again multiplying by (1 − α)
when i = 2, then adding the results, yields that the function αp1 + (1 − α)p2 satisfies (2.10) for
any α ∈ [0, 1] with the same constant C associated to the RHS.

To show that F (z) is closed, consider a sequence ζn ∈ F (z) such that ζn → ζ ∈ L2(0, T ;L2(Ω)).
Using the invertibility of the linear operator [c0I + B] on L2(0, T ;L2(Ω)), we have that pn →
(c0I+B)−1ζ ∈ L2(0, T ;L2(Ω)), so we let p = (c0I+B)−1ζ ∈ L2(0, T ;L2(Ω)). Since the pair (pn, ζn)
satisfies the estimates (4.5)–(4.7), we know that pn is uniformly-in-n bounded in L2(0, T ;V ).
Therefore pn has a weakly convergent subsequence, whose limit is identified with p by uniqueness
of limits. This yields that p lies in L2(0, T ;V ).

Passing to the limit, then, in the weak form in Definition 4 is immediate, since the problem
is linear in k(z). The estimates in (4.5)–(4.7) on p(z) and ζ(z) = [c0I + B]p(z) follow from weak
lower semicontinuity of norms, since each (pn, ζn) satisfies them by hypothesis. Lastly, obtaining
the initial condition is immediate, since each ζn corresponds to a solution with the same initial
condition ζn(t = 0) = d0. The estimates on solutions in (4.5)–(4.7) ensure that ζn, ζ ∈ H1(0, T ;V ′),
and hence we have that ζ(t = 0) = d0 as the limit point of ζn(0) (in the sense of V ′).

Step II. Next, we show the sequential criterion for UHC of the correspondence F , as in Theorem
7.3. To that end, let {(zn, ζn)} ⊆ G (F ). Suppose further that zn → z ∈ L2(0, T ;L2(Ω)). We want
to conclude that ζn has a (strong) limit point ζ ∈ F (z).

First, by Assumption 1.1, the function k(·) considered as Nemytskii operator, has the property
that k(zn) → k(z) ∈ L2(0, T ;L2(Ω)). Now, since ζn ∈ F (zn), for the unique pn = [c0I+B]−1ζn we
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have by definition of F the estimate (4.5) and that the weak form of the equation is satisfied (as
in Definition 4). The estimate (4.5) (with fixed RHS in terms of data) yields a uniform-in-n bound
on

||pn||L2(0,T ;V ), ||pn||L∞(0,T ;L2(Ω)), ||B1/2pn||L∞(0,T ;L2(Ω)).

From the bound on pn in L2(0, T ;V ) we extract a weak subsequential limit point, i.e., pnk
⇀ p ∈

L2(0, T ;V ). From this and the continuity of [c0I+B] ∈ L (L2(0, T ;L2(Ω))), we obtain immediately
that ζnk

= [c0I+B]pnk
⇀ [c0I+B]p. We define this latter quantity as ζ ≡ [c0I+B]p, and hence

ζnk
⇀ ζ. In addition, the estimate (4.7) in the definition of F and the uniqueness of limits ensure

that (perhaps passing to a further subsequence with the same label) ζnk
⇀ ζ ∈ H1(0, T ;V ′). We

want to show that ζ ∈ F (z), and this is accomplished by passing with the limit on the subsequence
nk in the weak formulation (4.3). To that end, let us again consider the weak form evaluated on
nk, and restrict our spatial test functions to q ∈ L2(0, T ;V ) ∩ L∞(0, T ;W 1,∞(Ω)):

∫ T

0

〈

ζ ′nk
(t), q(t)

〉

dt+

∫ T

0
A[pnk

(t), q(t); znk
(t)] dt =

∫ T

0
〈S(t), q(t)〉 dt (5.4)

Limit passage on the first term on the LHS is immediate identifying weak limits in this weak form.
For the second term, more care must be taken. Consider:

∫ T

0

(

k(znk
)∇pnk

,∇q(t)
)

dt =

∫ T

0

(

[k(znk
)−k(z)]∇pnk

,∇q(t)
)

dt+

∫ T

0
(k(z)∇pnk

,∇q(t))dt. (5.5)

The first term on the RHS is handled through the Nemytskii property of k(·):

∫ T

0
([k(znk

)− k(z)]∇pnk
, q(t))dt ≤ C(||q||L∞(0,T ;W 1,∞(Ω)))||k(znk

)− k(z)||L2(0,T ;L2(Ω))||pnk
||L2(0,T ;V )

≤ C(q, ||p||L2(0,T ;V ))||k(znk
)− k(z)||L2(0,T ;L2(Ω)) → 0,

by the uniform bound on pnk
in L2(0, T ;V ). Convergence of the second term in (5.5) is imme-

diate, since by the boundedness of k we have k(z)∇q ∈ L2(0, T ;L2(Ω)); thence, ∇pnk
⇀ ∇p ∈

L2(0, T ;L2(Ω)).
Thus, we have shown that for q ∈ L2(0, T ;V ) ∩ L∞(0, T ;W 1,∞(Ω))

∫ T

0
(k(znk

)∇pnk
,∇q(t))dt →

∫ T

0
(k(z)∇p,∇q(t))dt,

and hence, passing to the limit as k → ∞ in (5.4) we obtain for ζ = ζ(z) the identity

∫ T

0
〈ζt, q〉dt+

∫ T

0
(k(z)∇p,∇q(t))dt =

∫ T

0
〈S, q(t)〉dt (5.6)

for all q ∈ L2(0, T ;V ) ∩ L∞(0, T ;W 1,∞(Ω)), the latter being dense in L2(0, T ;V ). Thus we have
shown that (ζ(z), p(z)) satisfies the weak form of the pressure equation and hence we have con-
structed a weak solution (ζ(z), p(z)) for z ∈ L2(0, T ;L2(Ω)). The requisite estimates in the defini-
tion of F ((2.10)–(2.12)) hold immediately on the weak subsequential limit points (ζ(z), p(z)) (in
the relevant topologies) by weak lower semicontinuity of norms. Obtaining the initial condition is
also immediate from the definition of F . Hence ζn has a weak subsequential limit point ζ ∈ F (z).

To conclude the UHC property of the correspondence F , we must improve the convergence of
ζnk

→ ζ to be strongly in L2(Ω). This is done via the Lions-Aubin compactness theorem (see, for
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instance, [21]). In addition to the estimate (4.5) for the sequence pnk
, we obtain two additional

uniform-in-k estimates from continuity of B : V → H1(Ω) and from satisfying the weak form of
the pressure equation, namely:

||ζnk
||2L2(0,T ;H1(Ω)) = ||c0pnk

+Bpnk
||2L2(0,T ;H1(Ω)) . ||p||2L2(0,T ;V ) (5.7)

‖[ζnk
]′‖L2(0,T ;V ′) = ‖[(c0I+B)pnk

]′‖2L2(0,T ;V ′) . ‖p‖2L2(0,T ;V ) + ‖S‖2L2(0,T ;V ′) (5.8)

By possibly passing to a further subsequence nkm (not affecting the previous steps in estab-
lishing the weak solution or associated estimates), we improve the convergence of ζnkm

→ ζ ∈
L2(0, T ;L2(Ω)). Applying Theorem 7.3, we obtain that F : L2(0, T ;L2(Ω)) ։ L2(0, T ;L2(Ω)) is
UHC as well as compact-valued. Subsequently, from Theorem 7.2, we have that F is a closed
correspondence.

Step III. Lastly, to invoke the Bohnenblust-Karlin Fixed Point Theorem, we must show that the
range of F is relatively compact in L2(0, T ;L2(Ω)). But, as in the previous step, this will follow
from the Lions-Aubin compactness criterion. Indeed, for any ζ ∈ R(F ), ζ corresponds to a weak
solution satisfying the estimate (4.5), and subsequently (4.6)–(4.7). In particular, we obtain for
any such ζ there is an associated p = [c0I+B]−1ζ such that:

||ζ||2L2(0,T ;H1(Ω)) ≤ C||p||2L2(0,T ;V ) ≤ C
[

||d0||
2
L2(Ω) + ||S||2L2(0,T ;V ′)] (5.9)

‖ζ ′‖L2(0,T ;V ′) ≤ C
[

‖p‖L2(0,T ;V ) + ‖S‖L2(0,T ;V ′)

]

≤ C
[

||d0||
2
L2(Ω) + ||S||2L2(0,T ;V ′)

]

(5.10)

A subset of L2(0, T ;L2(Ω)) which is bounded as in the previous two estimates is relatively compact
by the Lions-Aubin criterion, and hence ζ ∈ R(F ) lies in a compact set. This is the final hypothesis
to be satisfied for applying the fixed point result, Theorem 7.4.

Applying the fixed point theorem yields the existence of a function z ∈ L2(0, T ;H1(Ω)) ∩
H1(0, T ;V ′) and an associated weak solution (ζ(z), p(z)) for which z ∈ F (z).

Remark 5.1. We again note that, owing the presence of the nonlinearity, regularity of the solution
ζ—in particular of ∇·u—needs to be better than L2(0, T ;L2(Ω)). This is because we must obtain
compactness in ζ to utilize the Nemytskii property of k(·). Moreover, if d0 ∈ V ′ only, this would
preclude our ability to obtain such regularity, as this would seem to lower the evolution of Bp = ∇·u
to the regularity of V ′.

Now we proceed to obtain a weak solution as in Definition 1 to the original problem, which is
stated in strong form in Section 3.4 as (3.11). By applying the fixed point result from the previous
section, Theorem 5.1, with appropriately scaled/modified data S, d0, k(·) we will finally prove the
main result Theorem 2.2.

Proof of Theorem 2.2. Considering the strong form of the nonlinear dynamics in (3.11), we apply
the translation as in Section 3.4. For the new variable w = u− uF, where uF is defined by (3.8),
we obtain the system (3.12), which we restate here for clarity:











E(w) = −∇p ∈ L2(0, T ;V′)

[c0p+∇ ·w]t −∇ · [kF(c0p+∇ ·w)∇p] = S +∇ · uF,t ∈ L2(0, T ;V ′)

c0p(0) +∇ ·w(0) = d0 −∇ · uF(0) ∈ L2(Ω).

(5.11)

Under the regularity assumptions on F, we have uF ∈ L2(0, T ;H2(Ω) ∩V) ∩H1(0, T ;V). Hence,
in the above strong form, we have ∇ · uF,t ∈ L2(0, T ;L2(Ω)) ⊂ L2(0, T ;V ′). Additionally, ∇ ·
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uF ∈ C([0, T ];L2(Ω)) [14, 21], so we can extract its time trace at t = 0. Finally, since ∇ · uF ∈
C([0, T ];L2(Ω)), we observe kF(·) = k(·+∇ · uF) satisfies the hypotheses of Assumption 1.1 since
k(·) is assumed to satisfy them. We can then reduce the above system to a version of (5.1), where
the corresponding “data” satisfies the hypotheses of Theorem 5.1, and we can apply the result of
the fixed point theorem.

Doing so, we obtain a function p ∈ L2(0, T ;V ) that satisfies:

• For every q ∈ L2(0, T ;V ),

∫ T

0

〈

[(c0I+B)p]′, q
〉

dt+

∫ T

0

(

k(c0p+Bp+∇·uF)∇p,∇q)dt =

∫ T

0
〈S, q〉dt+

∫ T

0
(∇·uF,t, q)dt.

• ζ = c0p+Bp a.e. t and a.e. x.

•

[

(c0I+B)p
]

(0) = d0 in the sense of V ′.

• The following estimates hold:

c0||p(t)||
2
L2(Ω) + ||B1/2p(t)||2L2(Ω) + ‖p‖L2(0,T ;V ) . ||d0||

2
L2(Ω) + ||∇ · uF(0)||

2
L2(Ω) + ‖S‖2L2(0,T ;V ′)

‖[(c0I+B)p]′‖L2(0,T ;V ′) . ‖p‖L2(0,T ;V ) + ‖S‖L2(0,T ;V ′) + ||∇ · uF,t||L2(0,T ;V ′)

‖(c0I+B)p‖L2(0,T ;H1(Ω)) . ‖p‖L2(0,T ;V ).

From this we can obtain a w ∈ L2(0, T ;H2(Ω) ∩V) and then a u = w + uF, resulting in

u = E−1(−∇p+ F).

This u has the necessary property that it can be identified via the relation

∇ · u = Bp+∇ · uF

in a point-wise sense. The above is sufficient to conclude the weak form of the elasticity equation,
(2.6). Using the fact that ||uF||V . ||F||V′ and the embeddingH1(0, T ;L2(Ω)) →֒ C([0, T ];L2(Ω)),
we re-interpret the estimates above as

c0||p||
2
L∞(0,T ;L2(Ω)) + ‖p‖2L2(0,T ;V ) . ||d0||

2
L2(Ω) +DATA

∣

∣

T

0
(5.12)

||u||2L2(0,T ;H2∩V) . ||p||2L2(0,T ;V ) + ||F||2L2(0,T ;L2(Ω)) (5.13)

‖[c0p+∇ · u]′‖L2(0,T ;V ′) . ‖p‖L2(0,T ;V ) +DATA
∣

∣

T

0
(5.14)

‖c0p+∇ · u‖L2(0,T ;H1(Ω)) . ‖p‖L2(0,T ;V ). (5.15)

(Note that in these final estimates for the original problem we have omitted references to the B
operator, in doing so, discarding the information on B1/2p ∈ L∞(0, T ;L2(Ω)).)

This finally concludes the proof of Theorem 2.2.

5.2 Proof of Theorem 2.2 - Incompressible Constituents, c0 = 0

Consider a sequence or real numbers {cm0 }∞1 such that cm0 < 1, for all m ≥ 1, and cm0 ց 0 as
m → ∞. To each cm0 we attribute a particular weak solution (pm,um) ∈ L2(0, T ;V )× L2(0, T ;V)
to (3.11) (i.e., a solution in the sense of Definition 1) with a fixed initial condition d0 ∈ L2(Ω) for
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all m (the intended initial condition when c0 = 0). Such a solution has, by construction in the
proof of Theorem 2.2, the energy estimate:

cm0 ||pm||2L∞(0,T ;L2(Ω)) + k1

∫ T

0
||∇pm||2dτ . ||d0||

2 +DATA
∣

∣

T

0
.

Note, the bound on the RHS is uniform in m. This provides a weak-* subsequential limit point for
√

cm0 pm ∈ L∞(0, T ;L2(Ω))), and a weak subsequential limit point labeled p for the sequence pm ∈
L2(0, T ;V ). From the elasticity equation, we infer that the associated um ∈ L2(0, T ;H2(Ω) ∩V)
has the bound

∫ T

0
||um||2

H2(Ω)∩Vdt .

∫ T

0
||E(um)||2dt .

∫ T

0
||∇pm||2dt+

∫ T

0
||F||2

L2(Ω)dt,

and taken in conjunction with the estimate above, leads to a uniform-in-m estimate. To the se-
quence um we also associate a weak subsequential limit point (with the same subsequence associ-
ated to p, perhaps upon re-indexing):

um ⇀ u ∈ L2(0, T ;V).

From the construction of the weak solution, we have that pm satisfies for all q ∈ L2(0, T ;V ):

∫ T

0
〈ζmt (t), q(t)〉dt +

∫ T

0
(k(ζm(t))∇pm(t),∇q(t))dt =

∫ T

0
〈S(t), q(t)〉dt, (5.16)

with ζm = cm0 pm +∇ · um = [cm0 I+B]pm +∇ · uF ∈ L2(0, T ;L2(Ω)) and the associated bound

||ζm||L2(0,T ;L2(Ω)) = ||cm0 pm +∇ · um||L2(0,T ;L2(Ω)) (5.17)

≤ cm0 ||pm||L2(0,T ;L2(Ω)) + ||∇ · um||L2(0,T ;L2(Ω))

≤ C
[

||p||L2(0,T ;V ) + ||u||L2(0,T,V)

]

. ||d0||
2 +DATA

∣

∣

T

0
+ ||F||2L2(0,T ;L2(Ω)) (5.18)

by lower weak semicontinuity of the norm, Poincaré, and the boundedness of the sequence {cm0 }.
Hence there is ζ ∈ L2(0, T ;L2(Ω)) so that

ζm ⇀ ζ ∈ L2(0, T ;L2(Ω)).

As in the construction of the solution, satisfying the equation (5.16) is also sufficient to deduce
that ζmt ∈ L2(0, T ;V ′) (with associated uniform-in-m bound as above in (5.14)). Again, by such a
uniform-in-m bound on ζmt ∈ L2(0, T ;V ′) we can extract a weak subsequential limit in that space,
and identify in the standard way for the distributional derivative [15]

ζmt ⇀ ζt ∈ L2(0, T ;V ′).

Additionally, the sequence pm itself is bounded as

||pm||L2(0,T ;L2(Ω)) ≤ C||pm||L2(0,T ;V ) . ||p||L2(0,T ;V ).

This implies that the sequence [cm0 pm] → 0 ∈ L2(0, T ;L2(Ω)), as well as, for any φ ∈ V and
f ∈ D(0, T ),

cm0

∫ T

0
(pm(t), φ)Ωf

′(t)dt → 0,
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as cm0 → 0. From which we deduce by the definition of the distributional derivative in t (see Remark
4.2) that

cm0

∫ T

0
〈pmt (t), q(t)〉V ′×V dt → 0, ∀q ∈ L2(0, T ;V ). (5.19)

Now, it is immediate from the previously established convergences that ζm = cm0 pm+∇·um ⇀
∇·u ∈ L2(0, T ;L2(Ω)), and by uniqueness of limits, we must have that ζ = ∇·u ∈ L2(0, T ;L2(Ω)),
possibly passing to a subsequence. Moreover, since ζmt ∈ L2(0, T ;V ′) with cm0 pmt ⇀ 0, we obtain
that

∫ T

0
〈ζmt , q〉dt →

∫ T

0
〈ζt, q〉,

∫ T

0
〈ζmt , q〉dt =

∫ T

0

[

〈cm0 pmt , q〉+ 〈∇ · um
t , q〉

]

dt.

But we know, again by uniqueness of limits, since we have (5.19), that

∫ T

0
〈ζmt , q〉 →

∫ T

0
〈ζt, q〉dt =

∫ T

0
〈∇ · ut, q〉dt.

Lastly, we need to show the nonlinear term exhibits convergence; namely, we want to show

∫ T

0
(k(ζm)∇pm,∇q)dt →

∫ T

0
(k(∇ · u)∇p,∇q)dt. (5.20)

This will follow immediately as in Step II in the proof of Theorem 5.1, using the Nemytskii property
of k(·). Indeed, we first improve the bounds on ζm:

||ζm||L2(0,T ;H1(Ω)) = ||cm0 pm +∇ · um||L2(0,T ;H1(Ω))

. cm0 ||pm||L2(0,T ;V ) + ||um||2
H2(Ω)

. ||p||L2(0,T ;V ) + ||u||L2(0,T ;V∩H2(Ω)) (5.21)

This again results in uniform-in-m boundedness, and we note that (perhaps on a subsequence),
again by The Lions-Aubin criterion and the uniform boundedness of {ζm} ⊂ L2(0, T ;H1(Ω)) and
{ζmt } ⊂ L2(0, T ;V ′), we can improve the convergence of ζm → ζ ∈ L2(0, T ;L2(Ω)) to strong
convergence. At this point, k(ζm) → k(ζ) ∈ L2(0, T ;L2(Ω)), and we invoke the identification
ζ = ∇ · u. From this, (5.20) follows.

Hence, upon taking the limit as cm0 → 0 in (5.16), we obtain that the subsequential limit point
(p,u) ∈ L2(0, T ;V ×V) satisfies:

∫ T

0
〈∇ · ut(t), q〉dt +

∫ T

0

(

k(ζ(t))∇p(t),∇q
)

f(t)dt =

∫ T

0
〈S(t), q〉f(t)dt, (5.22)

for any q ∈ L2(0, T ;V ).
As in the c0 > 0 case, we recover the elasticity equation faithfully, so

E(u) = −∇p+ F, a.e. x, t,

which of course yields the weak form in Definition (4).
Finally, by the equation, we again have that ∇ · u ∈ H1(0, T ;V ′)∩L2(0, T ;H1(Ω)), so ∇ · u ∈

C([0, T ];V ′), which permits the initial condition for the quantity ∇ · u(0) = d0 in the V ′ sense,
though d0 ∈ L2(Ω). This ensures that (p,u) ∈ L2(0, T ;V × V) is in fact a weak solution with
c0 = 0, in the sense of Definition 1 (see Remark 2.1).
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6 Uniqueness - Proof of Theorem 2.3

In this section we divide our considerations into two approaches, depending on which terms have
point-wise-in-t control: (i) the first one considers a weak solution to the full dynamical system in
both dependent variables (u, p); (ii) the second approach considers the reduced system phrased in
terms of p and Bp. There are subtle differences in the approaches and in the requisite hypotheses
to obtain unique solutions. We point out that—since we do not construct strong solutions in this
paper—we phrase our results below as: If weak solutions exhibit additional regularity properties,
then among such weak solutions there is uniqueness. We recall the space of weak solutions (for
given data d0, S,F, k(·)) with the additional regularity pt ∈ L2(0, T ;L2(Ω)) denoted by WT—see
(2.13). In particular, our result says: If one weak solution in WT has additional spatial regularity,
then all weak solutions in WT are equal to it.

Let us introduce both types of formal energy identities utilized later in the proof of Theorem 2.3
for c0 ≥ 0. Consider (u1, p1) and (u2, p2) two weak solutions coming from WT . Then, we subtract
the weak forms of the equations as in Definition 4 and test the pressure equation with p = p1 − p2

and the elasticity equation with ut = u1
t − u2

t . The latter is justified, as ui
t = E−1

(

−∇pit + Ft

)

∈
L2(0, T ;V) since Ft ∈ L2(0, T ;V′) by our regularity hypotheses on F and ∇pit ∈ L2(0, T ;V′) since
pit ∈ L2(0, T ;L2(Ω)).

This yields the unsimplified identities:

∫ T

0
〈E(u),ut〉V′×Vdt−

∫ T

0
(p,∇ · ut)Ωdt = 0 (6.1)

∫ T

0

[

c0(pt, p)Ω + (∇ · ut, p)Ω
]

dt+

∫ T

0

(

k(ζ1)∇p1 − k(ζ2)∇p2,∇p
)

Ω
dt = 0, (6.2)

where we denote ζ i = c0p
i +∇ · ui.

Now, let us consider the formal energy relation for the (partial, omitting the equation for u)
reduced formulation making use of the B operator, again, with no simplifications:

(

[c0I+B]pt, p
)

Ω
+

(

k(ζ1)∇p1 − k(ζ2)∇p2,∇p)Ω = 0. (6.3)

We have replaced the V ′ × V duality pairings in the pressure equations above through the
assumption that pit ∈ L2(0, T ;L2(Ω)). Both approaches to uniqueness hinge on the analysis of the
nonlinear term. The goal is to apply a version of Grönwall to the formal estimates.

Let us begin by estimating directly this nonlinear term above.

∫ T

0

(

[k1(t)∇p1(t)− k2(t)∇p2(t)],∇p
)

dt =

∫ T

0

(

[k1(t)− k2(t)]∇p1(t),∇p(t)
)

dt (6.4)

+

∫ T

0

(

k2(t)∇p(t),∇p(t)
)

dt,

where we have used the shorthand ki(t) ≡ k(c0p
i+∇·ui). Using the lower bound on the permeability

function 0 < k1 ≤ k(·) from Assumption 1.1 the second term above will serve as dissipation to
help with further estimation

k1||p||
2
L2(0,T ;V ) ≤

∫ T

0

(

k2(t)∇p(t),∇p(t)
)

dt.

The remaining nonlinear term on the RHS can be estimated in two ways, yielding the two
distinct hypotheses. With the supplemental hypothesis that k ∈ Lip(R) with Lk > 0 the global
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Lipschitz constant, we have

|k1(t)− k2(t)| =
∣

∣k(ζ1)− k(ζ2)| ≤ Lk|ζ|,

again where ζ = ζ1 − ζ2, and ζ i = c0p
i +∇ · ui.

Using Cauchy-Schwartz, then, we have
∫ T

0

(

[k1(t)− k2(t)]∇p1(t),∇p(t)
)

dt ≤ Lk

∫ T

0
||∇p1||L∞(Ω)||ζ||L2(Ω)||∇p||L2(Ω)dt.

We proceed straightforwardly, retaining the supremum term under the integration:
∫ T

0

(

[k1(t)− k2(t)]∇p1(t),∇p(t)
)

dt ≤

∫ T

0

[

Lk||∇p1||L∞(Ω)

]

||ζ(t)||L2(Ω)||∇p||L2(Ω)dt

≤

∫ T

0

L2
k

4ǫ
||∇p(t)||2L∞(Ω)

[

||ζ(t)||2L2(Ω)

]

dt (6.5)

+ ǫ

∫ T

0
||∇p||2L2(Ω)dt, ∀ ǫ > 0.

Remark 6.1. One can also pull the supremum term outside the integral; this is akin to the approach
taken in [7].

∫ T

0

(

[k1(t)− k2(t)]∇p1(t),∇p(t)
)

dt ≤
L2
k

4ǫ
||∇p1||2L∞(0,T ;L∞(Ω))

∫ T

0
||ζ(t)||2L2(Ω)dt

+ ǫ

∫ T

0
||∇p||2L2(Ω)dt, ∀ ǫ > 0.

Anticipating the use of Grönwall below, we note that ∇p1 ∈ L∞(Ω) is obtained through the
Sobolev embeddings in 3-D if for instance, if p1 ∈ H3(Ω) (or any Sobolev index above 2.5).

6.1 Uniqueness for the Full System; c0 ≥ 0

In working with the full system, we can exploit cancellation in the structure of the Biot system
to obtain more explicit energy estimates to be used for uniqueness. In this framework, as we
shall see, we need to specify the initial displacement u0 ∈ V independently of c0p0, recalling that
ζ(0) = d0 = [c0p+∇ · u](0).

Then, we consider (6.1)–(6.2) and add the two equations, cancelling cross-terms on the RHS
and simplifying by integration by parts. This yields:

a(u(t),u(t)) + c0||p(t)||
2 + 2

∫ t

0
(k(ζ1)∇p1 − k(ζ2)∇p2,∇p)dt = e(u0,u0) + c0||p0||

2. (6.6)

We recall the estimate on a single trajectory:

||u||2L∞(0,T ;V) + c0||p||
2
L∞(0,T ;L2(Ω)) + k1||p||

2
L2(0,T ;V ) ≤ C(u0, p0) +DATA

∣

∣

T

0
. (6.7)

The resulting estimate on (u, p) as above in (6.5) is

||u||2L∞(0,T ;V) + c0||p||
2
L∞(0,T ;L2(Ω)) + k1||p||

2
L2(0,T ;V ) . C(u0, p0) +

∫ T

0

(

[k1(t)− k2(t)]∇p1,∇p
)

dt,

.
L2
k

4ǫ

∫ T

0
||∇p(t)||2L∞(Ω)

[

||ζ(t)||2L2(Ω)

]

dt

+ ǫ

∫ T

0
||∇p||2L2(Ω)dt (6.8)
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We then note that ζ = c0p+∇ · u, and hence

||ζ||2 . c20||p||
2 + ||u||2V.

Absorbing on the RHS by choosing, e.g., ǫ = k1
2 , we obtain:

||u||2L∞(0,T ;V) + c0||p||
2
L∞(0,T ;L2(Ω)) .

L2
k

k1

∫ T

0
||∇p(t)||2L∞(Ω)

[

c20||p||
2 + ||u||2V

]

dt. (6.9)

If c0 < 1, then we have

||u||2L∞(0,T ;V) + c0||p||
2
L∞(0,T ;L2(Ω)) .

L2
k

k1

∫ T

0
||∇p(t)||2L∞(Ω)

[

c0||p||
2 + ||u||2V

]

dt (6.10)

If c0 > 1, then we have

||u||2L∞(0,T ;V) + c0||p||
2
L∞(0,T ;L2(Ω)) .

L2
kc0
2k1

∫ T

0
||∇p(t)||2L∞(Ω)

[

c0||p||
2 + ||u||2V

]

dt (6.11)

From here, we may invoke L2-kernel version of Grönwall as in [13, Theorem 9], and uniqueness of
solutions is deduced in the standard way.

6.2 Reduced Equation Uniqueness; c0 > 0

In this section we consider working with the reduced equation directly. We assume only that
d0 ∈ L2(Ω), forgoing any assumptions on u(t = 0). As we will see, we need to assume c0 > 0 as
well.

So, given F and S as above, let us consider two weak solutions pi(t) ∈ L2(0, T ;V )∩H1(0, T ;L2(Ω))
(this follows, for instance, if (u, p) ∈ WT and the problem is reduced through the B operator) to

[c0I +B]pt −∇ · k(ζ)∇p = S +∇ · uF,t ∈ L2(0, T ;V ′),

using the notation from Section 3.4. We will denote ζ = c0p+Bp+∇·uF here for the fluid content.

Remark 6.2 (Weakening hypotheses). Here, the main regularity we need is to be able to interpret
the pairing 〈[c0I+B]pt, p〉 in some sense. The challenge is that the properties of B in both V and V ′

are not clear (e.g., self-adjointness), and for p ∈ L2(0, T ;V ), it is not clear that Bp ∈ L2(0, T ;V ).

Let p = p1 − p2 as before, and hence ζ = c0p + Bp. Then the straightforward energy relation
in (6.3) simplifies to

1

2

d

dt

[

c0||p||
2 + (Bp, p)

]

+ (k(ζ1)∇p1 − k(ζ2)∇p2,∇p) = 0.

Add and subtract, anticipating using the Lipschitz property of k:

c0||p(t)||
2 + ||B1/2p(t)||2 + 2

∫ t

0
(∇p1[k(ζ

1)− k(ζ2)],∇p) + (k(ζ2)∇p,∇p)dt = (d0, p(0))

Since c0 > 0, we can recover p(0) = p0 = [c0I+B]−1d0. Estimating as in the previous section and
invoking the assumptions on k(·), we obtain

c0||p||
2
L∞(0,T ;L2(Ω)) + ||B1/2p||2L∞(0,T ;L2(Ω)) + k1||p||

2
L2(0,T ;V )

. ||d0||
2 +

L2
k

k1

∫ T

0
||∇p1||2L∞(Ω) ||ζ||

2
L2(Ω)dτ.
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To proceed as before with Grönwall, it is imperative here that c0 > 0 since we do not know that
B or B1/2 is coercive. We then estimate ζ carefully:

||ζ|| = ||c0p+Bp|| ≤ C||p||,

where all norms are taken in the L2(Ω) sense. Simplifying the above inequality, and invoking this
estimate, we obtain

c0||p||
2
L∞(0,T ;L2(Ω) . ||d0||

2
L2(Ω) +

L2
k

k1

∫ T

0
||∇p1||2L∞(Ω) ||p||

2
L2(Ω)dt. (6.12)

Since p ∈ H1(0, T ;L2(Ω)) in this case, p ∈ C([0, T ];L2(Ω)) and at this point, Grönwall can be
applied as before to obtain uniqueness in p a.e. t and x, which can then be transferred through
the elasticity isomorphism E to p. This results in uniqueness of the weak solution (u, p) ∈ WT .

7 Appendix A: Multivalued Fixed Point

We begin with a handful of definitions and straightforward theorems that will be relevant to the
fixed point we are using in the construction of weak solutions. All of these considerations are taken
from [1].

The basic setting considers φ : X ։ Y as a correspondence, where, for each x ∈ X, φ(x)
represents a subset of Y . (We do not use the equivalent point of view that φ : X → 2Y .) The ։

notation indicates that φ need not be a function, but is thought of as a “multi-valued function.”

Definition 6 (Notions of Closedness and Compactness). A correspondence φ : X ։ Y between
topological spaces is closed-valued if φ(x) is a closed set for each x ∈ X. The analogous definition
is used for a compact-valued correspondence.

A correspondence φ : X ։ Y between topological spaces is closed (or has a closed graph) if

G (φ) ≡ {(x, y) ∈ X × Y : y ∈ φ(x)}

is closed as a subset of X × Y .

Definition 7. A correspondence φ : X ։ Y between topological spaces is called upper hemiconti-
nous (or UHC) at the point x ∈ X if for every neighborhood U ∋ x there is a neighborhood V ∋ x
such that

z ∈ V =⇒ φ(z) ⊆ U.

We say that φ is UHC on X if it is UHC at each x ∈ X.

The next theorem provides the relationship between graph closedness and UHC. (We do not
explicitly use this version in the body of the paper.)

Theorem 7.1. Suppose φ : X ։ Y is closed-valued. If φ is UHC at x, then for all xn ∈ X, y ∈ Y ,
and yn ∈ φ(xn)

xn → x and yn → y =⇒ y ∈ φ(x).

If φ is closed-valued and the range of φ is compact, then the converse holds.

Alternatively, the following is the criteria we invoke in the proof of our main result:

Theorem 7.2. Suppose φ : X ։ Y is an UHC correspondence. If φ is closed-valued (and Y is
regular) OR φ is compact-valued (and Y is Hausdorff), then φ is closed.

26



The next theorem is a subtle variation on the previous sequential criteria for upper-hemicontinuity.

Theorem 7.3. Assume that a topological space X is first countable and Y is metrizable. Then for
a correspondence φ : X ։ Y and a point x ∈ X TFAE:

• φ is UHC at x and φ(x) ⊂⊂ Y .

• If a sequence {(xn, yn)} in G (φ) satisfies xn → x then {yn} has a limit point in φ(x).

Finally, we are in a position to state the multi-valued fixed point theorem employed in our con-
structions above, the Bohnenblust-Karlin theorem. Historically, this theorem has been considered
as the multi-valued version of the Schauder fixed point theorem. Let us note that fixed point for
a correspondence φ : X ։ X is simply a point x ∈ X so that x ∈ φ(x).

Theorem 7.4 (Bohnenblust-Karlin). Let X be a nonempty closed convex subset of a locally Haus-
dorff space, and let ϕ : X ։ X be a correspondence with closed graph and nonempty convex values.
If the range of ϕ is relatively compact (or equivalently, if it is included in a compact set), then the
set of fixed points of ϕ is nonempty and compact.

8 Appendix B: Galerkin Construction for Linear Problem

Proof of Lemma 4.1:

Proof. Due to Assumption 1.1 on the permeability operator k, the following Proposition is imme-
diate.

Proposition 8.1. The bilinear form A[·, ·; z(t)] satisfies the following properties:

1. Continuity: ∃M > 0 s.t. |A(w1, w2; z(t))| ≤ M‖w1‖V ‖w2‖V , ∀w1, w2 ∈ V , a.e. in [0, T ].

2. Coercivity: A(w,w; z(t)) ≥ k1‖w‖
2
V , for all w ∈ V .

Construction of Approximate Solution: We use Galerkin approximations. Let {wk(x)}
∞

k=1 be an
orthogonal basis of V , and an orthonormal basis in L2(Ω). (For example, we can take {wk(x)}

∞

k=1

to be the complete set of appropriately normalized eigenfunctions for −∆ in V .) Let Vn =
span{w1, ...wn}. Note that Vn satisfies the conditions Vn ⊂ Vn+1 and ∪Vn = V . We look for
solutions of the form:

pn(t) =

n
∑

k=1

dkn(t)wk, (8.1)

where the coefficients dkn(t) ∈ H1(0, T ) for k = 1, ..., n. Thus we consider the following finite
dimensional problem on Vn:

Determine pn ∈ H1(0, T ;V ) such that for every k = 1, 2, .., n,

{

([c0I+B]p′n, wk)L2(Ω) +A[pn, wk; z(·)] = 〈S,wk〉, a.e. in (0, T ),

dkn(0) = ([c0I+B]−1d0, wk)Ω, k = 1, 2, ..., n.
(8.2)

If the differential equation in (8.2) holds for each element of the basis wk, with k = 1, 2, ..., n,
then it also holds for every w ∈ Vn. Moreover, since (c0I +B)p′n ∈ L2(0, T ;L2(Ω)), we have from
Remark 4.2

((c0I+B)p′n(t), w)Ω = 〈(c0I+B)p′n(t), w〉
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Upon expanding pn, (8.2) becomes











M(dkn(t))
′ +

n
∑

k=1

A[wl, wk; z(t)]d
l
n(t) = Sk(t),

dkn(0) = ([c0I+B]−1d0, wk), k = 1, 2, ..., n,

(8.3)

where
M = ([c0I+B]wk, wk)Ω, and Sk(t) = 〈S(t), wk〉, k = 1, 2, ..., n.

Since (c0I +B) is invertible on L2(Ω), we have that {[c0I + B]wk}
∞

k=1 is linearly independent
in L2(Ω). Therefore we can find a permutation α(i) of the basis {wk} such that for all m ∈ N, the
matrix

{(

[c0I+B]wj , wα(i)

)

Ω

}m

i,j=1
is nonsingular (see Lemma 2.3 in [16]).

Remark 8.1. We note here that in order to construct solutions invoking ODE theory and obtain
the subsequent energy estimates below, we require the initial condition d0 ∈ L2(Ω); if d0 ∈ V ′,
additional information about the continuity, adjoint, and invertibility of B on V ′ would be needed.

By standard existence theory for ordinary differential equations, there exists a unique, ab-
solutely continuous function dn(t) = [dkn(t)]

n
k=1 that solves (8.3). Therefore pn(t) ∈ H1(0, T ;V )

defined in (8.1) is a solution for (8.2) for a.e. t ∈ [0, T ].

Energy Estimates: We can interpret (4.3) a.e. s ∈ [0, T ] and let q = pn ∈ H1(0, T ;V ) in (4.3) to
obtain

〈[c0I+B]p′n(s), pn(s)〉+A[pn(s), pn(s); z(s)] = 〈S(s), pn(s)〉

Due to the fact that B is self-adjoint on L2(Ω) and pn(t) ∈ H1(0, T ;V ), we have that

〈[c0I+B]p′n(s), pn(s)〉 =
1

2

d

ds

(

[c0I+B]pn(s), pn(s)
)

Ω

Moreover, with k1 as the lower bound on k, i.e., the coercivity parameter for A in Remark (8.1),
we have

|〈S(s), pn(s)〉| ≤
1

2k1
‖S(s)‖2V ′ +

k1
2
‖pn(s)‖

2
V

Thus, with the coercivity assumed in Remark (8.1), we obtain

1

2

d

ds

(

[c0I+B]pn(s), pn(s)
)

Ω
+

k1
2
‖pn(s)‖

2
V ≤

1

2k1
‖S(s)‖2V ′

We integrate over (0, t) and obtain

(

[c0I+B]pn(t), pn(t)
)

Ω
+ k1

∫ t

0
‖pn(s)‖

2
V ds ≤ ([c0I+B]pn(0), pn(0))L2(Ω) +

1

k1

∫ t

0
‖S(s)‖2V ′ ds

Using the properties of the operator B and B1/2 (as in Lemma 3.4 and the discussion following
it), we obtain from this estimates point wise (in time) control of ||pn(t)||L2(Ω) and ||B1/2pn(t)||L2(Ω)

for each t ∈ [0, T ], as well as

pn, B1/2pn, (c0 +B)1/2pn ∈ L∞(0, T ;L2(Ω)), pn ∈ L2(0, T ;V ).

Thus

‖pn‖
2
L∞(0,T ;L2(Ω)) + ||B1/2p||2L∞(0,T ;L2(Ω)) ≤ (d0, ([c0I+B]−1d0)Ω +

1

k1

∫ t

0
‖S(s)‖2V ′ ds
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and

‖pn‖
2
L2(0,T ;V ) ≤ (d0, [c0I+B]−1d0)Ω +

1

k1

∫ t

0
‖S(s)‖2V ′ ds

Since B is continuous from V into H1(Ω), we obtain that Bpn ∈ L2(0, T ;H1(Ω)), and thus we
have

‖(c0I+B)pn(t)‖L2(0,T ;H1(Ω)) ≤ C‖pn(t)‖L2(0,T ;V ) (8.4)

Now, directly from the (4.4), using the characterization of the norm in V ′ = H−1(Ω), we obtain

‖[(c0I+B)pn]
′(s)‖V ′ ≤ M‖pn(s)‖V + ‖S(s)‖V ′ ,

which implies that
[(c0I+B)pn]

′ ∈ L2(0, T ;V ′)

with

∫ t

0
‖[(c0I+B)pn]

′(s)‖2V ′ ≤ 2M2

∫ t

0
‖pn(s)‖

2
V +

∫ t

0
‖S(s)‖2V ′ . (d, [c0I+B]−1d)Ω +

∫ t

0
‖S(s)‖2V ′

Existence: Since {pn} is bounded in L2(0, T ;V ), we can extract a weakly convergent subsequence
pnk

. If we call the weak limit p, then we have that

pnk
⇀ p in L2(0, T ;V ) (8.5)

Using the continuity of the operator B : V → H1(Ω), we obtain that

(c0I+B)pnk
⇀ (c0I+B)p in L2(0, T ;H1(Ω)) (8.6)

According to the energy estimates above, we have that the subsequence {[(c0+B)pnk
]′} is bounded

in L2(0, T ;V ′). Consequently, we obtain on a new subsequence (retaining the subscript nk) that

[(c0 +B)pnk
]′ ⇀ [(c0 +B)p]′ in L2(0, T ;V ′) (8.7)

Now invoking (4.3) we can write

∫ T

0
〈[(c0I+B)pnk

]′(t), q(t)〉 dt+

∫ T

0
A[pnk

(t), q(t); z(t)] dt =

∫ T

0
〈S, q〉 dt (8.8)

for every q ∈ L2(0, T ;Vnk
). Choose N such that N ≤ nk. In (8.8), let q = wϕ, with w ∈ VN and

ϕ ∈ D(0, T ), and let nk → ∞. Thanks to (8.5) and (8.7) and the continuity of the bilinear form A
we infer that

∫ T

0

{

〈

[(c0I+B)p]′(t), w
〉

+A[p(t), w; z(t)] − 〈S(t), w〉
}

ϕ(t) dt = 0 (8.9)

Letting N → ∞ and using the fact that ϕ is arbitrary, we obtain that

〈

[(c0I+B)p]′(t), w
〉

+A[p(t), w; z(t)] = 〈S(t), w〉, for a.e. t ∈ (0, T ), and for all w ∈ V,

from which (4.3) follows.
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It remains to check that p satisfies the initial condition [c0I + B]p(0) = d0. We use (8.9) with
ϕ ∈ C1([0, T ]) that satisfies ϕ(0) = 1 and ϕ(T ) = 0, and integrate by parts in the fist term. We
obtain

∫ T

0

{

−
(

[c0I+B)p(t), w
)

Ω
ϕ′(t) +A[p(t), w; z(t)]ϕ(t) − 〈S(t), w〉ϕ(t)

}

dt = ([c0I+B]p(0), w)Ω

(8.10)
Similarly, we use q(t) = ϕ(t)w with w ∈ Vn in (8.8), and integrate by parts in the first term. We
obtain

∫ T

0

{

−
(

[c0I+B]pnk
(t), w)Ωϕ

′(t)+A[pnk
(t), w; z(t)]ϕ(t)−〈S(t), w〉ϕ(t)

}

dt = ([c0I+B]pnk
(0), w)Ω

(8.11)
If we let nk → ∞ in (8.11), the LHS converges to the LHS of (8.10) due to (8.6), and the RHS

((c0I + B)pnk
(0), w)Ω → (d0, w)Ω. Therefore we obtain that ((c0I + B)p(0), w)Ω = (d0, w)Ω, and

using the density of V into Ω we have that [c0I+B]p(0) = d0 as desired.

Finally, we also note that from (8.6) and (8.7) we obtain that

(c0I+B)pnk
→ (c0I+B)p in L2(0, T ;L2(Ω))

Note that, through the limit point construction, we obtain the estimates in (4.2) on the con-
structed solutions by the weak lower semicontinuity of the norm.
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