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HOW LONG DO RESTORED J. Leighton Reid,2 Sarah J. Wilson,3 Gillian S.
Bloomfield,4 Megan E. Cattau,5,6 Matthew E.

ECOSYSTEMS PERSIST?1 Fagan,7 Karen D. Holl,8 and Rakan A. Zahawi9

ABSTRACT

Why do some restored ecosystems persist for centuries while others are quickly converted to alternative land uses or land
covers? We propose that restored ecosystems have a temporal dimension that is variable, often finite, and likely predictable to
some extent based on attributes of stakeholders, environment, and governance. The longevity of a restored ecosystem carries
strong implications for its capacity to support biodiversity and provide ecosystem services, so an emerging challenge for
restoration ecology is to predict the circumstances under which restored ecosystems persist for longer or shorter periods of time.
We use a case study in tropical forest restoration to demonstrate one way that restored ecosystem longevity can be approached
quantitatively, and we highlight opportunities for future research using restoration case study repositories, practitioner surveys,
and historical aerial imagery. Much remains to be learned, but it is likely that decision-makers and practitioners have
considerable leverage to increase the probability that restored ecosystems persist into the future, extending the benefits of
contemporary restoration initiatives.
Key words: Ecological restoration, longevity, restoration success, survival analysis, tropical forest restoration.

When people designate land for restoration, ideally Given the long time periods needed for most
that land begins a recovery process that will continue ecosystems to fully recover, an important question is:
in perpetuity without further degradation. In some Why do some restored ecosystems achieve greater

cases, lands do recover for long time periods (e.g., longevity than others? To the best of our knowledge,

Vallauri et al., 2002; Freitas et al., 2006), yet in this question has not been addressed, although it is

many cases, lands recover to some degree and then implicit in most conceptualizations of what consti-

are degraded again and repurposed for agriculture or tutes restoration success (SER, 2004; Zedler, 2007;
Le et al., 2012; McDonald et al., 2016). Here, weother uses. For instance, many restored grasslands
discuss some of the factors that could influence therevert to crop fields when commodity prices are high
expected longevity of a restored ecosystem, and we(Secchi et al., 2009). The length of time that a site is
illustrate one quantitative approach to studyingallowed to recover carries strong implications for its
restored ecosystem longevity using a case study incapacity to provide habitat for biodiversity and
tropical forest restoration.benefits to society (Rey Benayas et al., 2009;

Moreno-Mateos et al., 2012; Bayraktarov et al.,
C F2016). Carbon storage, endangered species habitat, ONCEPTUAL RAMEWORK

wild edible plants, and overall plant species richness We conceive longevity to be the maximum age that
are a few of the many attributes that tend to increase a restored ecosystem attains before being converted to
over time in regenerating ecosystems (Suganuma & an alternative land use (Fig. 1). In the ideal situation
Durigan, 2015; Crouzeilles et al., 2016; Sutherland et when a restored ecosystem continues to persist as
al., 2016). such, longevity is indefinite but bounded at the lower
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end by the time elapsed from the start of restoration to areas with low tree cover were sometimes viewed as
the present. In this context, a ‘‘restored ecosystem’’ is ‘‘unused,’’ thereby putting them at risk of being co-
one that has been managed for ecosystem recovery, opted for cattle grazing during the dry season,
regardless of whether success has been achieved effectively resetting secondary succession (Zahawi
(Zedler, 2007). The concept of longevity can be et al., 2014). Large-scale natural disturbances can
applied to many kinds of ecosystems, and many land also force land use or land cover transitions in
uses falling under the banner of restoration, sensu restored ecosystems, either directly (e.g., climate-
lato (McDonald et al., 2016; Aronson et al., 2017). related forest diebacks accelerated by massive
Here, we focus on restored forests, reflecting our wildfires in the western United States; Falk, 2017)
collective expertise as well as the international or indirectly (e.g., when climate change makes
movement to restore forests and forested landscapes previously unsuitable areas fit for profitable agricul-

globally (UNCBD, 2012; UNCCD, 2015; UNFCCC, ture; Titeux et al., 2016). Variance in the suscepti-

2015; IUCN, 2016). bility of restored ecosystems to such disturbances will

We propose that the main factors that influence manifest as variance in their longevities.

restoration longevity are stakeholder preferences and Stakeholder-environment interactions, including

capabilities, environmental attributes, and the rules restoration, are mediated by governance, which can

of governance that influence the relationship between influence the prospects for restored ecosystem

stakeholders and the environment. Stakeholders are longevity indirectly through rules, incentives, and

people who have a vested interest in a restored restrictions. Perhaps the clearest influence of gover-

ecosystem and some control over how it is managed; nance is through land tenure systems. When
government policies cause stakeholders to lackthese may often be landowners, but can also include
confidence in their rights to use or transfer landorganizations, institutions, and communities. Specific
(e.g., due to lack of legal title or a history of landpredictions about the influence of stakeholders,
grabbing; Byron, 2001), stakeholders are generallyenvironment, and governance are provided in Table
unwilling to begin or continue investing in any long-1; each of these factors is subject to temporal change,
term land use, including restoration and forestinteractions, and feedback from restoration activities.
conservation (Unruh, 2008; Lamb, 2014; MansourianOne general prediction is that restored ecosystems
& Vallauri, 2014; Robinson et al., 2014).are likely to persist for longer periods of time when
Challenges to restored ecosystem longevity arestakeholders have long-term restoration goals and

likely to be additive, interactive, and temporallysufficient resources to pursue them, including
dynamic. Deforestation moratoria, for example, aretechnical capacity and funding (Holl & Howarth,
government regulations that limit forest clearing based2000; Le et al., 2014). For instance, forest
on variables such as canopy cover and forest height,rehabilitation projects in the Philippines received
which vary by forest age and forest type (e.g., Costamore upkeep (fire breaks and forest patrols) and were
Rica, 1996). When a restoration project producesre-cleared less often when they had long-term
forest that meets the legislated criteria, reverting tomaintenance and monitoring plans (Chokkalingam
another land use becomes legally complicated. Inet al., 2006). Yet, long-term monitoring plans are
northeastern Costa Rica, Fagan et al. (2013) estimatedfrequently neglected (Holl & Cairns, 2002; Murcia et
that some forests may reach these cutoffs after eight toal., 2015). By the same token, forests restored with
12 years of recovery, and they showed empirically that

short-term financing plans are likely to face strong
older native reforestations were cleared at lower rates

economic incentives for conversion after funding
than young reforestations following the passage of the

resources or incentives have expired (Lamb, 2014).
law (Fig. 2). However, the law may have also created a

Many forest restorations financed by carbon markets
perverse incentive to clear younger second growth

are committed to maintaining a ‘‘permanent’’ carbon
before it matures (Sierra & Russman, 2006), high-

reservoir for only 20 to 50 years, for example
lighting the fact that policies not only interact with

(Galatowitsch, 2009)—decades less than the time
ecosystem resilience but can also influence restoration

required to saturate carbon sequestration in many
longevity differentially over different timescales.

regenerating forests (Chazdon et al., 2016).
In addition, environmental factors may interact

CASE STUDY: LONGEVITY OF RESTORED TROPICAL FOREST
with stakeholder decisions, or in some cases

IN COSTA RICA
constrain restoration longevity independently. The
speed of forest recovery, for instance, can affect how To illustrate how longevity can be approached
stakeholders perceive their options with regard to quantitatively, we draw on a tropical forest restoration
regenerating forest. In Costa Rica, grassy restoration experiment in southern Costa Rica. Between 2004
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and 2006, 54 experimental restoration plots (0.25 ha ration with private landowners; 36 plots (12 sites)
each) were established at 18 sites on former cattle were established on leased private lands owned by
pastures in the premontane wet forest zone between Costa Rican farmers, and 18 plots (six sites) on lands
the Las Cruces Biological Station (88470N, 828570W) owned by North Americans (who received no
and the town of Agua Buena (88440N, 828560W) in financial compensation) or by the Organization for
Coto Brus County (1100–1400 m.s.m., ;3–4 m Tropical Studies, a nongovernmental organization.
precip. yr. 1). Each site contained three plots, which During the course of the experiment, 12 plots (four
were randomly assigned one of three restoration sites) changed ownership, from Costa Rican to North
treatments: natural regeneration, applied nucleation American; three of these would have been converted
(small patches of trees planted to mimic natural to agriculture had they not been purchased. Rental
succession), and tree plantations (for details see Holl agreements for restoration plots on leased farmlands
et al., 2011). This experiment was done in collabo- were made for 5-year periods, and landowners were

Table 1. Attributes contributing to restored ecosystem longevity and the time frames over which they are expected to exert
influence.

Attributes 1–10 yrs. 10–100 yrs. 100–1000 yrs. References

Governance attributes

Land designations (e.g., protected area,
indigenous territory)

þ þ þ Andam et al. (2008); Nolte et al. (2013);
Carranza et al. (2014); but see Mascia &
Pailler (2011)

Land tenure system (e.g., significance
and history of tenure status)

þ þ þ Byron (2001); Le et al. (2012)

Legal restrictions and incentives (e.g.,
deforestation moratoria, payments for
ecosystem services)

þ þ þ Sierra & Russman (2006); Fagan et al. (2013)

Stakeholder attributes

Community engagement þ þ Bass et al. (1995); Higgs (2003); Pulhin &
Pulhin (2003); Le et al. (2012); Mansourian
& Vallauri (2014); Wilson (2015); Lazos-
Chavero et al. (2016)

Effective leadership þ þ Gooch & Warburton (2009); Le et al. (2012)
Technical capacity (e.g., species-site
matching, site preparation)

þ þ Stanturf et al. (2001); Le et al. (2012)

Land tenure security þ þ þ Byron (2001); Oviedo (2005); Unruh (2008);
Lamb (2014); Mansourian & Vallauri
(2014); Robinson et al. (2014)

Organizational resilience þ þ þ Gooch & Warburton (2009)
Resources (e.g., current and projected
funding)

þ þ þ Holl & Howarth (2000); Galatowitsch (2009);
Brancalion et al. (2012); Martin (2016)

Long-term vision (e.g., monitoring and
adaptive management plans)

þ þ Holl & Cairns (2002); Vallauri et al. (2002);
Chokkalingam et al. (2006); Le et al.
(2012); Mansourian & Vallauri (2014)

Environmental attributes

Ecosystem resilience (e.g., speed of
recovery)

þ þ Holl & Aide (2011); Fagan et al. (2013);
Zahawi et al. (2014)

Intensity of past land uses þ þ Stanturf et al. (2001); Chazdon (2008); Holl &
Aide (2011)

Climate change susceptibility (e.g.,
projected forest dieback)

þ þ þ Falk (2017); Williams et al. (2007); Allen et
al. (2010)

Disturbance regime (e.g., stand-
replacing floods, fires)

þ þ þ Stanturf et al. (2001); Falk (2017)

Landscape context (e.g., proximity to
seed sources, roads)

þ þ þ Stanturf et al. (2001); Laurance et al. (2002);
Jacquemyn et al. (2003); Dunwiddie et al.
(2009); Wyman & Stein (2010); Holl &
Aide (2011); Tambosi et al. (2013);
Crouzeilles & Curran (2016)

Suitability for alternative land uses (e.g.,
mining, agriculture)

þ þ þ Latawiec et al. (2015); Titeux et al. (2016)
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paid approximately what they might have made
farming cattle ($150–400 USD ha 1 yr. 1).
Analyzing restoration longevity was not the original

purpose of this experiment; the purpose was to test a
novel strategy for tropical forest restoration. However,
over the decade that this project has been running,
some plots were deforested and/or converted to
alternative land uses (e.g., cattle pasture, banana
plantation), providing an opportunity to evaluate
longevity. Longevity calculations were made as of
summer 2016; thus, maximum potential longevity for
any plot is 10 to 12 years. We analyzed longevity
using Kaplan-Meier survival analysis with log rank
tests (Appendix 1).
In the 10 to 12 years since this experiment began,

36 restoration plots (67%) continued to recover, but
18 plots (33%) were deforested and/or converted
back to agricultural land uses. Average longevity was
9.9 6 4.1 years (mean 6 SD). Plot conversions were
evenly distributed among restoration strategies (six
natural regeneration, seven applied nucleation, five
plantations), but Costa Rican farmers under rental
contracts converted land at higher rates than other
landowners, resulting in significantly shorter periods
under management for forest recovery (Fig. 3). The
difference in restoration longevity between lands
owned by North Americans (11.8 6 1.3 years) and
Costa Ricans (7.4 6 5.1 years) probably reflects
differing views on the economic value of agricultural
land; many Costa Rican landowners received some or
most of their income from farming, whereas foreigners
did not. In addition, there may have been an
interaction between ownership and the potential
suitability of the land for agriculture, as lands owned
by North Americans tended to be more severely

degraded (pers. obs.). Moreover, this case study
highlights the importance of local buy-in for restored
ecosystems to persist (Murcia et al., 2015).

DISCUSSION

Our premise is that restored ecosystems have a
temporal dimension that is variable, often finite, and
likely predictable to some extent based on attributes
of stakeholders, environment, and governance.
Whereas longevity is important to the total value of

Figure 1. Restored ecosystem longevity. To operationalize this concept for forests, ‘‘degraded’’ can be replaced with ‘‘non-
forest’’ and ‘‘restored’’ can be replaced with ‘‘forest.’’

Figure 2. Relationship between native reforestation age in
years and the annual rate of loss of native reforestations in
northeastern Costa Rica, a country with a deforestation ban.
Native reforestation includes natural forest regeneration and
tree plantations using native tree species. Source: Fagan et al.
(2013).
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a restored ecosystem over its lifetime, there will
certainly be cases where the need for restoration is
great and immediate but the potential for longevity is
limited. For instance, planting a Great Green Wall
across the northern Sahel entails serious technical
and societal challenges in a demanding environment
(Sacande & Berrahmouni, 2016), but the alterna-
tive—desertification of large parts of Africa—has
severe social and environmental ramifications. In
such cases, it is worth considering that there are
probably multiple pathways to achieving long-term
restoration; restoration projects with low longevity
potential by one measure may still have improved
prospects by other means. In the highlands of
Madagascar, for example, land tenure and funding
continuity are precarious, and grassland fires are an
annual threat to regenerating forests; but these
limitations may be overcome by strong community
support, as when 200 villagers self-organized to put
out a forest fire at the Ankafobe restoration area (C.
Birkinshaw, pers. comm.).
A potential criticism of this line of research is that

disturbance and ecological succession are cyclical,
and therefore, restored ecosystem longevity should
not be idealized in a way that ignores or excludes
natural disturbance regimes. We note that restored
ecosystem longevity is not necessarily equivalent to
‘‘time since disturbance.’’ Restoration is a human-
environment relationship that can and often does
span significant disturbances, some of which are

critical to ecosystem development (e.g., fire in
Missouri, U.S.A., woodlands; McCarty, 1998). Addi-
tionally, long-undisturbed ecosystems sometimes
possess rare and unique values (e.g., habitat for rare
species; Dunk & Hawley, 2009), and in such cases it
may be important to maintain not only the temporal
continuity of the land use (i.e., restoration) but also of
the land cover (i.e., undisturbed forest), particularly
when disturbances are large and severe while
restored ecosystems are small and at risk of
population extirpations.
If restored ecosystem longevity is to be pursued, an

emerging challenge for restoration ecologists is to
develop predictive models, as medical researchers
have done to improve outcomes in human longevity
(Passarino et al., 2016). We used a simple,
illustrative example from a well-documented, repli-
cated experiment, but future work will require more
diverse and more representative cases. One source for
these data may be historical aerial imagery; sequenc-
es of images can reveal when some ecosystems (e.g.,
forests) emerged, persisted, and were cleared over
large areas (e.g., Zahawi et al., 2015). Digital
repositories also house large collections of restoration
case studies (ELTI, 2016; SERI, 2016), which could
serve as a starting point for longevity studies. There
are many examples of restoration projects started less
than 100 years ago, and centenarian projects are less
abundant but cases do exist (Vallauri et al., 2002;
Freitas et al., 2006). Finally, many restoration
practitioners will know of restored sites that have
persisted or were converted over varying time
periods, but documenting these events could be
challenging since researchers and practitioners alike
prefer not to highlight unsuccessful projects (Zedler,
2007; Suding, 2011). A key consideration for future
studies will be identifying a statistical sample that is
unbiased by the tendency for longer-running and
more successful projects to be more detectable (Lortie
et al., 2007).
Much remains to be learned, but it is likely that

decision-makers and practitioners have considerable
leverage to increase the probability that restored
ecosystems persist into the future. Locally, practi-
tioners can engage communities to build stakeholder
support and facilitate training to improve technical
capacity. Programmatically, project managers can
prioritize restoration in sites to minimize competition
for alternative land uses (Latawiec et al., 2015). And
at a national scale, politicians can pass legislation
that incentivizes long-term management and penal-
izes destructive activities. Moreover, international
restoration commitments are currently dominated by
hectare-based pledges to restore large areas of young

Figure 3. Effect of land ownership by Costa Rican farmers
(N¼ 24 plots) versus North Americans (N¼ 30 plots) on the
longevity of restored tropical forests in southern Costa Rica.
Four sites that transferred ownership from Costa Rica to North
America during the experiment are coded here as North
American, reflecting their final ownership. See Appendix 1 for
details.
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forest by 2020 or 2030 (IUCN, 2016), but if restored Crouzeilles, R. & M. Curran. 2016. Which landscape size

ecosystem longevity is at least partially controllable, best predicts the influence of forest cover on restoration
success? A global meta-analysis on the scale of effect. J.then an ambitious, confident country could go even Appl. Ecol. 53: 440–448.

farther. A truly long-term commitment would be to Crouzeilles, R., M. Curran, M. S. Ferreira, D. B.
restore a million hectares of 100-year-old forest by Lindenmayer, C. E. V. Grelle & J. M. Rey Benayas.
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forest restoration success. Nat. Commun. 7: 11666.2320.
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