

ABSTRACT

Title of Document: PARALLEL FEATURE SELECTION OF MULTIPLE
CLASS DATASETS USING APACHE SPARK

Rishi Sankineni, Master of Science
Information Systems, 2017

Directed by: Assistant Professor, Dr. Jianwu Wang
Department of Information Systems

Feature selection is the task of selecting a small subset from original features that

can achieve maximum classification accuracy. This subset of features has some very

important benefits like, it reduces computational complexity of learning algorithms,

saves time, improve accuracy and the selected features can be insightful for the

people involved in problem domain. This makes feature selection as an indispensable

task in classification task. In this thesis, we present a two-phase approach for feature

selection. In the first phase a batch based Minimum Redundancy and Maximum

Relevance (mRMR) algorithm is used with “correlation coefficient” and “mutual

information” as statistical measure of similarity. This phase helps in improving

the classification performance by removing redundant and unimportant features. In

the second phase, we present a stream based tree-based feature selection method

that allows dynamic generation and selection of features, while taking advantage of

the different feature classes and the fact that they are of different sizes and have

different fraction of good features. Experimental results show that this phase is

computationally less expensive than comparable “batch” methods that do not take

advantage of the feature classes and expect all features to be known in advance.

PARALLEL FEATURE SELECTION OF
MULTIPLE CLASS DATASETS

USING APACHE SPARK

by

Rishi Sankineni

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Master of Science in
Information Systems

2017

Advisory Committee:
Dr. Jianwu Wang, Chair/Advisor
Dr. George Karabatis, Co-Advisor
Dr. Nirmalya Roy

c© Copyright by
Rishi Sankineni

2017

Acknowledgement

I deeply thank Prof. Jianwu Wang for introducing me to the wonderful world of

Machine Learning and for supervising this research. His consistent support, advice,

thoroughness and patience have made this work possible. I would also like to sin-

cerely thank Prof. George Karabatis for guiding me through the exciting world of

Feature Selection and co-advising to this research. His help had made a crucial

contribution to this work.

I would also like to thank the committee member Dr. Nirmalya Roy for being

on the examination committee and for providing invaluable feedback. I am grateful

to Muthu Kumar and Sai Chaithanya for their immense contribution in developing

framework for attack detection and similarity calculation respectively.

I would like to take this opportunity to thank my friends in the Data Informatics

lab @ UMBC and Abu Zaher Md Faridee particularly for their tips on research ideas

and suggestion.

ii

Contents

1 Introduction 1
1.1 Significance of the Problem . 2
1.2 Summary of the Approach . 3
1.3 Contribution of the Thesis . 4

2 Background and Related Work 5
2.1 Machine Learning . 5
2.2 Learning Algorithms . 6

2.2.1 Supervised Learning . 6
2.2.2 Unsupervised Learning . 7
2.2.3 Semi-Supervised Learning . 7

2.3 Feature Selection . 8
2.3.1 Feature Ranking . 10

2.4 Feature Subset Selection . 11
2.4.1 Filter Methods . 13
2.4.2 Wrapper Methods . 14
2.4.3 Embedded Methods . 15

2.5 Dimensionality Reduction . 17
2.6 Map-Reduce programming paradigm 18
2.7 Apache Spark . 20

2.7.1 Resilient Distributed Datasets (RDDs) 21
2.7.2 Discretized-Streams(D-Streams) 22

3 Methodology 27
3.1 Data Discretization . 28

3.1.1 MDLP : The Minimum Description Length Principle 29
3.1.2 MinMax Scaler . 30

3.2 Pearson Correlation . 31
3.3 Decision Trees . 33
3.4 mRMR Feature Selection . 34

3.4.1 Feature Selection Process . 36
3.5 Streaming Feature Selection . 39

4 Implementation and Evaluation 42
4.1 Implementation . 42

4.1.1 Data set description . 43
4.2 Evaluation . 48

4.2.1 mRMR feature selection on full dataset(non-partitioned) . . . 52
4.2.2 mRMR feature selection on partitioned dataset(n=2) 54

iii

4.3 Classifier Results . 56
4.3.1 K-nearest neighbors’ (k=3) 56
4.3.2 Decision-tree J-48 . 58
4.3.3 Support Vector Machine . 60
4.3.4 Classifier Comparison . 62

4.4 Streaming Feature Selection . 65
4.4.1 Feature score comparison of highly correlated batches 68

5 Conclusion & Future Works 70

Bibliography 72

iv

List of Tables

4.1 Features list and Description of KDDCup’99 Dataset 44
4.2 Features list and Description of KDDCup’99 Dataset 45
4.3 Attack Classification & data types . 45
4.4 Feature Score of Top 25 Attributes 53
4.5 Depicts the values and the classified instances with k=3 56
4.6 Depicts the metrics and its count with k=3 57
4.7 Depicts the classification accuracy of our model with k=3. 57
4.8 Depicts the values and the classified instances using J48 58
4.9 Depicts the metrics and its count using J48 58
4.10 Depicts the classification accuracy of our J48 model. 59
4.11 Depicts the values and the classified instances 60
4.12 Depicts the metrics and its count using SVM 60
4.13 Depicts the classification accuracy of our SVM model. 60
4.14 ROC Metrics for KNN(k=1,2,3) . 64

v

List of Figures

2.1 A unified view of a feature selection process 10
2.2 Filter, wrapper and embedded feature selection scheme 13
2.3 Sequential Forward Selection and Sequential Backward Elimination . 15
2.4 A taxonomic summary of feature selection techniques with important

characteristics of each technique . 16
2.5 Data Flow overview of MapReduce 19
2.6 High-level overview of the Spark Streaming system. Spark Streaming

divides input data streams into batches and stores them in Spark’s
memory. It then executes a streaming application by generating
Spark jobs to process the batches. 26

3.1 Feature selection process for batch data. 28
3.2 A typical discretization process. 29
3.3 A potential within-class cut point. 30
3.4 Decision Trees and Multi-interval Discretization. 30
3.5 MinMax scaling- maximum of 127 distinct values. 31
3.6 A perfect positive linear relationship, r=1. 32
3.7 A perfect positive linear relationship, r = -1. 32
3.8 A scatter plot for which r = 0. Notice that there is no relationship

between X and Y . 33
3.9 Decision Tree model in PySpark for network attack detection using

KDD’99 . 34
3.10 Feature selection process for streaming data. 39
3.11 Batch correlation on streaming data. 41

4.1 Class distribution(skewed) of KDD Cup 1999. 46
4.2 Class distribution of training data. 47
4.3 Class distribution . 48
4.4 Different types of metrics used. 50
4.5 AUC-ROC curve. 51
4.6 mRMR feature selection on full dataset. 52
4.7 mRMR feature selection on partitioned dataset. 54
4.8 mRMR feature selection on partitioned dataset. 55
4.9 Performance of KNN with k=3 (bar-chart). 57
4.10 Performance of KNN with k=3 (line-graph). 58
4.11 Performance of J48 (Bar-chart). 59
4.12 Performance of J48 (Line-graph). 59
4.13 Performance of SVM (Bar-chart). 61
4.14 Performance of SVM (Line-graph). 61

vi

4.15 Performance of all three classifiers(Bar-chart). 62
4.16 Performance of all three classifiers(Line-graph). 62
4.17 Accuracy score of all three classifiers. 63
4.18 Accuracy score of all three classifiers. 63
4.19 ROC-Curve. 64
4.20 Tree based feature selection algorithm psuedo-code 65
4.21 Batch correlation on streaming data. 67
4.22 Batch-1 v/s Target(full dataset). 68
4.23 Batch-2 v/s Target(full dataset) . 69
4.24 Batch-6 v/s Target(full dataset). 69

vii

Chapter 1

Introduction

Machine learning deals with the theoretic, algorithmic and applicative aspects of

learning from examples. In a nutshell, learning from examples means that we try

to build a machine (i.e. a computer program) that can learn to perform a task by

observing examples. Typically, the program uses the training examples to build a

model of the world that enables reliable predictions[23]. This contrasts with a pro-

gram that can make predictions using a set of predefined rules (the classical Artificial

Intelligence (AI) approach). Most of the problems in machine learning are prediction

problems, i.e. problems in which an output Y has to be predicted given an input

vector X. If the output Y is a real valued variable the prediction problem is called

regression while, if the output Y is a set of classes the prediction problem is called

classification. Given a feature vector X, the task is to predict some output vector

Y, or its conditional probability distribution P(Y/X). Unfortunately in most of real-

world problems, the input feature vector X is constituted by a very large number of

features. So the high dimensionality of a problem can cause increased computational

complexity, and hinder the performance of the learning algorithm [23]. Therefore,

reducing the dimensionality of a problem has certain advantages. Consequently, in

any classification task we need to select the relevant subset of features that possibly

contains the least number of dimensions which are best for solving the task at hand.

Such relevant subset of features is unknown a-priori, instead we need to use some

dimensionality reduction method to discover such subset. Feature selection is one of

1

the dimensionality reduction methods. It is commonly used in applications where

original features need to be preserved. Although feature selection can be applied to

both supervised and unsupervised learning in this thesis we will focus only on the

problem of feature selection in supervised learning (in particular for classification

problems).

1.1 Significance of the Problem

The high dimension of today’s real-world data poses a serious problem for standard

classifiers. Therefore feature selection is a common pre-processing step in many

data analysis algorithms. It prepares data for mining and machine learning, which

aim to transform data into business intelligence or knowledge. Performing feature

selection may have various motivations. For instance, consider the following simple

but revealing example of a binary classification problem. Broadly speaking, two

factors matter most for effective learning:

• R be the number of features, and

• Z be the number of instances.

When R is fixed, a larger Z means more constraints and the resulting correct

hypothesis is expected to be more reliable. When Z is fixed, a reduced R is same

as to significantly increase the number of instances. Theoretically, the reduction of

dimensionality can exponentially shrink the hypothesis space. Suppose we have four

binary (i.e. 0 1) features N1 , N2 , N3 , N4 and class C (e.g.; positive or negative).

If the training data is comprised of 4 instances i.e., Z = 4, it is only a quarter of

the total number of possible instances 24 = 16. The size of the hypothesis space is

224 = 65, 536.

If only two features are relevant to the target concept, the size of the hypothesis

space becomes 222 = 16, which is an exponential reduction of the hypothesis space.

Now when we are left with only 2 features, the only 4 available instances might be

sufficient for perfect learning (assuming there is no repeated instance in the reduced

2

training data). The resulting model with 2 features can also be less complicated than

that with 4 features. Hence, feature selection can effectively reduce the hypothesis

space, or virtually increase the number of training instances, and help create a

compact model.

1.2 Summary of the Approach

In our approach, we have stressed that a well-designed filter method, such as mRMR

[7], can be used to enhance the wrapper feature selection, in achieving both high

accuracy and fast speed. It uses an optimal first-order incremental selection to gener-

ate a candidate list of features that cover a wider spectrum of characteristic features.

These candidate features have similar generalization strength on different classifiers.

They facilitate effective computation of wrappers to find compact feature subsets

with superior classification accuracy. mRMR algorithm [7] is especially useful for

large-scale feature/variable selection problems where there are at least thousands of

features/variables, such as gene selection. Of note, the purpose of the mRMR ap-

proach studied in this thesis is to maximize the dependency. This typically involves

the computation of multivariate joint probability, which is nonetheless difficult and

inaccurate. Combining both Max Relevance and Min-Redundancy criteria [7], the

mRMR incremental selection scheme provides a better way to maximize the depen-

dency. In this case, the difficult problem of multivariate joint probability estimation

is reduced to estimation of multiple bivariate probabilities (densities), which is much

easier. In most situations, mRMR reduces the feature selection time dramatically

for continuous features and improves the classification accuracy significantly.

Much of “big data” is received in real time, and is most valuable at its time

of arrival. For example, a social network may wish to detect trending conversation

topics in minutes; a search site may wish to model which users visit a new page; and a

service operator may wish to monitor program logs to detect failures in seconds [35].

To enable these low-latency processing applications, there is a need for streaming

computation models that scale transparently to large clusters. Spark Streaming is

3

one such computation model which can be used for real-time feature selection [35].

Streaming feature selection on Apache Spark supports flexible ordering on the

generation and testing of features. Features can be generated dynamically based on

which features have already been added to the model. One can also test the same

feature more than once, as we do in this section(by using multiple batches). New

features can be generated in many ways. Each way produces a new feature class for

use in streaming. For example, in addition to the n original features, n2 pairwise

interaction terms can be formed by multiplying all n2 pairs of features together. In

practice, we generate three interaction streams: (1) interactions of features that have

already been selected with themselves (2) interactions of the selected features with

the original features, and (3) all interactions of the original features. This requires

dynamic generation of the feature stream, since the interaction terms (1) and (2)

can not be specified in advance, as they depend on which features have already been

selected.

1.3 Contribution of the Thesis

This thesis contains a number of unique contributions. They are summarized below:

• Applied mRMR feature selection algorithm to KDD’99 dataset.

• Implemented a parallel feature selection algorithm on Apache Spark platform

for streaming data.

• Calculated feature selection algorithms efficiency.

• Calculated batch correlation score on streaming data.

• Calculated execution time taken by the cluster to rank the features.

4

Chapter 2

Background and Related Work

This introductory chapter provides the context and background for the results dis-

cussed in the following chapters and defines some crucial notation. The chapter

begins with a brief review of machine learning, which is the general context for

the work described in this thesis. I explain the goals of machine learning, present

the main learning models currently used in the field, and discuss its relationships

to other related scientific fields. Then, in section 2.3, I review the field of feature

selection, which is the sub field of machine learning that constitutes the core of this

thesis. I outline the rationale for feature selection, the different paradigms that are

used and survey some of the most important known algorithms.

2.1 Machine Learning

Machine learning deals with the theoretic, algorithmic and applicative aspects of

learning from examples[3]. In a nutshell, learning from examples means that we try

to build a machine (i.e. a computer program) that can learn to perform a task by

observing examples. Typically, the program uses the training examples to build a

model of the world that enables reliable predictions. This contrasts with a program

that can make predictions using a set of predefined rules (the classical Artificial

Intelligence (AI) approach) [23].

5

”You may not know it, but machine learning is all around you. When you type

a query into a search engine, it’s how the engine figures out which results to show

you (and which ads, as well). When you read your e-mail, you don’t see most of the

spam, because machine learning altered it out. Go to Amazon.com to buy a book

or Netfix to watch a video, and a machine-learning system helpfully recommends

some you might like. Facebook uses machine learning to decide which updates to

show you, and Twitter does the same for tweets. Whenever you use a computer,

chances are machine learning is involved somewhere. Traditionally, the only way to

get a computer to do something from adding two numbers to flying an airplane was

to write down an algorithm explaining how, in painstaking detail. But machine-

learning algorithms, also known as learners, are different: they figure it out on their

own, by making inferences from data. And the more data they have, the better they

get. Now we don’t have to program computers; they program themselves. It’s not

just in cyberspace, either: your whole day, from the moment you wake up to the

moment you fall asleep, is suffused with machine learning”[8].

2.2 Learning Algorithms

Feature selection algorithms can be further categorized into supervised, unsuper-

vised, and semi-supervised, corresponding to different types of learning algorithms.

The primary difference between these types of learning is whether the training data

has been hand-labeled or not to generate the classifier’s output.

2.2.1 Supervised Learning

In supervised learning, we have a training set in which each training example is a

(instance, label) pair, and the learner’s goal is to learn a mathematical model that

represents the mapping function between the instance vectors and the label values.

The model is then used to predict the label of a new unseen instance with only a

small chance of erring. In essence, supervised feature selection algorithms try to

6

find features that help separate data of different classes. In case of regression, the

feature selection is done by selecting the variables that most reduce the residual sum

of squares as in forward stepwise selection or minimizes a penalized criterion[10].

2.2.2 Unsupervised Learning

Unlike supervised learning, unsupervised learning has no labeled data. Learning

algorithms base only on input values from the data. It aims to find subset of

features according to similar patterns in the data without prior information. This

type of learning is used for example in clustering, self-organization, auto- association

and some visualization algorithms. Typical approaches to unsupervised learning

include clustering, building probabilistic generative models and finding meaningful

transformations of the data. Given a fixed number of clusters, we aim to find

a grouping of the objects such that similar objects belong to the same cluster.

K-means is a classical clustering algorithm which clusters instances according to

the Euclidean distance. Unsupervised methods perform poorly in the beginning as

compared to supervised learning as they are un-tuned, but performance increases

as they tune themselves over some time[12].

2.2.3 Semi-Supervised Learning

The acquisition of labeled instances for a learning problem is often difficult, ex- pen-

sive, or time consuming to obtain, as this requires the efforts of experienced human

annotators. Therefore, it may not be feasible to get labeled instances sometimes.

On the other hand, acquisition of unlabeled instances is relatively inexpensive to

collect. In a scenario when we have a small amount of labeled data with a large

amount of unlabeled data for the training, semi-supervised learning technique can

be of great practical value to train our classifier. It is observed that when large

unlabeled instances used in conjunction with a small number of labeled instances,

give higher accuracy. Because semi-supervised learning requires less human effort

and gives considerable higher accuracy, it is of great interest both in theory and in

7

practice[4].

2.3 Feature Selection

A critical issue in data pre-processing is feature selection: instead of using all the

features (attributes or variables) in the data, one can selectively choose a subset

of features. There are several benefits of feature selection: (1) dimensionality re-

duction to bring down the computational cost; (2) noise reduction to revamp the

classification accuracy; (3) more interpretable features or characteristics that can

help identify and monitor the target variables or class types[11]. These advantages

are typified on KDDCUP’99 dataset. Out of 42 features, only a smaller number (7)

of them show strong correlation with the targeted network attacks. For example, for

a two-class network attack subtype classification problem, 42 informative features

are usually sufficient. There are studies suggesting that only a few features are suffi-

cient. Therefore, computation is reduced while prediction accuracy is increased via

effective feature selection.

There are two essential ways to perform dimension reduction for classification

problems. The first way is to basically recognize (by some criterion) those features

that contribute most to the class separability. For example, one may select n fea-

tures out of all the given features, using some method of ranking (the uni-variate

approach) or optimizing a criterion function (the multivariate approach), that will

most contribute to the classification task. This strategy is termed feature selec-

tion[11]. The other way is to find a transformation (linear or nonlinear) from the

original high-dimensional input space to a lower dimensional feature space. This ap-

proach is termed feature extraction. This transformation may again be supervised

or unsupervised. In the supervised case, the task is to find the transformation for

which a criterion of class separability is maximized.

For many prediction or regression tasks only a subset of a huge number of can-

didate features are predictive, and good feature selection methods can give large

improvements in predictive accuracy [11]. Feature selection approaches generally

8

assume that all features are in a single equivalence class. This ignores the key, and

useful, fact that very often features are of different type.

Often, samples have hundreds to tens of thousands of variable or features (i.e.,

they are represented as vectors in a high-dimensional space). The primary task of

feature extraction and feature selection is to reduce the dimension of the data as

much as possible while still retaining most of the information relevant for the task

at hand. There are many reasons to perform such dimension reduction. It may

remove redundant or irrelevant information and thus yield a better classification

performance; subsequent analysis of the classification results is relatively easier to

understand; low dimension results may be visualized, and thus enable better under-

standing[11].

The process of feature selection can be supervised, unsupervised or semi- su-

pervised based on class labels. In supervised feature selection, the evaluations of

features are determined using their correlation with the class while unsupervised

algorithm uses data variance or data distribution in its evaluation. In semi- super-

vised we use limited label information to improve unsupervised feature selection.

Depending on how and when the worth of each feature in the subset is evaluated,

three models can be proposed. They are filters, wrappers and hybrids. Filters

evaluate the worth of a feature without any learning algorithm. Wrappers have a

predetermined learning algorithm to evaluate the worthiness of an attribute in the

subset. Hybrids are a combination of filters and wrappers. .

9

Figure 2.1: A unified view of a feature selection process

2.3.1 Feature Ranking

As the filter approach is the more common one, our study will focus on several filter

methods. In this section, we will introduce two common filter based feature ranking

techniques.

• Information Gain: Information gain (IG)[16] is based on the concept of

entropy. The expected value of information gain is the mutual information

of target variable (X) and independent variable (A). It is the reduction in

entropy of target variable (X) achieved by learning the state of independent

variable (A). The major drawback of using information gain is that it tends

to choose attributes with large numbers of distinct values over attributes with

fewer values even though the latter is more informative.

To calculate information gain, consider an attribute X and a class attribute

Y. The information gain of a given attribute X with respect to class attribute

Y is the reduction in uncertainty about the value of Y when the value of X

is known. The value of Y is measured by its entropy, H(Y). The uncertainty

about Y, given the value of X is given by the conditional probability of Y given

X, H (Y—X)[23].

10

• Gain Ratio: The information gain measure is biased towards tests with many

outcomes. That is, it prefers to select attributes having many possible values

over attributes with fewer values even though the latter is more informative.

For example, consider an attribute that acts as a unique identifier, such as a

student id in a student database. A split on student id would result in many

partitions; as each record in the database has a unique value for student id.

So, the information required to classify database with this partitioning would

be 0. Clearly, such a partition is useless for classification[16].

GainRatio(N) = Gain(N)/SplitInfo(N)

2.4 Feature Subset Selection

In contrast to feature ranking, feature subset selection algorithms[22] may automat-

ically find how many features have to select. The rapid advances in several research

fields with huge datasets made it essential to select only the most important or

descriptive features and the remaining are discarded.

Feature subset selection[22] can be divided into three models: filters, wrappers

and embedded. All feature selection models have their own advantages and draw-

backs. In general, filters are fast due to the fact they do not incorporate learning

and rely on the intrinsic characteristics of the training data to select and discard

features (mutual information, data consistency, etc). A wrapper model[19] involves

a learning algorithm (a classifier, or a clustering algorithm) to evaluate each sub-

set of features quality. By including the learning algorithm they aim at improving

accuracy. However, wrapper models are computationally intensive, which restricts

their application to huge datasets. An embedded model embeds feature selection

in the training process of the classifier and are usually specific to given learning

machines. They are usually faster than wrapper approaches but are also more likely

to overfit. In case we have large training set then embedded models can eventually

11

replace filter models.

There are many strategies for feature selection. For example, one can define an

objective function, e.g., one that measures accuracy on a fixed held out set, and use

sequential forward or backward selection. A sequential forward selection (SFS)[11] is

a bottom-up search where new features are added to a feature set one at a time. At

each stage, the chosen feature is one that, when added to the current set, maximizes

the objective. The feature set is initially empty. The algorithm terminates when

the best remaining feature worsens the objective, or when the desired number of

features is reached. The main disadvantage of this method is that it does not delete

features from the feature set once they have been chosen. As new features are found

in a sequential, greedy way, there is no guarantee that they should belong in the

final set.

Feature subset selection approach is believed to have better predictive ability

than that of feature ranking according to their individual predictive power[22]. As

already mentioned, a single feature that is completely useless by itself can strikingly

improve performance when taken in account with other features. On the other hand,

a good feature which is highly correlated with another feature already in the subset

would provide no additional benefit since it would be redundant. Feature ranking

approaches can not manage to deal with these scenarios.

Sequential backward selection (SBS)[11] is the top-down analog of SFS: Features

are deleted one at a time until d features remain. This procedure has the disad-

vantage over SFS that it is computationally more demanding, since the objective

function is evaluated over larger sets of variables.

Feature selection can be classified into feature subset selection and feature rank-

ing. Feature ranking calculates the score of each attribute and then sorts them

according to their scores. Feature subset selection selects a subset of attributes

which collectively increases the performance of the model.

Feature selection techniques can be organized into three categories, depending

12

on the way they combine the feature selection search with the construction of the

classification model:

2.4.1 Filter Methods

Filter type methods are essentially data pre-processing or data filtering methods.

Features are selected based on the intrinsic characteristics which determine their

relevance or discriminant powers about the target classes. Simple methods based on

mutual information, statistical tests (t-test, F-test) have been shown to be effective.

More sophisticated methods are also developed. Filter methods can be computed

easily and very efficiently. The characteristics in the feature selection are uncor-

related to that of the learning methods, therefore they have better generalization

property. Filter methods choose the n best individual features, by first ranking the

features by some ‘informativeness’ criterion, for example, using their Pearson Cor-

relation with the target. Then, the top n features are selected. Afterwards, this

subset of features is presented as input to the classification algorithm.

Figure 2.2: Filter, wrapper and embedded feature selection scheme

13

2.4.2 Wrapper Methods

In wrapper type methods[19], feature selection is ”wrapped” around a learning

method: the usefulness of a feature is directly judged by the estimated accuracy

of the learning method. One can often obtain a set with a small number of non-

redundant features, which gives high prediction accuracy, because the characteristics

of the features match well with the characteristics of the learning method. Wrap-

per methods typically require extensive computation to search the best features.

Wrapper methods[19] use a search procedure in the space of possible feature subsets

using some search strategy such as SFS or SBS, and various subsets of features are

generated and evaluated. The evaluation of a specific subset of features is obtained

by training and testing a specific classification model. In other words, the search

for the desired feature subset is “wrapped” around a specific classifier and training

algorithm.

On numerous occasions, wrapper methods[19] are often lambasted because they

seem to be a “brute force” method needing enormous amounts of computation,

but it is not necessarily so. Cost-effective search strategies may be devised. Using

such search strategies does not necessarily mean sacrificing prediction performance.

In fact, it appears to be the converse in some cases: coarse search strategies may

mitigate the problem of overfitting, as illustrated for instance in this issue by the

work of Reunanen (2003). Greedy search strategies seem to be particularly compu-

tationally advantageous and robust against overfitting. They come in two flavors:

forward selection and backward elimination. In forward selection[11], variables are

progressively incorporated into larger and larger subsets, whereas in backward elim-

ination one starts with the set of all variables and progressively eliminates the least

promising ones. Both methods yield nested subsets of variables.

14

Figure 2.3: Sequential Forward Selection and Sequential Backward Elimination

2.4.3 Embedded Methods

In embedded methods the search for an optimal subset of features is built into the

classifier construction. Features are selected as a part of the building of the particular

classifier, in contrast to the wrapper approach, where a classification model is used to

evaluate a feature subset that is selected without using the classifier. The embedded

and wrapper approaches are specific to a given classifier[23].

15

Figure 2.4: A taxonomic summary of feature selection techniques with important
characteristics of each technique

16

2.5 Dimensionality Reduction

Every data entity in a computer is represented and stored as a set of features, for

instance, age, height, weight, and so on. Features can interchangeably be termed

as dimensions, because an entity with N features can also be represented as a mul-

tidimensional point in an N-dimensional space. The process of reducing the initial

feature set composed by N features to a feature set composed by K features with

K < N is called dimensionality reduction. Ideally, the K reduced features would

retain the important characteristics of the original N features[32].

Dimensionality reduction[32] is substantial in many domains like database and

machine learning systems and consequently it offers invaluable results like data com-

pression, better data visualization, improved classification accuracy, fast and efficient

data retrieval, boosting index performance . There exist two important categories of

dimensionality reduction techniques, named feature extraction and feature selection.

Feature extraction also known as feature transformation is the process that finds

a new K dimensions that are a combination of the N original dimensions. The

best known feature extraction techniques are based on projection and compression

methods. Principal component analysis (PCA)[14] and linear discriminant analy-

sis (LDA)[13] are examples of projection methods for unsupervised and supervised

learning respectively. Mutual information and information theory is used in com-

pression method.

In contrast to feature extraction, feature selection aims to retain a subset of

K best features from an original set of N features and the remaining features are

discarded. Feature selection techniques do not alter the original representation of

the features. The best known feature selection techniques are filter, wrappers and

embedded methods.

The dimensionality reduction technique that we used in this dissertation is the

feature selection[11]. While feature selection can be applied to both supervised

and unsupervised learning, we merely focus on the problem of classification here.

The remaining of this chapter provides a brief survey of the most common feature

17

selection approaches that can be found in literature.

2.6 Map-Reduce programming paradigm

The MapReduce programming paradigm[6] is a technique for data processing tool

for Big data, designed by Google in 2003. MapReduce is based on two separate

user-defined primitives: Map and Reduce.

Map function reads the raw data in form of key-value (¡key, value¿) pairs and

transforms them into a set of intermediate ¡key, value¿ pairs, where both the key and

value types must be defined by the user. In the next stage, MapReduce merges all

the values associated with same intermediate key as a list which is called as Shuffle

phase[6]. In the last stage, reduce function takes the grouped output from the maps

and aggregates it into a smaller set of pairs. This process can be visualized in the

below diagram.

The above MapReduce Paradigm is transparent and scalable platform which au-

tomatically processes data in a distributed cluster, relieving the user from technical

details such as data partitioning, fault tolerance or job communication[30].

Apache Hadoop[29] is a well-known open source implementation of MapReduce

for large scale data processing and storage of data across the cluster. Two main mod-

ule of the Hadoop is Hadoop Distributed File System (HDFS) and MapReduce[6].

HDFS is a distributed file system which enables the user to distribute the files across

the several systems. The files in the HDFS[29] are automatically synced throughout

the distribution. Its inability to reuse data through in memory primitives makes the

application of Hadoop unfeasible for many machine learning algorithms

18

Figure 2.5: Data Flow overview of MapReduce

MapReduce and its variants have been highly successful in implementing large-

scale data-intensive applications on commodity clusters. However, most of these

systems are built around an acyclic data flow model that is not suitable for other

popular applications[30]. Whereas, Apache Spark[34] reuses a working set of data

across multiple parallel operations. This includes many iterative machine learn-

ing algorithms, as well as interactive data analysis tools. Apache Spark supports

these applications while retaining the scalability and fault tolerance of MapReduce.

To achieve these goals, Spark introduces an abstraction called resilient distributed

datasets (RDDs)[33]. ”An RDD is a read-only collection of objects partitioned across

a set of machines that can be rebuilt if a partition is lost. Spark can outperform

Hadoop by 10x in iterative machine learning jobs, and can be used to interactively

query a 39 GB dataset with sub-second response time”. [33].

Systems like Dyrad and Map-Reduce-Merge particularly achieve their fault tol-

erance and scalability by providing a programming model where the user creates

acyclic data flow graphs to pass input data through a set of operators. This mainly

allows the underlying system to manage scheduling and to react to faults without

19

user intervention. While this data flow programming model is essential for a large

class of applications, there are applications that cannot be expressed efficiently as

acyclic data flows. In this paper, we focus on one such class of applications: those

that reuse a working set of data across multiple parallel operations[34].

2.7 Apache Spark

Apache Spark, a modified large scale data processing which was developed to solve

the problems of the Hadoop. Spark was introduced as the part of Hadoop ecosys-

tem which take the advantage of Hadoop by using its distributed file system. Spark

framework proposed a set of in-memory computation and analysis with the aim of

processing data more rapidly on distributed environments, up to 100x faster than

Hadoop[34]. It provides the developer with an easy interface accessible through

Scala, Java and Python and has complete machine learning library built-in. MapRe-

duce and its variants have been highly successful in implementing large-scale data-

intensive applications on commodity clusters. However, most of these systems are

built around an acyclic data flow model that is not suitable for other popular ap-

plications. Apache Spark focuses on one such class of applications: those that reuse

a working set of data across multiple parallel operations. This includes many iter-

ative machine learning algorithms, as well as interactive data analysis tools. Spark

supports these applications while retaining the scalability and fault tolerance of

MapReduce. To achieve these goals, Spark introduces an abstraction called resilient

distributed datasets (RDDs)[33].

Spark is based on Resilient Distributed Datasets (RDDs)[33], a special type

of data structure used to parallelize the computation across the cluster. These

parallel structures let us persist and reuse results, cached in memory. A scalable

machine learning library (MLlib) was built on top of spark. The spark MLlib[21]

contains a large set of standard learning algorithms and statistical tools which has

many important functions for knowledge discovery process such as classification,

regression, clustering, optimization or data preprocessing. It provides a high-level

20

API that makes easier for the user to connect multiple machine learning algorithms.

”To efficiently use Apache Spark, developers write a driver program that imple-

ments the high-level control flow of their application and launches various operations

in parallel. Spark provides two main abstractions for parallel programming: resilient

distributed datasets and parallel operations on these datasets (invoked by passing a

function to apply on a dataset)”. [34]

2.7.1 Resilient Distributed Datasets (RDDs)

Resilient Distributed Datasets (RDDs)[33], a distributed memory abstraction that

lets programmers perform in-memory computations on large clusters in a fault-

tolerant manner. RDDs are motivated by two types of applications that current

computing frameworks handle inefficiently: iterative algorithms and interactive data

mining tools. In both cases, keeping data in memory can improve performance by an

order of magnitude. To achieve fault tolerance efficiently, RDDs provide a restricted

form of shared memory, based on coarsegrained transformations rather than fine-

grained updates to shared state. However, we show that RDDs are expressive enough

to capture a wide class of computations, including recent specialized programming

models for iterative jobs, such as Pregel, and new applications that these models do

not capture.

In simple terms, a resilient distributed dataset (RDD) is a read-only collection of

objects partitioned across multiple machines that can be rebuilt if a partition is lost

[a]. The elements of an RDD need not exist in physical storage; instead, a handle

to an RDD contains enough information to compute the RDD starting from data

in reliable storage. This means that RDDs can always be reconstructed if nodes

fail[33].

Spark’s parallel operations fit into the MapReduce[6] model. However, they op-

erate on RDDs that can persist across operations. The need to extend MapReduce

to support iterative jobs was also recognized by Twister, a MapReduce framework

that allows long-lived map tasks to keep static data in memory between jobs. How-

21

ever, Twister does not currently implement fault tolerance. Spark’s abstraction of

resilient distributed datasets is both fault-tolerant and more general than iterative

MapReduce. A Spark program can define multiple RDDs and alternate between

running operations on them, whereas a Twister program has only one map function

and one reduce function. This also makes Spark useful for interactive data analysis,

where a user can define several datasets and then query them. Spark’s broadcast

variables provide a similar facility to Hadoop’s distributed cache, which can dissem-

inate a file to all nodes running a particular job. However, broadcast variables can

be reused across parallel operations[34].

2.7.2 Discretized-Streams(D-Streams)

”Much of “big data” is received in real time, and is most valuable at its time of

arrival. For example, a social network may wish to detect trending conversation

topics in minutes; a search site may wish to model which users visit a new page; and

a service operator may wish to monitor program logs to detect failures in seconds.

To enable these low-latency processing applications, there is a need for streaming

computation models that scale transparently to large clusters, in the same way that

batch models like MapReduce simplified offline processing”. Designing such models

is challenging, however, because the scale needed for the largest applications (e.g.,

realtime log processing or machine learning) can be hundreds of nodes[35]. At this

scale, two major problems are faults and stragglers (slow nodes). Both problems

are inevitable in large clusters, so streaming applications must recover from them

quickly. Fast recovery is even more important in streaming than it was in batch jobs:

while a 30 second delay to recover from a fault or straggler is a nuisance in a batch

setting, it can mean losing the chance to make a key decision in a streaming setting.

Unfortunately, existing streaming systems have limited fault and straggler tolerance.

Most distributed streaming systems, including Storm , TimeStream , MapReduce

Online , and streaming databases , are based on a continuous operator model, in

which long-running, stateful operators receive each record, update internal state, and

22

send new records. While this model is quite natural, it makes it difficult to handle

faults and stragglers. Specifically, given the continuous operator model, systems

perform recovery through two approaches]: replication, where there are two copies

of each node , or upstream backup, where nodes buffer sent messages and replay

them to a new copy of a failed node . Neither approach is attractive in large clusters:

replication costs 2 the hardware, while upstream backup takes a long time to recover,

as the whole system must wait for a new node to serially rebuild the failed node’s

state by rerunning data through an operator. In addition, neither approach handles

stragglers: in upstream backup, a straggler must be treated as a failure, incurring

a costly recovery step, while replicated systems use synchronization protocols like

Flux to coordinate replicas, so a straggler will slow down both replicas[35].

Many “big data” applications must act on data in real time. Running these ap-

plications at ever-larger scales requires parallel platforms that automatically handle

faults and stragglers. Unfortunately, current distributed stream processing models

provide fault recovery in an expensive manner, requiring hot replication or long

recovery times, and do not handle stragglers[35]. A processing model called, dis-

cretized streams (D-Streams), overcomes these challenges. D-Streams enable a par-

allel recovery mechanism that improves efficiency over traditional replication and

backup schemes, and tolerates stragglers. We show that they support a rich set of

operators while attaining high per-node throughput similar to single-node systems,

linear scaling to 100 nodes, sub-second latency, and sub-second fault recovery. Fi-

nally, D-Streams can easily be composed with batch and interactive query models

like MapReduce, enabling rich applications that combine these modes. We imple-

ment D-Streams in a system called Spark Streaming[35].

Though there has been a wide set of work on distributed stream processing,

most previous systems use the same continuous operator model. In this model,

streaming computations are divided into a set of long-lived stateful operators, and

each operator processes records as they arrive by updating internal state (e.g., a table

tracking page view counts over a window) and sending new records in response[35].

23

While continuous processing minimizes latency, the stateful nature of operators,

combined with nondeterminism that arises from record interleaving on the network,

makes it hard to provide fault tolerance efficiently. Specifically, the main recovery

challenge is rebuilding the state of operators on a lost, or slow, node. Previous

systems use one of two schemes, replication and upstream backup [20], which offer

a sharp tradeoff between cost and recovery time. In replication, which is common

in database systems, there are two copies of the processing graph, and input records

are sent to both. However, simply replicating the nodes is not enough; the system

also needs to run a synchronization protocol, such as Flux or Borealis’s DPC, to

ensure that the two copies of each operator see messages from upstream parents in

the same order. For example, an operator that outputs the union of two parent

streams (the sequence of all records received on either one) needs to see the parent

streams in the same order to produce the same output stream, so the two copies

of this operator need to coordinate. Replication is thus costly, though it recovers

quickly from failures[35].

In upstream backup, each node retains a copy of the messages it sent since some

checkpoint. When a node fails, a standby machine takes over its role, and the parents

replay messages to this standby to rebuild its state. This approach thus incurs high

recovery times, because a single node must recompute the lost state by running data

through the serial stateful operator code. TimeStream and MapReduce Online use

this model. Popular message queueing systems, like Storm , also use this approach,

but typically only provide “at-least-once” delivery for messages, relying on the user’s

code to handle state recovery[35].

D-Streams[35] avoid the problems with traditional stream processing by struc-

turing computations as a set of short, stateless, deterministic tasks instead of con-

tinuous, stateful operators. They then store the state in memory across tasks as

fault-tolerant data structures (RDDs) that can be recomputed deterministically.

Decomposing computations into short tasks exposes dependencies at a fine granu-

larity and allows powerful recovery techniques like parallel recovery and speculation.

24

Beyond fault tolerance, the D-Stream model gives other benefits, such as powerful

unification with batch processing.

Finally, to recover from faults and stragglers, both DStreams and RDDs track

their lineage, that is, the graph of deterministic operations used to build them. Spark

tracks this information at the level of partitions within each distributed dataset.

When a node fails, it recomputes the RDD partitions that were on it by re-running

the tasks that built them from the original input data stored reliably in the clus-

ter. The system also periodically checkpoints state RDDs (e.g., by asynchronously

replicating every tenth RDD)5 to prevent infinite recomputation, but this does not

need to happen for all data, because recovery is often fast: the lost partitions can

be recomputed in parallel on separate nodes. In a similar way, if a node straggles,

we can speculatively execute copies of its tasks on other nodes, because they will

produce the same result[34].

Because D-Streams are primarily an execution strategy (describing how to break

a computation into steps), they can be used to implement many of the standard op-

erations in streaming systems, such as sliding windows and incremental processing,

by simply batching their execution into small timesteps. To illustrate, we describe

the operations in Spark Streaming, though other interfaces (e.g., SQL) could also

be supported. In Spark Streaming, users register one or more streams using a func-

tional API. The program can define input streams to be read from outside, which

receive data either by having nodes listen on a port or by loading it periodically

from a storage system (e.g., HDFS). It can then apply two types of operations to

these streams: Transformations, which create a new D-Stream from one or more

parent streams.

Instead of managing long-lived operators, the idea in D-Streams is to structure

a streaming computation as a series of stateless, deterministic batch computations

on small time intervals. For example, we might place the data received every second

(or every 100ms) into an interval, and run a MapReduce operation on each interval

25

to compute a count.

There are two challenges in realizing the D-Stream model. The first is making

the latency (interval granularity) low. Traditional batch systems, such as Hadoop,

fall short here because they keep state in replicated, on-disk storage systems between

jobs. Instead, we use a data structure called Resilient Distributed Datasets (RDDs),

which keeps data in memory and can recover it without replication by tracking the

lineage graph of operations that were used to build it.

Figure 2.6: High-level overview of the Spark Streaming system. Spark Streaming
divides input data streams into batches and stores them in Spark’s memory. It then
executes a streaming application by generating Spark jobs to process the batches.

26

Chapter 3

Methodology

This introductory chapter provides the context and approach for the results dis-

cussed in the following chapters and defines some crucial notation. The chapter

begins with a brief review of our approach, which is the general context for the work

described in this thesis. I explain the goals of data discretization, present the main

feature selection algorithms used in this thesis.

27

Figure 3.1: Feature selection process for batch data.

3.1 Data Discretization

Discretization of numerical data is one of the most influential data preprocessing

tasks in knowledge discovery and data mining. Discretization is considered a data

reduction mechanism because it diminishes data from a large domain of numeri-

cal values to a subset of categorical values. There Is a necessity to use discretized

28

data by many algorithms leveraging the Apache Spark platform[26]. Discretization

causes that the learning methods show remarkable improvements in learning speed

and accuracy. Besides, some decision tree-based algorithms produce shorter, more

compact, and accurate results when using discrete values. Even with algorithms

that can deal with continuous data, learning is less efficient. Nevertheless, any dis-

cretization process generally leads to a loss of information, making the minimization

of such information loss is the main goal of a discretizer[26].

Figure 3.2: A typical discretization process.

3.1.1 MDLP : The Minimum Description Length Principle

Since most real-world applications of classification learning involve continuous-valued

attributes, properly addressing the discretization process is an important problem.

The Minimum Description Length Principle(MDLP)[9] addresses the use of the en-

tropy minimization heuristic for discretizing the range of a continuous-valued at-

tribute into multiple intervals[fayyad1993multi]. Classification learning algorithms

typically use heuristics to guide their search through the large space of possible re-

lations between combination of attribute values and classes. One such heuristic uses

the notion of selecting attributes locally minimizing the information entropy of the

29

classes in a data set[9].

Figure 3.3: A potential within-class cut point.

The attributes in a learning problem may be nominal (categorical), or they may

be continuous(numerical). The term “continuous” is used in the literature to refer

to attributes taking on numerical values (integer or real); or in general an attribute

with a linearly ordered range of values. The above-mentioned attribute selection

process assumes that all attributes are nominal. Continuous-valued attributes are

discretized prior to selection, typically by partitioning the range of the attribute into

subranges. In general, a discretization is simply a logical condition, in terms of one

or more attributes, that serves to partition the data into at least two subsets[9].

Figure 3.4: Decision Trees and Multi-interval Discretization.

3.1.2 MinMax Scaler

MinMax Scaler[24] transforms features by scaling each feature to a given range.

This estimator scales and translates each feature individually such that it is in

the given range on the training set, i.e. between zero and one. The purpose of

attribute discretization is to find concise data representations as categories which

30

are adequate for the learning task retaining as much information in the original

continuous attribute as possible[24].

In this thesis, data has been discretized as integer values in double representation

with a maximum of 127 distinct values.

Figure 3.5: MinMax scaling- maximum of 127 distinct values.

3.2 Pearson Correlation

The Pearson product-moment correlation coefficient is a measure of the strength

of the linear relationship between two variables[2]. It is referred to as Pearson’s

correlation or simply as the correlation coefficient. If the relationship between the

variables is not linear, then the correlation coefficient does not adequately represent

the strength of the relationship between the variables.

The symbol for Pearson’s correlation is ”p” when it is measured in the popula-

tion and ”r” when it is measured in a sample. Because we will be dealing almost

exclusively with samples, we will use ‘r’ to represent Pearson’s correlation unless

otherwise noted[2].

Pearson’s r can range from -1 to 1. An r of -1 indicates a perfect negative linear

relationship between variables, an r of 0 indicates no linear relationship between vari-

ables, and an r of 1 indicates a perfect positive linear relationship between variables.

Figure 1 shows a scatter plot for which r = 1[2].

31

Figure 3.6: A perfect positive linear relationship, r=1.

Figure 3.7: A perfect positive linear relationship, r = -1.

32

Figure 3.8: A scatter plot for which r = 0. Notice that there is no relationship
between X and Y

3.3 Decision Trees

A decision tree is a flowchart-like structure in which each internal node represents

a ”test” on an attribute (e.g. whether a coin flip comes up heads or tails), each

branch represents the outcome of the test, and each leaf node represents a class

label (decision taken after computing all attributes). The paths from root to leaf

represent classification rules[25].

A decision tree consists of three types of nodes[25]:

• Decision nodes – typically represented by squares

• Chance nodes – typically represented by circles

• End nodes – typically represented by triangles

In this thesis, a decision tree model has been designed for network attack clas-

sification. Gini impurity and entropy are used as the impurity during the training

process of the model. Gini is intended for continuous attributes, and Entropy for

attributes that occur in classes. “Gini” will tend to find the largest class, and “en-

tropy” tends to find groups of classes that make up 50 percent of the data[cite].

“Gini” is to minimize misclassification and “Entropy” for exploratory analysis[27].

33

Figure 3.9: Decision Tree model in PySpark for network attack detection using
KDD’99

3.4 mRMR Feature Selection

Feature selection is an important pre-processing tool in data mining. It has been

an active field of research and development for the past three decades [11]. As

the datasets are getting bigger both in terms of instances and feature count in the

fields of biomedical research, intrusion detection and customer relationship manage-

ment, this enormity causes scalability and performance issues in learning algorithms.

Feature selection solves the scalability issue and increases the performance of clas-

sification models by eliminating redundant, irrelevant or noisy features from high

dimensional datasets[11].

34

Feature selection, identifies subsets of data that are relevant to the parameters used

and is normally called Maximum Relevance. These subsets often contain material

which is relevant but redundant and mRMR attempts to address this problem by re-

moving those redundant subsets. mRMR has a variety of applications in many areas

such as cancer diagnosis and speech recognition [2]. Mutual Information is taken

as the basic criterion to find the feature relevance and redundancy. The mutual

information between a feature and class labels defines the relevance of that feature.

Again, the mutual information among different features defines the correlation i.e.,

the redundancy among those features. Now our objective is to find such a feature set

for which the mutual information among the features and the class labels are max-

imized and the mutual information among the features are minimized. Therefore,

the goal of the proposed method is to find the most relevant and least redundant

feature set.[3]

In the era of Big Data, almost every dataset has a characteristic in similar, that

is the large number of features. As a result, selecting the relevant features and ig-

noring the irrelevant and redundant features has become indispensable. However,

when dealing with large amounts of data, most existing feature selection algorithms

do not scale well, and their efficiency may significantly deteriorate to the point of

becoming inapplicable. For these reasons, we propose a distributed approach for

partitioned data using Minimum Redundancy Maximum Relevance (MRMR) fea-

ture selection algorithm on the Apache Spark platform. MRMR feature selection, as

a preprocessing step to machine learning, is highly efficient for dimensionality reduc-

tion, removing unrelated data, improving learning accuracy, and increasing result

comprehensibility. Nevertheless, the recent surge in dimensionality of data raises

a serious challenge to multiple prevailing feature selection methods with respect to

coherence and efficacy.

Minimum redundancy feature selection is an algorithm frequently used in a

method to accurately identify characteristics of genes and phenotypes and narrow

down their relevance and is usually described in its pairing with relevant feature

35

selection as Minimum Redundancy Maximum Relevance (mRMR)[7].

On the other hand features can be selected to be mutually far away from each

other while still having ”high” correlation to the classification variable. This scheme,

termed as Minimum Redundancy Maximum Relevance (mRMR) selection has been

found to be more powerful than the maximum relevance selection[7].

As a special case, the ”correlation” can be replaced by the statistical dependency

between variables. Mutual information can be used to quantify the dependency. In

this case, it is shown that mRMR is an approximation to maximizing the depen-

dency between the joint distribution of the selected features and the classification

variable[7]. Studies have tried different measures for redundancy and relevance mea-

sures. A recent study compared several measures within the context of biomedical

images. “The optimal characterization condition often means the minimal clas-

sification error. In an unsupervised situation where the classifiers are not speci-

fied,minimal error usually requires the maximal statistical dependency of the target

class c on the data distribution in the subspace Rm (and vice versa). This scheme

is maximal dependency (Max-Dependency).” [7]

3.4.1 Feature Selection Process

One of the most popular approaches to realize Max Dependency is maximal relevance

(Max-Relevance) feature selection: selecting the features with the highest relevance

to the target class c. Relevance is usually characterized in terms of correlation

or mutual information, of which the latter is one of the widely used measures to

define dependency of variables. In this paper, we focus on the discussion of mutual-

information-based feature selection. Given two random variables x and y, their

mutual information is defined in terms of their probabilistic density functions[7].

In Max-Relevance, the selected features xi are required, individually, to have the

largest mutual information with the target class c, reflecting the largest dependency

on the target class. In terms of sequential search, the m best individual features,

i.e., the top m features in the descent ordering are often selected as the m features.

36

In feature selection, it has been recognized that the combinations of individually

good features do not necessarily lead to good classification performance. In other

words, “the m best features are not the best m features”. Some researchers have

studied indirect or direct means to reduce the redundancy among features and select

features with the minimal redundancy (Min-Redundancy)[7].

Their work in the paper[7] focuses on three issues that have not been touched

in earlier work. First, although both Max Relevance and Min-Redundancy have

been intuitively used for feature selection, no theoretical analysis is given on why

they can benefit selecting optimal features for classification. Thus, the first goal of

this paper was to present a theoretical analysis showing that mRMR is equivalent

to Max-Dependency for first-order feature selection, but is more efficient. Second,

they have proposed how to combine mRMR with other feature selection methods

(such as wrappers) into a two-stage selection algorithm. By doing this, we show

that the space of candidate features selected by mRMR is more characterizing. This

property of mRMR facilitates the integration of other feature selection schemes to

find a compact subset of superior features at very low cost. In our approach, we have

stressed that a well-designed filter method, such as mRMR, can be used to enhance

the wrapper feature selection, in achieving both high accuracy and fast speed. Our

method uses an optimal first-order incremental selection to generate a candidate list

of features that cover a wider spectrum of characteristic features. These candidate

features have similar generalization strength on different classifiers. They facilitate

effective computation of wrappers to find compact feature subsets with superior clas-

sification accuracy. Our algorithm is especially useful for large-scale feature/variable

selection problems where there are at least thousands of features/variables, such as

gene selection. Of note, the purpose of the mRMR approach studied in this disser-

tation is to maximize the dependency. This typically involves the computation of

multivariate joint probability, which is nonetheless difficult and inaccurate. Com-

bining both Max Relevance and Min-Redundancy criteria, the mRMR incremental

selection scheme provides a better way to maximize the dependency. In this case,

37

the difficult problem of multivariate joint probability estimation is reduced to esti-

mation of multiple bivariate probabilities (densities), which is much easier. In most

situations, mRMR reduces the feature selection time dramatically for continuous

features and improves the classification accuracy significantly.

The main benefit of MRMR feature set is that by reducing mutual redundancy

within the feature set, these features capture the class characteristics in a broader

scope. Features selected within the MRMR framework are independent of class

prediction methods, and thus do not directly aim at producing the best results

for any prediction method. The fact that MRMR features improve prediction for

all four methods we tested confirms that these features have better generalization

property. This also implies that with fewer features the MRMR feature set can

effectively cover the same class characteristic space as more features in the baseline

approach. Additionally, questing the global optimum strictly might lead to data

overfitting. On the contrary, mRMR seems to be a practical way to achieve superior

classification accuracy in relatively low computational complexity.

According to [27], Peng et al., “ Our experimental results show that, although,

in general, more mRMR features will lead to a smaller classification error, the decre-

ment of error might not be significant for each additional feature, or occasionally

there could be fluctuation of classification errors. For example, in Fig. 3(will be

added), the fifth mRMR feature seemingly has not led to a major reduction of the

classification error produced with the first four features. Many factors count for

these fluctuations. One cause is that additional features might be noisy. Another

possible cause is that the mRMR scheme in (6) takes difference of the relevance

term and the redundancy term. It is possible that one redundant feature also has

relatively large relevance, so it could be selected as one of the top features. A greater

penalty on the redundancy term would lessen this problem. A third possible cause

is that the cross-validation method used might also introduce some fluctuations of

the error curve. While a more detailed discussion on this fluctuation problem and

other potential causes is beyond the scope of this paper, a way to solve this prob-

38

lem is to use other feature selectors to directly minimize the classification error and

remove those potentially unneeded features, as what we do in the second stage of

our algorithm”.

3.5 Streaming Feature Selection

Figure 3.10: Feature selection process for streaming data.

Much of “big data” is received in real time, and is most valuable at its time of

arrival. For example, a social network may wish to detect trending conversation

topics in minutes; a search site may wish to model which users visit a new page; and

a service operator may wish to monitor program logs to detect failures in seconds.

To enable these low-latency processing applications, there is a need for streaming

39

computation models that scale transparently to large clusters. Spark Streaming is

one such computation model which can be used for real-time feature selection[35].

Streaming feature selection on Apache Spark supports flexible ordering on the

generation and testing of features. Features can be generated dynamically based on

which features have already been added to the model. One can also test the same

feature more than once, as we do in this section(by using multiple batches). New

features can be generated in many ways. Each way produces a new feature class for

use in streaming. For example, in addition to the n original features, n2 pairwise

interaction terms can be formed by multiplying all n2 pairs of features together. In

practice, we generate three interaction streams: (1) interactions of features that have

already been selected with themselves (2) interactions of the selected features with

the original features, and (3) all interactions of the original features. This requires

dynamic generation of the feature stream, since the interaction terms (1) and (2)

can not be specified in advance, as they depend on which features have already been

selected.

The dynamic feature generation and selection schemes, namely (1) and (2) above

yield significantly more accurate models on real data sets compared to the ap-

proaches which do not use these dynamic interactions. Interaction terms are one

example of a more general class of generated features, including features formed

from transformations of the original features (square root, log, etc.), or combina-

tions of them including, for instance, PCA. Such generated features frequently lead

to substantially better predictive models, but it is not obvious which of the trans-

formations will be most useful. By putting each into its own stream, one can try

many transformations at relatively little cost. In contrast, in a conventional batch

method, one would need to look at all the features in all the streams, at significant

computational cost and, worse, at the cost of statistical power of needing to use a

larger penalty to control against overfitting. Including separate feature classes for

original features, gives improvement in predictive power.

40

Figure 3.11: Batch correlation on streaming data.

41

Chapter 4

Implementation and Evaluation

This chapter mainly focuses on the implementation and evaluation of the prototype

system that detects intrusions with a limited set of features. To carry out our

experimentation we have used the dataset provided by UCI KDD Archive[5]. It

is a labeled dataset containing 494021 instances of packet flows. Preprocessing

techniques like removing duplicates, removing null values and normalization have

been applied on our data set by using Python. Once the data set was preprocessed,

multiple(KNN,SVM,J-48) classifiers have been created with the help of the training

instances and the respective labels. Finally, we analyzed the performance of our

features by running it in on various number of nodes and discovered that as we

increase the number of nodes the time taken to perform feature selection diminishes

by a large margin.

4.1 Implementation

The dataset which we got from UCI KDD[5] is a labelled comma separated file. With

the help of Spark context, we converted the file into RDD (Resilient Distributed

Dataset) which is the datatype which resides in memory for computation. Spark

gives us the flexibility to convert RDD into data frames which helps us to perform

computation in efficient manner. Once all our dataset is converted into Spark data

frame it can be distributed across the worker nodes for computation.

42

4.1.1 Data set description

The dataset which we used in our experiment to access K-NN classifier for Net-

work Intrusion Detection is KDDCup’99 dataset[5] and it is developed by MIT at

Lincoln’s laboratory. This dataset is derived from the Defense Advanced Research

Project Agency (DARPA) packet traces which comprises of variety military network

territory simulated intrusions. The KDD dataset is also utilized in the Third In-

ternational competition that happened on Knowledge Discovery and Data Mining

Tools. The goal of this competition was to establish a network detector to find

“good” connections and “bad” connections[nskh2016principle].

The entire KDDCup’99 dataset (extract the kddcup.data.gz file [5]) consist of

4,898,431 records in which every record is of 41 features which are detailed in the

below table. We utilized only the 10% part (extract the kddcup.data 10 percent.gz

file[nskh2016principle]) of KDD dataset for the purpose of training and testing.

The 10% KDDCup’99 data consist of 494,069 records (each containing 41 features)

which are categorized into 4 types of attack. The categories of attack and their

distinct types are presented in Table below.

43

No Features Description
1 duration Duration of the Connection
2 protocol type Connection protocol (e.g. TCP, UDP,

ICMP)
3 service Destination service
4 flag Status flag of the connection
5 source bytes Bytes sent from source to destination
6 destination bytes Bytes sent from destination to source
7 land 1 if successfully logged in; 0 otherwise
8 wrong fragment Number of wrong fragment
9 urgent Number of urgent packets
10 hot Number of “hot” indicator
11 failed logins Number of failed logins
12 Logged in 1 if successfully logged in; 0 otherwise
13 num compromised Number of “compromised” condition
14 root shell 1 if root shell is obtained; 0 otherwise
15 su attempted 1 if “su root” command attempted; 0 other-

wise
16 num root Number of “root” accesses
17 num file creations Number of file creation operations
18 num shells Number of shell prompts
19 num access file Number of operations on access control files
20 num outbound cmds Number of outbound commands in a ftp ses-

sion
21 is hot login 1 if login belongs to the “hot” list; 0 other-

wise
22 is guest login 1 if login is the “guest” login; 0 otherwise
23 count Number of connections to the same host as

the current connection in the past 2 seconds
24 srv count Number of connections to the same service

as the current connection in the past two sec-
onds

25 serror rate % of connections that have ”SYN” errors
26 srv serror rate % of connections that have ”SYN” errors
27 rerror rate % of connections that have ”REJ” errors
28 srv rerror rate % of connections that have ”REJ” errors
29 same srv rate % of connections to the same service
30 diff srv rate % of connections to different services
31 srv diff host rate % of connections to different hosts
32 dst host count Count of connections have the same destina-

tion host
33 dst host srv count Count of connections have the same destina-

tion host and using the same service
34 dst host same srv rate % of connections having the same destination

host and using the same service
35 dst host diff srv rate % of different service on the current host

Table 4.1: Features list and Description of KDDCup’99 Dataset
[nskh2016principle]

44

No Features Description
36 dst host same src port rate % of connections to the current host having

the same src port
37 dst host srv diff host rate % of connections to the same service coming

from different host
38 dst host serror rate % of connections to the current host that

have an S0 error
39 dst host srv serror rate % of connections to the current host and

specified service that have an S0 error
40 dst host rerror rate % of connections to the current host that

have an RST error
41 dst host srv rerror rate % of connections to the current host and

specified service that have an RST error

Table 4.2: Features list and Description of KDDCup’99 Dataset
[nskh2016principle]

Table 4.3: Attack Classification & data types

[Normal]

Attack Types Class

Normal Normal
apache2

Back
land

mailbomb
neptune

pod
processtable

smurf
teardrop
udpstorm

[U2R]

Attack Types Class

buffer overflow U2R
loadmodule

perl
ps

rootkit
sqlattack

xterm

[Probe]

Attack Types Class

ipsweep Probe
mscan

portsweep
saint
satan
nmap

[R2L]

Attack Types Class

ftp write R2L
guess passwd

sendmail
imap

multihop
named

phf
snmpgetattack

snmpguess
warezmaster

worm
xlock

httptunnel
xsnoop

wazerclient

45

Figure 4.1: Class distribution(skewed) of KDD Cup 1999.

In the machine learning literature, it has been pointed out that little work has

been done in the area of classification by machine learning when there is a highly

skewed distribution of the class labels in the data set. In many cases, a classifier

tends to be biased towards the majority class resulting in poor classification rates

on minority classes. As we can see in the training and test class distribution of the

KDD cup 1999 data U2R and R2L attacks constitute 0.24 percent of the training

dataset but these attacks take up 5.27 percent in the test data[5].

46

Figure 4.2: Class distribution of training data.

It is important to note that the test data is not from the same probability

distribution as the training data, and it includes specific attack types not in the

training data. This makes the task more realistic. Some intrusion experts believe

that most novel attacks are variants of known attacks and the “signature” of known

attacks can be sufficient to catch novel variants. The datasets contain a total of 24

training attack types, with an additional 14 types in the test data only.

47

Figure 4.3: Class distribution

4.2 Evaluation

In the KDD’99 dataset we have applied Minimum Redundancy Relevance Feature

selection[7] algorithm to calculate which features give us more information about

our datasets. After application of the above algorithm we found that the following

columns give us the more information about our dataset as shown in Table 4.4. We

used the above 25 columns to train our KNN classifier.

We have applied two feature selection techniques (MRMR feature selection and

Tree-based feature selection) to the KDD’99 intrusion detection dataset. We have

selected the top k (k is set to 7,25) feature subsets for the experiments. After the

feature selection, we used 3 learners, KNN, Decision-Tree J48, SVM to build clas-

sification models on the datasets with various selected subset of features. The clas-

sification models are evaluated in terms of the AUC performance metric, Precision,

Recall, F-Measure, Overall Accuracy. The results of the experiments are displayed

48

in this section. The process of calculating AUC value for a table is performed in

three steps:

• Identify the row and column for which the AUC needs to be calculated. This

helps in selecting a ranker and a learner.

• Ranker is applied to the dataset to get the ranking list. The top k features are

selected from the ranking list. The value of k can be determined by checking

the table for which the AUC is calculated.

• Classification model is built using the dataset with selected features from the

previous step.

We also compared the results from the subset of features with the results from the

complete set of features (base dataset). We found that the classification performance

is improved even after a significant number of features were removed from the original

dataset. This demonstrates that feature selection was successfully applied to the

KDD’99 Intrusion detection dataset.

In our dataset, we have total of 42 features including class attribute. Most

of the data mining algorithms had shown inefficiency and are not effective due to

high dimensionality [11]. To deal with this problem we performed feature selection

process using information-gain [11] to reduce the features. We performed feature

selection and achieved success in ranking the attributes based on information gain.

After the dimensionality reduction, we split the dataset into two parts training and

testing sets to validate our model. The composition of training set from the dataset

is 60 percent and the rest is the testing set. After attaining the training set we had

removed the zero-day attacks to train classifier and named all the attacks in testing

set as ‘zero-days’ which were removed from training set.

49

Figure 4.4: Different types of metrics used.

In the above table the term TP denotes True Positive, TN denotes True Negative,

FP denotes False Positive and FN denotes False Negative. TPR, FPR denotes

true positive rate and false positive rates respectively. In cyber-security analytics

prediction is true positive if the predicted value is an attack and actual value is

also an attack, false positive if the predicted value is an attack and actual value

is benign, true negative if the predicted value is a benign and actual value is also

a benign, false negative if the predicted value is a benign and actual value is an

attack. True positive rate is same as Recall and false positive rate is defined as the

probability of false alarm [16]. ROC is region of convergence and more bump on

the top of diagonal line represents high performance of the classifier and vice versa.

Diagnostic type of ROC is illustrated in below figure,

50

Figure 4.5: AUC-ROC curve.

51

4.2.1 mRMR feature selection on full dataset(non-partitioned)

MRMR feature selection has been performed on the KDD’99 full dataset and the

feature score for every attribute it in the dataset is displayed in the image below.

Features with highest mutual information have high score. When k = 25, we get

the following feature subset out of 42 features.

Figure 4.6: mRMR feature selection on full dataset.

52

score Features score Features
0.9630 service 0.5531 logged in
0.9452 same srv rate 0.4068 dst host count
0.9119 count 0.3708 dst host srv diff host rate
0.8747 flag 0.2134 srv count
0.8498 dst host diff srv rate 0.1999 srv diff host rate
0.8226 dst host same srv rate 0.1546 dst host rerror rate
0.7932 dst host srv count 0.1489 protocol type
0.6735 dst host serror rate 0.1338 dst host srv rerror rate
0.6554 serror rate 0.0959 rerror rate
0.6302 dst host srv serror rate 0.0783 hot
0.6158 srv serror rate 0.0704 wrong fragment
0.6158 num access files

Table 4.4: Feature Score of Top 25 Attributes

53

4.2.2 mRMR feature selection on partitioned dataset(n=2)

MRMR feature selection has been performed on the KDD’99 partitioned (2 halves)

dataset and the feature score for every attribute it in the KDD 1st half dataset is

displayed in the image below. Features with highest mutual information have high

score. When k = 25, we get the following feature subset out of 42 features.

Figure 4.7: mRMR feature selection on partitioned dataset.

54

The feature score for every attribute it in the KDD 2nd half dataset is displayed

in the image below. Features with highest mutual information have high score.

When k = 25, we get the following feature subset out of 42 features.

Figure 4.8: mRMR feature selection on partitioned dataset.

55

4.3 Classifier Results

The tables below summarize the classification performance in terms of AUC, Preci-

sion, Recall, and F-1 measure for the three classifiers with top k(k=7,25) features.

The tables also display model performance on base dataset.

For our experimentation, we have used 10 percent KDD 1999 dataset [18]. This

dataset contains half a million data points. It contains 42 features including label

feature which comprises of 22 attack types and a normal. To train and test the

classifier we had split the dataset into 60 percent training and 40 percent training

set. To identify the zero-day attacks we trained the classifier with 8 attacks out of

22 attack types. In test dataset, we had marked 14 attacks that were removed from

training dataset as zero-day attacks. The below table gives a list of the attacks that

were marked as zero-day attack and non-zero-day attacks. For our experimental

graphical representation, we had given unique number to each attack as shown in

the below tables.

4.3.1 K-nearest neighbors’ (k=3)

We deployed a KNN classifier and set k value as 3. We split the whole dataset into

two parts, training set and testing set in the ration of 3:2. After the creation of

training set, we had removed the zero-day attacks which are mentioned in the above

table 1. After training we had tested the classifier using test data that is streamed

continuously using spark streaming context. Out of 14 zero-day attacks our classifier

had predicted 10 zero-day attacks and for rest of them it predicted as benign.

Sample type Number of instance

Test data 36398
Zero day attacks 5683
Non-Zero attacks 6665
Attack samples 12348
Normal samples 24050

Table 4.5: Depicts the values and the classified instances with k=3

56

Metric Count

True positives 11702
False positives 50
True negatives 24000
False negatives 646

Table 4.6: Depicts the metrics and its count with k=3

Classification metric Value in percentage

Precision 99.572
Recall 94.768

F-measure 97.313
Accuracy of Zero-day prediction 91.836

Accuracy of Non-zero day prediction 97.267
Overall Accuracy 98.225

Table 4.7: Depicts the classification accuracy of our model with k=3.

Figure 4.9: Performance of KNN with k=3 (bar-chart).

57

Figure 4.10: Performance of KNN with k=3 (line-graph).

4.3.2 Decision-tree J-48

Sample type Number of instance

Test data 36398
Zero day attacks 5683
Non-Zero attacks 6665
Attack samples 12348
Normal samples 24050

Table 4.8: Depicts the values and the classified instances using J48

Metric Count

True positives 10827
False positives 1366
True negatives 22684
False negatives 1521

Table 4.9: Depicts the metrics and its count using J48

58

Classification metric Value in percentage

Precision 88.796
Recall 87.6822

F-measure 88.471
Accuracy of Zero-day prediction 79.92

Accuracy of Non-zero day prediction 94.83
Overall Accuracy 92.06

Table 4.10: Depicts the classification accuracy of our J48 model.

Figure 4.11: Performance of J48 (Bar-chart).

Figure 4.12: Performance of J48 (Line-graph).

59

4.3.3 Support Vector Machine

Sample type Number of instance

Test data 36398
Zero day attacks 5683
Non-Zero attacks 6665
Attack samples 12348
Normal samples 24050

Table 4.11: Depicts the values and the classified instances

Metric Count

True positives 11125
False positives 11
True negatives 24039
False negatives 1223

Table 4.12: Depicts the metrics and its count using SVM

Classification metric Value in percentage

Precision 99.902
Recall 90.095

F-measure 88.471
Accuracy of Zero-day prediction 88.210

Accuracy of Non-zero day prediction 91.70
Overall Accuracy 96.609

Table 4.13: Depicts the classification accuracy of our SVM model.

60

Figure 4.13: Performance of SVM (Bar-chart).

Figure 4.14: Performance of SVM (Line-graph).

61

4.3.4 Classifier Comparison

Figure 4.15: Performance of all three classifiers(Bar-chart).

Figure 4.16: Performance of all three classifiers(Line-graph).

62

Figure 4.17: Accuracy score of all three classifiers.

Figure 4.18: Accuracy score of all three classifiers.

63

From the above tables, we can extrapolate that the KNN classifier which follows

the nearest neighbor heuristics has been highly efficient in terms of attack identifica-

tion when compared to the other classifiers Decision-Tree J-48 and Support Vector

Machines(SVM). The reason why J-48 wasn’t as efficient as KNN is because the data

is continuous and the concept of information has no effect on data distribution. In

the same way SVM has not set the effective boundary to separate the classes.

For the KNN classifier it is shown that the precision is 99.572 percent, which

means our system had predicted the normal samples correctly with almost 0 percent

error rate. After plotting the accuracy and classifier performance we had calculated

true positive rate and false positive rate for different values of k ranging from 0 to

3 and then we had plotted ROC curve to make sure that our system is stable in

identification of zero day attacks as in the below table.

K value TPR FPR

1 0.92 0.12
2 0.939 0.09
3 0.94768 0.03

Table 4.14: ROC Metrics for KNN(k=1,2,3)

Figure 4.19: ROC-Curve.

64

4.4 Streaming Feature Selection

Streaming feature selection on Apache Spark supports flexible ordering on the gen-

eration and testing of features. Features can be generated dynamically based on

which features have already been added to the model. One can also test the same

feature more than once, as we do in this section (by using multiple batches). New

features can be generated in many ways. Each way produces a new feature class for

use in streaming. For example, in addition to the n original features, n2 pairwise

interaction terms can be formed by multiplying all n2 pairs of features together.

In practice, we generate three interaction streams: (1) interactions of features that

have already been selected with themselves (2) interactions of the selected features

with the original features, and (3) all interactions of the original features. This re-

quires dynamic generation of the feature stream, since the interaction terms (1) and

(2) cannot be specified in advance, as they depend on which features have already

been selected.

Figure 4.20: Tree based feature selection algorithm psuedo-code

65

The dynamic feature generation and selection schemes, namely (1) and (2) above

yield significantly more accurate models on real data sets compared to the ap-

proaches which do not use these dynamic interactions. Interaction terms are one

example of a more general class of generated features, including features formed

from transformations of the original features (square root, log, etc.), or combina-

tions of them including, for instance, PCA. Such generated features frequently lead

to substantially better predictive models, but it is not obvious which of the trans-

formations will be most useful. By putting each into its own stream, one can try

many transformations at relatively little cost. In contrast, in a conventional batch

method, one would need to look at all the features in all the streams, at significant

computational cost and, worse, at the cost of statistical power of needing to use a

larger penalty to control against overfitting. Including separate feature classes for

original features, gives improvement in predictive power

66

Streaming feature selection has been performed on multiple batches of data

(KDD’99). For our experiments, the batch size is set to 10,000 with the total

number of batches being 11. So, our total training values are 110,000. Every batch

is streamed with an interval of 2 seconds. A tree-based approach is used to calculate

the features and Pearson correlation for calculating the correlation score of every

batch with respective to the full batch feature scores. The below figure depicts the

correlation score of all the batches (1-11).

Figure 4.21: Batch correlation on streaming data.

67

4.4.1 Feature score comparison of highly correlated batches

From figure 4.20, we can say that the Batch-1, Batch-2, and Batch-6 are highly

correlated with the full dataset. It basically means that the samples from these

batches are highly influential in predicting the class label (i.e; attack v/s normal

in our case). Since these batches are highly correlated, we can compare the feature

scores of top 5 features from these 3 batches with the feature scores of the target(full-

dataset) to see if they are actually similar to each other. Figure 4.21, 4.22, and

4.23 display the feature scores of top 5 features from highly correlated batches and

target(full-dataset).

• Correlation score for batch-1 : 0.781127

• Correlation score for batch-1 : 0.877196

• Correlation score for batch-1 : 0.906813

Figure 4.22: Batch-1 v/s Target(full dataset).

68

Figure 4.23: Batch-2 v/s Target(full dataset)

Figure 4.24: Batch-6 v/s Target(full dataset).

69

Chapter 5

Conclusion & Future Works

In this thesis, we presented a two-phase approach for feature selection. In the first

phase a batch based Minimum Redundancy and Maximum Relevance (mRMR) algo-

rithm is used with “correlation coefficient” and “mutual information” as statistical

measure of similarity. This phase helped in improving the classification perfor-

mance by removing redundant and unimportant features. In the second phase, we

presented a stream based tree-based feature selection method that allowed dynamic

generation and selection of features, while taking advantage of the different feature

classes and the fact that they are of different sizes and have different fraction of

good features. Experimental results showed that this phase was computationally

less expensive than comparable “batch” methods that do not take advantage of the

feature classes and expect all features to be known in advance. The k-nearest neigh-

bors’ algorithm (k-NN) classifier (linear and nonlinear), Decision-tree J-48, Support

Vector Machines(SVM)[31] were used to evaluate the classification accuracy of our

approach.

We believe that the selection algorithms we suggested in this thesis can work well

on many problems, but it is important to understand that any selection algorithm is

based on some assumptions. If these assumptions are violated the algorithm can fail.

On the other hand, if a stronger assumption holds, another algorithm that assumes

this stronger assumption might outperform the first one. For example, a method

that ranks individual features by assigning a score to each feature independently

70

assumes that complex dependency on sets of features does not exist or is negligible.

This assumption narrows the selection hypothesis space, and therefore allows for

generalization using fewer instances. Thus, if this assumption is true, we would

expect such a ranking to work better than methods that do not assume this, i.e.

methods that consider subsets and are able to reveal complex dependencies (as these

methods look in a larger hypothesis space). However, we cannot expect such rankers

to work well when this independency assumption is not true.

We have also reviewed feature selection and explained the basic concept of dif-

ferent feature selection methods: filter, wrapper and hybrid model. We reviewed

two filter based feature ranking techniques and one streaming based feature ranking

technique. They are information gain, gain ratio, mutual information evaluation.

We examined classification models that are built using various classification tech-

niques such as Decision-tree J48, k-nearest neighbor, support vector machine. We

took a brief review of the evaluation criteria used to evaluate the classification mod-

els. We have also introduced methods for feature ranking technique that can help

build stable and robust classification models.

Future work will involve experiments on the datasets from different domains.

The mRMR feature selection and tree-based feature selection algorithm will be

tested on more datasets with different backgrounds. The difference in performance

and accuracy of different feature selection approaches will be evaluated. Statistical

analysis tests can be extended to different tests. ANOVA tests will be performed

on individual fold values for each classifier.

At present our thesis has mainly concentrated on filter based feature ranking

techniques. In the future, we would like to explore different approaches such as em-

bedded feature selection techniques and its applicability to our streaming approach.

71

Bibliography

[1] Aijun An and Nick Cercone. “Discretization of continuous attributes for learn-
ing classification rules”. In: Pacific-Asia Conference on Knowledge Discovery
and Data Mining. Springer. 1999, pp. 509–514.

[2] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. “Pearson cor-
relation coefficient”. In: Noise reduction in speech processing. Springer, 2009,
pp. 1–4.

[3] Christopher M Bishop. “Pattern recognition”. In: Machine Learning 128 (2006),
pp. 1–58.

[4] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. “Semi-supervised
learning (chapelle, o. et al., eds.; 2006)[book reviews]”. In: IEEE Transactions
on Neural Networks 20.3 (2009), pp. 542–542.

[5] KDD Cup. “Dataset”. In: available at the following website http://kdd. ics.
uci. edu/databases/kddcup99/kddcup99. html 72 (1999).

[6] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing
on large clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

[7] Chris Ding and Hanchuan Peng. “Minimum redundancy feature selection from
microarray gene expression data”. In: Journal of bioinformatics and computa-
tional biology 3.02 (2005), pp. 185–205.

[8] Pedro Domingos. The master algorithm: How the quest for the ultimate learn-
ing machine will remake our world. Basic Books, 2015.

[9] Usama Fayyad and Keki Irani. “Multi-interval discretization of continuous-
valued attributes for classification learning”. In: (1993).

[10] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of sta-
tistical learning. Vol. 1. Springer series in statistics Springer, Berlin, 2001.

[11] Isabelle Guyon and André Elisseeff. “An introduction to variable and feature
selection”. In: Journal of machine learning research 3.Mar (2003), pp. 1157–
1182.

[12] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. “Unsupervised learn-
ing”. In: The elements of statistical learning. Springer, 2009, pp. 485–585.

[13] Alan Julian Izenman. “Linear discriminant analysis”. In: Modern multivariate
statistical techniques. Springer, 2013, pp. 237–280.

[14] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.

[15] Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia. Learn-
ing spark: lightning-fast big data analysis. ” O’Reilly Media, Inc.”, 2015.

72

[16] John T Kent. “Information gain and a general measure of correlation”. In:
Biometrika 70.1 (1983), pp. 163–173.

[17] Kenji Kira and Larry A Rendell. “A practical approach to feature selection”.
In: Proceedings of the ninth international workshop on Machine learning. 1992,
pp. 249–256.

[18] Kenji Kira and Larry A Rendell. “The feature selection problem: Traditional
methods and a new algorithm”. In: AAAI. Vol. 2. 1992, pp. 129–134.

[19] Ron Kohavi and George H John. “Wrappers for feature subset selection”. In:
Artificial intelligence 97.1-2 (1997), pp. 273–324.

[20] Ron Kohavi and Dan Sommerfield. “Feature Subset Selection Using the Wrap-
per Method: Overfitting and Dynamic Search Space Topology.” In: KDD. 1995,
pp. 192–197.

[21] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al.
“Mllib: Machine learning in apache spark”. In: Journal of Machine Learning
Research 17.34 (2016), pp. 1–7.

[22] Patrenahalli M. Narendra and Keinosuke Fukunaga. “A branch and bound
algorithm for feature subset selection”. In: IEEE Transactions on Computers
26.9 (1977), pp. 917–922.

[23] Amir Navot. “On the role of feature selection in machine learning”. PhD thesis.
Hebrew University, 2006.

[24] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. “Scikit-learn: Machine learning in Python”.
In: Journal of Machine Learning Research 12.Oct (2011), pp. 2825–2830.

[25] J. Ross Quinlan. “Induction of decision trees”. In: Machine learning 1.1 (1986),
pp. 81–106.

[26] Sergio Ramırez-Gallego, Salvador Garcıa, Héctor Mouriño-Talın, David Martınez-
Rego, Verónica Bolón-Canedo, Amparo Alonso-Betanzos, José Manuel Benıtez,
and Francisco Herrera. “Data discretization: taxonomy and big data chal-
lenge”. In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Dis-
covery 6.1 (2016), pp. 5–21.

[27] Alfréd Rényi et al. “On measures of entropy and information”. In: Proceedings
of the fourth Berkeley symposium on mathematical statistics and probability.
Vol. 1. 1961, pp. 547–561.

[28] James G Shanahan and Laing Dai. “Large scale distributed data science us-
ing apache spark”. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM. 2015, pp. 2323–
2324.

[29] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
“The hadoop distributed file system”. In: Mass storage systems and technolo-
gies (MSST), 2010 IEEE 26th symposium on. IEEE. 2010, pp. 1–10.

73

[30] Manas Srivastava, C Sabarinathan, Rishi Sankineni, and TM Manoj. “Mining
Of Big Data Using Map-Reduce Theorem”. In: IOSR Journals (IOSR Journal
of Computer Engineering) 1.17 (), pp. 49–55.

[31] Johan AK Suykens and Joos Vandewalle. “Least squares support vector ma-
chine classifiers”. In: Neural processing letters 9.3 (1999), pp. 293–300.

[32] Joshua B Tenenbaum, Vin De Silva, and John C Langford. “A global geomet-
ric framework for nonlinear dimensionality reduction”. In: science 290.5500
(2000), pp. 2319–2323.

[33] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. “Re-
silient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing”. In: Proceedings of the 9th USENIX conference on Networked Sys-
tems Design and Implementation. USENIX Association. 2012, pp. 2–2.

[34] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and
Ion Stoica. “Spark: Cluster Computing with Working Sets.” In: HotCloud
10.10-10 (2010), p. 95.

[35] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica.
“Discretized Streams: An Efficient and Fault-Tolerant Model for Stream Pro-
cessing on Large Clusters.” In: HotCloud 12 (2012), pp. 10–10.

[36] Xiaojin Zhu. “Semi-supervised learning literature survey”. In: (2005).

74

	Introduction
	Significance of the Problem
	Summary of the Approach
	Contribution of the Thesis

	Background and Related Work
	Machine Learning
	Learning Algorithms
	Supervised Learning
	Unsupervised Learning
	Semi-Supervised Learning

	Feature Selection
	Feature Ranking

	Feature Subset Selection
	Filter Methods
	Wrapper Methods
	 Embedded Methods

	Dimensionality Reduction
	Map-Reduce programming paradigm
	Apache Spark
	Resilient Distributed Datasets (RDDs)
	Discretized-Streams(D-Streams)

	Methodology
	Data Discretization
	MDLP : The Minimum Description Length Principle
	MinMax Scaler

	Pearson Correlation
	 Decision Trees
	 mRMR Feature Selection
	Feature Selection Process

	 Streaming Feature Selection

	Implementation and Evaluation
	Implementation
	Data set description

	Evaluation
	mRMR feature selection on full dataset(non-partitioned)
	mRMR feature selection on partitioned dataset(n=2)

	 Classifier Results
	K-nearest neighbors’ (k=3)
	 Decision-tree J-48
	Support Vector Machine
	Classifier Comparison

	 Streaming Feature Selection
	Feature score comparison of highly correlated batches

	Conclusion & Future Works
	Bibliography

