

APPROVAL SHEET

Title of Thesis: The Hybrid Task Graph Scheduler

Name of Candidate: Timothy James Blattner

Ph.D. in Computer Science,

2016

Thesis and Abstract Approved:
Dr. Milton Halem

Research Professor

Department of Computer Science and

Electrical Engineering

Date Approved:

ABSTRACT

Scalability of applications is a key requirement to gaining performance in hybrid

and cluster computing. Implementing code to utilize multiple accelerators and CPUs is

difficult, particularly when dealing with dependencies, memory management, data locality,

and processor occupancy. The Hybrid Task Graph Scheduler (HTGS) is designed to

increase programmer productivity to develop applications for single nodes with multiple

CPUs and accelerators. Current task graph schedulers provide APIs, directives, and

compilers to schedule work on nodes; however, many fail to expose the locality of data

and often use a single address space to represent memory resulting in inefficient data

transfer patterns for accelerators. HTGS merges dataflow and traditional task graph

schedulers into a novel model to assist developers in exposing the parallelism and data

locality of their algorithm. With the HTGS model, an algorithm is represented at a

high level of abstraction and modularizes the computationally intensive components as

a series of concurrent tasks. Using this approach, the model explicitly defines memory

for each address space and provides interfaces to express the locality of data between

tasks. The result achieves the full performance of the node comparable to the best of

breed implementations of algorithms such as matrix multiplication and LU decomposition.

The performance gains are demonstrated with a modest effort using the HTGS C++ API,

which improves programmer productivity with obtaining that performance.

The Hybrid Task Graph Scheduler

by
Timothy Blattner

Thesis submitted to the Faculty of the Graduate School

of the University of Maryland in partial fulfillment

of the requirements for the degree of

Ph.D. in Computer Science

2016

c© Copyright Timothy Blattner 2016

I would like to dedicate this thesis to my brother John Blattner. His strong will and

determination through his life and fight against cancer continues to be an inspiration to

me. Although John is not with us anymore, he still lives on in my heart as I strive to better

the world and to hopefully one day help the fight against cancer.

Additionally, I would like to dedicate this thesis to my new born son Benjamin and my wife

Kimberly. Throughout my writing of this thesis, my wife was just a few months from

delivering our son. During this time, both of them were my motivators to help me keep my

focus and write. Shortly after I finished writing, our son was born and he is a joyful baby

boy that continues to motivate me.

ii

ACKNOWLEDGMENTS

I would like to thank Milton Halem, Yelena Yesha, John Dorband, Shujia Zhou, and

Walid Keyrouz for their help and guidance through this long and arduous journey. I would

also like to thank Mary Brady, the National Institute of Standards and Technology, and the

Center for Hybrid Multicore Productivity Research for providing me funding throughout

my work. Thank you to my family, particularly my parents for their encouragement. Most

importantly, to my wife Kimberly and our new baby Benjamin, their encouragement and

patience have helped me push through the many struggles and long hours while working

on this research.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 INTRODUCTION . 1

1.1 Background . 1

1.2 Hybrid Pipeline Workflows . 4

1.3 Motivation . 7

1.4 Contents . 9

Chapter 2 THESIS STATEMENT . 10

2.1 Problem Definition . 11

2.2 Contributions . 12

Chapter 3 RELATED WORK . 19

3.1 Map Reduce Frameworks . 20

3.1.1 Hadoop . 20

3.1.2 Spark . 20

3.1.3 Map Reduce in MPI . 21

3.2 Dataflow Graphs . 21

3.2.1 Heterogeneous Dataflow using Anthill 22

iv

3.2.2 Qilin . 23

3.2.3 Kaapi . 23

3.2.4 TensorFlow . 24

3.3 Task Graphs . 25

3.3.1 OpenMP Tasks . 25

3.3.2 QUARK . 26

3.3.3 Dryad . 27

3.3.4 StarPU . 27

3.3.5 Pegasus . 28

3.3.6 Intel Threading Building Blocks 28

3.4 Concurrent Collections (CnC) . 29

3.4.1 Multi-core Concurrent Collections 29

3.4.2 CnC-CUDA . 29

Chapter 4 THE HYBRID TASK GRAPH SCHEDULER MODEL 31

4.1 Scheduling – Bookkeepers . 33

4.2 Memory Management . 35

4.3 Scaling – Execution Pipelines . 36

4.4 Algorithm Design Methodology for HTGS 39

Chapter 5 HYBRID TASK GRAPH SCHEDULER C++ IMPLEMENTATION 41

5.1 Core API . 41

5.2 User API . 46

5.3 Hello World – Hadamard Product . 54

Chapter 6 CASE STUDY 1: IMAGE STITCHING 59

6.1 Problem Description . 60

6.2 Contributions . 60

6.2.1 Organization . 61

6.3 Image Stitching Algorithm . 61

6.4 Computation . 62

6.5 Implementations . 66

v

6.5.1 Reference Implementations . 67

6.5.2 Pipelined GPU Implementation 72

6.6 HTGS Microscopy Image Stitching . 75

6.7 Discussion . 76

Chapter 7 CASE STUDY 2: MATRIX MULTIPLICATION 80

7.1 Matrix Multiplication on the CPU Results 84

7.2 Matrix Multiplication on the GPU using HTGS 87

7.3 Matrix Multiplication on the GPU Results 89

7.4 Discussion . 92

Chapter 8 CASE STUDY 3: LU DECOMPOSITION 94

8.1 Block LUD CPU Results . 98

8.2 Block+Panel LUD . 100

8.3 Block+Panel LUD CPU Results . 102

8.4 LUD on the GPU . 103

8.5 Block LUD GPU Results . 105

8.6 Block+Panel LUD on the GPU . 110

8.7 Block+Panel LUD on the GPU Results . 113

8.8 Discussion . 118

Chapter 9 CONCLUSIONS . 120

9.1 Future Work . 122

Appendices . 124

Appendix A HTGS DOCUMENTATION 125

REFERENCES . 126

vi

LIST OF TABLES

6.1 Operation Counts & Complexities . 67

6.2 Profile of Reference Sequential Implementations 69

6.3 Runtime and speedup results of the reference and hybrid pipeline workflow

implementations. 77

6.4 Runtime results of the HTGS Prototype for hybrid microscopy image

stitching. 78

7.1 Matrix multiplication OpenBLAS vs HTGS Runtime for 16k2 and 32k2

matrices in memory. 84

7.2 OpenBLAS vs HTGS Runtime for 16k2 and 32k2 matrices on disk. 85

7.3 Matrix multiplication cuBLAS-XT vs HTGS Runtime for 16k2 and 32k2

matrices on GPUs. 90

8.1 Block LU decomposition HTGS CPU runtimes. 99

8.2 LU decomposition OpenBLAS CPU runtimes. 100

8.3 Block+Panel LU decomposition HTGS CPU runtimes. 103

8.4 Block LU decomposition HTGS GPU runtimes 10000 to 40000 unknowns. 106

8.5 Block LU decomposition HTGS runtimes 50000 to 70000 unknowns. . . . 107

8.6 LU decomposition MAGMA one GPU runtimes. 108

8.7 Block+Panel LU decomposition HTGS GPU runtimes (optimal block sizes). 114

8.8 LU decomposition MAGMA multi-GPU runtimes. 116

vii

LIST OF FIGURES

1.1 Image stitching dataflow . 4

1.2 One second profile of image stitching implementation using one thread

with GPU (Simple-GPU) profile. Demonstrates multiple gaps between

computing relative displacements between neighbors. 5

1.3 0.2 second profile of image stitching implementation using one thread with

GPU (Simple-GPU) profile. Zooms in on one of the gaps from Figure 1.2 . 6

1.4 One second profile of image stitching implementation using hybrid pipeline

workflows with GPU (Pipelined-GPU) profile. Shows overlapping of data

transfer with compute. 6

1.5 0.2 second profile of image stitching implementation using hybrid pipeline

workflows with GPU (Pipelined-GPU) profile. Zooms in on a section of

the profile from Figure 1.4 . 6

1.6 1 second profile of image stitching implementation using hybrid pipeline

workflows with execution pipelines across 2 GPUs. 7

4.1 HTGS task graph. 31

4.2 HTGS bookkeeper task with IRule interfaces for scheduling management. . 34

4.3 HTGS memory manager task. 35

4.4 HTGS NVIDIA CUDA task. 37

4.5 HTGS execution pipeline task. 38

5.1 HTGS task scheduler thread call graph. 43

5.2 HTGS static memory manager, where T is the type of memory. 45

5.3 HTGS dynamic memory manager, where T is the type of memory. 45

5.4 HTGS user managed memory manager. The type is void * as there is no

memory that is allocated or freed by this manager, but rather is managed

entirely by the programmer. 46

5.5 Example data implementations for adding two numbers and returning the

sum. 47

5.6 Example task implementation that adds two values and produces the sum. . 48

5.7 Example task graph creation. 50

viii

5.8 Task graph visualization for add task task graph from Figure 5.7 The graph

input and graph output show the number of active connections for that edge.

The task shows the number of threads that will be bound to that task. 51

5.9 Example runtime usage for handling input and output data from the task

graph in Figure 5.7. 52

5.10 Example runtime output from Figure 5.7. 52

5.11 Hadamard product block decomposition. 55

5.12 Hadamard product block decomposition dataflow graph. 56

5.13 Hadamard product block decomposition task graph. 56

5.14 Hadamard product block decomposition block size impact on runtime. . . . 57

5.15 Hadamard product block decomposition task graph with memory managers. 58

6.1 Data Flow of Computation for Two Adjacent Images 64

6.2 Relative Displacement of Adjacent Images 65

6.3 Fourier Cross Correlation Coefficients . 66

6.4 Grid Relative Displacements . 66

6.5 Data Flow in Sequential GPU Implementation 68

6.6 CUDA Profile of Reference GPU Implementation 71

6.7 Pipelined GPU Structure . 71

6.8 CUDA Profile of Pipelined workflow GPU Implementation 73

6.9 Hybrid image stitching task graph (machine with 1 GPU). 75

6.10 Hybrid image stitching with execution pipeline 76

7.1 Block matrix multiplication. 80

7.2 Matrix multiplication dataflow. 83

7.3 Matrix multiplication task graph. 83

7.4 Runtimes for 16k2 matrices on disk at varying block sizes and thread

configurations. 86

7.5 Runtimes for 32k2 matrices on disk at varying block sizes and thread

configurations. 87

7.6 Matrix multiplication GPU data traversal. 88

7.7 Matrix multiplication GPU task graph, 1 pipeline. 89

7.8 Matrix multiplication GPU task graph, 2 pipelines. 89

7.9 Runtimes for 16k2 matrices on the GPU with varying block sizes. 91

7.10 Runtimes for 32k2 matrices on the GPU with varying block sizes. 92

ix

8.1 Block LU decomposition. 95

8.2 LU decomposition dataflow. 95

8.3 Block LU decomposition task graph on the CPU. 97

8.4 Block+Panel LU decomposition. 101

8.5 Block+Panel LU decomposition on the CPU. 102

8.6 Block LU decomposition task graph on the GPU. 104

8.7 HTGS Block LU decomposition Max Q size profile for 70000 unknowns

with 2000 block size on the GPU. 109

8.8 Window update. 111

8.9 Block+Panel LU decomposition HTGS task graph for GPU with execution

pipeline and sliding window. 111

8.10 LU Decomposition HTGS vs MAGMA on GPUs for 60000 unknowns at

varying block sizes. 117

8.11 LU Decomposition HTGS vs MAGMA on GPUs for 70000 unknowns at

varying block sizes. 118

x

1

Chapter 1

INTRODUCTION

1.1 Background

Hybrid clusters now play a prominent role in high performance computing; they

make up four of the top ten fastest supercomputers as of Jun 2016 (TOP500 2016).

These petascale clusters consist of nodes that contain one or more CPUs with one or

more co-processors (Intel Xeon Phi (Intel 2015)/NVIDIA Tesla (NVIDIA 2015)). The

next generation of hybrid architectures will contain fat cores coupled with many thin

cores/accelerators on a single chip, as seen on Intel’s Knights Landing (Sodani et al.

2016) and NVIDIA’s DGX-1 (NVIDIA 2016b), (Foley 2014). Each single fat node can

be thought of as high performance computing in the small. Programming for these nodes

for performance requires special consideration for data locality and parallelism to minimize

data motion while maximizing the arithmetic density of computations applied to the data

(Ang et al. 2014).

High-level programming models are needed to aid developers with obtaining performance

on these hierarchical computational systems. The model must have a clear representation

for data locality and coarse-grained parallelism to be able to properly utilize both the

CPUs and the co-processors. Previously, a hybrid node contained one or more CPU

processors, which submitted compute intensive work to a single co-processor. Algorithms

tuned for these systems require rework to scale on systems that contain multiple CPUs

scheduling work for multiple co-processors. Distributing work among multiple GPUs is

challenging to implement. Ideally, an algorithm’s implementation will need to overlap

computation with data transfers to ensure the transmission to/from all of the GPUs do

not overwhelm the overall runtime. Additionally, newer interconnects such as NVLink,

2

now require simultaneous multi-GPU bi-directional data transfers to saturate the wider bus

(NVIDIA-NVLink 2016).

The Hybrid Task Graph Scheduler (HTGS) model is one such high-level programming

model that aids developers in utilizing these desktop super computers. There are four

attributes that the HTGS model provides. First, the model uses coarse-grained parallelism

by distributing work concurrently across computational tasks. Second, dependencies are

satisfied using dataflow representations of algorithms and micro-schedulers managed by

bookkeepers, which hold the global state of the computation. Third, scalability is handled

by execution pipelines that prescribe data based on decomposition strategies, which can

be used to scale for multi-GPU systems. Finally, the model uses an explicit memory

representations to express data locality, which tunes a task graph to support memory release

based on access patterns. Using these attributes, the productivity of a programmer is

increased as there is a simple procedure to follow that enables high utilization for fat nodes.

The primary addition that the HTGS model provides is the merging of dataflow semantics

and task graph scheduling.

Dataflow is often used in digital signal processing software environments to model the

interaction among heterogeneous devices. These interactions are laid out using a dataflow

graph that consists of vertices that define computational functions and edges that connect

vertices based on data dependencies. HTGS uses the dataflow graph semantics to assist in

modularizing an algorithm’s computationally intensive and logical operations to formulate

concurrent execution assuming data rates can pipeline within the graph.

Task graph schedulers define a mechanism for scaling computation among multi-core

CPUs. Using an API, such as OpenMP tasks, a task queue is created by inserting tasks

with various descriptors that describe data dependencies between tasks. The task queue is

ordered based on these data dependencies and a CPU thread pops the task from the queue

and begins processing that task. The interaction between the tasks within the queue forms

a task graph; however, the task graph representation is lost in the implementation. There

are post-processing tools available to extract the task graph and visualize the path of the

execution. The notion of a shared queue and thread pool are adapted into HTGS and are

distributed among a task graph, which is formulated from the dataflow representation. The

runtime system that was developed for HTGS distributes threads to tasks rather than a pool

of threads waiting to be assigned a task. This allows for a thread to bind to a specific task

and all contexts that are created by that task will be bound to that thread. This enables

3

for accelerators to be bound to specific tasks without the need to context switch the GPU

context between threads. Threads are awakened when data is available for its task and

begin processing the task with that data. If a task is computationally intensive then multiple

instances of that task are created with each new instance bound to a separate thread. Each

task shares an input and output thread safe queue among the multiple threads to safely

distribute data among the threads.

Combining dataflow and task graphs in HTGS provides two main attributes that

impact programmer productivity. First, the analysis phase of representing an algorithm in

HTGS is not lost in the implementation. This means that all of the decisions that were made

during implementation can be easily mapped back to the analysis phase as the physical task

graph is created and scheduled within the implementation. Second, the threading model

enables efficient scalability for multi-core CPUs and accelerators as threads are bound to

physical tasks, which can then instantiate contexts for accelerators.

Traditional approaches to parallelism requires significant programmer effort to fully

utilize complex hybrid systems; identifying parallelism, handling synchronization, and

managing data distribution and locality (Chamberlain, Callahan, & Zima 2007). The

effort spent analyzing the parallelism of an algorithm often does not map well into the

implementation for hybrid systems. This is often leads to mishandling of data motion and

memory capacities, which ends up with poor CPU and GPU utilization.

The issues that programmers face is demonstrated in our previous work (Blattner

2013). We observed that directly porting compute-intensive functions from a sequential

implementation to the GPU did not yield sufficient performance improvements. This was

due to the low utilization of the GPU, a result of the default synchronous approach to

CPU-GPU memory copies. This led us to develop an implementation based on hybrid

pipeline workflow systems (Blattner 2013), which are designed to keep GPUs and CPUs

busy while overlapping data movement with computations. This approach stays within

memory limits and operates across multiple GPUs, but requires a significant amount of

programmer effort to implement. The HTGS model is a generalization of the hybrid

pipeline workflow system, which combines elements from dataflow semantics and task

graph scheduling.

4

1.2 Hybrid Pipeline Workflows

The hybrid pipeline workflow system is a technique to schedule tasks on both CPU

and GPU resources simultaneously, while effectively managing dependencies and memory

between tasks. The system also overlaps memory transfers with computation, keeps

multiple GPUs occupied, and utilizes all of the available compute resources. A hybrid

workflow system is implemented by setting up computational tasks, bound to pools of

threads, and connecting them with FIFO queues. Dependency management is done by

setting up bookkeepers between computational tasks, which manage the global state of

the algorithm. Incorporating this methodology into an implementation was a challenge;

however, there were significant performance gains.

The performance of using hybrid pipeline workflows is demonstrated in image

stitching (Blattner et al. 2014). Image stitching is used to address the scale mismatch

between the dimensions of the microscope’s field of view and the plate under study. To

image a plate, a motorized stage acquires a grid of overlapping images. The positions

of these images are computed by stitching neighboring tiles together. The positions are

used to construct the image mosaic. The algorithm consists of three compute stages: (S1)

the fast Fourier transform (FFT) of an image, (S2) the phase correlation image alignment

method (PCIAM) (Kuglin & Hines 1975b) that acts on two neighboring images’ FFTs, and

(S3) the cross correlation factors (CCFs) between two neighboring images focused around

a maximum intensity point identified from the PCIAM, as shown in Figure 1.1. These

operations are done for each pair of neighboring images within a grid of images.

Fi

Fj

Ii

Ij

FFTi

FFTj

NCCij NCC−1
ij

maxij CCF1..4
ij (x, y)ij

S1 S2 S3

PCIAM

Figure 1.1: Image stitching data flow

Our implementation of image stitching started with a sequential CPU implementation,

5

which was ported to the GPU (Simple-GPU). In Simple-GPU, NVIDIA’s CUDA (NVIDIA

CUDA 2011) is used to process images and data is copied to the GPU as needed. The

results showed a 14% speedup compared to the sequential CPU implementation. Data

motion between co-processors and CPUs dominates the performance. Using the existing

compute kernels from Simple-GPU and scheduling their invocations in a hybrid pipeline

workflow (Pipelined-GPU) that properly manages memory and overlaps computations with

data motion improves the Simple-GPU implementation by 24x. Adding a second GPU to

the pipeline improves the performance by an additional 1.86x. The implementation of

the Pipelined-GPU requires a significant amount of programming effort to prevent race

conditions, satisfy dependencies, and maintain memory limitations.

Figures 1.2 and 1.3 show 1 and 0.2 second profiles, respectively, of the Simple-GPU

implementation. The figures were generated using NVProf, which gathers profiling data

during execution (NVIDIA 2016a). The Simple-GPU has numerous gaps in the GPU

computation, which indicate that the GPU is idly waiting for data copies to be sent to

the GPU. These gaps result in low GPU utilization.

Figure 1.2: One second profile of image stitching implementation using one thread with

GPU (Simple-GPU) profile. Demonstrates multiple gaps between computing relative

displacements between neighbors.

Next, the hybrid pipeline workflow implementation is profiled. In Figures 1.4 and

1.5 we show the same 1 and 0.2 second profiles. In the hybrid pipeline workflow profiles,

we see a sharp contrast in the scheduling behavior compared to the Simple-GPU profiles.

Using hybrid pipeline workflows allowed the execution to continue as soon as data is

available. Using this method, the next iteration of data can be fetched, enabling the GPU

to keep busy, overlapping computation with data motion. Additionally, through the use

of streams, multiple compute kernels were able to overlap enabling better instruction-level

6

Figure 1.3: 0.2 second profile of image stitching implementation using one thread with

GPU (Simple-GPU) profile. Zooms in on one of the gaps from Figure 1.2

Figure 1.4: One second profile of image stitching implementation using hybrid pipeline

workflows with GPU (Pipelined-GPU) profile. Shows overlapping of data transfer with

compute.

Figure 1.5: 0.2 second profile of image stitching implementation using hybrid pipeline

workflows with GPU (Pipelined-GPU) profile. Zooms in on a section of the profile from

Figure 1.4

parallelism on the GPU. Enabling this component assumes that the GPU contains enough

resources (registers/shared memory) to schedule work from two separate kernels on the

same GPU.

Using the hybrid pipeline workflow system abstracts the GPUs into pipelines. By

7

increasing the number of pipelines from the one to two enables multi-GPU computation.

Each pipeline is bound to a separate GPU and executes concurrently. Using the execution

pipeline, data is distributed to each GPU and dependencies from halo regions are copied

between GPUs using direct peer to peer copies. Figure 1.6 shows the same 1 second profile

as before, except using two NVIDIA Tesla C2070s. This profile shows the concurrent

multi-GPU execution, keeping multiple GPUs busy.

Figure 1.6: 1 second profile of image stitching implementation using hybrid pipeline

workflows with execution pipelines across 2 GPUs.

Using this implementation as a baseline we incorporate the benefits of the hybrid

pipeline workflow into the design of the hybrid task graph scheduler model.

1.3 Motivation

Implementing and scheduling applications on hybrid systems with multiple GPUs is

a challenging task, particularly when trying to minimize data movement and maximize the

amount of computations done on that data, all the while, staying within memory limits.

Many task scheduling models schedule work on hybrid systems by using work stealing

through a shared prioritized work queue. This approach typically requires a global address

space and results in inefficient data transfer patterns. The HTGS model exposes data

locality to the programmer to provide more fine-grained control over when and where

data gets allocated and copied between CPUs and GPUs at a higher level of abstraction.

8

Also, HTGS explicitly provides an interface for scheduling work across multiple GPUs

by encapsulating a task graph into an execution pipeline. In an execution pipeline, a

task graph is duplicated and data is distributed evenly between multiple GPUs based on

decomposition rules. This approach effectively pipelines tasks to overlap computations

with memory transfers, while operating on multiple GPUs.

The benefits of this approach is shown with hybrid pipeline workflows; however,

creating hybrid pipeline workflows is complex and time consuming. The HTGS model

is designed to aid programmers with implementing hybrid pipeline workflows. This is

achieved by combining dataflow and task graph schedulers. Dataflow is a representation

that is used to expose the parallel attributes of an algorithm, which connects computation

nodes with data dependency edges. Each node can be executed concurrently assuming

dependencies are satisfied. Task schedulers are incorporated into each of these computational

nodes, such that each node will have one or more threads processing data that is consumed.

Typically task schedulers use a single work queue that distributes tasks to threads. HTGS

alters this design and uses dataflow semantics to send data to threads, which are bound to

tasks. Combining dataflow and task schedulers into one unified model is the essence in

what the HTGS model provides for programmer productivity.

Using the HTGS model, we implemented the HTGS C++ API, which provides

functions to create task graphs and includes a runtime system to schedule on hybrid

collections of compute resources (i.e., CPUs and GPUs). The task graphs that HTGS

helps build handle dependencies, manages memory in multiple native address spaces

(CPU/GPU), scales to multi-GPU systems through execution pipelines, and overlaps data

motion with computations. Every task created through HTGS exposes the computational

resources and automatically binds tasks to physical hardware. This approach is used to help

developers utilize single fat nodes with multiple CPUs and accelerators.

We will demonstrate the HTGS model on three algorithms: (1) Image processing

through an implementation of image stitching using Kuglin and Hines phase correlation

image alignment method (Kuglin & Hines 1975b), (2) Matrix multiplication, and (3) Linear

algebra with LU factorization. The HTGS model and API aims to improve programmer

productivity, with a modest effort, to obtain high performance, particularly for scheduling

on hybrid multi-GPU systems.

9

1.4 Contents

In the next Chapter, we provide our thesis statement, problem description, and

contributions. In Chapter 3 we present various related works in the field of task-based

schedulers and other methods for parallelization. Chapter 4 describes the proposed HTGS

model. Chapter 5 describes the HTGS C++ implementation. In Chapters 6, 7 and 8,

we present three case studies that demonstrates the impacts of using the HTGS model

and implementation compared with highly tuned libraries. Finally the conclusions are in

Chapter 9.

10

Chapter 2

THESIS STATEMENT

We propose the Hybrid Task Graph Scheduler (HTGS), which improves programmer

productivity by implementing and optimizing parallel algorithms to fully utilize single fat

nodes consisting of many-core CPUs and multiple accelerators, while effectively managing

dependencies, overlapping data motion with computation, and expressing the locality of

data.

HTGS defines a model that builds upon two paradigms; dataflow semantics and

task graph schedulers to build hybrid pipeline workflows. Using this approach, HTGS

exposes the parallel nature of the algorithm and modularizes the execution, which improves

programmer productivity for implementing and optimizing parallel algorithms. HTGS

expresses algorithms as a series of highly optimized computational tasks that execute

concurrently assuming data dependencies are satisfied. HTGS aims to fully utilize

machines with multiple CPUs and multiple accelerators. This is achieved through a novel

recursive execution pipeline task that scales an HTGS task graph to multiple accelerators.

HTGS is a formalization of the extensive work to build hybrid pipeline workflow systems

that we presented in (Blattner 2013).

We will demonstrate the HTGS model using our HTGS C++ API implementation.

Using the API, we will apply HTGS to three distinct algorithms: (i) an image processing

application that stitches thousands of micro-biological images together to produce large

format images, (ii) matrix multiplication, and (iii) LU decomposition used for solving large

systems of linear equations. Each of these algorithms are approached with a modest effort

over a reasonable amount of time and follow the HTGS model and framework for exposing

the parallel nature of the algorithms. By using the proposed model and API we will show

performance gains comparable or better than the standard implementations that are used in

11

high performance computing.

CPUs and co-processors, each contain separate address spaces, which have high

latency and low bandwidth for shipping data. These data transfer costs cannot be ignored.

Traditional task scheduler approaches to CPU and co-processor interoperability often fail

to expose scheduling behavior to improve data locality. In order to utilize high performance

computers, it is necessary to pay careful consideration to the location of data and ways to

express that locality to ensure the data resides next to the compute hardware for as long

as needed. These concerns are multiplied by the need to micromanage differing memory

capacities, such as between CPUs and co-processors, which forces algorithms to operate

using out-of-core techniques. With the HTGS model, algorithms are represented in a way

that exposes these data access behaviors to allow restructuring of scheduling at a high level,

with the aim of improving locality for computational hardware.

2.1 Problem Definition

HTGS uses dataflow and task scheduler semantics to create a model to effectively

implement algorithms for a single fat node. Dataflow is used to express an algorithm as

a series of computational tasks that execute concurrently assuming data dependencies are

satisfied. Task schedulers are used as the execution model. HTGS expands and combines

these definitions by incorporating the task schedulers into the dataflow representation and

adds additional tasks, defined within the HTGS framework, to ensure data dependencies are

satisfied. In HTGS, the task graph is built from a dataflow representation where each task

is connected by dependency edges. HTGS then expresses a work queue within each task

that stores data. Each work queue has a pool of threads, which are bound to a specific task

that consume data from the work queue. This formulation creates a pipeline where tasks

concurrently consume and produce data. By binding threads to tasks allows for accelerator

contexts to be bound to the thread, preventing unneeded GPU context switching.

Hybrid workflows can be considered a method for scaling software by making use

of task graph pipelining. This method is effective for overlapping data motion with

computational tasks, while keeping fat nodes busy.

Models for exploiting high performance computations also require careful consideration

of data locality, dependencies, and parallelism. Keeping these attributes in mind aid in

maximizing the concurrency of scheduling independent compute kernels.

12

We will expand on these concepts to show that using the HTGS model and API

can simplify the design and implementation of algorithms to handle scaling, data locality,

dependencies, and parallelism for compute nodes with multiple CPUs and accelerators.

2.2 Contributions

Abstract Model for Single Fat Nodes
HTGS is a high-level programming model that combines dataflow semantics and

task scheduling to assist programmers to represent hybrid pipeline workflows. The

model distributes work among optimized computational tasks, manages dependencies

through micro-schedulers, handles scalability with execution pipelines that distribute

data based on decomposition strategies, and explicitly handles data locality with

memory managers. Through these attributes, HTGS executes efficiently on single

fat nodes making full use of the highly parallel architectures within.

This model is further supported through the implementation of matrix multiplication

and LU decomposition using the HTGS C++ API and a modest effort. The results

show that, HTGS is able to perform as good or better than the best performing

implementations available.

Abstract Model for Data Locality
Keeping data close to the compute hardware is the most important attribute when

scheduling compute intensive algorithms. If data needs to be shipped to/from

hardware multiple times, then the cost of shipping the data will often outweigh the

benefits gained for using that hardware. Many algorithms employ techniques to

schedule data in a way that maximizes the locality of data; however, due to differing

capacities between traditional CPUs and accelerator memories, it is a difficult task to

implement. It becomes especially challenging when dealing with multiple accelerators

each with their own address spaces.

The HTGS framework defines HTGS memory managers to assist with data

locality and manages each address space independently, whether it is for traditional

or accelerator memories. Using this approach, the data access patterns are exposed

allowing for better decisions to be specified within HTGS for scheduling the data

to improve the data locality. These decisions are further tuned through HTGS data

release rules applied to any data allocated by memory managers. These rules provide

13

a high-level abstract model for how the memory is used as it flows through the

task graph. In addition, HTGS can export the compute profile, visualizing the task

graph, exposing where the bottlenecks exist. Using this information, tuning and

optimizations can be applied to allow for better behavior for data locality. This type

of analysis is demonstrated for LU decomposition in Chapter 8.

Scaling with Execution Pipelines
Fat nodes contain multiple co-processors/accelerators. Scheduling work to utilize

these accelerators without a high-level abstract model is very challenging. Each

accelerator has its own memory address space and data must be sent to/from each

device. One of the main contributions that the HTGS framework defines is its ability

to represent a task graph and scale that task graph across multiple accelerators. First,

an HTGS task graph is partitioned into an accelerator graph and a main graph.

The accelerator graph is encapsulated into a recursive HTGS execution pipeline

task. Within the execution pipeline task, the accelerator graph is duplicated, one per

accelerator on a system. The execution pipeline task distributes data using custom

decomposition rules among the accelerators, which concurrently execute on the data.

The execution pipeline task is then inserted back into the main graph.

Each graph copy is a mirror image of all the components of the original graph

such as bookkeepers, memory managers, and computational tasks. Each memory

manager binds to the physical device allowing allocation and data copying to process

on its designated accelerator. Using this design philosophy, HTGS enables operation

on a variety of machines, which is enabled by using allocation routines specific to the

device the task is operating with.

Improving Parallel Programming Efficiency
Writing code that scales to multi-core CPUs and accelerators often requires a

significant amount of programming effort. Issues arise such as dealing with race

conditions, deadlock, or load imbalance. Often the parallel algorithm analysis does

not map well into the implementation, and the effort spent breaking down an algorithm

is lost. The HTGS model is an attempt at bridging the gap by directly mapping the

analysis phase into implementation for parallel algorithms.

In HTGS, there are five phases that are used to aid parallel programmers and

improve their efficiency with implementing parallel algorithms. First, identifying

14

the computational bottlenecks and the data patterns within the parallel algorithm.

Then, using this analysis, design a dataflow representation where nodes represent

computational steps and edges are data dependencies or parameters. From the

dataflow representation, a task graph is designed that contains bookkeepers that

manage dependencies, and memory managers to handle data locality. The task graph

representation is then implemented using the HTGS C++ API. Finally, using profiling

tools within the HTGS API, analyze the behavior of the graph and identify the tasks

that are overwhelming the computation. This leads to redesign of the graph to best

evenly distribute the work and improve locality. Approaching an algorithm in this way

minimizes the amount of analysis that is lost during implementation. Additionally, the

implementation can map back to the analysis allowing efficient understanding into the

design decisions made.

The decisions made for one particular algorithm can be applied to other

algorithms that share similar data access patterns. This allows for efficient algorithm

implementation as the data access decisions can then be interpreted and applied into

implementations of other algorithms.

Pipelining
The HTGS framework consists of a series of tasks connected based on data dependencies.

Each of these tasks execute concurrently and are bound to a pool of threads. If

a task is computationally intensive, then that task is assigned multiple threads to

aid in processing data. This thread pool acts to accelerate the task to improve the

task’s consumption rate. With this method of coarse-grained parallelism, the task

graph represents multiple producers and consumers that modularizes an algorithm and

enables concurrent execution of its tasks. By assigning some tasks for computationally

intensive operations and others to data motion, the execution of an algorithm in HTGS

overlaps components such as disk I/O or PCI express I/O with compute. Through this

pipelining, HTGS utilizes the multi-core CPUs, multiple accelerators, and distributes

the workload using customizable thread configurations that are assigned based on the

consumption and production rates of the computationally intensive tasks.

Memory Management
Pipelining is an excellent approach for parallelizing an algorithm, especially if the

datasets fit into memory. When the data for an algorithm does not fit into memory, then

15

a pure pipelining approach will cause issues with running out of memory. The HTGS

framework adds memory management into the task graph explicitly to help throttle

the execution of the task graph. In addition, the memory allocated contains state

that can be used to represent the access patterns to enable better locality. Using this

methodology, any two tasks within a task graph can be connected with a memory edge,

which is managed by a memory manager. The memory manager is a separate task

whose purpose is to update the state of the memory received, which then determines

when the memory can be released/recycled. The memory manager initializes a fixed

sized pool of memory that is used during execution. Using this memory pool, the

memory manager produces memory for the task that is requesting memory. If the

memory pool is empty, then the task requesting memory will have to wait for another

task in the graph to release the memory. This method throttles the graph based on these

memory pools and prevents the system to stay within memory limits across multiple

address spaces.

The memory managers within HTGS are bound to specific address spaces. If

the memory resides on an accelerator, then the memory manager will allocate and

distribute memory from that accelerator’s address space. This design allows the task

graph to represent each address space independently and provides fine-grained control

over the locality of the data and when to copy between the various address spaces.

Memory Management within Execution Pipelines
Execution pipelines are used to create copies of task graphs to scale among multiple

accelerators. Each memory manager within these task graphs are copied. The

memory manager copies are bound to separate accelerators and allocate from their

appropriate accelerator memories. The execution pipeline task distributes data among

these accelerators using decomposition rules that split data into separate regions, each

accelerator will operate on their designated region. If there is overlap among the

regions, such as a halo, then memory may need to be shared among multiple address

spaces. The memory manager is aware of the address space it is allocating. If one

memory manager receives memory from the wrong address space, then that memory is

forwarded to the memory manager that is processing that address space. This service

is handled automatically from within the HTGS model implementation.

Overlapping Data Motion with Compute

16

Moving data to/from compute hardware is difficult to manage. This is particularly true

when dealing with single fat nodes that contain multiple accelerators each with their

own address spaces. HTGS uses its pipelining methodology to simplify separating

the data motion operations with the computational tasks. Through this separation,

data motion and computational tasks operate concurrently, which overlaps the cost

of shipping the data with the computational operations. These components are

co-dependent such that if the pipeline cannot be filled then the benefits of overlapping

will be minimal.

High Performance Implementation
The HTGS model and framework is designed for high performance super computers.

The HTGS C++ API is an implementation of the model and framework. The

API is high performance and operates efficiently using lightweight monitor-based

locks, zero-copy pointer-based data structures, and efficient use of high-level C++11

threading. In Chapters 6, 7, and 8 we demonstrate similar or better performance of

the HTGS API compared with the standard implementations that are used in high

performance computing. Chapter 5 will go into more details with regard to the C++

API implementation.

Mapping Analysis to Implementation
The main methodology for parallelizing an algorithm involves identifying the independent

operations and the locality of data. Understanding these components allows for

operations to be done in parallel all-the-while keeping the data local to the compute

hardware. This is particularly important for working on accelerator systems. The

analysis phase often does not map very well into the actual implementation. In

addition, it is challenging to map the implementation back to the analysis. The HTGS

model efficiently maps the analysis phase into the implementation and back. This is

achieved through the intermediary steps of dataflow and task graph representations.

The dataflow describes the concurrent operations and basic dependencies, whereas

the task graph describes complex dependencies that is micro-managed through

bookkeepers, and data access patterns from scheduling and memory managers.

Using the HTGS methodology allows for more productive development of parallel

algorithms that can be iterated on efficiently to improve parallelism and data locality.

Customizable and Open

17

The HTGS C++ API is implemented using an object-oriented approach. The API is

split into two components; (1) Core API and (2) User API. The core API implements

the low-level features of the HTGS model, such as thread safe queues and memory

managers. Whereas the user API contains the high-level routines that programmers

use to implement their task graphs. The majority of routines within HTGS are

abstract and are implemented using object-oriented design. For example, execution

pipelines, memory managers, CUDA tasks, and bookkeepers all implement and use

the task interface. The task interface is inserted into task graphs, which are connected

through sub-routines defined within the task graph object. All of these functions are

exposed for programmers to add new abilities or improve upon existing components.

Additionally, the runtime system is decoupled from the task graph representation

allowing further customization with alternate threading models.

The implementation of the HTGS model is customizable and is open source. The

user API can be used to represent most algorithms, but if advanced users need more

functionality, then the core API can also be altered. Additional routines that bridge

the gap between the core API and the user API are also provided, such as the custom

edge interface, which can be used to describe a new type of edge connecting two tasks,

such as the memory manager edge.

Availability
The HTGS C++ API is freely available for download now at https://pages.

nist.gov/HTGS/ or on github at https://github.com/usnistgov/htgs.

The HTGS tutorials are also freely available at https://github.com/usnistgov/

HTGS-Tutorials. The full documentation is available on-line at https://

pages.nist.gov/HTGS/doxygen/index.html. Both the HTGS tutorials

and HTGS API are open source. The tutorials include all implementations of matrix

multiplication and LU decomposition shown in Chapters 7 and 8.

Light Weight
The HTGS C++ API is implemented using a series a header files. To use the API,

developers include the header files within their code. The code base is implemented

in 4000 lines of code across 37 files. The API runs efficiently with minimal overhead.

Large task graph are constructed in < 100ms and data is scheduled between tasks in

< 1 us.

https://pages.nist.gov/HTGS/
https://pages.nist.gov/HTGS/
https://github.com/usnistgov/htgs
https://github.com/usnistgov/HTGS-Tutorials
https://github.com/usnistgov/HTGS-Tutorials
https://pages.nist.gov/HTGS/doxygen/index.html
https://pages.nist.gov/HTGS/doxygen/index.html

18

Profiling and Debugging HTGS Task Graphs
Profiling and debugging of task graphs is difficult without tools. HTGS provides

functionality to profile and visualize HTGS task graphs. Using these tools, each

task within the graph can output useful information about how it performed such

as compute time, wait time, lock time, and the maximum size that its input queue

achieved. Using this information each task can be tuned to improve utilization. In

addition, these attributes can be visualized by exporting the graph to a Graphviz dot

file (Gansner & North 2000). The dot file can then be parsed into an image where

nodes represent tasks that are color coded based on profiling data. This enables the

graph to be visually analyzed to identify issues. In addition, the visualization is an

excellent debugging tool to visually observe the graph during construction and can be

generated during execution to identify locations of deadlock. The HTGS C++ API

implements these tools and are available now.

HTGS Community
Creating a system that scales and gains performance with modest a effort is useful,

but a community of developers need to use this system. A developer public forum

has been created; https://groups.google.com/forum/#!forum/htgs,

to encourage collaboration and communication. The end goal is to create a repository

of task graphs, tasks, data representations, and libraries to assist development of new

complex algorithms with minimal effort within HTGS. This forum is newly created,

but expresses the intent of moving forward with HTGS to expand and garner support

from universities and industry.

https://groups.google.com/forum/#!forum/htgs

19

Chapter 3

RELATED WORK

Implementing parallel algorithms in distributed environments poses challenges with

data locality, fault tolerance, load balancing, heterogeneity, and coding complexity.

There are many programming interfaces that provide tools for programmers to function

around these issues. We classify the interfaces into four categories: (1) Map reduce

frameworks, (2) Dataflow graphs, (3) Task graphs, and (4) Concurrent Collections. Various

implementations of Map reduce frameworks are used for processing embarrassingly

parallel algorithms. Dataflow graphs represent algorithms as graphs where nodes are

logical or computational function and edges are data flow. In a dataflow graph, the

graph interacts with a scheduler that issues work for nodes based on some ordering and

dependencies. Task graphs have similar qualities of dataflow graphs, except the scheduler

is inherently defined within the graph representation for an algorithm by using a shared

task queue that is reordered based on data dependencies. Threads pop and execute on tasks

from this queue. Concurrent collections use a multiple producer, consumer model, which

is formulated by defining operations and ordering to form a CnC graph. These are similar

to task graphs, except there is an explicit representation of the dependencies and data.

Each of these categories have different mechanics for handling the challenges of

distributed environments. HTGS focuses on the issues of data locality, load balancing,

heterogeneity, and coding complexity on a single fat node with an emphasis on multi-GPU

systems. Distributed computing is left for future work. Fault tolerance can be implemented

through check-pointing, but there is no explicit design to automate handling resiliency. In

this section we look at different programming interfaces within each of the three categories.

20

3.1 Map Reduce Frameworks

The first presentation of Map reduce (Dean & Ghemawat 2008) provides an interface

for representing two functions, a map and a reduce function that operate on data sets

distributed across multiple processors. This enables programmers to avoid writing explicit

parallel code. This approach was first proposed in 2002 by Google researchers and has

been integrated and adapted to form new programming interfaces that aim to simplify and

expand the map reduce paradigm. Map reduce provides a method to direct computation to

the data without worrying about data movement between nodes in a cluster, all the while

processing disk I/O in parallel. Below is a list of various implementations and expansions

of the map reduce framework.

3.1.1 Hadoop

Hadoop is a java-based implementation of map reduce from Yahoo (Shvachko et al.

2010). The framework uses the hadoop distributed file system (HDFS). In HDFS, data

is evenly distributed and duplicated among nodes in a hadoop cluster. Map and reduce

functions are sent to the nodes that own the data and are processed in a distributed fashion.

This system requires that an algorithm fits into the map reduce framework. Hadoop scales

well for very large clusters and is fault tolerant through redundant storage and reassignment

of work on node failure.

While many algorithms may fit into hadoop, there are a subset of algorithms that are

not well suited for map reduce, such as gaussian elimination, iterative methods, n-body

problems, etc. Through the use of task graphs, HTGS enables programmers to represent

many of the algorithms that cannot be easily mapped to hadoop. However, a mapping task

that links directly into HDFS could be integrated into HTGS, thus making HTGS into a

map reduce framework.

3.1.2 Spark

Spark is an expansion of HDFS and hadoop (Zaharia et al. 2010). The main

contribution is the introduction to an abstraction called resilient distributed datasets

(RDDs). RDDs are read-only objects and enables faster processing of iterative jobs that

required shared data among hadoop nodes. The RDDs provide a mechanism to quickly

21

broadcast and accumulate data such as lookup tables very quickly. Adding these to hadoop

improved performance by an order of magnitude for problems that benefited from this

in-memory data structure.

RDDs are an excellent interface for sharing state information while maintaining

resiliency. HTGS currently handles state through bookkeepers, although that state is not

effectively distributed and is not resilient. Approaches for handling resiliency and sharing

state information efficiently are being analyzed, with RDDs as a possible solution for

distributed state across bookkeepers within HTGS.

3.1.3 Map Reduce in MPI

Map reduce in MPI is a C implementation that uses the message passing interface

(MPI) to handle commmunication between nodes in a cluster (Plimpton & Devine

2011). This study presents the map reduce framework using MPI as the basis for data

communication. The results show an improvement in performance compared to hadoop;

however, it does not provide fault tolerance or data redundancy. There are many variations

of map reduce that have been implemented that use different methods of communication.

Map reduce in MPI is one such example.

3.2 Dataflow Graphs

Dataflow is a computational model that is often used in digital signal processing (DSP)

software environments. HTGS incorporates dataflow semantics to assist in identifying

independent computationally intensive components prior to constructing task graphs. Each

node within dataflow represent logical or computational functions and edges represent the

flow of data. (Dennis 1974) (Lee & Parks 1995) The fundamental difference between

HTGS task graphs and dataflow is with scheduling. For example, one dataflow model

represents a node as an actor whose functionality is fired based on input tokens and

firing rules. Each actor in a dataflow graph is invoked by the scheduler upon successful

satisfaction of actor invocation rules, which could be actor interface (i.e., edge, port)

requirements, or other specific per application requirements. There is a distinct separation

of the dataflow scheduler and dataflow graphs. The distinct separation between the

dataflow graph scheduler and the underlying dataflow graph is a key aspect of dataflow

based modeling of applications. Such separation allows the dataflow graph scheduler

22

to integrate other runtime measurements (i.e., memory, bandwidth, latency) into the

scheduling mechanism of the dataflow graph conveniently. (Pino, Bhattacharyya, & Lee

1995) HTGS has similar constructs, but defines the scheduling inherently within the each

task graph. Each task is enabled as soon as data is available on an edge. To handle

dependencies HTGS provides a bookkeeper task, which acts as a micro-scheduler. The

bookkeeper is added into the graph and processes dependency rules, which may produce

data for other tasks. In essence, HTGS contains an inherent scheduler based on the

structure of the task graph and multiple bookkeepers operating within the task graph using

dependency rules. The bookkeepers are used to maintain the state for a computation.

Another major difference between dataflow and HTGS is their methodologies for

threading. Many dataflow models allocates actors or sets of actors to a particular thread

based on dependencies and parallelization properties. This parallelization is done either

within the scheduler or prior to execution. This step is a form of graph decomposition

with the aim to minimize dependencies between sub-graphs to maximize pipelining the

computation and logic for an algorithm. (Sane 2011) On the contrary, HTGS binds threads

to tasks. Each task is bound to one or more threads, which is defined when a task is created.

The threads act as a work pool to process data for a task in parallel. For GPU tasks, one

thread is used to schedule work for the GPU that the thread/GPU task is bound, which

prevents unnecessary GPU context switching.

3.2.1 Heterogeneous Dataflow using Anthill

Anthill is a framework to aid in developing parallel applications. (Teodoro et al. 2012)

Algorithms are represented as dataflow models and implemented using filter-streams. In the

filter-stream model, actors/tasks are represented as filters, and data flow as streams. Anthill

spawns the instances of each filter across multiple nodes in a cluster and automatically

handles run-time communication among the instances. Each of these filters can be executed

independently providing excellent parallelism. The duplication of filters across multiple

nodes contains some similarities to HTGS execution pipelines. The main difference is

an execution pipeline holds a sub-graph, and the entire sub-graph is duplicated, one per

GPU. Whereas anthill duplicates a single filter/task and distributes the distributed tasks

among nodes. One aspect that may be adapted to HTGS is the use of scheduling based

on the run-time of each task. In some instances if there are two tasks that are executed on

23

two different architectures, it may be more beneficial to manage how data is sent to each

architecture. If an HTGS graph contains these options, it would be interesting to analyze the

impact of sending data based on run-time performance of each task. Anthill provides this

level of scheduling by profiling each filter prior to execution and determining an effective

scheduling of the dataflow graph based on the execution times of each heterogenous filter.

Currently HTGS relies on the programmer to distinguish which task is more effective for a

given architecture.

3.2.2 Qilin

Qilin provides an approach that takes a dataflow representation, shown in directed

acyclic graphs (DAGs) and automatically maps the computations to processing elements

using run-time adaption. (Luk, Hong, & Kim 2009) To process applications at run-time,

Qilin dynamically compiles and generates Intel Threading Building Blocks (TBB) and

CUDA source code on the fly. The primary steps in a Qilin dynamic compilation are:

(1) building DAGs using the Qilin API, (2) determine mapping from computations to

processing elements, (3) perform optimization on DAGs, and (4) code generation. This

approach has a number of difference to both HTGS and traditional dataflow models. First,

using the Qilin API, existing API routines for common computationally intensive functions

must be defined within Qilin. These routines provide Qilin with the information needed to

generate the code for GPUs or CPUs. Second, the use of code generators aids in simplifying

programming complexities, but can also cause additional overhead as the code generator is

executed at run-time.

3.2.3 Kaapi

Kaapi is a runtime scheduler that implements a work-stealing algorithm for dataflow

programs on a cluster of multi-processors. (Gautier, Besseron, & Pigeon 2007) To manage

data dependencies between tasks a global address space is used. The extension ”XKaapi”

(Gautier et al. 2013) enables execution on multi-CPU and multi-GPU architectures, while

maintaining similar functionality with Kaapi. Within XKaapi, scheduling is accomplished

with locality-aware work stealing and asynchronous task execution. Sequential code

is annotated to create tasks that are scheduled using the XKaapi runtime system. To

execute across multiple architectures, task versioning is used such that different versions

24

of the same task are implemented for each architectures. Locality-aware scheduling is

accomplished by adding meta-data to work that indicates the location of the data. Kaapi

is not a traditional dataflow representation and shows many similarities to task graph

implementations. HTGS has a similar design philosophy as XKaapi, but has uses a

different approach to the problem of locality-aware programming. Both APIs emphasize

locality-aware scheduling and asynchronous task execution. The benefit of this approach

is to effectively hide the PCI express data transfer bottleneck and to better utilize the GPU.

The main difference between the two is the representation of multi-GPU scheduling and

GPU task scheduling. In HTGS a task graph is bound to a particular GPU. For multi-GPUs

that task graph is encapsulated into an execution pipeline, which duplicates the entire graph

and binds each sub-graph to a different GPU. With XKaapi, each GPU is scheduled for

individual tasks based on the location of data. This approach increases the complexity of

the scheduler as the scheduler must concern itself about the location of data at each task

step. This may cause additional memory copies if the data resides in the wrong location or

having to pass the data to the correct task. In HTGS a sub-graph that receives data will not

be copied to another sub-graph unless there is a dependency that needs to be satisfied (such

as ghost regions). The programmer is responsible for distributing data to each sub-graph to

minimize the size of a ghost region and minimize the need to copy between regions.

3.2.4 TensorFlow

TensorFlow is an interface for expressing machine-learning algorithms using a

dataflow-like model to execute on a variety of heterogeneous systems. (Abadi et al.

2015) The computation within TensorFlow is represented as a directed graph consisting

of nodes. The TensorFlow graph contains similar attributes as HTGS in that each node

represents computation, whereas in TensorFlow some nodes are modified to maintain

persistent state for things like branching and looping. However, the HTGS representation

is mapped directly into the implementation, whereas TensorFlow loses that analysis step.

Additionally, the behavior for scheduling and threading for parallel algorithms is very

different, this is mostly due to TensorFlow being designed specifically for machine learning

projects. Each node in TensorFlow has zero or more inputs and zero or more outputs. Data

that flows between nodes are called tensors. Ordering is enforced using control dependence

to ensure a source node must finish executing before the destination node begins. The

25

primary API within TensorFlow contains high-level routines that can be prescribed to

work on various components within the graph. These high-level routines contain various

implementations that are compiled for heterogeneous architectures such as computers or

GPUs. A cluster scheduling system is used to manage the jobs and submit work for the

various jobs. Each job is responsible for managing memory (allocation and freeing) for

each device the job is executed on. Each tensor supports multi-dimensional arrays that

support specific data types, such as IEEE float, double, or complex types.

3.3 Task Graphs

Task graphs and dataflow graphs have fundamental similarities. Both have the

general idea of representing algorithms as a series of connected computational and logical

tasks/actors. Data flows between tasks, and operate on the data. The main difference

between dataflow and task graphs is the management of scheduling and how tasks are

scheduled for threads. In a task graph, the data flow is inherently designed within the

graph itself. The task graph is constructed using a prioritized queue that is restructured

based on dependencies between tasks that are inserted into the queue. Threads pop tasks

from these queues and processes the task that is received with data that is bound to the

task instance. HTGS borrows ideas from task graphs, but adds a number of specialty

tasks that enable effective design for HPC algorithms. Namely, a memory interface for

managing data reuse, GPU tasks that bind to physical GPU hardware, bookkeeper tasks

for managing dependencies, and execution pipelines for scaling sub-graphs to multi-GPU

systems. In addition, HTGS alters the queue representation by binding threads to a specific

task that consumes and produces data using shared queues that are connected to form

the task graph. In traditional task graph schedulers, the graph representation is mostly

lost in the implementation, whereas HTGS inherently uses the graph representation in its

implementation to schedule and process data.

3.3.1 OpenMP Tasks

OpenMP v4.0 and beyond have employed new directives that can prescribe work as

tasks with dependencies to formulate tasks. (OpenMP Architecture Review Board 2013)

OpenMP tasks are computational functions that are employed into a work queue. An

available thread picks up the work from within the work queue if dependencies have

26

been satisfied. Each task contains additional directives that are used to describe task

dependencies to create restrictions among multiple tasks. Synchronization constructs are

also provided such as barriers, grouping, and atomics. Using these constructs, OpenMP

formulates a task graph, although the task graph representation is not inherent to the

implementation, and requires external tools to extract and visiualize the graph. The main

benefit of this model is the ability to quickly annotate existing code to create a task-based

representation. However, this representation has a detrimental effect in that analyzing the

behavior and design decisions becomes challenging. There have been a number of studies

that extend OpenMP tasks to improve profiling and debugging of this model. (Lorenz et al.

2012) and (Qian, Ding, & Sun 2013) HTGS maintains the graph representation throughout

the analysis and implementation phases. This enables more productivity with building and

improving upon the task graphs that are implemented using the HTGS model.

3.3.2 QUARK

QUARK is a runtime environment to aid in dynamically scheduling applications,

which prescribe precedence-constrained compute kernels for shared memory systems.

(YarKhan, Dongarra, & Kurzak 2007) QUARK uses a dataflow model to represent

schedules of data based on dependencies between computational tasks in a task graph. The

data dependencies are determined using runtime analysis that detect data hazards within

kernels. Similar to OpenMP Tasks, QUARK uses a queue to manage task scheduling,

where a task is submitted into an execution queue, which is ordered based on data

dependencies. Threads then pull from the queue to process each task. QUARK is used

in the high performance Parallel Linear Algebra Software for Multicore Architectures

(PLASMA). (Kurzak et al. 2010), (Buttari et al. 2009) Recently, QUARK and PLASMA

have been ported to use OpenMP tasks. (YarKhan et al. 2016)

Another library that uses constructs similar to that of QUARK is MAGMA. (Tomov,

Dongarra, & Baboulin 2010), (Tomov et al. 2010), and (Dongarra et al. 2014) MAGMA is

a linear algebra library that uses task-based scheduling similar to QUARK, but for hybrid

architectures. The scheduler used within MAGMA is coupled with the MAGMA LAPACK

implementation, so further expansion of this scheduler is not available for algorithms

beyond linear algebra. QUARK represents a similar system for implementing parallel

algorithms through its use of dataflow representations. But as described for OpenMP Tasks,

27

this analysis is lost in the actual implementation.

3.3.3 Dryad

Dryad is a system to parallelize sequential programs into distributed parallel programs

(Isard et al. 2007). A job in Dryad is a directed acyclic graph where each vertex is a

program and edges represent data channels. Using a runtime, the computation graph is

mapped onto physical resources. Jobs are defined using Dryad’s graph library. Executing a

graph is done using Dryad’s runtime system. Using this system, Dryad effectively pipelines

execution where multiple Dryad vertices contain purely sequential code, although it is

possible to support using a shared thread pool using their event-based programming. HTGS

represents a task graph to represent an algorithm containing multiple vertices and edges to

form a single parallel high performance program. Dryad demonstrates an alternate way of

represent distributed computing of multiple sequential programs.

3.3.4 StarPU

StarPU is a task graph scheduler that is effective at processing workloads on hybrid

CPU/GPU architectures. (Augonnet et al. 2011) In StarPU the task graph is composed of a

series computational nodes and data edges. Each node implements one or more variations

of the computation, one for each architecture. At runtime, the scheduler distributes work

for each compute function, and if an architecture is available for computation, then that

resource is used to process the data. Data locality is done using a global address space

memory manager to represent both CPU and GPU address spaces as a single address

space. In this system, data resides in the global address space and automatically applies

data transfers on the data for each architecture. StarPU also implements work stealing such

that if a computation is finished and is looking for work, it can steal work from another

architecture to speed up processing that data. For example, if the GPU is an order of

magnitude faster at computing than the CPU, then it might be better to steal work from

the CPU to process on the GPU. HTGS provides a different approach than StarPU. In

HTGS each node is bound to a particular architecture and is designed for that architecture.

Although it would be possible to provide similar functionality of StarPU in HTGS, such as

implementing multiple variations of the same function for different architectures, it is not

inherent to the design of HTGS. Also, the use of a global address space for CPU and GPU

28

memories simplifies data transfers, but will often result in inefficient data transfer patterns.

3.3.5 Pegasus

Pegasus is a framework for mapping scientific workflows onto distributed systems.

(Deelman et al. 2005) Using a distributed scheduler, Pegasus manages applications and

schedules them on grid-based clusters. The task graph in this case consists of nodes

that represent programs, and edges are dependencies between programs in the form of

input/output files. These tasks are clustered based on computational resource requirements

for the job. Pegasus aims to maximize the usage of grid-based clusters for many-task

jobs. This approach shows an alternative method for scheduling algorithms by managing

program scheduling in grid-based clusters. HTGS focuses on the implementation and

parallelization of an algorithm and improving concurrency for a single program.

3.3.6 Intel Threading Building Blocks

Intel Threading Building Blocks (TBB) provides a C++ template library that handles

concurrency through task graphs. (Reinders 2007) (Kukanov & Voss 2007) The main

difference in TBB and HTGS is the method in which it provides threading. In TBB,

threads are sent to tasks, so the total number of threads operating on the graph is equal

to the number of logical cores on a computer, which are multiplexed when data reaches

tasks. This system is excellent for CPU computation as when a node in a graph receives a

message, a task is spawned to execute on the incoming message, which is operated on by

some available thread. However, when moving to multi-GPU computation, GPU tasks are

typically bound to specific GPU contexts (one context per GPU). Therefore, the thread that

executes the task becomes responsible for that GPU context. If the thread executing the

task changes the next time data enters that GPU task, then the GPU context may become

invalid. This requires that every time a thread binds to a task in Intel TBB, that task must

first bind the thread to the GPU context, which adds additional overhead to schedule the

task. HTGS provides an alternative method, which binds threads to tasks, so the same

thread is always executing on the same task. This guarantees that GPU tasks will reuse the

same thread during the entire execution of a task graph.

29

3.4 Concurrent Collections (CnC)

Concurrent collections (CnC) is a programming model that supports a combination

of task and data parallelism. (Budimlic et al. 2010) The model builds on past work on

TStreams, which executes functions in parallel using multiple producers and consumers.

(Kathleen Knobe 2005) In CnC programmers define operations and ordering to formulate

a CnC graph. A CnC graph is constructed as a series of step, data, and control collections.

These collections define two operations; get and put. Instances of the collections are

dynamically generated by the CnC runtime and is executed concurrently. The data and

control collections handle dependencies and data management. CnC graphs are similar to

task graphs, except their is an explicit representation of the dependencies and data. HTGS

and CnC are similar in how they represent a multiple producer, consumer application to

pipeline algorithms, except data dependencies and scaling are handled differently in HTGS.

In the next sections, we present different implementations of the concurrent collections

programming model.

3.4.1 Multi-core Concurrent Collections

Multi-core CnC presents two implementations of the CnC model for multi-core

architectures. (Budimlic et al. 2009) The first builds on top of Intel Threading Building

Blocks (TBB) as a runtime system and implementations for the step, data, and control

collections. In their implementation, they use C/C++ classes to represent concurrent objects

and graphs. Steps are defined by user-written C++ functions wrapped in a function object

and data uses Intel TBB concurrent hash maps. When a tag prescribes a step, an instance

of the step is created and mapped to a TBB task. The TBB scheduler takes the step

and executes as a TBB task. This implementation is distributed by Intel as Intel CnC.

(Schlimbach 2014) The second implementation is the Habanero-Java project, which is

based on the X10 language. This implementation largely uses Scala and Java to hook

into the CnC model. (Cavé et al. 2011)

3.4.2 CnC-CUDA

The CnC model is an implementation of CnC for CUDA GPUs. (Grossman et al.

2011) This implementation expands on the Habanero-Java project to include CUDA steps

30

into CnC. This execution model requires a Java-to-native code interface, which is provided

by JCuda. (JCuda 2015) CnC CUDA manages data locality by automatically generating

data and control flow between CPU and GPU steps. This is done through automatic data

transfers over the PCI express. The main challenge with CnC CUDA is how they represent

data locality. CUDA compute kernels are implemented by the user and data allocation

and copying of data is automatically handled through CnC CUDA’s translator, which

generates stub code for these steps. Extraneous device memory copies are automatically

removed by analyzing the CnC graph for contiguous GPU nodes that operate on that data.

HTGS relies on the programmer to specify data motion, and manages data reuse through

memory managers. The memory manager allocates data during initialization and resuses

the memory throughout the execution through memory rules.

31

Chapter 4

THE HYBRID TASK GRAPH SCHEDULER MODEL

The Hybrid Task Graph Scheduler (HTGS) model consists of constructing task graphs

to represent an algorithm and execute the core computational kernels concurrently using

coarse-grained parallelism. From the model, a framework is defined such that each task

graph is made up of a series of vertices and edges, where vertices are computational or

logical tasks, and edges are data dependencies or input parameters for the tasks. Every task

is bound to one or more concurrent threads, see Figure 4.1.

Data In Task Foo Task Bar Data Out

Figure 4.1: HTGS task graph.

Transforming an algorithm into an HTGS task graph involves three steps. First,

represent the algorithm as a parallel algorithm and identify the core computational

components of that algorithm. Next, define a dataflow graph that interprets the parallel

algorithm as a series of computational tasks connected based on data dependencies. The

dataflow graph is then transformed into an HTGS task graph. Converting the algorithm

in this way exposes the concurrency across multiple computational tasks, allowing the

algorithm to operate as a pipelined workflow system. The task graph has specific ordering,

in which each task consumes data from a work queue and produces data for the next task’s

queue. These shared queues are thread safe, allowing a pool of threads to access the queue

concurrently. In addition, a task can also produce data for a previous task within the graph,

which will create a cycle and requires that the task producing the data define a termination

32

condition.

Each task has one input type and one output type; however, multiple tasks can have

edges producing data for a single task. A pool of threads can be associated with that task. If

more than one thread is specified for a task, then that task is copied, with each copy binding

to a separate thread. The pool of threads accelerates the consumption and production rates

of that task.

Tasks within HTGS have four primary phases: Initialize, Execute, Terminate, and

Shutdown. These phases are used to define the various states that the task operates and

provides hooks for the task to interact with custom behavior.

Initialize
In the initialize phase, a thread has attached to the task. This allows for any

co-processors to initialize and bind device contexts to the task to prepare the task

for scheduling work for that co-processor. The thread that is attached will never

detach from the task until the task has terminated.

Execute
The execution phase defines the core functionality of a task and consumes data from

the task’s input queue and produces data for its output queue. Every task has one

input type and one output type. The type that is defined represents and abstract object

that can encapsulate multiple pieces of data that may be required for the current task’s

functionality or any future tasks later in a task graph. Each of the queues within a

task graph are managed by a connector, which binds two tasks together and manages

the number of active connections producing data.

Terminate?
The terminate? phase is checked anytime a task is awakened prior to getting data

from the task’s input queue. If the task is terminated, then the task enters the

shutdown phase.

Shutdown
The shutdown phase is called when a task is terminating to free up any resources

allocated within the lifetime of the task.

The novelty in the HTGS model is its methodology for handling threading, scheduling,

and scalability. This methodology is defined using the HTGS framework. Each task in

33

the framework is bound to one or more threads to assist in processing the input queue

for the task. This threading design concurrently process all tasks within a task graph.

Using this threading model, if there is a task that is allocating memory, then task graphs

will process data without waiting and eventually will run out of system memory. The

Memory Manager is used to define a separate edge between two tasks to throttle a graph

and stay within memory limits. Scheduling is defined through the task graph specification.

Bookkeepers, micro-schedulers, manage the state of the computation to aid in properly

scheduling complex algorithms that contain data dependencies. Scalability is represented

using Execution Pipelines, which are tasks that assist in scaling a task graph. The

scheduling, memory management, and scalability within the HTGS framework are all

discussed in more detail in the next sections.

4.1 Scheduling – Bookkeepers

HTGS defines the bookkeeper task, to support a single input type and multiple output

edges, potentially each with their own types. Each output edge has a rule associated with

it, which defines when data is produced for that edge. The bookkeeper rules are intended

to not be compute intensive and should only handle state updates to avoid stalls during task

graph execution.

When data enters the bookkeeper, a control passes that data to each rule that is

attributed with the bookkeeper. The rules update the state with that data and determine

how/when new data is produced for the task connected by the rule. Figure 4.2 shows a

diagram of the bookkeeper task and its multiple output edges.

Each bookkeeper is thought of as a micro-scheduler within the task graph. For

example, in a matrix multiplication task graph, two tasks load matrices to be multiplied,

the bookkeeper would be used to gather these matrices and produce data to do the matrix

multiplication. The bookkeeper task complements the basic scheduling behavior of HTGS

task graphs by defining the state of the computation between two tasks, where one or

more tasks are producing state updates and another task is waiting for a dependency to be

satisfied prior to execution. For example, in image stitching, two neighboring images must

have their Fourier transforms computed prior to computing the phase correlation image

alignment method. The bookkeeper in this case would be responsible for gathering image

Fourier transforms and producing work when two neighboring images’ FFTs are ready.

34

Data In

IRules1→n

RuleManager1

IRules1→n

RuleManager2

IRules1→n

RuleManagern

...

DataOut1

DataOut2

DataOutn

...

Figure 4.2: HTGS bookkeeper task with IRule interfaces for scheduling management.

Using the bookkeeper expands the capabilities of HTGS task graphs to represent complex

dependencies seen in many algorithms.

35

4.2 Memory Management

Each task is bound to one or more threads within the task graph, which concurrently

execute and consume data. In some cases, one task is allocating memory to process the data

concurrently, whereas another task within the graph releases that memory. If the allocating

task is less computationally intensive than the releasing task, then the graph will consume

memory faster than it is being freed, until no memory is available. The HTGS model

specifies a special memory edge to help throttle a task graph, which ensures a specified

number of memory elements will flow within the task graph.

The memory edge represents a data channel between two tasks, which is managed

by a memory manager. This data channel is separate from traditional edges within the

HTGS task graphs and only processes memory data. One task gets memory from the edge

and the other releases. The memory manager, like the bookkeeper, is a task. Because of

this, the memory manager can be easily customized to support different types of memory

allocation. For example, during the initialization phase, the memory manager can specify a

co-processor that the memory manager uses to allocate. This allows each memory manager

to bind data specific to a particular address space and distribute memory from that device

to a task.

During the initialization phase, the memory manager allocates a pool of memory for

the edge. The execution phase receives memory to be processed and produces memory

for the task requesting memory. If the memory pool is empty, then the edge is empty and

forces the task getting memory to wait. The memory data that is passed along this edge

contains a memory release rule. The memory manager uses the release rule to progress the

state of the memory and determine when memory is ready to be released/recycled. These

memory rules provide a mechanism for expressing data locality. A graphical depiction of

the memory manager is shown in Figure 4.3.

Memory In Trigger Memory State Check Memory State
Memory

Pool

Get Memory

pool not empty

Free

Not Free

Memory Out

Figure 4.3: HTGS memory manager task.

36

The reuse of memory is a key optimization for processing data on accelerators to

prevent unneeded data transfers. The access patterns of an algorithm must be carefully

analyzed to find the best traversal to optimize data locality. Some of these decisions need

to be incorporated into rules defined within bookkeepers. This analysis applies to the design

of the task graph and the specification of the memory release rules.

4.3 Scaling – Execution Pipelines

There are three fundamental types of parallelism that programmers rely on to

gain performance: (1) Data parallelism, (2) Task parallelism, and (3) Instruction level

parallelism.

Data Parallelism
CPUs operate on the same function across multiple data; for example single

instruction multiple data (SIMD).

Task Parallelism
Distributing computations to compute workers where each worker processes a

specific set of instructions.

Instruction Level Parallelism
Processes operations within a program concurrently, effectively overlapping instructions.

HTGS expresses data parallelism through the use of CPU thread worker pools. A task

in HTGS can have one or more CPU threads attached to it. Each thread receives different

data from its work queue and processes the same computational function on that data. This

type of parallelism is ideal for CPU tasks, whereas a GPU task only needs one CPU thread

to issue work for a GPU.

Task parallelism is defined in HTGS through task graphs. A task graph decomposes

an algorithm into a series of computational steps and can be executed concurrently when

dependencies are satisfied. One major benefit to this method of parallelism is the ability

to easily overlap I/O with computation. For example, with task-level parallelism the PCI

express can be overlapped with computation, thus reducing the impact of the data transfer

costs assuming there is enough computation complexity for each data element shipped.

37

HTGS does not explicitly expose instruction level parallelism. Instruction level

parallelism is left up to the programmer to define within their computational tasks. In

many of the examples provided, HTGS uses well-defined libraries for basic linear algebra

operations and fast Fourier transforms.

The data and task parallelism featured in HTGS provides an environment that

streamlines computation for multi-CPU systems. HTGS uses this to express an algorithm as

a series of independent tasks that produce/consume data through edge connections defined

within the task graph, exposing coarse-grained parallelism.

To process data on accelerators, a task simply needs to bind to the co-processor during

the initialization phase and execute using the context for the accelerator, see Figure 4.4.

Data In

Trigger Execute Task

CudaContext
CudaStream

GPUID

Data Out

Figure 4.4: HTGS NVIDIA CUDA task.

38

This design is sufficient for systems with one accelerator. HTGS uses the execution

pipeline task to scale on machines with multiple accelerators, such as fat nodes. The

execution pipeline is a task that encapsulates a task graph and creates copies of that task

graph. Data is distributed among the copies based on decomposition strategies provided to

the execution pipeline, which are managed by a bookkeeper within the task. See Figure 4.5.

Data In Bookkeeper Foo2 Bar2

Foo1 Bar1

...

Foon Barn

fwd Data Out

Figure 4.5: HTGS execution pipeline task.

Each task graph within the execution pipeline is an exact copy of the original task

graph including memory edges and bookkeepers. The rules within the bookkeepers

are shared and synchronously accessed, which prevents race conditions where multiple

bookkeepers are trying to update the global state simultaneously. Each task graph copy is

assigned a pipeline ID to distinguish which pipeline the graph belongs too. This pipeline

ID is passed along to all its underlying tasks during the initialization phase. The identifier

is used to distinguish between the different task graph copies. If there are CUDA tasks

within these copies, then each CUDA task is bound to a separate accelerator. For example,

in a system with three CUDA graphics cards, the execution pipeline would spawn three

copies of the task graph and assign each copy to a separate graphics card. The copy

would bind all of its tasks to a separate graphics card, including its memory managers.

The memory managers in the copy would allocate memory for its specified device and

tasks would schedule work for their assigned graphics card. In addition, every task have

their own pool of threads, allowing for all task graph copies to operate across all devices

concurrently.

39

The bookkeeper within the execution pipeline task uses decomposition strategies,

which can create halo regions depending on the algorithm. It is possible that if a memory

manager from one pipeline allocates memory for a device within the halo region, then that

memory could end up in different pipeline, which is bound to a different device. During

release, that memory needs to make its way back to the memory manager that allocated

the memory. To support this kind of behavior, the execution pipeline builds a connectivity

graph between nodes within the copies. This is achieved by providing every task access

to every other task’s input queues. In the case for the halo region, the memory manager

from one pipeline would receive memory from another pipeline and then be able to pass

the memory to the appropriate pipeline that allocated that memory. The only component

needed is to store the pipeline ID within the memory. Additionally, this design allows

for other more advanced scheduling behavior. For example, if there is a load imbalance

within the decomposition strategy, then one pipeline could be configured to steal work

from another pipeline. This allows the idle pipeline to continue processing work even if

there is a load imbalance.

4.4 Algorithm Design Methodology for HTGS

The methodology for using the HTGS model to implement an algorithm consists of

five steps: (1) Algorithm representation, (2) Dataflow interpretation, (3) Task graph design,

(4) Task graph implementation, and (5) Task graph refinement and optimizations. The first

three steps are pictorial representations of an algorithm, the white board stage. Preparing

the algorithm for HTGS requires understanding the parallelism and data dependencies

within the computation workflow. Traditional sequential algorithms will most likely not

map well into HTGS. Using HTGS requires a well defined parallel algorithm whose

computational kernels are laid out as a series of modular functions that processes data

concurrently.

Using the parallel algorithm representation, map the computational functions into

nodes and connect edges based on data dependencies to formulate a dataflow graph. Then,

using the dataflow graph interpret the graph as an HTGS task graph where dependencies

are handled by bookkeepers, input and output parameters are mapped to data objects,

computational functions are tasks, and edges connect the components. Each edge

represents the input/output type between tasks. The types map to the definition of the

40

data objects that contain the data needed between one or more tasks. When memory is a

concern, then memory edges are annotations between tasks where one task allocates the

data, and the other frees.

Next, using an implementation of the HTGS model, the HTGS task graph is created

in code. The traversal strategies when producing data for the HTGS task graph must

follow the definitions assigned to memory rules to avoid deadlock when memory is not

released at the appropriate times. After validation of the implementation, revisit the HTGS

task graph to understand the bottlenecks and customize thread configurations based on

computationally intensive tasks. Additional optimizations can also be applied such as

redesigning the graph to use co-processors or identifying better approaches for scheduling

to improve data locality.

Using this approach, the HTGS model provides a concrete method for representing

an algorithm that maps to the parallel program. The design decisions for modularizing the

algorithm, scheduling data, and representing memory are explicit and defined within the

model as separate entities. This exposes these representations to the programmer to assist

in understanding the code and finding points of contention that require further optimization.

Additionally, the code maps back to the analysis, so programmers not familiar to the

parallel code can observe the implementation at a much higher level of abstraction. In

Chapters 6, 7, and 8, we will demonstrate this design methodology. In the next chapter, we

present the details of the C++ implementation of the HTGS model.

41

Chapter 5

HYBRID TASK GRAPH SCHEDULER C++
IMPLEMENTATION

The HTGS model provides the methodology to utilize high performance fat nodes

that consist of multiple CPUs and GPUs. The C++ HTGS API is the code to implement

and execute the model. The API is designed using a templatized object-oriented approach

where a task is a customizable interface that is implemented to define the four phases of a

task; initialize, execute, terminate, and shutdown. The API is written as a series of C++

header files that are included in projects to construct and execute HTGS task graphs and

uses the C++11 standards for threading, thread safety, and data structures.

The API is split into two components; (1) the core API and (2) the user API.

5.1 Core API

The core API implements low-level HTGS components that task graphs operate with

such as parent base classes, connectors (edges), thread safe queues, task schedulers, rule

managers, and memory managers.

Parent Base Classes
Parent classes are used to strip the template types to allow children to be stored within

container data structures, even if the children’s underlying template types are different.

This is fundamental to the functionality of task graphs to store its vertices and edges.

Type safety is maintained during task graph construction through functions that ensure

the input and output types of connected edges are matching. These edges are managed

by Connectors.

Connector

42

The connector is an object that represents an edge between two or more tasks by

managing an input/output queue. Each connector has a single template type that

defines the type of queue. Additionally, connectors maintain the number of active

tasks that are producing data for the edge. If there are no more active tasks producing

data, then the edge is no longer giving data to the consumer task. This is used to

identify when an edge is closed to terminate tasks.

Thread Safe Queue
Data is stored in queues between tasks. Each task contains one or more threads

producing/consuming to/from these queues. To maintain thread safety each queue

implements a monitor-based implementation that uses a mutex to conditionally wait

for data to be available. This mutex is used to ensure two or more threads cannot enter

the critical section when adding or removing data from the queues. There are two

types of queues that are supported for connectors; a traditional thread safe blocking

queue or a priority blocking queue. The priority blocking queue is enabled through

compile-time directive, which are used to specify an ordering for data. By default the

queue uses a FIFO style of data production/consumption.

Task Scheduler and Task Scheduler Runtime Thread
Every task is bound to one or more threads. Each thread that is spawned is managed

by a task scheduler runtime thread. The task scheduler is responsible for interacting

with the task interface to initialize, consume data, produce data, and terminate the

task. The task scheduler is also responsible for managing the input and output

connectors. A thread is bound to a separate instance of the task scheduler and

underlying task interface. If there is a pool of threads assigned to a specific task,

then each thread within the pool with have a new copy of that task. This allows each

task to easily allocate local reusable memory from within the task across all of the

threads. Figure 5.1 shows the call graph for the task scheduler runtime thread and

how it interacts with the task interface.

43

TaskSchedulerThread

run()

TaskScheduler::initialize()

ITask::initialize()

while(!terminated)

TaskScheduler::execute()

if isStartTask?

ITask::execute(nullptr)

isStartTask? = false

else if ITask::isTerminated?

TaskSchedulerThread::terminate

else

data = Connector::consume()

output =

ITask::execute(data)

Connector::produce(output)TaskScheduler::shutdown()

ITask::shutdown()

Figure 5.1: HTGS task scheduler thread call graph.

Rule Manager
The rule manager provides the functionality for bookkeeper edges. A bookkeeper

has one input and multiple outputs. Each output is represented by a rule manager,

which shares the same input type as the bookkeeper, but has a separate output type

that matches the rules that are managed by the rule manager. When data enters a

bookkeeper, the data is passed to one or more rule managers that are added to the

bookkeeper. The rule manager then sends the data to each rule that is added to the rule

managers. Each rule has its own mutex, which is locked by the rule manager to ensure

no other threads are processing that rule at the same time. The rule is an interface

implemented by the programmer that processes data, updates state, and decides when

44

to produce data, see Figure 4.2.

Memory Manager
The memory manager is a task that implements the functionality for interacting with

a memory edge. The memory edge is separate from the standard edge that connects

two tasks together. Instead, the memory manager is used as the intermediary between

two tasks where one is allocating memory and the other is releasing memory. Each

memory edge is named, which is used by the allocating and releasing tasks to send

data to that named edge. This method allows for a single task to have multiple memory

edges each with their own names.

The API presents two implementations of the memory manager edge; (1)

Traditional and (2) CUDA. The traditional has the basic behavior for memory

management without any extra functionality. The CUDA memory manager inherits

the functionality of the traditional memory manager, except adds CUDA device

binding during initialization. The extra initialization step of the CUDA memory

manager allows for allocation on a specific CUDA device.

There are three modes of operation for a memory manager; (1) Static, (2)

Dynamic, and (3) User Managed. These modes are specified when the memory edge

is added to a graph. Additionally, the edge contains an allocator that defines how

memory is allocated and freed, a memory pool size, which specifies the amount of

memory data produced by the edge, and which tasks are getting and releasing memory.

Additionally, every memory manager has a specific data type that specifies the type of

data that it is producing, which must match the allocator.

The three modes of operation control how/when memory is allocated and freed

by the memory manager.

1. Static
The static memory manager recycles memory when it is released. All of the

memory for the memory pool is allocated only once when the memory manager

is initialized and is freed when the memory manager is shutdown. This memory

manager is ideal for accelerator memory allocation due to the synchronous

behavior of dynamic allocation. However, this method assumes that the memory

allocated never needs to be resized, see Figure 5.2

2. Dynamic

45

ITask::memRelease
Update

MemoryData<T>

State

Check
MemoryData<T>

State

Memory

Pool<T>
Get Memory

pool not empty

free

Not Free

ITask::memGet

Figure 5.2: HTGS static memory manager, where T is the type of memory.

The dynamic memory manager allocates memory when the task receives the

memory and is freed when the memory manager adds the memory back into the

memory pool. This method allows for dynamic allocation during execution and

is used to specify different memory sizes based on the task data requirements,

see Figure 5.3

ITask::memRelease
Update

MemoryData<T>

State

Check
MemoryData<T>

State

free(T)
Memory

Pool<T>
Get Memory

pool not empty

free

Not Free

alloc(T) ITask::memGet

Figure 5.3: HTGS dynamic memory manager, where T is the type of memory.

3. User Managed
The user managed memory manager is used to help keep track of the number

of elements allocated/freed for the programmer. The user managed memory

manager keeps track of how many data elements are allocated/freed by the

programmer. The memory allocation, freeing, and release rules are up to the

programmer to define and are separate from the memory manager. When

memory enters the user managed memory manager, the memory data is immediately

added into the memory pool without any consideration on locality or reuse, see

Figure 5.4.

46

ITask::memRelease Memory

Pool<void*>
Get Memory

pool not empty

ITask::allocUserManagedMemory

Figure 5.4: HTGS user managed memory manager. The type is void * as there is no

memory that is allocated or freed by this manager, but rather is managed entirely by the

programmer.

The core API is mainly used by the user API, but can also be updated to include new

functionality to expand or build upon the HTGS model. For example, creating a new type

of memory manager to support OpenCL functionality. In most cases the programmer will

only use the user API.

5.2 User API

The user API contains C++ classes and interfaces that are used to construct and

execute HTGS task graphs. Each of these components are built using the core API to

enable future customization. The user API is used by programmers to implement and

execute algorithms designed by the HTGS model.

Data
Data is represented as an interface that is used to store the various parameters that

are required by tasks. All data that flows within HTGS task graphs are stored

using instances of this interface. Additionally, the data interface holds onto meta

data that is used to customize the ordering of tasks, which is enabled when priority

blocking queues are activated. Figure 5.5 shows an example implementation of the

data interface to store input and output data for summing two numbers.

47

Figure 5.5: Example data implementations for adding two numbers and returning the sum.

i n c l u d e <h t g s / a p i / I D a t a . hpp>

c l a s s I n p u t D a t a : p u b l i c h t g s : : I D a t a

{
p u b l i c :

I n p u t D a t a (i n t x , i n t y) : x (x) , y (y) {}
i n t getX () c o n s t { re turn x ; }
i n t getY () c o n s t { re turn y ; }

p r i v a t e :

i n t x , y ;

} ;

c l a s s Outpu tDa ta : p u b l i c h t g s : : I D a t a

{
p u b l i c :

Ou tpu tDa ta (i n t r e s u l t) : r e s u l t (r e s u l t) {}
i n t g e t R e s u l t () c o n s t { re turn r e s u l t ; }

p r i v a t e :

i n t r e s u l t ;

} ;

Task
Tasks in the HTGS API are interfaces that implements the task phases of the HTGS

model. These phases are defined as virtual functions that are called from the task

scheduler within the core API, as shown in Figure 5.1. The virtual functions

are generalized and allows for a multitude of implementations, such as the HTGS

bookkeeper, execution pipeline, or CUDA tasks. Figure 5.6 shows an example task

implementation.

Each task has a specific input and output type that is defined during task definition

or creation, which is used to connect tasks within task graphs. If one task is producing

48

Figure 5.6: Example task implementation that adds two values and produces the sum.

i n c l u d e <h t g s / a p i / ITask . hpp>

i n c l u d e ” I n p u t D a t a . hpp ”

i n c l u d e ” Outpu tDa ta . hpp ”

/ / C r e a t e s t h e add t a s k ; consumes Inpu tData , p r o d u c e s OutputData

c l a s s AddTask : p u b l i c h t g s : : ITask<I n p u t D a t a , OutputData>

{
p u b l i c :

void i n i t i a l i z e () {}
void shutdown () {}
bool i s T e r m i n a t e d (

s t d : : s h a r e d p t r <h t g s : : BaseConnec tor> i n p u t C o n n e c t o r) {
re turn i n p u t C o n n e c t o r−>i s I n p u t T e r m i n a t e d () ;

}
v i r t u a l AddTask ∗ copy () { re turn new AddTask () ; }
v i r t u a l vo id e x e c u t e T a s k (s t d : : s h a r e d p t r <I n p u t D a t a> d a t a) {

i n t sum = da ta−>getX () + da ta−>getY () ;

t h i s−>a d d R e s u l t (new Outpu tDa ta (sum)) ;

}
} ;

data for another task, then the output and input types of those tasks must match,

respectively. This design provides compile-time error checking for graph creation

and type safety.

Creating/implementing a task consists of four parameters that customizes the

scheduling behavior of the task: (1) Number of threads, (2) Is the task a start task?

(3) Whether to poll for data, and (4) Timeout period for polling. These parameters are

used by the HTGS runtime system and the task scheduler. In addition, each task holds

onto meta-data that is used to bind memory edges to each task. These are managed

using hash maps that provide lookup times for getting or releasing memory from a

49

named edge. If a task is declared as a start task, then the task will begin executing

as soon as the task has finished the initialization phase, which is used to immediately

begin producing data for memory managers.

If a task is specified to have more than one thread, then the HTGS runtime will

create copies of that task along with a copy of the task scheduler managing each task

instance. These copies are all bound to the same input and output connectors, allowing

the tasks to operate with a thread pool. The tasks use a single instruction multiple data

(SIMD) style of programming for the multiple threads. Local memory allocation for

the thread is done during initialization. Data is passed in as a parameter to the execute

function, which is consumed from the input connector of the task by the task scheduler.

With this behavior the task implementation focuses on processing one independent

data instance at a time and can assume all dependencies have been satisfied for the

data that it has received. The task produces data using the addResult function to insert

data onto the output connector of the task. In addition, all memory allocation within

the HTGS API is wrapped in smart/shared pointers that automatically free once all

references to the pointer has expired. This design enables for zero-copy of data objects

as only the shared pointers are distributed among the tasks. Data copying is only done

using memory that must be sent/received between address spaces, such as memory

allocated using malloc.

Task Graph
The HTGS task graph is implemented as a C++ class to store tasks (vertices) and

connectors (edges). These components are added into a task graph through functions

that create edges, bookkeepers, and memory edges. Each task graph has an input and

output task that produces/consumes data entering/leaving the task graph. Using this

approach, the graph becomes a black box where data enters a graph, flows through

its tasks, and then produces potentially transformed data after being processed within

the graph. The scheduling behavior of the graph is defined by its vertices and edges,

where each vertex produces data to be consumed by the next task. This procedure is

started by inserting data into the graph, or by producing data within one of the tasks,

acting as a start task.

Tasks that are added into a graph are kept track of using history objects that are

defined in the core API. The history objects describe the order in which tasks are added

and connected within the graph. These objects are used to aid in duplicating a task

50

graph for execution pipelines. When a copy is created, the copy is a mirror images of

the original graph including vertices, edges, and memory edges. The copy function

is highly optimized to process the copy as efficiently as possible, making use of hash

maps to speedup lookup times when acquiring the mapping between tasks and task

schedulers.

In addition, the task graph object provides functionality to create a dot file

representation of the graph, which is used to create a visual representation of the

graph. Figures 5.7 and 5.8 shows the code for creating a task graph and visualization

of that graph, respectively.

Figure 5.7: Example task graph creation.

i n c l u d e <h t g s / a p i / TaskGraph . hpp>

i n c l u d e ” AddTask . hpp ”

i n t main () {
AddTask ∗ addTask = new AddTask () ;

/ / Task graph ; consumes I n p u t D a t a and p r o d u c e s OutputData

auto t a s k G r a p h = new h t g s : : TaskGraph<I n p u t D a t a , OutputData > () ;

/ / AddTask i s consuming and p r o d u c i n g t h e da ta

t a skGraph−>addGraphOutpu tP roduce r (addTask) ;

t a skGraph−>addGraphInputConsumer (addTask) ;

/ / I n d i c a t e t h a t we w i l l be p r o d u c i n g da ta f o r t h e graph

t a skGraph−>i n c r e m e n t G r a p h I n p u t P r o d u c e r () ;

t a skGraph−>w r i t e D o t T o F i l e (” o u t p u t . d o t ”) ;

}

51

Figure 5.8: Task graph visualization for add task task graph from Figure 5.7 The graph

input and graph output show the number of active connections for that edge. The task

shows the number of threads that will be bound to that task.

The task graph visualization shows the created graph, including the number of

threads that will be spawned for the tasks by the HTGS runtime, the number of

active connections for connectors, and (if enabled) profiling information for each

task. Profiling details are enabled using the compile-time directive PROFILE. When

enabled, all tasks within the graph will monitor various runtime behavior such as

compute time, wait time, and the maximum size its input queues receive. These values

can be visualized by generating the dot file representation of the task graph after the

graph has finished executing.

Runtime
The runtime is a class implemented to execute a task graph. It is responsible for

creating threads, which are bound to task schedulers. If a task has more than

one thread specified, then the runtime will duplicate the task such that each thread

will be responsible for a separate instance of the task. The runtime is launched

asynchronously, allowing for interaction with the task graph, such as producing and

consuming data for a task graph as it is executing. Once the runtime has begun

executing, then all of the tasks within the graph will wait for data to begin processing.

Figure 5.9 shows one example implementation of using the runtime for handling input

and output data from the task graph in Figure 5.7. Figure 5.10 shows the execution

output.

52

Figure 5.9: Example runtime usage for handling input and output data from the task graph

in Figure 5.7.

i n c l u d e <h t g s / a p i / Runtime . hpp>

. . .

auto r u n t i m e = new h t g s : : Runtime (t a s k G r a p h) ;

run t ime−>e x e c u t e R u n t i m e () ;

f o r (i n t i = 0 ; i < 5 ; i ++) {
auto i n p u t D a t a = new I n p u t D a t a (i , i) ;

t a skGraph−>produceDa ta (i n p u t D a t a) ;

}
t a skGraph−>f i n i s h e d P r o d u c i n g D a t a () ;

whi le (! t a skGraph−>i s O u t p u t T e r m i n a t e d ()) {
auto d a t a = taskGraph−>consumeData () ;

s t d : : c o u t << ” R e s u l t : ” << da ta−>g e t R e s u l t () << s t d : : e n d l ;

}
t a skGraph−>wai tFo rRun t ime () ;

d e l e t e r u n t i m e ;

Figure 5.10: Example runtime output from Figure 5.7.

R e s u l t : 0

R e s u l t : 2

R e s u l t : 4

R e s u l t : 6

R e s u l t : 8

Bookkeeper
The bookkeeper is implemented using the task interface. Data that is consumed by a

bookkeeper is forwarded to all rule managers that have been added to the bookkeeper.

53

These rule managers are constructed when a task is connected to the bookkeeper

within a task graph, with a rule as an intermediary. Each rule manager acts as its own

edge and produces data based on the programmer-defined rules that are associated

with that rule manager. The bookkeeper itself, has no output data, but changes the

basic behavior of a task through its use of rule managers.

Rules
Rules are interfaces implemented to determine when to produce data for a task based

on dependencies and other customizable behavior. A rule manager produces data for

the rule, which is managed by a bookkeeper. The main function that is implemented

for the rule is applyRule. This function has two parameters; (1) the data that is

updating the rule and (2) the pipeline ID that the rule is being used for. The pipeline

ID is used to identify which pipeline the rule is intended for, which is used in domain

decomposition rules for execution pipelines. A C++ mutex is associated with each

rule to ensure one instance of a rule that is shared among two bookkeepers is accessed

synchronously.

CUDA Task
The CUDA task is an interface that implements the task interface, which modifies the

execution and initialization functions to apply to a CUDA device. These functions

attach the task scheduler’s thread to a specific CUDA device, which is then bound

to the task scheduler’s thread. This allows for all memory allocation and execution

within the task to be sent to the specified CUDA device. The parameters for the CUDA

task is an array of CUDA contexts, CUDA device IDs, and the number of GPUs.

These parameters are used within execution pipelines to bind a separate instance of

the CUDA task to different CUDA devices.

Execution Pipeline
The execution pipeline is a task that implements the task interface to provide scaling

capabilities, particularly for multi-GPU configurations. This task encapsulates an

entire task graph and creates copies of that task graph to distribute data among

the copies using domain decomposition rules. Any task within the encapsulated

graph is copied, including Bookkeeper tasks, which will share the underlying rules

among other copies. CUDA tasks are bound to separate devices, one per copy. The

domain decomposition rules are defined using the rule interface, which is added to the

54

execution pipeline task. These rules use the pipeline ID parameter for the applyRule

function to indicate, which pipeline the rule is intended.

Memory Allocator
The memory allocator is an interface used for memory edges to indicate how to

allocate and release memory.

Memory Release Rule
Memory release rules define the state of memory, which indicates if memory is ready

to be released/recycled. The release rule is attached to memory when a task gets

memory from a memory edge. This rule is used to define the locality of data based on

scheduling decisions. Ideally, the memory should only be released when the memory

is no longer needed; however, due to memory limits of devices and data access patterns

of algorithms, memory may require additional load/stores.

Custom Edge
Custom edge is an interface that bridges the gap between the core API and the user

API. It is used to provide special functionality for an edge, which is used to define

how the edge is added to a task graph. This is used to help copy the edge when a task

graph is copied. This interface has been used to recreate the bookkeeper and memory

edges to demonstrate the additional customization to task graphs without having to

edit the core API.

The user API contains the primary functionality of the HTGS model. In the next

section, we present a Hello World example of using the HTGS C++ API by computing the

Hadamard product between two matrices.

5.3 Hello World – Hadamard Product

The Hadamard product computes the element-wise matrix multiplication between two

matrices that share the same dimension, A ◦B = C, as shown in Algorithm 1.

The Hadamard product is an embarrassingly parallel algorithm where each step

of the algorithm can be done independently. When sending data between tasks in an

HTGS task graph, there is some overhead, so the amount of computation per element of

data transmitted between tasks should have some amount of computational complexity.

Adding complexity within tasks is done by processing the Hadamard product with block

55

Algorithm 1 Hadamard Product
1: function HADAMARDPRODUCT(A, B, C)

. Matrix dimensions: An×n Bn×n Cn×n

2: for each row do
3: for each col do
4: C[row][col] = A[row][col] ∗B[row][col];

5: end for
6: end for
7: end function

decomposition, as shown in Figure 5.11.

A ◦B = C

Ai,j ◦ Bi,j = Ci,j

A

B

C

Ci,jAi,j

Bi,j

Figure 5.11: Hadamard product block decomposition.

Using the block decomposition variation of the algorithm, we transform the Hadamard

product into a dataflow graph, see Figure 5.12. For this implementation, we assume the data

has been saved to disk and distributed into separate files, where each file represents a block

56

of either matrix A or B

BlkReqA

BlkReqB

ReadA

ReadB

A ◦B BlkDataC

Figure 5.12: Hadamard product block decomposition dataflow graph.

Using the dataflow graph, we analyze the various data requirements that need to be

created for the task graph. First, we need a data object to represent the read requests. The

block read request should request the row, column block that is to be read. Next, there

are two reads required to compute one Hadamard product, so a data object is needed to

encapsulate both reads into a single object. Finally, the result of the Hadamard product

produces a block of data that represents the result matrix data.

From the dataflow graph, we create a task graph representation, as shown in

Figure 5.13. In this example, we merged the read task into a single read task. A flag within

the block request data is used to indicate whether to read from A or B. The read operation

could be represented as two separate tasks, as will be seen in matrix multiplication, so it is

used as an alternate example for reading data. Once data is read, matrix data is sent to a

bookkeeper. The bookkeeper uses the LoadRule to store the blocks of matrices that have

been loaded and produces work for the Hadamard product for matrices whose row, column

block have been loaded.

BlkReqAorB ReadAorB Bookkeeper LoadRule A ◦B BlkDataC

Figure 5.13: Hadamard product block decomposition task graph.

Each task in this task graph can have one or more threads processing data. This enables

the read task to pipeline with the Hadamard product task, overlapping the I/O of reading a

matrix block with computation. There are two main concerns with this design. First, what

is the ideal block size to use, and second, what if the matrix being operated on cannot fit

into memory.

57

There two factors that are involved with identifying the correct block size to be used.

First, there is a small overhead involved with passing data between tasks, and second, we

need to have enough data flowing in the graph to enable pipelining. To demonstrate these

components, Figure 5.14 is a plot showing the impact of block size versus runtime for

4096× 4096 sized matrices.

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

0.1

1

10

Block Size

R
u
n
ti
m
e
(s
ec
)

Hadamard Product (4096x4096 matrix size) BlockSize vs Runtime

Figure 5.14: Hadamard product block decomposition block size impact on runtime.

The results show that using a small block size impacts performance as there is not

enough computation to justify sending data between tasks. Using a block size that is the

size of the entire matrix also impacts performance as it prevents pipelining. Therefore,

58

using a block size that produces enough data enables better pipelining.

The other concern, memory, is due to the original task graph operating without

waiting. Using a memory manager, we can connect two tasks with a memory edge to allow

one task to throttle another task. Figure 5.15 shows the final task graph that annotates the

graph from Figure 5.13. This new graph throttles the read and Hadamard products using

three memory edges. The final memory edge that is consumed by the Hadamard product is

managed by the main thread that is interacting with the task graph.

BlkReqAorB ReadAorB Bookkeeper LoadRule A ◦B BlkDataC

MatrixA MemoryManager

MatrixB MemoryManager

MatrixC MemoryManager

Figure 5.15: Hadamard product block decomposition task graph with memory managers.

Using the task graph from Figure 5.15, we can implement the Hadamard product,

which can operate on matrices that exceed the limits of the CPU, using the HTGS C++

API. The source code for this example is available at

https://github.com/usnistgov/HTGS-Tutorials/tree/master/tutorial2/

hadamard-product.

https://github.com/usnistgov/HTGS-Tutorials/tree/master/tutorial2/hadamard-product
https://github.com/usnistgov/HTGS-Tutorials/tree/master/tutorial2/hadamard-product

59

Chapter 6

CASE STUDY 1: IMAGE STITCHING

We describe below a high performance hybrid CPU-GPU implementation that

accelerates the Fourier-based stitching of 2D optical microscopy images to less than 1min

(end-to-end execution times) (Blattner et al. 2014). It stitches a 59 × 42 grid of images

in 43 s while an optimized single-threaded reference implementation takes nearly 10min

for the same workload. Using the same grid of images on the popular ImageJ/Fiji image

stitching plugin, the execution time exceeds 3.6 h, which uses the same mathematical

algorithm as our implementation for computing relative displacements. Using this research

as a baseline, we present the HTGS implementation of the same algorithm. We show that

we obtain similar performance as the hybrid CPU-GPU implementation, but with ≈ 43%

fewer lines of code (Blattner et al. 2015).

60

6.1 Problem Description

Image Stitching comes up in Optical Microscopy because of a scale mismatch between

the dimensions of a plate being examined and the microscope’s field of view. For example,

the region of interest in a plate is measured in cm (e.g., 2 cm × 2 cm) whereas the field

of view is at least an order of magnitude smaller (< 1mm × 1mm). To image a plate, a

microscope scans the plate as it travels under the optical column and generates overlapping

partial images or tiles. Software then assembles the tiles into a single image. Szeliski

discusses several algorithms for finding the proper alignment of image tiles (Szeliski 2006).

The algorithm in this study is a Fourier approach, which is based on Kuglin and

Heins’ phase correlation image alignment method, and is used to calculate the relative

displacements between neighboring images (Kuglin & Hines 1975a). The algorithm is

commonly found in microscopy image stitching because of its ability to line up a wide

variety of features within images in the Fourier space. For example, the popular image

stitching plugin found in Fiji (Fiji 2012), created by Stephan Preibish (Preibisch, Saalfeld,

& Tomancak 2009), uses the same alignment method to determine image translations. Fiji

is used as an image processing package and is the tool of choice for many biologists. The

package is built on top of the ImageJ library and acts as a distribution of ImageJ (ImageJ

2012). More details about the algorithm is found in Section 6.3.

This study uses imaging data acquired by biologists at the National Institute of

Standards and Technology (NIST) using an Olympus IX71 microscope with a 10x lens

and an infrared camera. The images form a grid of 59× 42 tiles. Each tile is a 1040× 1392

16-bit gray-scale image; its size is 2.76MB and covers an area of 896.44µm× 669.76µm.

The size of the dataset is 6.68GB. The grid and tile sizes are fixed during a particular

experiment, but can vary between experiments.

6.2 Contributions

First, we present and compare five implementations of Fourier-based image stitching

and detail a hybrid CPU-GPU implementation which achieves end-to-end processing times

of 43 s for a grid of nearly 2500 tiles (59 × 42) on a machine with one high-end GPU

card. Such execution times transform image stitching into quasi-interactive tasks and are

two orders of magnitude better than those of ImageJ/Fiji (Fiji 2012) which takes nearly

61

3.6 h for the same workload. These execution times also compare favorably with published

timing results for similar problems using GPUs (K. U. Venkataraju et al. 2009).

Next, we present and compare the HTGS implementation of image stitching that

acquires similar performance as the hybrid CPU-GPU approach. The hybrid CPU-GPU

implementation uses the hybrid pipeline workflow model, which requires a significant

amount of programmer effort to implement. Using the HTGS model and API, the number

of lines of code is reduced by ≈ 43%, while maintaining similar performance as the

manually coded hybrid workflow implementation. This showcases the low overhead of

scheduling with the HTGS API.

Both the hybrid CPU-GPU and HTGS implementations takes advantage of coarse

grain parallelism in the image stitching computation and organizes it into a pipeline of

functional stages: reading, computing, and bookkeeping (managing dependencies). Each

stage consists of one or more CPU threads, some of which interact with GPUs. The pipeline

overlaps various computations that take place on CPU or GPU cores with data transfers

between disk, main memory, and memory on the graphics cards.

6.2.1 Organization

The remaining sections are organized as follows: section 6.3 discusses alternative

approaches underlying image stitching algorithms; section 6.4 describes in detail the

Fourier-based image stitching algorithm used in this study; section 6.5 presents the

implementations that were developed and discusses their performance; section 6.6 presents

the HTGS implementation; and section 6.7 discusses and compares the HTGS and hybrid

workflow implementations.

6.3 Image Stitching Algorithm

The two main approaches for automatically stitching images are feature-based

alignment techniques (Barnea & Silverman 1972; B. Ma et al. 2007) and direct

methods (Kuglin & Hines 1975a; Jing, Chang-shun, & Wu-ling 2009). In our study, we are

using a direct method, a version of Kuglin and Hines’ phase correlation image alignment

method (Kuglin & Hines 1975a) that is modified to use normalized correlation coefficients

as described by Lewis (Lewis 1995). This method uses Fast Fourier Transforms (FFTs)

to compute Fourier Correlation Coefficients and then uses these correlation coefficients

62

to determine image displacements. Figures 6.2 & 6.3 give pseudo-code listings of the

correlation functions. In our context, the Fourier-based approach is advantageous because

it is simple, has predictable performance, and lends itself to parallelism. Furthermore, it is

more robust as it does not depend on feature detection and, as such, effectively stitches a

wide variety of data.

We elected to not use feature-based alignment because it cannot always handle

the large uncertainties present in microscopy imaging. For example, one approach

in feature-based alignment is the sequential similarity detection algorithm (Barnea &

Silverman 1972). This algorithm tends to be fast, but does not guarantee finding the

maximum correlation surface. This is particularly problematic with microscopy images

as there can be multiple narrow extrema in the correlation surface. As such, the image

generated will have incorrect alignment if the alignment is not within a few pixels of a

maximum; this result will be detrimental to biologists trying to analyze the stitched image.

Despite the difficulties with the feature-based approach, the literature reports on systems

that are feature-based and that work for some microscopy image stitching. For example,

the AutoStitch software (AutoStitch 2012) implements Brown and Lowe’s scale-invariant

feature transform (Brown & Lowe 2007). Ma et al. report using AutoStitch to process

microscopy images (B. Ma et al. 2007). We plan to run the AutoStitch software on our

data set in a future experiment.

Cooper, Huang, and Ujaldon implement another feature-based algorithm (Cooper,

Huang, & Ujaldon 2011). Their implementation is aimed at clusters and optimizes for

both the CPU and GPU. It uses a combination of FFT-based normalized cross-correlation

and feature detection. Their implementation is targeted at images that are much larger than

the ones used in this study (e.g., 16K × 16K and 23K × 62K). Their results showed that

the GPU was not an ideal candidate for image stitching as their implementation could not

overcome the latency involved with transferring data to/from graphics memory as well as

handle the memory limitations on the GPU for handling very large images.

6.4 Computation

Fourier-based image stitching operates in three phases:

1. Compute relative displacements for all adjacent image pairs. These displacements

form an over-constrained system that one can represent as a directed graph where

63

vertices are images and edges relate adjacent images. The over-constraint in

the system is due to absolute displacements of images being equivalent to path

summations in the graph that must be path invariant.

2. Select a subset of the relative displacements or adjust them to remove the over-constraint

through a fitting or optimization technique (e.g., least squares).

3. Apply the computed translations to tiles and compose them into a single large image.

This work focuses on the first phase of the algorithm, namely the relative displacements

computation phase, as it is the more compute-intensive one. The second phase is much

lighter from a computational load point of view while the third phase can be carried out on

demand as part of visualizing the stitched image.

Figure 6.1 shows the data-flow graph for computing the relative displacement between

two adjacent images, i and j (east-west or north-south). The steps are outlined below. The

algorithms in Figures 6.2 and 6.3 give the corresponding pseudo-code listings.

1. Read the two image files, Fi and Fj into image objects Ii and Ij .

2. Compute the 2D Fourier transforms of the two images (FFTi, FFTj).

3. Compute the image pair’s Normalized Correlation Coefficient (NCCij). This is the

element-wise normalized conjugate multiplication of two complex vectors.

4. Compute the 2D inverse Fourier transform of the normalized correlation coefficient

(NCC−1
ij).

5. Reduce the inverse transform to its maximum (maxij), identify the index of this

maximum, and map this index back to image coordinates (x, y).

Fourier transforms are periodic in nature. As such, the overlap distances, x and y, are

ambiguous and can be interpreted as either x or (w − x) and as either y or (h− y).

6. Compute the four Cross-Correlation Factors (CCF1..4
ij). Each cross-correlation factor

corresponds to one overlap mode, (x or w − x) and (y or h− y).

7. Find CCFmax
ij and identify its corresponding displacement (x, y)ij .

64

Fi

Fj

Ii

Ij

FFTi

FFTj

NCCij NCC−1
ij

maxij CCF1..4
ij (x, y)ij

S1 S2 S3

PCIAM

Figure 6.1: Data Flow of Computation for Two Adjacent Images

The computation for the whole grid repeats the pair-wise computation for all adjacent

image pairs in the grid as listed in Algorithm 6.4.

The image stitching algorithm is compute-bound and is dominated by Fourier

transform computations. Table 6.1 shows the count and complexity of operations as

well as the sizes of the operands in these operations; in the table, n and m denote the

grid size while h and w give the size of the partial images. Processing an n × m grid

performs (3nm−n−m) forward and backward 2-D Fourier transforms on double complex

numbers. The cost of each transform is Ohw log(hw) when h and w have a special form,

a power of small prime numbers (e.g., 2, 3, 5, & 7) or a product of such powers, and the

FFT library uses a divide and conquer approach to take full advantage of the recursive

formulation of FFT. For optical microscopy, there is no guarantee that the partial images

will have such nice dimensions and the cost of these transforms may be substantially higher.

The image stitching computation also includes a large number of vector multiplications

and reductions; these operations can become comparatively expensive unless they are

implemented using SSE intrinsics.

For the class of problems under consideration (plates of nearly 2500 images), the

relative displacement computation exhibits a high degree of coarse-grain parallelism:

computing the forward transforms of all images (FFTs), computing the normalized

correlation coefficients of all adjacent image pairs (NCCs), computing the inverse transforms

of all NCCs, etc. However, this computation is not embarrassingly parallel because of data

dependencies and memory size limits.

• There are two sets of computed entities with multiple dependencies, NCCij and

CCF1..4
ij . A parallel implementation must explicitly handle these data dependencies

65

function PCIAM(Ii, Ij) . Disp. of 2 adj. images

FFTi ← FFT 2D(Ii) . Forward FFTs

FFTj ← FFT 2D(Ij)

. Normalized Correlation Coeff.

fc← FFTi .× FFTj . elt wise op

NCCij ← fc./|fc| . normalize

. Find max in Inverse FFT

NCC−1
ij ← IFFT 2D(NCCij)

[max, y, x]ij ← MAX(|NCC−1
ij)

. Consider four combinations

c1 ← CCF(Ii[y : H, x : W], Ij[0 : H− y, 0 : W− x])

c2 ← CCF(Ii[y : H, W− x : W], Ij[0 : H− y, 0 : x])

c3 ← CCF(Ii[H− y : H, x : W], Ij[0 : y, 0 : W− x])

c4 ← CCF(Ii[H− y : H, W− x : W], Ij[0 : y, 0 : x])

return max([c1, x, y], [c2, W− x, y],

[c3, x, H− y], [c4, W− x, H− y])

end function

Figure 6.2: Relative Displacement of Adjacent Images

across CPU and GPU threads.

• An implementation must also manage memory because the problem does not fit

into main memory, let alone GPU memory. Each transform takes up nearly 22MB

in RAM. This results in a total of 53.5GB just for the forward transforms of the

grid! Such a size is well beyond the capacity of most machines. This constraint is

substantially more severe with GPUs where even high end GPUs are limited to 6GB.

The challenges in developing parallel implementations lie in exploiting the available

coarse grain parallelism by scheduling computations on the available computing resources

(CPU and GPU cores) as early as possible without violating any of the data dependency

constraints and memory size limits.

66

function CCF(Ii, Ij) . Cross correlation factor

Ii ← Ii − MEAN(Ii) . Center both vectors

Ij ← Ij − MEAN(Ij)

N ← Ii.Ij . dot product

D ← |Ii|.|Ij| . product of norms

return N/D . double

end function

Figure 6.3: Fourier Cross Correlation Coefficients

for each I ∈ Grid of Tiles do
translations west[I]← PCIAM(I, I#west)

translations north[I]← PCIAM(I#north, I)

end for

Figure 6.4: Grid Relative Displacements

6.5 Implementations

We describe the implementations that we have developed below. Our evaluation

machine has the following hardware specifications:

• two Intel Xeon E-5620 CPUs (2.4 GHz, quad-core with hyper threading),

• 48 GB of RAM (4 GB DDR3 1333 MHz modules), and

• two NVIDIA Tesla C2070 cards with 6 GB of GDDR5 memory each with ECC

turned off; the cards attach to the motherboard at PCIe Gen. 2.0 x16 slots.

Our software stack is as follows:

• Ubuntu Linux 12.04/x86 64, kernel v. 3.2.0,

• Libc6 v. 2.15, libstd++6 v. 4.6, BOOST v. 1.48 (boost 2012),

67

Table 6.1: Operation Counts & Complexities

Operation Op. Count Op. Cost Opd. Size
Read n×m h× w 2 bytes

FFT-2D n×m hw log(hw) 16 bytes

⊗ 2nm− n−m h× w 16 bytes

FFT-2D−1 2nm− n−m hw log(hw) 16 bytes

/max 2nm− n−m h× w 16 bytes

CCF1..4 2nm− n−m h× w 4 bytes

• GCC version 4.6.3 with -O3 optimization, and

• NVIDIA CUDA and cuFFT v. 5.0.

6.5.1 Reference Implementations

We developed two reference implementations: (1) a sequential CPU-only version and

(2) a simple GPU version that is almost a direct port of the sequential CPU version. We

label these two implementations, Simple-CPU and Simple-GPU.

The reference CPU-only sequential implementation reads images files using libTIFF4

v. 3.9.5 (libTIFF 2012) and uses FFTW3 v. 3.3 (Frigo & Johnson 2005a; Frigo &

Johnson 2005b) to compute Fourier transforms. We explicitly coded the functions for the

element-wise vector multiplication and the max reduction with SSE intrinsics because the

compiler being used (GCC v. 4.6.3 with -O3 optimization) was not generating such code.

This implementation used a strategy of freeing memory as early as possible: it freed an

image’s transform memory as soon as the relative displacements of its eastern and southern

neighbors were computed. For this purpose, this implementation supported multiple

traversal orders of the grid (row, column, diagonal, and their chained counterparts). The

chained-diagonal traversal order gave the best performance because it allowed memory to

be freed earlier than the other traversal orders. Consequently, the chained-diagonal traversal

order became the default.

This reference implementation computes the relative displacements for the 59 × 42

grid on the evaluation machine in 20.5min with 84% of this time spent on Fourier

transforms when using FFTW in its estimate planning mode. FFTW is an auto-tuning

68

Fi

Fj

Ii

Ij

Igpui

Igpuj

FFTi

FFTj

NCCij NCC−1
ij maxgpuij

maxij CCF1..4
ij (x, y)ij

Figure 6.5: Data Flow in Sequential GPU Implementation

library which operates in two modes, planning and execution. It first generates a plan, based

on the problem and machine characteristics, which it then executes. When using FFTW’s

exhaustive planning mode, the sequential execution time, excluding planning cost, drops to

10.6min. Exhaustive planning is expensive; it takes nearly 10min to generate the plan in

exhaustive mode. However, a plan can be saved and used by multiple runs to amortize the

cost of planning.

We used the CPU-only sequential implementation to develop a simple multi-threaded

implementation. This implementation uses spatial domain decomposition and a thread-variant

of the SPMD (Single Program Multiple Data) approach to handle coarse-grained parallelism.

The best execution times were 4.5min with 8 threads when using FFTW’s estimate

planning mode and 96 s with 16 threads when using exhaustive planning.

The first GPU implementation, Simple-GPU, is almost a direct port of the CPU

sequential version. Figure 6.5 illustrates the dataflow underlying this implementation. In

this figure, entities that reside in GPU memory are shaded in gray while CPU entities are

not shaded. This dataflow differs from the one shown in Figure 6.1 by having two copy

operators, shown as thick arrows, that copy (1) image data from CPU to GPU memory

(step 1.5) and (2) the maximum reduction result from GPU to CPU memory (step 5.5). The

augmented dataflow consists of the steps below that execute on the CPU or are orchestrated

in sequence on the GPU by the CPU.

1. Read an image file from disk.

1.5 Copy the image data from host to device memory.

2. Compute the image’s transform on the GPU by using NVIDIA’s cuFFT library. The

resulting transform is kept in GPU memory for later use with neighboring images.

69

3. Invoke the NCC kernel on the device for every pair of neighboring images whose

transforms are available. This kernel uses fast shared memory as well as other GPU

kernel optimizations.

4. Compute the inverse FFT from the NCC result on the GPU by using NVIDIA’s

cuFFT library.

5. Invoke our parallel reduction kernel on the GPU for finding the max element and its

index. The parallel reduction routine is an adaptation of NVIDIA’s parallel reduction

for finding the sum of a vector’s elements.

5.5 Copy the single index value back to the host.

6. Compute the four Cross-Correlation Factors.

7. Find the max CCF and identify its corresponding displacement.

The implementation allocates a pool of buffers in GPU memory for FFT transforms and

keeps track of these buffers on the CPU to get around the limited amount of memory

available in the GPU.

Table 6.2: Profile of Reference Sequential Implementations

CPU GPU
Function Count T (ms) % T (ms) %
read 2478 3.51 1.13 3.91 1.59

copy 2478 4.31 1.39 6.58 2.68

FFT 2478 75.18 24.35 50.96 20.75

FFT−1 4855 82.22 52.17 48.57 38.75

NCC 4855 21.16 13.42 9.40 7.50

max 4855 5.87 3.73 3.88 3.10

CCF 19420 1.49 3.77 2.10 6.69

GPU copy 2478 6.06 2.47

The reference GPU implementation is single threaded, executes CUDA memory

copies synchronously, and invokes all kernels on the default stream. Nevertheless, it

includes several features that were put in place to improve performance:

70

• The implementation uses NVIDIA’s cuFFT library (NVIDIA Corp. 2012a) to

compute FFTs, but does so without padding the data. The partial images in our data

set are 1392× 1040 with prime factors of 2, 3, and 29 and 2, 5, and 13 respectively.

These sizes are definitely not ones favored by many FFT implementations. A

comparison of computing FFTs on the CPU versus the GPU reveals that the GPU

only gains a factor of ≈ 1.5x over FFTW using exhaustive planning!

• It has a custom-written GPU kernel for computing the normalized cross correlation.

This kernel uses shared memory and maximizes the occupancy of the graphics card.

This kernel runs ≈ 2.3x faster than the corresponding CPU function.

• It has a custom-written max reduction kernel. This kernel implements a variant of

the parallel reduction kernel (Harris 2012) that is distributed with NVIDIA’s “GPU

Computing SDK” (NVIDIA Corp. 2012b). Our reduction kernel uses the same

optimizations and obtains a performance increase of ≈ 1.5x over the CPU.

• The last step on the GPU reduces an image to a single value, the index of the

maximum in its NCC. The implementation transfers this single value from graphics

to host memory, thereby opportunistically minimizing the volume of transferred data.

• The implementation copies image data to the GPU only once per image. It frees an

image tile’s GPU memory only when all the neighboring tiles have been computed.

In order to do so, the implementation maintains a data structure on the CPU side

to keep track of a tile’s state; this data structure includes a reference count that

is initialized to the number of times the tile will be used for computing relative

displacements.

The reference GPU implementation stitches the 59 × 42 grid in 9min 16 s, a mere

1.15x speedup over the reference CPU-only sequential implementation when run with

FFTW’s exhaustive planning mode. Table 6.2 compares the execution profiles of both

reference sequential implementations, Simple-CPU and Simple-GPU.

As expected, porting the CPU code directly onto the GPU was not advantageous

considering that we obtained a speedup of only 1.15x. We used NVIDIA’s visual

profiler (NVIDIA Corp. 2012c) to analyze the GPU serial implementation and noticed

an overhead of ≈ 0.03 to 0.25 s between tile computations. Figure 6.6 shows this overhead

71

Figure 6.6: CUDA Profile of Reference GPU Implementation

.

.

.

GPU0 Q010 read0 Q120 copier0 Q230 FFT0

Q34 BK1

Q450 Disp0

Q56 BK2 Q67 CCF

GPUn Q01n readn Q12n copiern Q23n FFTn Q45n Dispn

Figure 6.7: Pipelined GPU Structure

in a 1 s interval. The different colors represents the different kernels being executed on

the GPU. The large gaps in this visual profile also indicate that the GPU is not being fully

utilized and synchronization is preventing not only the GPU to have large wait periods, but

the CPU as well.

The major factors contributing to this overhead are synchronously invoking kernels,

waiting for CPU reads and computations, and copying between CPU and GPU memories.

Each of these uses valuable cycles and keeps the GPU unoccupied. To overcome these

problems, we decided to restructure the code with the goals of (1) overlapping data transfers

with GPU computations and (2) overlapping CPU tasks such as reading and computing the

CCFs. We developed a workflow system based on these constraints.

72

6.5.2 Pipelined GPU Implementation

The pipelined GPU implementation, Pipelined-GPU, is an implementation of a hybrid

CPU-GPU workflow system that organizes the image stitching computation into a pipeline

of six producer-consumer stages with the option of having multiple threads per stage. It

structures the flow of data in the pipeline to guarantee keeping the GPU busy as soon and

as often as possible and to also keep many of the CPU cores busy at the same time. The

implementation partitions the grid into equal parts and instantiates one execution pipeline

per GPU to take advantage of multiple GPUs when available.

Figure 6.7 shows the structure of the pipeline. Each stage has an input and an output

queue; the threads of a stage consume from its input queue and produce for its output

queue. These queues can be considered as having monitor implementations to prevent race

conditions. Images are processed in the pipeline as follows:

• One reader thread per GPU reads image tiles. Each image tile is initialized with its

row/column index, and which GPU it is bound to.

• One copy thread per GPU then copies each tile to the GPU and invokes a kernel to

transform the 16-bit image into a buffer of double complex numbers. GPU memory

for the input and output buffers are allocated here using our memory manager.

• Tiles enter the FFT stage which computes forward FFTs using invocations of cuFFT.

• The first bookkeeping stage gathers FFT computations from all execution pipelines

and manages the state of tiles and resolves dependencies. Tiles are grouped into

ready pairs and are sent to the next stage. The pairs is sent to the appropriate GPU.

• Pairs of adjacent tiles (north-south or east-west) enter this stage which invokes the

NCC computation, the inverse transform, and the maximum reduction. This stage

also copies the index of the maximum to the host. GPU memory of pairs that exist

on the spatial boundary of the grid will be automatically copied using peer to peer

copies which copies GPU memory without going through host CPU memory.

• In the second bookkeeper stage, pairs of images are gathered and a reference count is

decremented. Once the reference count of an image reaches zero, then the memory

for that image can be released into the memory manager.

73

Figure 6.8: CUDA Profile of Pipelined workflow GPU Implementation

• In this stage, a pool of CPU threads translate the index of the max value into image

coordinates and compute the four CCF1..4
ij values. This yields the final x and y

relative displacement for the image pair.

Each stage in the GPU-side of the pipeline generates its own streams. Unfortunately,

CUFFT kernels are resource hungry (e.g., registers) and, as such, cannot run concurrently

with other kernels on NVIDIA’s Fermi architecture. Despite this drawback, having a

separate stream per stage enables computations on the GPU to overlap with the memory

transfers. This is illustrated in the visual profile of Figure 6.8 of a 1 s interval. Comparing

this profile with that of the previous version’s profile, we can identify a number of major

differences. First, the pipelined workflow profile shows many GPU kernels being executed

in no particular order and all the computations are overlapping with PCI express memory

transfers. In contrast, the reference GPU implementation’s profile have many gaps in time.

The pipeline workflow implementation enables for full occupancy of all GPUs and as seen

in the profile, it keeps things very busy. (Figure 6.6).

As with the GPU reference implementation, the pipelined version maintains a data

structure that holds state information for each tile. However, it includes additional variables

74

due to the multiple stages and threads within the pipeline. This new data structure is

maintained by two bookkeeper threads to minimize the number of synchronizations. Both

bookkeepers are extremely light weight threads, which are only responsible for processing

the state of image tiles as they flow through the pipeline. The first bookkeeper thread

advances pairs of neighboring tiles to the next stage when ready. The second bookkeeper

thread decrements a reference count for each image tile, which is used to determine when

an image tile can be freed. Using this system, we maximize the usage of each image tile as

to only free it when all neighboring tiles have been computed. This effectively caches the

tile’s FFT in GPU memory until it is ready to be freed.

The overall runtime compared to the CPU single threaded version when using a

single GPU and our workflow system achieves a speedup of 14.8x and can process the

59 × 42 in 43 seconds; this is a speedup of almost 13x with respect to the reference

GPU implementation. Our test machine has two GPUs and can process the grid in 25

seconds resulting in a speedup of 25.5x. It improves on the serial GPU implementation by

a factor of 22.2x. Compared to the commonly used Fiji image stitching application and

using one or two GPUs gains speedups of 301.4x and 518.4x respectively. The Fiji image

stitching application is using an identical algorithm to ours and is implemented in Java with

multi-threading on the CPU. Comparing the Fiji application with our reference CPU and

GPU implementations we see speedups of 20.4x and 23.2x respectively. Gaining the extra

order of magnitude is attributed to our workflow system effectively scheduling tasks on all

available resources and overlapping all disk and PCI-express I/O.

CUFFT is capable of batching multiple FFTs into a single execution; this can

boost performance for doing multiple FFTs of the same dimension. We developed a

micro-benchmark to analyze the difference in computation times between batching FFTs

and computing FFTs individually. The results of the micro-benchmark showed that

executing a batch of 2x2 image tiles can obtain a performance increase of ≈ 9 times for

our images.

An implementation of the pipeline, which batched FFT computations, was developed.

However, its results showed that the performance was the same as the original pipelined

version. We attribute this to the additional waiting times that must be incurred to group

images into batches.

75

6.6 HTGS Microscopy Image Stitching

Read

MM

FFT BK PCIAM CCF

Figure 6.9: Hybrid image stitching task graph (machine with 1 GPU).

As shown in Figure 6.9, hybrid image stitching consists of six tasks. The six tasks are

listed below:

1. MM manages CUDA FFT memory.

2. Read loads an image from disk.

3. FFT copies an image to the GPU and computes the forward fast Fourier transform

on the GPU.

4. BK identifies when two neighboring images have their FFTs computed.

5. PCIAM computes the phase correlation image alignment method between two tiles

on the GPU and copies the single scalar back to the CPU.

6. CCF computes the cross correlation factors on the CPU.

There is one dependency that requires the FFTs of two neighboring tiles to be

computed before processing the PCIAM function. When an image’s FFT is available, the

FFT can be used in computations with its four cardinal neighbors. To avoid unnecessary

FFT computations, the memory manager uses a reference count to keep FFTs in memory.

The reference count refers to the number of times an image’s FFT is used with its four

neighbors (three for boundary cases, and two for the corners).

The task graph in Figure 6.9 will execute on one GPU only. To scale to multiple

GPUs, the task graph is partitioned into two task graphs; (1) a GPU task graph and (2) a

76

Read

MM

FFT BK PCIAM

Read

MM

FFT BK PCIAM

Read

MM

FFT BK PCIAM

CCF

Figure 6.10: Hybrid image stitching with execution pipeline (3 GPUs).

container task graph to hold an execution pipeline task and the CCF task. The GPU task

graph is added to the execution pipeline as shown in Figure 6.10.

The execution pipeline copies the GPU task graph. The number of copies generated

is specified by the programmer and each copy is bound to a separate GPU. The image

tile grid is decomposed evenly such that each copy processes a different non-overlapping

region. The CCF task remains outside of the execution pipeline and uses a pool of CPU

threads to process CCFs.

6.7 Discussion

Table 6.3 summarizes the timing results of the hybrid workflow implementation and

indicates that we have achieved an order of magnitude performance improvement. Our

evaluation machine for the hybrid pipeline workflow implementation uses two quad-core

Intel Xeon CPUs, 48 GB of RAM, and two NVIDIA Tesla C2070 GPUs.

77

We started with two reference implementations that computed the relative displacements

of each image pair in roughly 10 minutes for both the CPU and GPU. After profiling each

implementation, we determined that parallelizing the program in a pipeline fashion was

optimal in order to overlap disk, the PCI express, and computation on the GPU and CPU.

From this implementation, we were able to obtain a speedup of 13x and compute the 59×42
grid in 43 s on a single Tesla C2070. By partitioning the grid and setting up one execution

pipeline per GPU, we were able to obtain nearly a 1.7x speedup by going from one GPU

to two, ultimately computing the entire grid in 25 seconds, which is a 22.2x speedup from

our reference implementations.

Table 6.3: Runtime and speedup results of the reference and hybrid pipeline workflow

implementations.

Implementation Time Speedup Effective Speedup Threads GPUs

Fiji IS plugin 3.6 hr – – 16 –

Reference CPU 10.6 min – 20.4 – –

MT CPU 1.6 min 6.6 135 16 –

Simple GPU 9.3 min 1.05 2.3 – 1

Pipelined GPU 43 s 14.8 301.4 9 1

Pipelined GPU 25 s 25.5 518 11 2

Table 6.4 compares our novel HTGS-based implementation of hybrid microscopy

image stitching with the implementation without HTGS (Blattner et al. 2014). Each test

case is repeated 50 times using a grid of 42×59 images (6.6 GB) and the average end-to-end

run-time is reported. The machine used has two Intel Xeon E5-2650 v3 CPUs (40 logical

cores) and three NVIDIA Tesla K40 GPUs. The implementation is written in C++ and uses

the C++11 standard for threading, CUDA 7.5 for GPU kernel invocations, and CuFFT 7.5

for FFT computations.

Table 6.4 shows that using HTGS without execution pipelines reduces the code size by

43.4% compared to the original hybrid workflow. Including the execution pipeline enables

the hybrid workflow to scale to multiple GPUs and obtains a performance improvement of

2.1x with three GPUs at the cost of ten additional lines of code. Execution from two to

three GPUs shows little performance improvements due to hardware limitations within the

78

Table 6.4: Runtime results of the HTGS Prototype for hybrid microscopy image stitching.

HTGS Exec Pipeline GPUs Runtime (s) Lines of Code

7 7 1 17.278 1232

7 7 2 9.721 1232

7 7 3 8.301 1232

3 7 1 17.232 697

3 3 1 17.235 707

3 3 2 9.537 707

3 3 3 8.102 707

PCI express. The lack of PCI express lanes on the Xeon E5-2650 v3 socket was unable to

feed all three GPUs. Additionally, the third GPU was incapable of residing on the same

PCI express bus as the first two GPUs, which prevented the third GPU to do GPU-direct

peer-to-peer PCI express transfers. Peer-to-peer transfers allows data to be shared between

GPUs on the same PCI express bus without the need to copy data back to the CPU. For

the third GPU, any data that resided on another GPU would have to first be copied back

to the CPU, and then copied onto the third GPU. This additional overhead impacted the

performance when adding the third GPU.

The results compared with they hybrid workflow implementation and HTGS using

3 GPUs show a 42.6% reduction in code size, while maintaining the same relative

performance. Hybrid workflows are effective at parallelizing an algorithm, hiding data

motion, and keeping processors busy. HTGS reduces the effort required to represent hybrid

workflows in image stitching, while maintaining the performance of manually creating a

hybrid workflow. HTGS also provides a framework for representing algorithms and tools

for complex, data-intensive applications that require very high performance.

Our results demonstrate a highly effective mechanism for structuring the image

79

stitching problem and could be utilized for a variety of other problems that are not

embarrassingly parallel. We will demonstrate two numerical linear algebra routines

using the HTGS model and API and how it compares with modern high performance

implementations.

80

Chapter 7

CASE STUDY 2: MATRIX MULTIPLICATION

Matrix multiplication is a well studied algorithm that has many parallel characteristics.

Implementing matrix multiplication using HTGS provides insights into approaching other

linear algebra problems that share similar data access behaviors as matrix multiplication.

The product of two matrices, of dimensions M , N , and P , CM×P = AM×N ×BN×P ,

is computed by multiplying row entries from matrix A by column entries from matrix B,

then adding their products into matrix C. To exploit parallelism and pipelining, we split

matrix C into square blocks. A sub-matrix Ci,j is computed by multiplying and adding the

horizontal and vertical slices of Ai,1:k and B1:k,j , such that Ci,j =
∑N

k=1Ai,k × Bk,j , as

shown in Figure 7.1.

A×B = C
∑N

k=1(Ai,k × Bk,j) = Ci,j

A

B

C

Ci,jAi,1 Ai,N

B1,j

BN,j

Figure 7.1: Block matrix multiplication.

81

Within the algorithm there are two primary computational routines. First, the matrix

multiplication (GEMM) between two blocks of matrices, which produces a partial result

of C, and second the accumulation (Acc) of the partial results. Both GEMM and

Acc calls can be done in parallel assuming the data has been loaded and multiplied,

respectively. Algorithm 2 provides the pseudo code for block matrix multiplication. This

implementation traverses the blocks along the shared dimension of A and B. Using this

data traversal pattern computes the sub-result of C as quickly as possible; however, each

of the blocks from A and B will have to be reused for other regions of C. This data access

pattern provides excellent performance if the sub-result of C is to be released/written as

quickly as possible, but will require A and B to persist in memory longer. To maximize the

instruction level parallelism, the GEMM function from line 6 in Algorithm 2 is replaced

with a function call to an optimized basic linear algebra routine (BLAS), such as from

OpenBLAS.

82

Algorithm 2 Block Matrix Multiplication
1: function BLOCK-GEMM(A,B,C, blksize)

. Matrix dimensions: AM×N BN×P CM×P

2: b = blksize

3: for I = 1 :M in steps of b do
4: for J = 1 : P in steps of b do
5: for K = 1 : N in steps of b do
6: GEMM(A(I:I+b,K:K+b) ,

B(K:K+b, J :J+b) ,

C(I:I+b, J :J+b))

7: end for
8: end for
9: end for

10: end function

11: function GEMM(A, B, C)

. Matrix dimensions: Am×n Bn×p Cm×p

12: for each i ∈ m do
13: for each j ∈ p do
14: sum = Ci,j

15: for each k ∈ n do
16: sum = sum+ Ai,k ×Bk,j

17: end for
18: Ci,j = sum

19: end for
20: end for
21: end function

83

From the algorithmic analysis of the matrix multiplication, we formulate the dataflow

representation, shown in Figure 7.2. Two nodes are defined to represent the matrix

multiplication and accumulate routines. The matrix multiplication node processes two

blocks and produces one partial result. The accumulate node sums all partial results until

each block has been fully accumulated.

BlkA

BlkB

GEMMA×B=C Acc

Figure 7.2: Matrix multiplication dataflow.

Using the dataflow graph, we have identified two dependencies that must be satisfied

to process the GEMM and Acc nodes. First, two blocks of A and B must be loaded

into memory, and second, the Acc node requires to accumulate the results of the GEMM

node until all partial results have been accumulated. Using this, we formulate the matrix

multiplication task graph, shown in Figure 7.3.

BK1

LoadA

LoadB

BK2 GEMM BK3

Acc

WriteC

Figure 7.3: Matrix multiplication task graph.

In this implementation, we specify two separate loading tasks for A and B to process

each load independently. The first bookkeeper (BK1) distributes the data between the two

load tasks based on the input into the task graph. The second bookkeeper (BK2) initiates

the GEMM computation after the appropriate blocks for A and B are loaded. The third

84

bookkeeper (BK3) gathers the data produced by the GEMM task and produces for the

Acc task to accumulate the partial results for C. When a sub-block of C has been fully

accumulated, then BK3 produces for the WriteC task to write the result to disk.

7.1 Matrix Multiplication on the CPU Results

We implemented the task graph from Figure 7.3 using the HTGS C++ API and

executed it on the CPU. The hardware configuration for this implementation uses two

Intel Xeon E5-2650 v3 CPUs (40 logical cores) and 128 GB of DDR4 RAM. The system

uses OpenBLAS v.0.2.18 DGEMM routine for the GEMM task, which is configured to

use 1 CPU thread. As a baseline, we ran the problems as a one-off function call from

OpenBLAS configured with 20 CPU threads. HTGS is configured with 20 and 10 threads

for the GEMM and Acc thread pools, respectively.

Table 7.1: Matrix multiplication OpenBLAS vs HTGS Runtime for 16k2 and 32k2 matrices

in memory.

Test Case Matrix Sizes Block Size Runtime (s)

OpenBLAS 163842 N/A 16.3

HTGS 163842 20482 15.1

HTGS 163842 40962 17.6

HTGS 163842 81922 35.5

OpenBLAS 327682 N/A 125.4

HTGS 327682 20482 120.7

HTGS 327682 40962 120.3

HTGS 327682 81922 137.5

85

Table 7.1 shows the runtimes for two problem sizes 163842 and 327682, which gains

8% and 4% in runtime using 20482 and 40962 block sizes, respectively. These results

show the minimal overhead that HTGS has for scheduling matrix blocks within the matrix

multiplication task graph. The matrices in this experiment were pre-loaded into RAM.

Next, the same matrices are stored on an SSD and the files are memory mapped. Table 7.2

shows the runtimes for this experiment.

Table 7.2: OpenBLAS vs HTGS Runtime for 16k2 and 32k2 matrices on disk.

Test Case Matrix Sizes Block Size Runtime (s)

OpenBLAS 163842 N/A 32.2

HTGS 163842 20482 28.0

HTGS 163842 40962 24.4

HTGS 163842 81922 42.0

OpenBLAS 327682 N/A 296.0

HTGS 327682 20482 204.4

HTGS 327682 40962 170.9

HTGS 327682 81922 156.2

Comparing Tables 7.1 and 7.2, OpenBLAS percent decrease when adding the disk

is 49.4% and 57.6% for 16k2 and 32k2, respectively. HTGS, on the other hand, has a

percent decrease of 38.1% and 23.0% for 16k2 and 32k2, respectively, comparing the

optimal block sizes between the two experiments. This demonstrates the effectiveness of

HTGS to overlap computation with data transfer costs. Identifying the optimal block size is

important to obtain good performance. Figure 7.4 and 7.5 show HTGS processing matrices

on disk at varying block sizes and thread configurations. The best block size provides

sufficient data to be sent throughout the graph to ensure optimal pipelining and parallelism.

86

0

20

40

60

80

100

Ex
ec

u
ti

o
n

 T
im

e
in

 S
ec

o
n

d
s

Task Thread Configuration (MatrixMul Task + Accum Task)

HTGS Matrix Multiplication Runtimes for 16k x 16k Matrices for Varying Blocksizes

1024 2048 4096 8192 OpenBLAS DGEMM Optimal

Figure 7.4: Runtimes for 16k2 matrices on disk at varying block sizes and thread

configurations.

The results thus far assume that the matrix fits in CPU memory. To accommodate

larger matrices, it is necessary to analyze the memory behavior of matrix multiplication in

more depth to identify a traversal that keeps sub-matrices local to the processing. By doing

so, the sub-matrices can reside in memory for as long as needed until the next sub-matrix

needs be loaded from disk. In the next section, we analyze this behavior and identify the

optimal scheduling strategy using the GPU.

87

0

100

200

300

400

500

600

700

Ex
ec

u
ti

o
n

 T
im

e
in

 S
ec

o
n

d
s

Task Thread Configuration (MatrixMul Task + Accum Task)

HTGS Matrix Multiplication Runtimes for 32k x 32k Matrices for Varying Blocksizes

1024 2048 4096 8192 16384 OpenBLAS DGEMM Optimal

Figure 7.5: Runtimes for 32k2 matrices on disk at varying block sizes and thread

configurations.

7.2 Matrix Multiplication on the GPU using HTGS

Implementing matrix multiplication on the GPU for large matrices has one primary

challenge, memory. The amount of memory on the CPU surpasses the available memory

on GPUs, i.e. 128 GB of RAM for a CPU versus 12 GB of RAM for the NVIDIA Tesla

K40. The traversal strategy shown in Figure 7.1 computes a single block of the result

matrix; however, the blocks from the input matrix need to be reused for each block of

the result matrix, resulting in memory to persist longer. With a matrix size of 32k2, the

amount of RAM used is 8 GB of RAM per matrix, or 24 GB for the two input matrices

and one output matrix. With this traversal strategy and matrix size forces the GPU to copy

sub-matrices to/from the CPU multiple times to fully compute A × B, which will impact

the overall utilization of the GPU.

Switching the computation from an inner traversal to an outer, as shown in Figure 7.6,

changes the data access pattern that can reduce the overall memory requirements for

processing the matrix multiplication. This traversal allows for A and B to be released

88

as soon as one traversal of a row/column has been completed. The new traversal strategy

generates an entire copy of the result matrix, which needs to be accumulated for each

row/column of the input matrices. To save on memory costs on the GPU, this step is

offloaded to the CPU. This strategy assumes that the GPU can hold at least one entire

column of blocks for A and one row of blocks for B, and the CPU can hold at least one

copy of the result matrix.

A×B = C

A

B

C1...N

A1,1

AM,1

B1,1 B1,P

N

N

Figure 7.6: Matrix multiplication GPU data traversal.

This strategy is implemented into the existing CPU code by changing the traversal

behavior when inserting blocks into the task graph. The GPU task graph implementation

is made based on the original CPU task graph from Figure 7.3. The majority of the

graph remains the same such as the matrix multiplication bookkeeper rule and load tasks.

To incorporate the GPU into the graph required three modifications. First, the matrix

multiplication function in the GEMM task is modified to use cuBLAS. Second, a memory

manager edge is added for A, B, and C matrices to throttle the graph to ensure the blocks

reside in GPU memory until they are ready to be released. Third, copy tasks are added

to the graph to copy memory to/from the CPU and GPU. These GPU-based operations

are encapsulated into a GPU task graph and inserted into an execution pipeline task. The

resulting task graph is shown in Figure 7.7 for one pipeline and Figure 7.8 for 2 pipelines.

The execution pipeline features a decomposition rule that sends a matching row/column

from A and B to each GPU using round robin scheduling.

89

BK1

LoadA

LoadB

CopyA

CopyB

BK2

MatMul:

Ar,k × Bk,c = Ck
r,c

CopyC BK3

Accumulate:

Ck
r,c+ = Ck+1

r,c

WriteC

MemManagerA

MemManagerB

MemManagerC

Figure 7.7: Matrix multiplication GPU task graph, 1 pipeline.

BK1

LoadA

LoadB

CopyA

CopyB

BK2

MatMul:

Ar,k × Bk,c = Ck
r,c

CopyC

BK1

LoadA

LoadB

CopyA

CopyB

BK2

MatMul:

Ar,k × Bk,c = Ck
r,c

CopyC

MemManagerA

MemManagerB

MemManagerC

BK3

Accumulate:

Ck
r,c+ = Ck+1

r,c

WriteC

MemManagerA

MemManagerB

MemManagerC

Figure 7.8: Matrix multiplication GPU task graph, 2 pipelines.

7.3 Matrix Multiplication on the GPU Results

We implemented the task graph from Figure 7.7 using the HTGS C++ API and

executed it on the CPU and GPU. The hardware configuration uses two Intel Xeon E5-2650

v3 CPUs (40 logical cores), 128 GB of DDR4 RAM, and 4 NVIDIA Tesla K40 GPUs, each

with 12 GB of GDDR5 RAM. The matrix multiplication task, uses the cuBLAS DGEMM

routine. For comparison purposes, the cuBLAS-XT DGEMM routine is used as a one-off

function call. The matrices in this experiment are pre-loaded onto the CPU, and both

HTGS and cuBLAS-XT are responsible for managing the data transfers to/from the GPUs

to process the matrix multiplication. The results using a block size of 10242 and multiple

GPUs is presented in Table 7.3. Figures 7.9 and 7.10 show the runtimes of cuBLAS-XT

and HTGS across multiple block sizes and number of GPUs.

90

Table 7.3: Matrix multiplication cuBLAS-XT vs HTGS Runtime for 16k2 and 32k2

matrices on GPUs.

Test Case Matrix Sizes Block Size GPUs Runtime (s)

cuBLAS-XT 163842 10242 1 18.7

cuBLAS-XT 163842 10242 2 10.9

cuBLAS-XT 163842 10242 3 8.3

cuBLAS-XT 163842 10242 4 7.5

HTGS 163842 10242 1 13.0

HTGS 163842 10242 2 7.0

HTGS 163842 10242 3 6.3

HTGS 163842 10242 4 5.5

cuBLAS-XT 327682 10242 1 139.0

cuBLAS-XT 327682 10242 2 77.9

cuBLAS-XT 327682 10242 3 55.2

cuBLAS-XT 327682 10242 4 48.9

HTGS 327682 10242 1 84.9

HTGS 327682 10242 2 45.7

HTGS 327682 10242 3 34.9

HTGS 327682 10242 4 30.7

91

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1024 2048 4096 8192

R
u

n
ti

m
e

in
 S

ec
o

n
d

s

Block Size

16k x 16k GEMM Runtimes for HTGS vs cuBLAS-XT for Varying Block Sizes

HTGS 1 GPU HTGS 2 GPU HTGS 3 GPU HTGS 4 GPU

cuBLAS-XT 1 GPU cuBLAS-XT 2 GPU cuBLAS-XT 3 GPU cuBLAS-XT 4 GPU

Figure 7.9: Runtimes for 16k2 matrices on the GPU with varying block sizes.

The results show that HTGS has less overhead when processing smaller blocks and is

capable of using all GPUs, while overlapping PCIe transfers with compute. This is most

apparent in observing the gradual slope of HTGS compared with cuBLAS-XT as the block

size increases. In all test cases, HTGS improves upon cuBLAS-XT in runtime for both 16k2

and 32k2; however, as the block size increases, cuBLAS-XT obtains similar performance

to HTGS. One significant improvement upon cuBLAS-XT is for smaller block sizes. For

example, 10242 block sizes only require 256 MB and 512 MB of memory to process

the input matrices for 16k2 and 32k2, respectively. HTGS processes these small blocks

efficiently using only 2 GPUs, which obtained higher performance than cuBLAS-XT with

4 GPUs. HTGS further improves its performance for 10242 block sizes when adding 4

GPUs with HTGS, resulting in an additional 1.49x speedup compared to 2 GPUs for 32k2

matrices. This aspect showcases the high utilization and minimal overhead of HTGS in

92

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1024 2048 4096 8192

R
u

n
ti

m
e

 (
s)

Block Size

32k x 32k GEMM Runtimes for HTGS vs cuBLAS-XT for Varying Block Sizes

HTGS 1 GPU HTGS 2 GPU HTGS 3 GPU HTGS 4 GPU

cuBLAS-XT 1 GPU cuBLAS-XT 2 GPU cuBLAS-XT 3 GPU cuBLAS-XT 4 GPU

Figure 7.10: Runtimes for 32k2 matrices on the GPU with varying block sizes.

multi-GPU computation.

In this implementation, there is a load imbalance in the round robin scheduling. When

the number of blocks is not evenly divisible by the number of GPUs, then near the tail end

of the computation, one or more GPUs will become idle. This is most apparent for 16k2

matrix sizes with 8k2 block size and using 4 GPUs. One possible solution is to incorporate

the CPU to process the tail end of the matrix multiplication on the CPU.

7.4 Discussion

The HTGS implementation of matrix multiplication implementation was done with

a modest effort. This includes the parallel algorithm identification through literature

93

review, dataflow design, CPU task graph design/implementation, and GPU task graph

design/implementation. With the low effort, we were still able to obtain similar or

better performance compared to highly optimized implementations of matrix multiplication

from OpenBLAS and cuBLAS-XT. Most noticeable are the improvements with obtaining

performance while having to deal with disk I/O or PCI express transfers in both the

CPU and GPU implementations, respectively. These improvements shows off two of the

fundamental designs philosophies within the HTGS model, (1) explicitly handling data

locality and (2) overlapping computation with data motion.

94

Chapter 8

CASE STUDY 3: LU DECOMPOSITION

LU Decomposition (LUD) is the process of representing a matrix as a lower and upper

triangular matrix, A = LU . LUD can be used to help solve systems of linear equations,

inverting a matrix, and has many applications. For example, to solve a system of linear

equations, assuming a matrix is positively definite and given A = LU, solve for x in the

equationAx = b. First, solve the equationLy = b for y; then solve the equationUx = y for

x. The cost of solving the system of linear equations with LUD is 2n3/3+2n2, alternatively,

computing A−1 to solve x = A−1b costs 2n3 + 2n2, making solving systems of linear

equations with LUD about 3 times faster.

The primary algorithm to compute A = LU is Gaussian elimination, see line 12 in

Algorithm 3. Despite the savings from LUD, the Gaussian elimination algorithm is mostly

sequential and has little room for parallelization. However, using a block decomposition

strategy transforms the LUD computation into a series of matrix multiplications, which

becomes the dominant operation and exposes the algorithm to better parallelism. In the

block LUD algorithm there are three steps; (1) Gaussian elimination, (2) Factor, and (3)

Update. This process iterates using blocks, computing Gaussian eliminations along the

diagonal of the matrix, such that after processing the diagonal of a block, that block is used

to factor along the rows and columns of that block. The rows and columns are then used to

update the remainder of the matrix. The updated blocks are then used to process the next

diagonal, as shown in Figure 8.1.

This algorithm assumes there is no pivoting required, such that A is positively

definite. Algorithm 3 shows the pseudo code for block LUD (Golub & Van Loan

1996). Transforming the algorithm in this way modularizes the approach into the three

independent computational steps, which can be executed concurrently assuming data

95

Gauss Factor Update

Iterate

Figure 8.1: Block LU decomposition.

dependencies are satisfied. Using this algorithm, we design the dataflow representation,

shown in Figure 8.2.

BlkdiagA Gauss
Factorupper

Factorlower

Update

Figure 8.2: LU decomposition dataflow.

The LUD dataflow represents the data dependencies between all of the computational

steps; however, it must wait for the update phase to finish processing to avoid factoring

blocks prior to receiving updates. Adding state updates for this data dependency allows for

96

Algorithm 3 Block LU Decomposition
1: function BLOCK-LU(A, blksize)

. A is non-zero and diagonally dominant

. Ai,j is overwritten with Li,j for i > j

. Ai,j is overwritten with Ui,j if j ≥ i

. Matrix dimensions: AN×N

2: k = 1

3: while k ≤ N do
4: µ = min(N, k + blksize− 1)

5: L,U = GaussElim(A(k:b,k:b))

6: Solve: LZ = A(k:b,b+1:N)

7: Solve: WU = A(b+1:N,k,b)

8: A(b+1:N,b+1:n) = A(b+1:N,b+1:n)−W × Z
9: k = b+ 1

10: end while
11: end function

12: function GAUSSELIM(A)

. Matrix dimensions: An×n

13: for k = 1 : n− 1 do
14: rows = k + 1 : n

15: A(rows,k) = A(rows,k)/A(k,rows)

16: A(rows,rows) = A(rows,rows)−
A(rows,k)× A(k,rows)

17: end for
18: end function

97

the Gaussian elimination to start the next diagonal while the update phase is still processing

the previous diagonal. This design is represented in the HTGS task graph.

In Figure 8.3, the dataflow representation is converted into a task graph representation.

Each compute node is mapped to a task, bookkeepers are added to manage the state of the

computation, and edges connect each task based on data dependencies.

GaussElim BK1

FactorU

FactorL

BK2 Update BK3

Figure 8.3: Block LU decomposition task graph on the CPU.

All of the tasks within this graph execute concurrently and the bookkeepers produce

work when dependencies are satisfied. BK1 updates the state from BK3 and GaussElim.

Using this state, BK1 determines when the upper or lower factor tasks are ready to receive

work. BK2 is responsible for gathering the factored blocks and produces work for the

update routine. BK3 holds onto two rules. First, BK3 produces data for the GaussElim task

if the block received is along the diagonal and that block has been fully updated. Second,

BK3 produces data to allow BK1 to update the factoring state. BK3 contains the rules that

enable the Gaussian elimination task to begin processing the next diagonal block as soon

as it has been updated, even if the entire matrix has not been updated. This design allows

for concurrent execution that emphasizes processing Gaussian eliminations as quickly as

possible.

98

8.1 Block LUD CPU Results

Using the task graph from Figure 8.3, we implement block-LUD using the HTGS C++

API and for the CPU. The hardware configuration for this implementation uses two Intel

Xeon E5-2650 v3 CPUs and 128 GB of DDR4 RAM. We used the OpenBLAS v.0.2.18

library for the tasks. DGEMM for the Update task, DGETRF for the GaussElim task, and

DTRSM for the FactorU and FactorL tasks. The matrices used are positively definite, so

no pivoting is required. As a comparison, we ran OpenBLAS DGETRF as a one-off call

with 20 threads. HTGS is configured with 1 thread for the GaussElim task, 10 threads for

both FactorU and FactorL tasks, and 20 threads for the Update task.

Table 8.1 shows the runtime for the HTGS implementation of block LUD. The results

show that deciding on the block size for the problem significantly alters the performance

gains, particularly when increasing the number of unknowns. We compare these results

with Table 8.2, which shows the OpenBLAS one-off call of DGETRF for the same

matrices. This shows that OpenBLAS has been optimized more efficiently than this initial

LUD implementation.

99

Table 8.1: Block LU decomposition HTGS CPU runtimes.

Test Case Unknowns Block Size Runtime (s) GFlops

HTGS 10000 250 1.8 352.5

HTGS 10000 500 2.8 221.4

HTGS 20000 250 11.5 432.0

HTGS 20000 500 11.49 432.4

HTGS 40000 250 101.4 392

HTGS 40000 500 82.9 479.7

HTGS 50000 250 208.0 373.2

HTGS 50000 500 157.6 492.3

HTGS 60000 250 346.7 386.9

HTGS 60000 500 282.7 474.5

HTGS 70000 250 566.0 376.4

HTGS 70000 500 441.4 482.7

The behavior of the HTGS implementation is attributed to the poor utilization of the

CPU compared to that of OpenBLAS due to the small block sizes used for the update

routine. Increasing the block size causes the Gaussian elimination task to overwhelm the

computation, resulting in worse performance than the smaller block sizes. Additionally,

the smaller block sizes utilized the CPU far less than using a larger block size. Therefore,

the task graph needs to increase the amount of computation done within the Update task,

while maintaining the small block size for the Gaussian Elimination.

100

Table 8.2: LU decomposition OpenBLAS CPU runtimes.

Test Case Unknowns Block Size Runtime (s) GFlops

OpenBLAS 10000 N/A 1.7 366.7

OpenBLAS 20000 N/A 11.1 446.7

OpenBLAS 40000 N/A 77.2 514.3

OpenBLAS 50000 N/A 149.9 518.0

OpenBLAS 60000 N/A 257.5 520.8

OpenBLAS 70000 N/A 404.7 526.4

8.2 Block+Panel LUD

The block+panel LUD enables the matrix multiplication within the Update task to

get better utilization, while also keeping the block size small for the Gaussian elimination.

This procedure is similar to the task scheduler approaches from PLASMA and MAGMA.

(Buttari et al. 2009) and (Dongarra et al. 2014). Figure 8.4 shows the block+panel LUD

procedure. In this algorithm, both the Gaussian elimination and factor tasks use blocks,

and the update routine operates using panels.

101

Gauss Factor Update

Iterate

Figure 8.4: Block+Panel LU decomposition.

Using the block+panel modification, we adapt the original task graph from Figure 8.3

into a new task graph, which is shown in Figure 8.5. The new graph adds a new bookkeeper

between the FactorL and BK3, which collects blocks that are factored along the lower

diagonal. Once all the blocks for a panel have been factored, then a panel is constructed

for BK3. BK3 collects these panels and produces data for the Update task as they

become available. The Update processes each update and sends the results to BK4. BK4

then decomposes the panels into blocks, which are sent to the GaussElim or BK1 tasks.

The primary difference between the original, block-based approach and the block+panel

approach is the different data output types of the tasks. Some tasks consume block data

and produces panel data. This modification only required altering a few of the tasks and

rules, whereas the core computational functions remained the same.

102

GaussElim BK1

FactorU

FactorL BK2

BK3 Update BK4

Figure 8.5: Block+Panel LU decomposition on the CPU.

8.3 Block+Panel LUD CPU Results

Using the task graph from Figure 8.5, we implement the block+panel LUD using the

HTGS C++ API and execute it on the same hardware as the block LUD approach. Table 8.3

shows the runtimes for the block+panel LUD.

The results show that using the block+panel approach enables HTGS to acquire

similar or better performance to that of OpenBLAS on the same matrices ranging by only

a few percent difference. Adding the block+panel optimization to the original task graph

requires minimal code modification at a high level of abstraction. Next, we look at porting

the LUD algorithm to the GPU.

103

Table 8.3: Block+Panel LU decomposition HTGS CPU runtimes.

Test Case Unknowns Block Size Runtime (s) GFlops

HTGS 10000 250 2.0 308.0

HTGS 10000 500 3.7 167.2

HTGS 20000 250 10.8 461.6

HTGS 20000 500 12.8 389.8

HTGS 40000 250 81.8 486.0

HTGS 40000 500 79.1 502.1

HTGS 50000 250 159.3 487.2

HTGS 50000 500 152.8 508.2

HTGS 60000 250 273.5 490.4

HTGS 60000 500 257.7 520.4

HTGS 70000 250 432.5 492.5

HTGS 70000 500 404.0 527.2

8.4 LUD on the GPU

Implementing LUD on the GPU requires special consideration for memory due to the

difference in capacity between the GPU and CPU memories, particularly when matrices

will fit in the large CPU memory, but not within the GPU memory. Using the block LUD

approach, additional memory copies are required to process the matrix, often requiring

recopying data that had already been on the GPU, in particular for the Update task. Using

the block LUD algorithm, we implement a GPU variant that adds copy tasks, memory

104

manager tasks, and execute tasks for the GPU. In LUD, tasks such as Gaussian elimination

and factoring are not compute intensive, so these tasks remain on the CPU. The update task

is the dominant operation in LUD and uses the matrix multiplication routine, so the GPU

is a prime candidate for this task. To help minimize the number of memory copies needed

to process each update, the lower diagonal is left in GPU memory until all of the updates

have been processed for the active diagonal. The upper diagonal must be copied multiple

times to update along each of the diagonals resulting in
∑m−1

i=1 (m− i)2 total copies, where

m is the number of blocks along the width of the matrix.

Using the block LUD task graph from Figure 8.1, we transform the task graph by

adding copy routines, memory managers, and transform the Update task to execute on the

GPU. Figure 8.6 shows the resulting task graph.

GaussElim BK1

FactorU

FactorL CopyInL

BK2 CopyInGEMM Update CopyOut BK3

MemManagerL

MemManagerU

MemManagerUpdate

Figure 8.6: Block LU decomposition task graph on the GPU.

Three new tasks and three memory edges are added for the GPU version of block

LUD. CopyInL is responsible for copying the lower diagonal matrices that have been

factored onto the GPU. The lower diagonal matrices will reside in GPU memory until all

updates have been applied for the active diagonal. CopyInGEMM copies the upper factored

matrix and the result matrix for the Update GPU task. The Update task computes the

matrix multiplication on the GPU, and the CopyOut task copies the result matrix from the

CPU to the GPU. The memory for the upper diagonal and result matrices are used only

once. As shown in Figure 8.6, the CopyInL task is placed before the BK2 bookkeeper.

Having this task separate from the CopyInGEMM allows a different thread to be processing

this copy. This is done to ensure that the lower diagonal remains in GPU memory until it is

105

no longer needed for the update routine for the current diagonal and to ensure the task will

not have to wait for memory that is being requested in the CopyInGEMM task.

8.5 Block LUD GPU Results

Using the task graph from Figure 8.6, we implement block-LUD using the HTGS

C++ API for the GPU. The hardware configuration for this implementation uses two Intel

Xeon E5-2650 v3 CPUs, 128 GB of DDR4 RAM, and one Tesla K40. CUDA and cuBLAS

v7.5 is used for the GPU tasks. MAGMA v2.0 is used as a comparison, which contains

GPU implementations of DGETRF.

Tables 8.4 and 8.5 show the runtimes on the GPU at varying block sizes and number

of unknowns. The results show that the block LUD HTGS approach poorly utilized the

Tesla K40 for problem sizes between 10000 and 40000 unknowns, reaching a peak of

383 Gflops for 40000 unknowns compared to the CPU achieving 520 Gflops for the same

problem size. For larger problems, such as between 50000 and 70000 unknowns, the GPU

implementation achieved 600 and 765 Gflops, respectively, showing higher utilization.

These results demonstrate the impact of having enough data and computation per data

when scheduling work on HTGS task graphs. Smaller block sizes are unable to keep the

GPU busy for the block LUD approach. If the block size is too large and the number

of unknowns is too small, then there will be insufficient data to fill the pipeline. These

decisions must be balanced based on how the tasks interact with the data and the underlying

performance of the task’s kernel when operating on that data. The problem size also

affects the performance, so finding the ideal block size based on the problem size is key to

acquiring performance in LUD, particularly on the GPU for HTGS.

106

Table 8.4: Block LU decomposition HTGS GPU runtimes 10000 to 40000 unknowns.

Test Case Unknowns Block Size Runtime (s) GFlops

HTGS 10000 500 5.2 129.7

HTGS 10000 1000 4.8 139.7

HTGS 10000 2000 11.9 53.6

HTGS 10000 2500 21.8 29.0

HTGS 20000 500 38.3 138.5

HTGS 20000 1000 17.6 289.5

HTGS 20000 2000 35.2 142.7

HTGS 20000 2500 58.2 85.9

HTGS 40000 500 269.6 147.6

HTGS 40000 1000 112.8 353.6

HTGS 40000 2000 104.0 383.4

HTGS 40000 2500 150.3 265.2

107

Table 8.5: Block LU decomposition HTGS runtimes 50000 to 70000 unknowns.

Test Case Unknowns Block Size Runtime (s) GFlops

HTGS 50000 500 515.6 151.1

HTGS 50000 1000 219.2 354.7

HTGS 50000 2000 125.6 620.5

HTGS 50000 2500 159.7 487.2

HTGS 60000 500 918.2 146.1

HTGS 60000 1000 112.8 353.9

HTGS 60000 2000 199.5 673.7

HTGS 60000 2500 243.1 552.7

HTGS 70000 500 1419.9 150.2

HTGS 70000 1000 599.7 355.4

HTGS 70000 2000 278.5 765.6

HTGS 70000 2500 302.3 705.8

108

The block LUD approach on the GPU was able to acquire performance gains

compared to that of the CPU for larger numbers of unknowns, shown in Table 8.5. We

ran the same problem on the same hardware using the MAGMA library as a one-off call

for DGETRF to compute the LUD. Table 8.6 shows the runtimes using one GPU.

Table 8.6: LU decomposition MAGMA one GPU runtimes.

Test Case Unknowns Block Size Runtime (s) GFlops

MAGMA 10000 N/A 3.5 571.1

MAGMA 20000 N/A 8.5 814.8

MAGMA 40000 N/A 45.9 915.3

MAGMA 50000 N/A 85.4 935.6

MAGMA 60000 N/A 143.9 948.3

MAGMA 70000 N/A 223.0 965.2

The results show that MAGMA does an excellent job utilizing the GPU and in all

tests out performed the block LUD implementations from HTGS. To better understand

the performance gap between HTGS and MAGMA, we use the HTGS profiling tools

to visualize the task graph and identify how each task performed. One of the metrics

that the profiling tools has is the ability to view the maximum queue size within each

Connector. This shows the maximum number of data elements that were residing in the

queue throughout the entire execution. Figure 8.7 shows the profile graph.

109

Figure 8.7: HTGS Block LU decomposition Max Q size profile for 70000 unknowns with

2000 block size on the GPU.

110

The profile graph from Figure 8.7 color codes the nodes based on the overall impact

factor. Cooler blue colors have less of an impact than hot red colors. From the profile, we

clearly see that the CopyInGEMM task has the highest impact, reaching a maximum queue

size of 1130. All of the other tasks do not go beyond 15 to 35 elements in their queues.

This pin-points the issue to the copy task for matrix multiplication, which is impacting the

utilization of the task graph.

The system we used has four Tesla K40 GPUs. An execution pipeline task must

also be incorporated to scale the graph to these GPUs. Using the block LUD approach

is challenging to implement for multi-GPU, particularly when trying to optimize the data

locality Using the block+panel LUD implementation simplifies the memory management

as the panels can be used to easily identify when an entire panel is ready to be freed and

executed.

8.6 Block+Panel LUD on the GPU

Using the task graph from Figure 8.5, we implement a block+panel approach for the

GPU. One of the main factors that we want to resolve from the block LUD approach is

to improve the locality of data on the GPU by reducing the number of GPU data transfers

required. In the previous version, the matrix being updated was continuously being copied

to/from the GPU. With the panel-based approach, we have the opportunity to leave panels

from the update region in GPU memory, which can be reused during an update for another

diagonal. To accommodate this behavior, we incorporate a sliding window to represent the

memory that is reusable. If panels are outside of the window, then those matrices will need

to be copied to/from the GPU multiple times; however, once the update matrix fits entirely

within the window, then no additional memory copies will be required for those updates.

Figure 8.8 shows the sliding window approach for the Update task. Green blocks and

panels represent factored matrices, blue panels are within the window and require updates,

and red panels are outside of the window and will need to be copied multiple times to be

updated until they fit inside of the window.

111

Update

Window

Figure 8.8: Window update.

To support multi-GPU execution, the main graph is partitioned into a sub-graph that is

primarily GPU-based. Figure 8.9 presents the block+panel GPU task graph with a sliding

window and execution pipeline.

GaussElim BK1

FactorL

BK2 BK3 CopyInU

CopyInW

CopyInL

BK4

FactorU
and

Update

CopyOut BK5

MML

MMU

MMW

Figure 8.9: Block+Panel LU decomposition HTGS task graph for GPU with execution

pipeline and sliding window.

Based on the block+panel task graph from Figure 8.5, the GPU version incorporates

three main components; (1) a representation for the sliding window, (2) tasks for copying

data in/out of the graph, and (3) memory edges to manage the locality of data. In addition,

112

we have merged the FactorU and Update task into one task to prevent additional copies

to/from the GPU for the factored region on the upper diagonal.

In the new task graph, there are now five bookkeepers to manage the state and

distribute data. BK1 produces panels that are not factored. BK2 produces factored panels

from the lower diagonal. These panels are collected by BK3, which are distributed to one of

three CPU to GPU copy tasks. CopyInL copies the lower diagonal onto the GPU, CopyInU

copies the upper diagonal for panels that are not within the sliding window, and CopyInW

copies panels that are within the sliding window. The CopyInW task holds onto a cache

of panels that are within the window. The cache is used to check if a panel has already

been copied. For panels that are already within the cache, the data received from BK3 is

updated with meta-data that describes the original cached panel and is immediately sent to

the next task without a copy to the GPU. This process allows for the panels that are within

the sliding window to only be copied once, and released as soon as all computations are

done for that panel. The data that is copied in the CopyInU task is recopied each time until

the un-factored matrix fits fully into the window.

The window size is specified to the BK3 task, which is used to determine the

tasks that are in or out of the window. BK4 collects the panels and produces for

the FactorUandUpdate task, which is responsible for factoring the upper diagonal and

updating the un-factored panel. The CopyOut task copies the results back from the GPU if

one of two conditions are satisfied; (1) the panel is outside of the sliding window or (2) the

panel is ready to be factored. BK5 produces work for two tasks. First, BK1 consumes data

from BK5 to update the state and determine when a panel is ready to be factored. Second,

BK5 produces work for the GaussElim task only if the panel being processed is ready to

be factored.

The BK3, CopyInW, CopyInU, CopyInL, BK4, FactorUandUpdate, and CopyOut

tasks are all based on GPU computation, so these tasks are added into a separate

GPU task graph. This new GPU task graph is encapsulated into an execution pipeline

task, which is added into the main graph. The execution pipeline task has two data

distribution rules. First, if the panel received is factored for the lower diagonal, then

it is broadcast to all pipelines. This allows every pipeline to have its own copy of the

factored lower diagonal panel. The second decomposition rule distributes the un-factored

upper diagonal panels among pipelines using round robin scheduling that is generated

during initialization. Because the round robin scheduling is decided at initialization time

113

simplifies the distribution and ensures that un-factored panels will always be sent to the

same pipeline no matter what diagonal is being processed at the time. BK3 is unaware

of this decomposition, so the data that is received for a pipeline is assumed to be on the

correct GPU based on these decomposition rules. Each of these un-factored panels are

processed independently, allowing completely independent computation across multiple

GPUs. Additionally, the multi-GPU execution allows for the window size to be multiplied

by the number of GPUs, aggregating the memories across all GPUs.

There are three memory managers in this task graph. MML holds onto the memory

for the lower diagonal panels, and contains rules that ensure the panel is available until all

computation is done for that panel. MMW allocates memory for the sliding window, which

also ensures the panel will be available until all computation is done. MMU allocates

memory for data outside of the window, which will be recycled as soon as it is released.

Each of these memory managers are within the execution pipeline task and are bound to

their designated GPU address space based on the their pipeline ID.

8.7 Block+Panel LUD on the GPU Results

Using the task graph from Figure 8.9, we implement block+panel LUD using the

HTGS C++ API for multiple GPUs. The hardware configuration for this implementation

uses two Intel Xeon E5-2650 v3 CPUs, 128 GB of DDR4 RAM, and four Tesla K40s.

CUDA and cuBLAS v7.5 is used for the GPU tasks. MAGMA v2.0 is used as a comparison,

which contains a multi-GPU implementations of DGETRF.

Table 8.7 shows the runtimes for HTGS at optimal block sizes using one to four

GPUs. The results show three interesting factors: (1) Having enough computation for a

task; (2) The impact of data locality on the GPU; and (3) The scalability across multiple

GPUs. The memory requirements for these problem sizes vary and impact whether the

GPU is out-of-core on in-core. The Tesla K40 has 12 GB of RAM, the problem sizes for

10000, 20000, 40000, 50000, 60000, and 70000 use 0.745, 2.98, 11.9, 18.6, 26.8, and 36.5

GB of RAM, respectively. For problem sizes larger than 40000 unknowns, the GPU has

insufficient memory to hold the entire matrix, forcing panels to be processed outside of the

sliding window.

114

Table 8.7: Block+Panel LU decomposition HTGS GPU runtimes (optimal block sizes).

Test Case Unknowns Block Size
Wall

Time (s)

Compute

Time (s)
GFlops GPUs

Relative

Wall Speedup

HTGS 10000 250 2.1 1.6 392.2 1 1x

HTGS 10000 250 2.2 1.3 482.9 2 0.95x

HTGS 10000 250 2.6 1.32 469.9 3 0.8x

HTGS 10000 250 3.2 1.5 407.7 4 0.66x

HTGS 20000 500 8.4 7.9 630.7 1 1x

HTGS 20000 250 6.1 5.1 975.5 2 1.38x

HTGS 20000 250 5.5 4.1 1215.3 3 1.53x

HTGS 20000 250 5.6 3.8 1227.7 4 1.5x

HTGS 40000 500 51.4 50.8 782.2 1 1x

HTGS 40000 500 28.2 27.2 1465.2 2 1.82x

HTGS 40000 500 21.6 20.1 1976.5 3 2.38x

HTGS 40000 500 19.4 17.5 2275.8 4 2.65x

HTGS 50000 2000 112.8 122.3 634.7 1 1x

HTGS 50000 500 49.1 48.0 1615.9 2 2.3x

HTGS 50000 500 36.1 34.7 2237.6 3 3.12x

HTGS 50000 500 31.0 29.1 2669.9 4 3.64x

HTGS 60000 2000 213.0 212.4 631.4 1 1x

HTGS 60000 750 91.0 90.0 1490.3 2 2.34x

HTGS 60000 500 57.3 55.9 2287.8 3 3.72x

HTGS 60000 500 47.5 45.5 2948.6 4 4.48x

HTGS 70000 2500 332.1 331.6 642.4 1 1x

HTGS 70000 1000 170.7 169.7 1254.7 2 1.95x

HTGS 70000 500 94.6 93.1 2287.8 3 3.5x

HTGS 70000 500 70.3 68.4 3116.1 4 4.72x

For these problems, the single GPU was forced to load panels multiple times for

updates. However, using the sliding window with multiple GPUs allowed for these

115

problems to become entirely in-core. The impact in performance when comparing 1 GPU

versus 2, 3, or 4 GPUs showed super linear speedup, which is a direct result in the improved

locality for problems that would then fit into the larger window. For smaller problems, such

as 10000 unknowns, the problem size was too small to get significant performance due to

low utilization. Increasing the block size for 10000 unknowns forced the pipeline to be less

effective with overlapping the PCIe with computation.

As a comparison, MAGMA v2.0 is executed using the same matrices from the HTGS

execution. The results are presented in Table 8.8. In comparison, with Table 8.7, results

show that MAGMA and HTGS have very similar performance for problems that are

in-core for the GPU, such as 70000 unknowns with 4 GPUs. For out-of-core matrices,

MAGMA does a better job at scheduling, for example 70000 unknowns with 1 GPU.

Although MAGMA is showing much better performance for these larger problems, the

results demonstrate that, with a modest effort, HTGS was capable of obtaining performance

comparable to a highly tuned and optimized implementation that is a feature within

MAGMA.

116

Table 8.8: LU decomposition MAGMA multi-GPU runtimes.

Test Case Unknowns Block Size
Wall

Time (s)

Compute

Time (s)
GFlops GPUs

Relative

Wall Speedup

MAGMA 10000 N/A 3.5 1.1 571.1 1 1x

MAGMA 10000 N/A 3.4 1.0 617.3 2 1.03x

MAGMA 10000 N/A 3.4 1.0 577.7 3 1.03x

MAGMA 10000 N/A 3.6 1.2 520.2 4 0.97x

MAGMA 20000 N/A 8.5 6.1 814.8 1 1x

MAGMA 20000 N/A 6.4 4.0 1243.7 2 1.33x

MAGMA 20000 N/A 5.9 3.6 1398.3 3 1.44x

MAGMA 20000 N/A 6.3 3.8 1301.0 4 1.35x

MAGMA 40000 N/A 45.9 43.4 915.3 1 1x

MAGMA 40000 N/A 26.9 24.5 1619.9 2 1.7x

MAGMA 40000 N/A 21.3 18.9 2108.4 3 2.15x

MAGMA 40000 N/A 18.6 16.2 2459.7 4 2.47x

MAGMA 50000 N/A 85.4 83.0 935.6 1 1x

MAGMA 50000 N/A 48.9 46.5 1670.2 2 1.75x

MAGMA 50000 N/A 36.1 33.8 2298.4 3 2.37x

MAGMA 50000 N/A 30.8 28.4 2737.9 4 2.77x

MAGMA 60000 N/A 143.9 141.4 948.3 1 1x

MAGMA 60000 N/A 80.1 77.6 1728.9 2 1.8x

MAGMA 60000 N/A 59.3 56.9 2358.0 3 2.43x

MAGMA 60000 N/A 47.7 45.3 2959.7 4 3.02x

MAGMA 70000 N/A 223.0 220.6 965.2 1 1x

MAGMA 70000 N/A 124.7 122.3 1741.4 2 1.79x

MAGMA 70000 N/A 91.7 89.3 2384.0 3 2.4x

MAGMA 70000 N/A 74.7 72.3 2946.9 4 2.99x

Figures 8.10 and 8.11 show HTGS vs MAGMA end-to-end wall time for 60000 and

70000 unknowns and varying block sizes. These figures show that picking the best block

117

size is significant for gaining performance with LUD. MAGMA algorithmically determines

the block size using an auto tuning approach prior to executing. The optimal block size

evenly balances the data transfers, Gaussian elimination, and matrix multiplication, which

results in evenly distributing the work and overlapping data motion with computation.

Within the current design of HTGS, problems that are out-of-core for the GPU have

significant overhead resulting in low utilization. Adding GPUs to these problems results

in super linear speedup as the total number of PCI express transfers are reduced due to

the problem becoming more in-core. These speedups are visualized within the two figures

showing the poor performance with using 1 GPU versus adding more GPUs. For problems

that are in-core, HTGS performs as good as or better than the MAGMA version assuming

the optimal block size is used.

45

90

180

360

720

200 250 500 750 1000 1500 2000 2500

W
al

l T
im

e
 (

s)

Block Size

HTGS vs MAGMA LU Decomposition 60000 Unknowns at Varying Blocksizes

1 GPU HTGS 2 GPUs HTGS 3 GPUs HTGS 4 GPUs HTGS

1 GPU MAGMA 2 GPUs MAGMA 3 GPUs MAGMA 4 GPUs MAGMA

Figure 8.10: LU Decomposition HTGS vs MAGMA on GPUs for 60000 unknowns at

varying block sizes.

118

60

120

240

480

960

1920

200 250 500 1000 2000 2500

W
al

l T
im

e
 (

s)

Block Size

HTGS vs MAGMA LU Decomposition 70000 Unknowns at Varying Blocksizes

1 GPU HTGS 2 GPUs HTGS 3 GPUs HTGS 4 GPUs HTGS

1 GPU MAGMA 2 GPUs MAGMA 3 GPUs MAGMA 4 GPUs MAGMA

Figure 8.11: LU Decomposition HTGS vs MAGMA on GPUs for 70000 unknowns at

varying block sizes.

8.8 Discussion

The HTGS implementations are done with a modest effort, and are able to get

similar or better performance to that of OpenBLAS and MAGMA for LUD. One of

the most significant components that this case study shows is the adaptability of HTGS

for representing an algorithm and refining that implementation to improve data locality,

utilization, and domain decomposition at a very high level of abstraction. With the HTGS

model and API, making these modifications did not require significant code change and

non of underlying computational functions were altered.

There are still optimizations that can be done to the HTGS GPU implementation.

MAGMA has a clear advantage over HTGS for out-of-core problems. One of the main

119

differences between LUD in MAGMA and HTGS is the lack of CPU utilization in the

HTGS implementation. The Gaussian elimination and factor tasks have very low CPU

utilization, so the CPU is mostly idle during the HTGS GPU computation. MAGMA

utilizes an alternate approach that was able to distribute work across both the CPU and GPU

within the update routine, resulting in higher CPU utilization. One optimization would be

to remove the CopyInU task and force the GPU to operate only within the sliding window.

Any panels that are outside of the window would be sent to a CPU task to factor the upper

diagonal and update the panel. Adding this component would allow for fewer memory

copies, higher utilization of the CPU, and process the remainder of matrices in-core on the

GPU as soon as the window slides far enough.

120

Chapter 9

CONCLUSIONS

In this thesis, we developed the Hybrid Task Graph Scheduler model and API that

combines elements from dataflow semantics and task graph schedulers with the aim to

improve programmer productivity when implementing and optimizing parallel algorithms

to fully utilize fat nodes. With case studies we have demonstrated the proposed model and

obtained full utilization for such nodes with a modest effort. Thus, the HTGS model was

effective at exposing the parallel attributes of algorithms, representing the algorithms at a

high level of abstraction. With this high abstraction, HTGS enabled improved productivity

by identifying bottlenecks, scheduling behavior to assist with data locality, and scalability

with multiple accelerators. HTGS obtained good or better performance compared to best

of breed implementations for three algorithms; image stitching, matrix multiplication, and

LU decomposition.

Image Stitching
Reduced the total lines of code by 42.6%, and obtained similar performance.

Incorporating execution pipelines into the task graph required only 10 additional lines

of code, enabling scalability across multiple GPUs.

Matrix Multiplication
HTGS improved upon both OpenBLAS and cuBLAS-XT for matrix multiplication.

In addition, HTGS was able to effectively overlap data motion with computation.

For problems loaded from disk, OpenBLAS had a decrease of 49.4% and 57.6%

in performance compared with problems executing from RAM for 16k2 and 32k2

matrices, respectively. HTGS, on the other hand, had a percent decrease of 38.1%

and 23.0% for the same problem sizes, respectively. The overlapping of computation

121

with data motion is inherent to the HTGS model, which results in improved

utilization. On the GPU we observed an increase of performance between HTGS

and cuBLAS-XT for 16k2 and 32k2 matrices across all block sizes. For 10242 block

sizes the HTGS GPU version of matrix multiplication improves upon cuBLAS-XT

by 1.64x, 1.70x, 1.58x, and 1.59x for 1, 2, 3, and 4 GPUs, respectively. The small

block sizes processed the 32k2 matrices using less than 1 GB of memory. Despite the

low memory footprint, HTGS effectively kept the GPUs busier than cuBLAS-XT.

LU Decomposition
LU decomposition is a complex algorithm to schedule and optimize. In this

implementation, we started with a block-based approach that achieved good performance

on the CPU. We transformed that implementation with minimal effort into a

block+panel design that achieved better performance than OpenBLAS. On the GPU,

the block-based approach had low utilization. Using the HTGS API, we profiled

the GPU graph and visually identified the bottleneck that was causing an impact

on pipelining. Based on this analysis, we identified a more suitable approach for

scheduling data by using the block+panel with a sliding window to improve the

locality of data. With the sliding window approach, multi-GPU systems aggregated

their memories enabling the sliding window to expand, reducing the number of data

transfers required to process large matrices. The results showed similar or better

performance compared to MAGMA for matrices within the sliding window. For

matrices that were beyond the sliding window, MAGMA had significant gains. The

HTGS model and API enabled rapid prototyping allowing for the development of

these approaches at a high level of abstraction and provided the tools necessary to

understand the impact that the implementations had on performance.

Thus, through these case studies, we validated our thesis statement regarding the use

of the Hybrid Task Graph Scheduler model to improve programmer productivity when

implementing and optimizing parallel algorithms to fully utilize single fat nodes consisting

of many-core CPUs and multiple accelerators.

122

9.1 Future Work

In the HTGS GPU implementation of LU decomposition, we observed poor performance

for out-of-core computation compared to MAGMA. This is attributed to the additional

overhead of transferring memory to/from the GPU multiple times for the same panels of

data. To reduce the number of memory transfers, it is possible to implement a new variant of

the block+panel approach and incorporate the CPU into the update routines. This would use

the window to operate on the GPU, any panels outside of the window would be processed

on the CPU. Eventually the entire matrix will fit into the window allowing the GPU to only

copy each panel once. This approach should improve utilization for the CPU, which is

mostly idle in the current version.

Profiling task graphs visually is extremely useful to identify bottlenecks, as shown

in Chapter 8. In addition, these visualizations can be used to pinpoint issues such as

incorrectly formed task graphs or deadlocks. Improving the profiling and debugging into

a real-time visualization that can be monitored during execution would be further useful

to understand the behavior of tasks in any moment of time during execution. Due to the

light-weight nature of the tasks, this component should be achievable allowing for further

productivity of understanding the performance and scheduling behavior of task graphs.

In the current version of the HTGS model and C++ API implementation we focus

entirely on scalability for desktop super computers through the use of execution pipelines.

Execution pipelines provides an excellent and easy to use interface to scale to multiple

accelerators. Using this approach, it would be possible to use execution pipelines to scale

to clusters. Instead of binding a pipeline per GPU, the execution pipeline would bind tasks

to one pipeline per node in a cluster of computers. The primary challenge with this is

managing dependencies and state. Bookkeepers within the execution pipeline’s task graph

share their rules among their pipelines through synchronization. Scaling this to tens or

hundreds of nodes in a cluster would be detrimental to performance. One technique to

assist with this would be to incorporate a new type of bookkeeper that provides a spatial

decomposition to only lock the rules along shared boundaries.

Deadlock occurs in HTGS when memory release rules do not line up with the

scheduling behavior within the HTGS task graph. These issues are currently left up to

the programmer to identify and fix. Traditional dataflow graphs annotates its edges with

production and consumption rates that indicate when a node is ready to be activated by the

123

scheduler. Combining this aspect by annotating the connectors within HTGS task graphs

could be used to detect or pinpoint possible locations for deadlocks prior to execution.

As hierarchical memories are incorporated onto these fat nodes, HTGS will be in an

excellent position to address the performance optimizations required to effectively utilize

these complex volatile and non-volatile memories. Adaptations to the HTGS memory

managers could provide one high-level mechanism to incorporate the hierarchy into an

addressable space for tasks, which could use a caching mechanisms to retrieve memory

with rules such as least recently used caching As shown in memory release rules, these

caching rules could be customized to apply ensure locality-sensitive data is more readily

available for out-of-core computation on accelerators.

Appendices

124

Appendix A

HTGS DOCUMENTATION

The full HTGS documentation is available on-line at https://pages.nist.

gov/HTGS/doxygen/index.html

125

https://pages.nist.gov/HTGS/doxygen/index.html
https://pages.nist.gov/HTGS/doxygen/index.html

126

REFERENCES

[1] Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.;

Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.;

Isard, M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Levenberg, J.; Mané, D.;

Monga, R.; Moore, S.; Murray, D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.;

Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas, F.; Vinyals,

O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; and Zheng, X. 2015. TensorFlow:

Large-scale machine learning on heterogeneous systems. Software available from

tensorflow.org.

[2] Ang, J. A.; Barrett, R. F.; Benner, R. E.; Burke, D.; Chan, C.; Cook, J.; Donofrio,

D.; Hammond, S. D.; Hemmert, K. S.; Kelly, S. M.; Le, H.; Leung, V. J.; Resnick,

D. R.; Rodrigues, A. F.; Shalf, J.; Stark, D.; Unat, D.; and Wright, N. J. 2014. Abstract

machine models and proxy architectures for exascale computing. In Proceedings of the

1st International Workshop on Hardware-Software Co-Design for High Performance

Computing, Co-HPC ’14, 25–32. IEEE Press.

[3] Augonnet, C.; Thibault, S.; Namyst, R.; and Wacrenier, P.-A. 2011. StarPU: A Unified

Platform for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency

and Computation: Practice and Experience 23(2):187–198.

[4] AutoStitch. 2012. AutoStitch. www.cs.bath.ac.uk/brown/autostitch/autostitch.html.

Last access: 2012-12-19.

[5] B. Ma et al. 2007. Use of AutoStitch for automatic stitching of microscope images.

Micron 38(5):492–499.

[6] Barnea, D. I., and Silverman, H. F. 1972. A class of algorithms for fast digital image

registration. Computers, IEEE Transactions on C-21(2):179–186.

[7] Blattner, T.; Keyrouz, W.; Chalfoun, J.; Stivalet, B.; Brady, M.; and Zhou, S. 2014. A

hybrid CPU-GPU system for stitching large scale optical microscopy images. In 43rd

International Conference on Parallel Processing (ICPP), 1–9.

127

[8] Blattner, T.; Keyrouz, W.; Halem, M.; Brady, M.; and Bhattacharyya, S. S. 2015. A

hybrid task graph scheduler for high performance image processing workflows. In 2015

IEEE Global Conference on Signal and Information Processing (GlobalSIP), 634–637.

[9] Blattner, T. 2013. A Hybrid CPU/GPU Pipeline Workflow System. Master’s thesis,

University of Maryland Baltimore County.

[10] 2012. BOOST C++ library. boost.org. Last access: 2012-07-12.

[11] Brown, M., and Lowe, D. G. 2007. Automatic panoramic image stitching using

invariant features. Int. J. Comput. Vision 74(1):59–73.

[12] Budimlic, Z.; Chandramowlishwaran, A.; Knobe, K.; Lowney, G.; Sarkar, V.;

and Treggiari, L. 2009. Multi-core implementations of the concurrent collections

programming model. CPC09: 14th International Workshop on Compilers for Parallel

Computers.

[13] Budimlic, Z.; Burke, M.; Cave, V.; Knobe, K.; Lowney, G.; Newton, R.; Palsberg, J.;

Peixotto, D.; Sarkar, V.; Schlimbach, F.; and Tacsirlar, S. 2010. Concurrent collections.

Sci. Program. 18(3-4):203–217.

[14] Buttari, A.; Langou, J.; Kurzak, J.; and Dongarra, J. 2009. A class of parallel tiled

linear algebra algorithms for multicore architectures. Parallel Computing 35(1):38 – 53.

[15] Cavé, V.; Zhao, J.; Shirako, J.; and Sarkar, V. 2011. Habanero-java: The new

adventures of old x10. In Proceedings of the 9th International Conference on Principles

and Practice of Programming in Java, PPPJ ’11, 51–61. ACM.

[16] Chamberlain, B.; Callahan, D.; and Zima, H. 2007. Parallel programmability and the

chapel language. Int. J. High Perform. Comput. Appl. 21(3):291–312.

[17] Cooper, L.; Huang, K.; and Ujaldon, M. 2011. Parallel automatic registration

of large scale microscopic images on multiprocessor cpus and gpus. In 2011 IEEE

International Symposium on Parallel and Distributed Processing Workshops and Phd

Forum (IPDPSW), 1367–1376. IEE.

[18] Dean, J., and Ghemawat, S. 2008. Mapreduce: Simplified data processing on large

clusters. Commun. ACM 51(1):107–113.

128

[19] Deelman, E.; Singh, G.; hui Su, M.; Blythe, J.; Gil, Y.; Kesselman, C.; Mehta,

G.; Vahi, K.; Berriman, G. B.; Good, J.; Laity, A.; Jacob, J. C.; and Katz, D. S.

2005. Pegasus: a framework for mapping complex scientific workflows onto distributed

systems. SCIENTIFIC PROGRAMMING JOURNAL 13:219–237.

[20] Dennis, J. B. 1974. First version of a data flow procedure language. In Robinet,

B., ed., Programming Symposium, volume 19 of Lecture Notes in Computer Science.

Springer Berlin Heidelberg. 362–376.

[21] Dongarra, J.; Gates, M.; Haidar, A.; Kurzak, J.; Luszczek, P.; Tomov, S.; and

Yamazaki, I. 2014. Accelerating numerical dense linear algebra calculations with gpus.

Numerical Computations with GPUs 1–26.

[22] 2012. Fiji Is Just ImageJ. fiji.sc. Last access: 2012-07-18.

[23] Foley, D. 2014. Nvlink, pascal and stacked memory: Feeding the appetite for big

data. Nvidia. com.

[24] Frigo, M., and Johnson, S. G. 2005a. The design and implementation of FFTW3.

Proceedings of the IEEE 93(2):216–231. Special issue on “Program Generation,

Optimization, and Platform Adaptation”.

[25] Frigo, M., and Johnson, S. G. 2005b. The design and implementation of FFTW3.

Proceedings of the IEEE 93(2):216–231. Special issue on “Program Generation,

Optimization, and Platform Adaptation”.

[26] Gansner, E. R., and North, S. C. 2000. An open graph visualization system and its

applications to software engineering. SOFTWARE - PRACTICE AND EXPERIENCE

30(11):1203–1233.

[27] Gautier, T.; Besseron, X.; and Pigeon, L. 2007. Kaapi: A thread scheduling runtime

system for data flow computations on cluster of multi-processors. In Proceedings of the

2007 International Workshop on Parallel Symbolic Computation, PASCO ’07, 15–23.

New York, NY, USA: ACM.

[28] Gautier, T.; Lima, J. V. F.; Maillard, N.; and Raffin, B. 2013. Xkaapi: A runtime

system for data-flow task programming on heterogeneous architectures. In Proceedings

129

of the 2013 IEEE 27th International Symposium on Parallel and Distributed Processing,

IPDPS ’13, 1299–1308. Washington, DC, USA: IEEE Computer Society.

[29] Golub, G. H., and Van Loan, C. F. 1996. Matrix Computations (3rd Ed.). Baltimore,

MD, USA: Johns Hopkins University Press.

[30] Grossman, M.; Sbı̂rlea, A. S.; Budimlić, Z.; and Sarkar, V. 2011. Cnc-cuda:

Declarative programming for gpus. In Proceedings of the 23rd International

Conference on Languages and Compilers for Parallel Computing, LCPC’10, 230–245.

Springer-Verlag.

[31] Harris, M. 2012. Optimizing parallel reduction in CUDA.

docs.nvidia.com/cuda/samples/6 Advanced/reduction/doc/reduction.pdf.

Last access: 2012-12-19.

[32] 2012. ImageJ. rsbweb.nih.gov/ij & fiji.sc. Last access: 2011-12-16.

[33] Intel. 2015. Intel R© Xeon PhiTM Product Family. (Date last accessed: 2015-06-26).

[34] Isard, M.; Budiu, M.; Yu, Y.; Birrell, A.; and Fetterly, D. 2007. Dryad: Distributed

data-parallel programs from sequential building blocks. In Proceedings of the 2Nd

ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, EuroSys ’07,

59–72. New York, NY, USA: ACM.

[35] JCuda. 2015. JCuda - Java bindings for the CUDA runtime and driver API. (Date last

accessed: 2015-06-26) http://www.jcuda.org/jcuda/JCuda.html.

[36] Jing, Z.; Chang-shun, W.; and Wu-ling, L. 2009. An image mosaics algorithm based

on improved phase correlation. In Proceedings of 2009 International Conference on

Environmental Science and Information Application Technology, 383–386. IEEE.

[37] K. U. Venkataraju et al. 2009. Assembling

large mosaics of electron microscope images using gpus.

www.cs.utah.edu/sci/publications/kannanuv09/Venkataraju SAAHPC09.pdf.

[38] Kathleen Knobe, C. D. O. 2005. Tstreams: A model of parallel computation

(preliminary report).

130

[39] Kuglin, C. D., and Hines, D. C. 1975a. The phase correlation image alignment

method. In Proceedings of the 1975 IEEE International Conference on Cybernetics and

Society, 163–165.

[40] Kuglin, C. D., and Hines, D. C. 1975b. the phase correlation image alignment method.

In proceedings of the 1975 ieee international conference on cybernetics and society,

163–165.

[41] Kukanov, A., and Voss, M. J. 2007. The foundations for scalable multi-core software

in intel threading building blocks. Intel Technology Journal 11(4):309–322.

[42] Kurzak, J.; Ltaief, H.; Dongarra, J.; and Badia, R. M. 2010. Scheduling dense linear

algebra operations on multicore processors. Concurrency and Computation: Practice

and Experience 22(1):15–44.

[43] Lee, E. A., and Parks, T. 1995. Dataflow process networks. In Proceedings of the

IEEE, 773–799.

[44] Lewis, J. P. 1995. Fast normalized cross-correlation.

www.idiom.com/˜zilla/Work/nvisionInterface/nip.pdf.

[45] 2012. libTIFF. libtiff.org. Last access: 2012-07-11.

[46] Lorenz, D.; Philippen, P.; Schmidl, D.; and Wolf, F. 2012. Profiling of openmp tasks

with score-p. In 2012 41st International Conference on Parallel Processing Workshops,

444–453.

[47] Luk, C.-K.; Hong, S.; and Kim, H. 2009. Qilin: Exploiting parallelism on

heterogeneous multiprocessors with adaptive mapping. In Proceedings of the 42Nd

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42, 45–55.

New York, NY, USA: ACM.

[48] NVIDIA Corp. 2012a. CUFFT Library. developer.nvidia.com/cufft. Last

access: 2012-04-10.

[49] NVIDIA Corp. 2012b. GPU Computing SDK.

developer.nvidia.com/cuda-downloads. Last access: 2012-12-19.

131

[50] NVIDIA Corp. 2012c. NVIDIA visual profiler.

developer.nvidia.com/nvidia-visual-profiler. Last access:

2012-12-19.

[51] NVIDIA CUDA. 2011. Cuda c programming guide version 4.1.

[52] NVIDIA-NVLink. 2016. NVIDIA NVLink High-Speed Interconnect. (Date last

accessed: 2016-09-14).

[53] NVIDIA. 2015. Tesla Accelerated Computing. (Date last accessed: 2015-06-26).

[54] NVIDIA. 2016a. NVIDIA visual profiler. (Date last accessed: 2016-07-14).

[55] NVIDIA. 2016b. The NVIDIA DGX-1. (Date last accessed: 2016-07-13).

[56] OpenMP Architecture Review Board. 2013. OpenMP application program interface

version 4.0.

[57] Pino, J.; Bhattacharyya, S.; and Lee, E. 1995. A hierarchical multiprocessor

scheduling system for dsp applications. In Signals, Systems and Computers, 1995. 1995

Conference Record of the Twenty-Ninth Asilomar Conference on, volume 1, 122–126

vol.1.

[58] Plimpton, S. J., and Devine, K. D. 2011. Mapreduce in mpi for large-scale graph

algorithms. Parallel Comput. 37(9):610–632.

[59] Preibisch, S.; Saalfeld, S.; and Tomancak, P. 2009. Globally optimal stitching of tiled

3d microscopic image acquisitions. Bioinformatics 25(11):1463–1465.

[60] Qian, C.; Ding, Z.; and Sun, H. 2013. A performance visualization method for

openmp tasks. In High Performance Computing and Communications 2013 IEEE

International Conference on Embedded and Ubiquitous Computing, 2013 IEEE 10th

International Conference, 735–741.

[61] Reinders, J. 2007. Intel Threading Building Blocks. Sebastopol, CA, USA: O’Reilly

& Associates, Inc., first edition.

[62] Sane, N. 2011. Rapid Prototyping of High Performance Signal Processing

Applications. Ph.D. Dissertation, University of Maryland, College Park.

132

[63] Schlimbach, F. 2014. Intel Concurrent Collections for

C++ for Windows and Linux. date last accessed: 2015-09-28

https://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc.

[64] Shvachko, K.; Kuang, H.; Radia, S.; and Chansler, R. 2010. The hadoop distributed

file system. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th

Symposium on, 1–10.

[65] Sodani, A.; Gramunt, R.; Corbal, J.; Kim, H. S.; Vinod, K.; Chinthamani, S.; Hutsell,

S.; Agarwal, R.; and Liu, Y. C. 2016. Knights landing: Second-generation intel xeon

phi product. IEEE Micro 36(2):34–46.

[66] Szeliski, R. 2006. Image alignment and stitching: a tutorial. Found. Trends. Comput.

Graph. Vis. 2(1):1–104.

[67] Teodoro, G.; Hartley, Timothy, D.; Catalyurek, U.; and Ferreira, R. 2012. Optimizing

dataflow applications on heterogeneous environments. Cluster Computing 15(2).

[68] Tomov, S.; Nath, R.; Ltaief, H.; and Dongarra, J. 2010. Dense linear algebra solvers

for multicore with GPU accelerators. In Proc. of the IEEE IPDPS’10, 1–8. Atlanta, GA:

IEEE Computer Society. DOI: 10.1109/IPDPSW.2010.5470941.

[69] Tomov, S.; Dongarra, J.; and Baboulin, M. 2010. Towards dense linear algebra for

hybrid GPU accelerated manycore systems. Parallel Computing 36(5-6):232–240.

[70] TOP500. 2016. TOP500 supercomputer sites. (Date last accessed: 2016-06-20).

[71] YarKhan, A.; Kurzak, J.; Luszczek, P.; and Dongarra, J. 2016. Porting the

plasma numerical library to the openmp standard. International Journal of Parallel

Programming 1–22.

[72] YarKhan, A.; Dongarra, J.; and Kurzak, J. 2007. QUARK User’s Guide: QUeueing

And Runtime for Kernels. Technical Report 1, Innovative computing lab, University of

Tennessee, Knoxville.

[73] Zaharia, M.; Chowdhury, M.; Franklin, M. J.; Shenker, S.; and Stoica, I. 2010. Spark:

Cluster computing with working sets. In Proceedings of the 2nd USENIX Conference

on Hot Topics in Cloud Computing, HotCloud’10, 10. USENIX Association.

	Dedication
	ACKNOWLEDGMENTS
	List of Tables
	List of Figures
	Introduction
	Background
	Hybrid Pipeline Workflows
	Motivation
	Contents

	Thesis Statement
	Problem Definition
	Contributions

	Related Work
	Map Reduce Frameworks
	Hadoop
	Spark
	Map Reduce in MPI

	Dataflow Graphs
	Heterogeneous Dataflow using Anthill
	Qilin
	Kaapi
	TensorFlow

	Task Graphs
	OpenMP Tasks
	QUARK
	Dryad
	StarPU
	Pegasus
	Intel Threading Building Blocks

	Concurrent Collections (CnC)
	Multi-core Concurrent Collections
	CnC-CUDA

	The Hybrid Task Graph Scheduler Model
	Scheduling – Bookkeepers
	Memory Management
	Scaling – Execution Pipelines
	Algorithm Design Methodology for HTGS

	Hybrid Task Graph Scheduler C++ Implementation
	Core API
	User API
	Hello World – Hadamard Product

	Case Study 1: Image Stitching
	Problem Description
	Contributions
	Organization

	Image Stitching Algorithm
	Computation
	Implementations
	Reference Implementations
	Pipelined GPU Implementation

	HTGS Microscopy Image Stitching
	Discussion

	Case Study 2: Matrix Multiplication
	Matrix Multiplication on the CPU Results
	Matrix Multiplication on the GPU using HTGS
	Matrix Multiplication on the GPU Results
	Discussion

	Case Study 3: LU Decomposition
	Block LUD CPU Results
	Block+Panel LUD
	Block+Panel LUD CPU Results
	LUD on the GPU
	Block LUD GPU Results
	Block+Panel LUD on the GPU
	Block+Panel LUD on the GPU Results
	Discussion

	Conclusions
	Future Work

	Appendices
	HTGS Documentation
	References

