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Accurate knowledge of the optical properties of spacecraft components, especially 

external components, is critical for proper spacecraft thermal design. The effective 

emissivity of isogrid (an array of equilateral triangular cavities) is not well understood, 

which poses a challenge for spacecraft thermal management. In this thesis the effective 

emissivity of isogrid with a prescribed base temperature and nonisothermal walls is 

examined. The temperature profile of the cavity’s walls and the overall effective emissivity 

of the cavity are found using Thermal Desktop with Monte Carlo ray tracing. The effective 

emissivity’s dependence on the wall height, wall thickness, wall resistance, and surface 

emissivity are examined. The existence of a critical wall height, and the contributing factors 

to this critical height, are discussed. Comparisons between isogrid and cavities with 

different base geometries are made. A variable emissivity isogrid spacecraft radiator 

concept employing the cavity effect is proposed, and mechanisms for achieving this are 

discussed.    
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Chapter 1: Background 

1.1. Effective Emissivity and the Cavity Effect 

The emissivity (𝜀) of a surface for a given wavelength “provides a measure of how 

efficiently [the] surface emits energy relative to a blackbody” [1]. The effective emissivity 

(𝜀𝑒𝑓𝑓) can be defined for a cavity as the “ratio of the radiant power leaving the cavity to 

that from a blackbody having the area of the cavity opening and a temperature of the inner 

surfaces of the cavity” [1]. The “effective” emissivity is not necessarily the same value as 

the surface emissivity (𝜀𝑠𝑢𝑟𝑓) of the cavity’s walls, but rather is the emissivity of the cavity 

as a whole. The cavity effect has been well studied, and is used in the field of radiation 

thermometry in order to closely approximate a blackbody for calibration purposes [2]. Its 

cause can be explained simply as being due to having an increased surface area from which 

to radiate when compared to that of a flat surface.  

Much of the literature on the cavity effect has the assumption of isothermal cavities. 

This assumption may be valid for terrestrial radiation thermometry applications but is not 

necessarily a valid assumption for space radiator applications when the cavity is 

sufficiently deep and the temperature gradient between the base and opening of the cavity 

is non-trivial. Research into nonisothermal cavity walls tends to focus on temperature 

profiles prescribed by the authors rather than on solving for both the 𝜀𝑒𝑓𝑓 and temperature 

profiles simultaneously [3][4]. Most of the previous studies have focused on a single cavity 

rather than an array of cavities interacting with each other. While most other studies focus 

on cylindrical cavities, this is the first study to look specifically at isogrid (equilateral 

triangular cavities).   
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1.2. Spacecraft Thermal Control Overview 

1.2.1. Spacecraft Thermal Environment 

The spacecraft thermal environment is one of extremes. While the extremely thin 

atmosphere of low Earth orbit does cause drag on the spacecraft, it is negligible from a 

thermal perspective. Therefore, it is assumed in most cases that there is no convective heat 

transfer between the spacecraft and the environment, and all heat exchange is done via 

radiation.  

This radiative exchange comes from several environmental sources. First, there is 

direct solar radiation from The Sun in the ultraviolet band. Unshielded from the Earth’s 

atmosphere, this heat load ranges between approximately 1322 and 1414 
𝑊

𝑚2 [5]. The Sun’s 

rays also bounce off The Earth which then impinge upon the spacecraft, known as albedo. 

The Earth emits infrared radiation which adds a heat load of approximately 150 to 250 
𝑊

𝑚2
 

[5] depending on the orbit. The steady state energy balance for a spacecraft is the sum of 

the environmental and internal heat loads. This summation equals the heat rejected to 

space, as shown below. 

 𝑄𝑒𝑚𝑖𝑡𝑡𝑒𝑑 = 𝑄𝑠𝑜𝑙𝑎𝑟 + 𝑄𝑎𝑙𝑏𝑒𝑑𝑜 + 𝑄𝐼𝑅 + 𝑄𝑖𝑛𝑡 (1)  

 𝐴𝜀𝜎𝑇4 = 𝐴𝛼(𝑞"𝑠𝑜𝑙𝑎𝑟 + 𝑞"𝑎𝑙𝑏𝑒𝑑𝑜) + 𝐴𝜀𝑞"𝐼𝑅 + 𝑄𝑖𝑛𝑡 (2) [5]  

Where 𝑄𝑠𝑜𝑙𝑎𝑟, 𝑄𝑎𝑙𝑏𝑒𝑑𝑜, 𝑄𝐼𝑅, and 𝑄𝑖𝑛𝑡 are heat loads from the Sun, Earth albedo, Earth IR, 

and internal spacecraft components. 𝐴 is the radiator area, 𝜀 is the IR emissivity, 𝛼 is the 

solar absorbtivity, 𝜎 is the Stefan-Boltzmann constant, and 𝑇 is the absolute temperature. 

Note that 𝑄𝑠𝑜𝑙𝑎𝑟 and 𝑄𝑎𝑙𝑏𝑒𝑑𝑜 depend on 𝛼, while the 𝑄𝑒𝑚𝑖𝑡𝑡𝑒𝑑 and 𝑄𝐼𝑅 depend on 𝜀. 
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1.2.1.1. Radiators 

All spacecraft components which consume electrical power will dissipate waste 

heat through their operation. This waste heat is transported (either actively or passively) to 

specialized spacecraft surfaces called radiators, which then rejects the waste heat to space 

via radiative heat transfer.  

For simplicity, let us assume a radiator only has radiative exchange with space and 

does not “see” The Sun, Earth, other spacecraft components, etc. These additional heat 

loads are known as backloads and are extremely common in real-world situations. With 

the assumption of no backloading, the heat emitted from the radiator is therefore given a 

modified version of eq (2), shown below.  

 𝑄 = 𝐴𝜀𝜎𝑇4 (3) [5]  

The radiator temperature is usually dependent on the requirements of other spacecraft 

components, and the operational temperature range of the radiator itself. Therefore, the 

thermal engineer is left with only the radiator area and emissivity as variables which may 

be changed to fit the design requirements. It is desirable from a mass and power perspective 

to size the radiator to be as small as possible. Radiator coatings are generally chosen to 

have a high IR emissivity (to dissipate more heat) and a low solar absorptivity (to reduce 

backloading on the radiator). Such coatings are discussed further in section 1.2.2. 

1.2.1.2. Radiator Sizing Example 

Let us assume that there is an electronics box located on a radiator which may 

dissipate between 10W and 50W of heat, depending on its power state. We will further 

make the simplifications that the radiator is isothermal, conductively isolated from the rest 

of the spacecraft, and does not receive any radiative backloading from The Sun, Earth, or 
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other spacecraft components or structures. The radiator has an upper temperature limit of 

40°C, lower limit of -10°C, and has a surface emissivity of 0.9. For simplicity we will also 

assume that the temperature of space 𝑇𝑠𝑝𝑎𝑐𝑒 = 0𝐾.  

Using this information, the task at hand is to determine the minimum radiator 

surface area required so as not to break the upper temperature limit when it is dissipating 

the maximum 50W of heat. 

 

𝐴 =
𝑄𝑚𝑎𝑥

𝜀𝜎𝑇𝑚𝑎𝑥
4  

𝐴 =
50𝑊

(0.9) (5.67 ∗ 10−8
𝑊

𝑚2𝐾4
) (40℃ + 273.15)4 

= 0.102𝑚2 

(4) 

 

Using eq (4) the minimum required radiator area to maintain the 40°C upper limit is found 

to be 0.102 𝑚2. Making the radiator any smaller will result in breaking the upper 

temperature limit. 

Now suppose that the electronics box is turned to a low-power state and dissipates 

its minimum amount of heat, only 10W.  

 

𝑇 = [
𝑄𝑚𝑖𝑛
𝐴𝜀𝜎

 ]

1
4

 

𝑇 = [
10𝑊

(0.102𝑚2)(0.9) (5.67 ∗ 10−8
𝑊

𝑚2𝐾4
) 
]

1
4

= −63.7℃ 

(5) 

 

In this case, the resulting radiator temperature is only -63.7°C, well below the -10°C lower 

temperature limit. Decreasing the radiator area is not an option because, as found in eq (4), 

0.102𝑚2 is the minimum area required to maintain the upper temperature limit. The only 

design solution we now have in order to not break the lower temperature limit is to place a 

heater on the radiator. This is known as a makeup heater, because it “makes up” the needed 
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heat to maintain the lower temperature limit. We may find the necessary size of this makeup 

heater by adding a 𝑄ℎ𝑒𝑎𝑡𝑒𝑟 term in eq (3) below.  

 

𝑄ℎ𝑒𝑎𝑡𝑒𝑟 = 𝐴𝜀𝜎𝑇𝑚𝑖𝑛
4 −𝑄𝑚𝑖𝑛 

𝑄ℎ𝑒𝑎𝑡𝑒𝑟 = (0.102𝑚
2)(0.9) (5.67 ∗ 10−8

𝑊

𝑚2𝐾4
) (−10℃+ 273.15)4

− 10𝑊 = 14.9𝑊 

(6)  

 

We find the required size of the makeup heater to be 14.9W. The design philosophy 

employed in sizing a radiator area is called cold-biasing [6]. In a cold-biased design, the 

radiator is sized to be large enough as to not break its upper temperature limit, and makeup 

heaters are used to break the cold limit.  

1.2.2. Thermal Control Coatings 

An important note is that in the world of spacecraft thermal engineering, 𝜀 refers 

specifically to the emissivity in the IR band (5µm - 100 µm) [7]. The absorptivity (𝛼) refers 

specifically to the absorptivity of incident radiation from The Sun (0.25μm - 2.8μm) [7]. 

Both 𝛼 and 𝜀 are measures of a surface’s total hemispherical emissivity over their 

respective wavelengths. 

As was shown in eq (2) the values 𝛼 and 𝜀 are of great importance in determining 

the surface’s energy balance and thus its equilibrium temperature. Careful consideration 

must therefore be taken when choosing a surface finish. To that end, myriad thermal control 

coatings with a wide range of 𝛼 and 𝜀 properties have been developed. Values for various 

types of surface finishes and coatings are shown in Figure 1 below.   
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Figure 1: 𝛼 and 𝜀 of Various Surface Finishes [5]  

For the example of a radiator surface, it is desirable to have a high 𝜀 to dissipate 

more heat, and a low 𝛼 as to decrease the solar loading. Therefore, radiators are typically 

coated with a diffuse white paint or have a specular mirrored finish. Special care must be 

taken for cryogenic components as 𝛼 and 𝜀 vary at extreme temperatures.  

1.2.3. Active vs. Passive Thermal Control 

Passive thermal control refers specifically to spacecraft thermal control devices 

which do not require any additional spacecraft resources such as power to operate. They 

also do not change properties (such as emissivity) and have no moving parts [8]. The most 

common example of passive thermal control would be a thermal control coating with a 

specifically chosen 𝛼 and 𝜀 value.  

Unlike passive control, active thermal control devices do use spacecraft resources, 

such as power, change properties, and/or have moving parts [8]. The most common 
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example would be that of a heater, controlled either by a mechanical thermostat or via 

software control (typically P or PI control) [5].  

Even though heat pipes have a working fluid which could be called a “moving part”, 

they are generally considered passive components because they do not require any 

additional spacecraft power to operate [5]. A pumped fluid loop is considered an active 

component because of the pump which drives the refrigeration cycle [5]. 

1.3. Motivation 

1.3.1. Variable Emissivity Devices 

1.3.1.1. Variable Emissivity Radiator Sizing Example 

Let us revisit the radiator example from section 1.2.1.2. In that case the assumption 

was made that the radiator 𝜀 was a constant value of 0.9. Suppose there was a method by 

which the emissivity could instead be varied. For the sake of argument, we will assume 

that the radiator’s emissivity varies linearly with temperature from a minimum value of 0.5 

at -10°C to a maximum of 0.9 at 40°C.  

The hot case is the same as the previous example, as the radiator has a temperature 

of 40°C and an emissivity of 0.9. Using eq (3) we therefore find the area required as not to 

exceed this temperature to be 0.102 𝑚2. 

 

𝐴 =
𝑄𝑚𝑎𝑥

𝜀𝑚𝑎𝑥𝜎𝑇𝑚𝑎𝑥
4  

𝐴 =
50𝑊

(0.9) (5.67 ∗ 10−8
𝑊

𝑚2𝐾4
) (40℃ + 273.15)4 

= 0.102𝑚2 

(7) 
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For the cold case we assume that the electronics box enters a low-power state and 

dissipates only 10W. Using the calculated area of 0.102 𝑚2 and the minimum emissivity 

of 0.5, the resulting radiator temperature is -30.6°C. 

 

𝑇 = [
𝑄𝑚𝑖𝑛
𝐴𝜀𝑚𝑖𝑛𝜎

 ]

1
4

 

𝑇 = [
10𝑊

(0.102𝑚2)(0.5) (5.67 ∗ 10−8
𝑊

𝑚2𝐾4
) 
]

1
4

= −30.6℃ 

(8)  

 

This variable emissivity configuration now only requires a 3.6 W makeup heater to 

maintain the minimum temperature, compared to the 14.9 W makeup heater for the 

constant emissivity radiator.  

 

𝑄ℎ𝑒𝑎𝑡𝑒𝑟 = 𝐴𝜀𝑚𝑖𝑛𝜎𝑇𝑚𝑖𝑛
4 − 𝑄𝑚𝑖𝑛 

𝑄ℎ𝑒𝑎𝑡𝑒𝑟 = (0.102𝑚
2)(0.5) (5.67 ∗ 10−8

𝑊

𝑚2𝐾4
) (−10℃+ 273.15)4

− 10𝑊 = 3.6𝑊 

(9) 

 

A power savings of 11.3 W might not sound like much, but on a spacecraft with a very 

tight power budget it can be a significant savings.  

1.3.1.2. Thermal Control Louvers 

A louver is a thermal control device designed to vary the effective IR emissivity 

(𝜀𝑒𝑓𝑓) and solar absorptivity (𝑎𝑒𝑓𝑓) of a spacecraft’s surface (usually an external radiator) 

based on the surface’s temperature. A schematic of a typical louver is shown in Figure 2 

below.  
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Figure 2: Louver Assembly Schematic [5]  

 

The spacecraft surface covered by the louver is coated with a high-ε finish, and the 

exterior of each blade is coated to be low-ε. When the radiator surface is below the setpoint 

temperature, the blades remain closed causing the minimum amount of heat to escape into 

space. As the radiator temperature increases, bi-metallic strips on the sides of each blade 

expand and cause the blades to open. This gives the high-ε radiator surface a clearer view 

to space, significantly increasing the amount of heat rejected. As the radiator rejects more 

heat to space it begins to cool down. The lower temperature causes the bi-metallic strips to 

contract, closing the blades and decreasing the heat dissipation to space. The opening and 

closing of the blades serve to vary the system’s effective emissivity to space. Careful tuning 

of the bi-metallic strips allow the radiator surface to maintain a desired setpoint temperature 

[5] with less need for makeup heaters.  

1.3.1.3. State of the Art Variable Emissivity Radiators 

Due primarily to their large mass, louvers are not used in industry as widely as they 

were several decades ago. An active area of research is focusing on miniaturizing the louver 
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to MEMS scales [9]–[11]. The most straightforward MEMS variable emissivity method is 

that of a MEMS louver. A MEMS louver would operate in much the same way as a 

traditional louver though at a fraction of the size, being only on the order of hundreds of 

microns in length [6].  

Another method changes the geometry of the radiator to vary its view to space and 

thus its emissivity. While louvers maintain a constant area and vary the exposed surface 

emissivity, these radiators maintain a constant surface emissivity and vary the exposed 

area. This can be achieved through various methods including an accordion array of panels 

[12], origami inspired designs [13], and others [14]–[16]. 

A completely solid-state method uses electrochromic glass to expose and hide a 

mirrored surface sensitive to the IR band. “In the non-absorbing mode, light passes through 

the metamaterial top electrode and active element and is reflected back from the mirror 

electrode. When the system is activated to its absorbing mode by the application of a low 

voltage (±1 V) to the electrodes, the reflected light intensity diminishes and the system 

goes into a low-reflectance, high-emittance (High- 𝜀) state. Reversing the electrode 

polarity brings the system back to a high-reflectance and low-emittance (Low- 𝜀) state” 

[17].  

1.3.2. Nancy Grace Roman Space Telescope 

1.3.2.1. Overview and Science Objectives 

The Nancy Grace Roman Space Telescope (RST), named after the “Mother of 

Hubble” [18], is one of NASA’s newest space telescopes. Set to launch in the mid-2020’s, 

RST will explore Dark Energy, Dark Matter, and Exoplanets [19]. RST was selected as the 
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top-ranked large space mission in the 2010 Astronomy and Astrophysics Decadal survey, 

and will orbit the second Earth-Sun Lagrange Point [20].   

Of particular importance is the Wide Field Instrument (WFI), which is the main 

instrument on RST. It has the same resolution as the Hubble Space Telescope, but 100 

times the field of view [21]. Over its first five years RST will image 50 times more of the 

sky than Hubble did over its first 30 years [21].  

 

Figure 3: Roman Space Telescope Thermal Model [20] 

The Coronagraph is the second instrument aboard RST. A coronagraph blots out 

the light from a star, allowing direct viewing of planets in its orbit. Through a complex 

array of masks, prisms, detectors, and self-flexing mirrors, RST will have the most 

sensitive coronagraph by several orders of magnitude [22].  



12 

1.3.2.2. Basic Thermal Design 

One of the most important components of RST’s thermal design is the Solar 

Array/Sun Shield (SASS) which will both provide power to the spacecraft and block the 

payload from the Sun. The Lower Instrument Sun Shades (LISS) and the Deployable 

Aperture Cover (DAC) provide additional protection from solar impingement. The SASS, 

LISS, and DAC all help to provide a thermally stable environment for the spacecraft [20]. 

Because the WFI detects light in the IR band, the sensors must be maintained at cryogenic 

temperatures and extra care must be taken in the thermal design.  
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Chapter 2: Methodology 

2.1. Analytical Formulation & Problem Description 

2.1.1. Problem Description 

Consider a single isogrid cavity within an arbitrarily large array of identical 

cavities. The array is sufficiently large so that we may examine a single cavity without 

needing to consider edge effects from the perimeter of the array. The base of the array is 

isothermal and set to some prescribed temperature. The array is in deep space, receiving 

no solar or IR irradiation from any source (Sun, Earth, etc.).  

2.1.2. Coordinate System 

Let us define a cartesian coordinate system and cavity parameters as shown below 

in Figure 4.  

 

Figure 4: Coordinate System for the Isogrid and Designation of Its surfaces 
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In Figure 4, 𝐿 is the side length, 𝑡 is the wall thickness, and 𝐻 is the cavity wall height. 

Note that the origin is located at the center of the wall, such that the inner face of surface 

1 is located at 𝑦 = 𝑡/2. The center of each surface is therefore defined by Eqn (10) below:  

 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 1 {
0 ≤ 𝑥 ≤ 𝐿
𝑦 = 0

0 ≤ 𝑧 ≤ 𝐻
 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 2

{
 
 

 
 
(𝐿 − 𝑥)𝑡𝑎𝑛(60°) = 0

𝐿

2
≤ 𝑥 ≤ 𝐿

0 ≤ 𝑦 ≤ 𝐿𝑠𝑖𝑛(60°)
0 ≤ 𝑧 ≤ 𝐻

 

(10) 

 

 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 3

{
 
 

 
 

𝑥𝑡𝑎𝑛(60°) = 0

0 ≤ 𝑥 ≤
𝐿

2
0 ≤ 𝑦 ≤ 𝐿𝑠𝑖𝑛(60°)

0 ≤ 𝑧 ≤ 𝐻

 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 4

{
 
 

 
 

0 ≤ 𝑥 ≤ 𝐿

0 ≤ 𝑦 ≤ 𝑥𝑡𝑎𝑛(60°) ; 0 ≤ 𝑥 ≤
𝐿

2

0 ≤ 𝑦 ≤ (𝐿 − 𝑥) 𝑡𝑎𝑛(60°) ;
𝐿

2
≤ 𝑥 ≤ 𝐿

𝑧 = 0

 

2.1.3. Assumptions 

2.1.3.1. General Assumptions 

The following are assumptions and simplifications that will be used for the remainder 

of the analysis. The isogrid is assumed to be in the vacuum of space, and therefore there is 

no convective heat transfer with the environment. The isogrid cavity in question is a 

member of an arbitrarily large array of identical cavities with identical temperature profiles 

and material properties. Due to symmetry, it is assumed that the temperature profiles across 

surfaces 1, 2, and 3, as shown in Figure 4, are identical. The isogrid is assumed to be 

machined out of a solid piece of material, and as such there is no contact resistance between 

any of the surfaces. The isogrid material is assumed to have homogeneous, isotropic, and 

non-temperature dependent material properties. It is assumed to have been in its 

environment for a sufficiently long time such that the temperature profile has reached 

steady state and is not time varying. Assume that all surfaces are flat and therefore each of 

them has no direct view of itself. All surfaces are assumed to be diffuse and gray. Assume 
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no heat generation within the walls. The isogrid wall is assumed to be made of a thermally 

conductive material and have a sufficiently small thickness. We therefore assume that the 

temperature is constant through the wall thickness. 

2.1.3.2. Boundary Conditions 

Surface 4, the base of the isogrid, is assumed to be isothermal at temperature 𝑇4, 

which is the temperature of the spacecraft surface whose temperature is to be controlled. 

Therefore, we can state that  

 𝑇𝑛(𝑥, 𝑦, 0) = 𝑇4 (11) 

for surfaces 𝑛 = 1, 2, 3. Space is equivalent to a concave black surface completely 

encompassing the isogrid with a temperature of 2.7 K. Due to symmetry, we assume that 

there is no heat conduction between the walls of the cavity, because they share the same 

temperature at the wall-wall interface. 

 
𝜕

𝜕𝑥
𝑇1(0,0, 𝑧) =

𝜕

𝜕𝑥
𝑇1(𝐿, 0, 𝑧) = 0 (12) 

Due to symmetry within each wall, we assume that the temperature profile of surface 1 is 

mirrored about the line 𝑥 =
𝐿

2
. 

 𝑇1(𝑥, 𝑦, 𝑧) = 𝑇1(𝐿 − 𝑥, 𝑦, 𝑧) (13) 

Due to this assumption, we may also say that 

 
𝜕

𝜕𝑥
𝑇1 (

𝐿

2
, 𝑦, 𝑧) = 0 (14) 
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2.1.4. Governing Equations 

Due to the assumption of symmetry, it is necessary only to calculate the temperature 

profile for surface 1. The temperatures of surfaces 2 and 3 are found by symmetry. 

Therefore, the following governing equations are only solved for surface 1.  

2.1.4.1. Analytical Formulation 

The general 3D heat diffusion equation is  

 𝜌𝐶𝑝
𝜕𝑇1
𝜕𝑡

=
𝜕

𝜕𝑥
(𝑘
𝜕𝑇1
𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘
𝜕𝑇1
𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘
𝜕𝑇1
𝜕𝑧
) + 𝑞′′′ (15) [1] 

where 𝜌 is the density, 𝐶𝑝 is the specific heat, 𝑘 is the thermal conductivity, 𝑇1 is the 

temperature profile of surface 1, and 𝑞′′′ is the volumetric heat generation rate and 

𝑞′′′ =  0. 

Applying the assumptions of steady state conditions, homogeneous material 

properties with constant 𝑘 independent of temperature, and no internal heat generation 

leads to this simplified version of Eqn (16). 

 𝑘 (
𝜕2𝑇1
𝜕𝑥2

+
𝜕2𝑇1
𝜕𝑦2

+
𝜕2𝑇1
𝜕𝑧2

) = 0 (16) [1] 

From the assumptions stated earlier, the temperature through the thickness of the wall is 

isothermal, hence 
𝜕𝑇1

𝜕𝑦
= 0. If we insert 

𝜕𝑇1

𝜕𝑦
= 0 into Eqn (16) the resulting formulation will 

be independent of 𝑦 and thus independent of the wall thickness. However, in actuality the 

temperature profile is dependent on the wall thickness as will be described in section 3.3. 

Therefore, we must use a different formulation which maintains the temperature profile’s 

dependence on the wall thickness.  
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2.1.4.2. Finite Difference Formulation  

To maintain the temperature dependence on the wall thickness we will use a finite 

difference approach. This is the formulation utilized by Thermal Desktop, which is 

discussed further in section 2.2.  

Let us split surface 1 into an arbitrary number of elements in the 𝑥 and 𝑧 directions, 

with each element having thickness 𝑡 in the 𝑦 direction. Each element has a single node at 

its center and is assumed to be isothermal. In this way the 
𝜕𝑇1

𝜕𝑦
= 0 condition is maintained 

by only having one control volume in the 𝑦 direction, while simultaneously keeping the 

temperature dependent on 𝑡.  

From the conservation of energy, steady state conditions, and lack of a convective 

environment, it is clear that for each element 

 𝑄𝑛𝑒𝑡 = 𝑄𝑐𝑜𝑛𝑑 + 𝑄𝑟𝑎𝑑 = 0 (17)  

where 𝑄𝑛𝑒𝑡 is the net heat flow into the control volume, 𝑄𝑐𝑜𝑛𝑑 is the heat flow due to 

conduction, and 𝑄𝑟𝑎𝑑 is the heat flow from radiation.  
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Figure 5: Finite Difference Formulation on Surface 1 [1] 

 

The net conductive heat flow can be found as  

 

𝑄𝑐𝑜𝑛𝑑 =
𝑘𝑡∆𝑧

∆𝑥
(𝑇𝑚+1,𝑛 + 𝑇𝑚−1,𝑛 − 2𝑇𝑚,𝑛)

+
𝑘𝑡∆𝑥

∆𝑧
(𝑇𝑚,𝑛+1 + 𝑇𝑚,𝑛−1 − 2𝑇𝑚,𝑛) 

(18) [1] 

where ∆𝑥 and ∆𝑧 are the distances between nodes in the 𝑥 and 𝑦 directions respectively. 

𝑚 and 𝑛 are the node numbers of the adjacent nodes as seen in Figure 5.  

2.1.4.3. Radiation 

The net radiative heat transfer from element 𝑗 to element 𝑘 is defined as 

 𝑄𝑟𝑎𝑑,𝑗−𝑘 =
𝜎(𝑇𝑘

4 − 𝑇𝑗
4)

1 − 𝜀𝑗
𝜀𝑗𝐴𝑗

+
1

𝐴𝑗𝐹𝑗−𝑘
+
1 − 𝜀𝑘
𝜀𝑘𝐴𝑘

 
(19) [1] 

where 𝜎 is the Stefan–Boltzmann constant, 𝜀 is the surface emissivity, 𝑇 is the absolute 

temperature, 𝐴 is the surface area, and 𝐹𝑗−𝑘 is the radiation view factor between the 
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elements. In Eq (19) both elements are assumed to be diffuse, gray, and isothermal. The 

total radiative heat flow from element 𝑗 to the rest of the model is  

 𝑞𝑟𝑎𝑑,𝑗 =∑ 𝑞𝑟𝑎𝑑,𝑗−𝑘
𝑁

𝑘=1
 (20)  

where 𝑁 is the total number of elements in the model. 

2.1.4.4. View Factor 

The radiation view factor, also known as the exchange factor, is the percentage of 

radiation leaving surface 𝐴1 that is incident upon surface 𝐴2, as shown in Figure 6. 

 

Figure 6: View Factor Between Two Finite Areas [23] 

 

 𝐹𝐴1−𝐴2 =
1

𝐴1
∫ ∫

cos (𝜃1)cos (𝜃2)

𝜋𝑆2
𝐴2

𝑑𝐴1 𝑑𝐴2
𝐴1

 (21) [23] 

where 𝑆 is the vector between differential areas 𝑑𝐴1 and 𝑑𝐴2 on surfaces 𝐴1 and 𝐴2, and 

𝜃1 and 𝜃2 are the angles between 𝑆 and the normal vectors for surfaces 𝐴1 and 𝐴2 

respectively. The view factor is integrated across the surfaces 𝐴1 and 𝐴2. 
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It is important to note that the sum of the view factors from surface 1 to every 

other surface and to space must be equal to unity. Therefore, the view factor to space can 

be found simply as 

 𝐹1−𝑠𝑝𝑎𝑐𝑒 = 1 −∑𝐹1−𝑛

4

𝑛=2

 (22)  

for surface number 𝑛. 

2.1.4.5. Effective Emissivity 

Recall from section 1.1 that the effective emissivity of a cavity is defined as the 

ratio of the radiative emission from the cavity opening with the emission from a blackbody 

with the same base area and reference temperature. In this problem we take the reference 

temperature to be that of surface 4. A blackbody surface emits the maximum amount of 

heat for a given temperature and is an ideal surface that serves as a reference to measure 

the efficiency of all other emitting surfaces. Of key importance is that this reference 

blackbody is not in a cavity, but rather a flat plate with a clear view to space.  

 𝜀𝑒𝑓𝑓 =
𝑄𝑐𝑎𝑣𝑖𝑡𝑦−𝑠𝑝𝑎𝑐𝑒

𝑄𝑏𝑙𝑎𝑐𝑘𝑏𝑜𝑑𝑦−𝑠𝑝𝑎𝑐𝑒
=

∑ 𝑄𝑛−𝑠𝑝𝑎𝑐𝑒
4
𝑛=1

𝐴4𝜎(𝑇4
4 − 𝑇𝑠𝑝𝑎𝑐𝑒

4 ) 
 (23)  

where 𝑄𝑛−𝑠𝑝𝑎𝑐𝑒 is the heat rejected to space from surface 𝑛 and 𝐴4 is the area of surface 4. 

 Since the cavity is nonisothermal, it is not obvious where the reference temperature 

should be measured for the 𝜀𝑒𝑓𝑓 calculation. In fact, the 𝜀𝑒𝑓𝑓 could be greater than unity if 

the reference temperature is measured from the “incorrect” location, such as the lip of the 

cavity wall [24]. The reference temperature is therefore measured at surface 4 both because 

this is the most important temperature from an engineering perspective, and to ensure that 

𝜀𝑒𝑓𝑓 does not exceed unity.   
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2.2. Thermal Desktop 

2.2.1. Background 

Thermal Desktop® is a software package produced by Cullimore & Ring 

Technologies® (“C&R Tech”) which is specifically designed for use in the thermal 

aerospace industry. It is built as an application within AutoCAD®, which is produced by 

Autodesk® [25]. 

Thermal model objects within Thermal Desktop may be finite difference surfaces, 

finite difference solids, or finite element solids. Surfaces are 2D objects and represent 

geometries in which there is no temperature gradient through the thickness of the material. 

Solids are 3D objects implementing either the finite difference or finite element methods. 

In Thermal Desktop, finite difference is more robust and more commonly used. In this 

thesis 2D finite difference surfaces are used to construct the isogrid array.  

Any thermal object may be defined with boundary nodes, which are set at a user 

prescribed temperature. The boundary node implies an infinitely large thermal mass, and 

thus remains at a constant temperature throughout the calculations. In this thesis boundary 

nodes are used to construct surface 4 and maintain it at the prescribed temperature. 

Radiative heat transfer is the area in which Thermal Desktop differs from other 

modelling software. While radiative couplings may be defined explicitly between objects, 

it is highly recommended to utilize Thermal Desktop’s built-in Monte-Carlo ray-racing 

routines in the RadCAD® module. RadCAD utilizes Monte-Carlo ray-racing to calculate 

the radiation view factors between every node in the model within a defined radiation 

analysis group. RadCAD is discussed further in section 2.2.2. 
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Figure 7: Orbit in Thermal Desktop [25] 

 

One of the unique features in Thermal Desktop is its ability to easily implement 

environmental heat loads in an orbit. Along with full customization of the orbital 

parameters, the user may input the solar flux, planetary IR flux, planetary albedo, and other 

parameters for any celestial body of interest. These parameters play a large role in the 

overall thermal environment in which the spacecraft is located. The spacecraft may also be 

set to change its attitude in various points in the orbit as well as vary in time. In addition, 

a subset of the spacecraft can be set to move independently throughout the orbit and 

throughout time, for example a gimbaled solar array tracking the sun. Environmental heat 

loads are not considered in the isogrid model presented in this thesis.  

2.2.2. RadCAD 

2.2.2.1. Introduction 

RadCAD® is a Thermal Desktop module used to calculate environmental heating 

rates (from The Sun, Earth, etc.) and radiation exchange factors between components 
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within the thermal model [25]. RadCAD utilizes the Monte-Carlo ray-racing method for 

radiation exchange factor determination. In this scheme, a finite number of rays (each of 

which can be thought of as a photon with a finite energy based on the emitting surface’s 

properties and temperature) are emitted from each node in the model. When the ray hits 

another surface, a portion of its energy is either absorbed, transmitted, or reflected based 

on the optical properties of the receiving surface. The ray continues to propagate 

throughout the model either until its energy is reduced below some threshold set by the 

user (at which point it is considered to be fully absorbed) or is emitted to space. Tracing 

several thousand rays from each node in the model gives very accurate exchange factors 

between the model’s surfaces [25]. These exchange factors are equivalent to the view 

factors discussed in section 2.1.4.4. 

2.2.2.2. View Factor RadCAD Solutions vs Textbook Solutions 

In order to validate RadCAD we shall compare the view factors found from a 

textbook and those calculated by RadCAD for three different geometries. A comparison of 

the results for each geometry can be found below in Table 1. 

 

Figure 8: Geometry 1 View Factor [23] 

For the above geometry we compute the view factor relation taking a = 30cm, b = 50cm, 

and c = 60cm. Note that in this example dA1 is a differential area. 
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Figure 9: Geometry 2 View Factor [23] 

 

 

Figure 10: Geometry 3 View Factor [23] 

 

Table 1: Textbook vs RadCAD View Factor Comparison Results 

Geometry Textbook RadCAD Absolute Error

1 0.083 0.085 2.0E-03

2 0.111 0.111 3.5E-04

3 0.033 0.033 2.4E-04  

 

Geometries 2 and 3 give identical results between the textbook solution and 

RadCAD. Geometry 1 has a much larger error than that of the others. This is due to the 

fact that the textbook solution is for a differential area dA1, while Thermal Desktop 
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requires finite surfaces in order to calculate the exchange factors. RadCAD can calculate 

the view factors to an arbitrary level of precision if given enough rays to shoot from each 

node.  

2.2.3. SINDA 

2.2.3.1. Introduction 

The Systems Improved Numerical Differencing Analyzer (SINDA) is a robust 

finite difference solver specifically designed for use in thermal applications. SINDA has 

been a mainstay in an array of industries for over fifty years [26]. It uses the resistor-

capacitor (R-C) network representation of thermal systems on which to apply the finite-

difference method. The R-C representation is a lumped-capacity method whereby the 

thermal mass of a portion of the geometry is lumped into a discrete infinitesimal point (a 

node). Each node has an associated area or volume (depending on the type of thermal 

object) from which its properties are determined. Each node acts as a capacitor in the 

electrical analogy, storing and releasing thermal energy based on its thermal capacitance 

and mass [26].  

Nodes exchange energy via resistors which can represent conduction, convection, 

or radiation. The conduction between nodes within the same surface or solid is determined 

by the thermal conductivity, cross sectional area, and distance between the nodes. Radiative 

resistors are found using the areas, emissivities, and view factor between two interacting 

nodes [26]. 
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2.2.3.2. Example 1: 1D Steady State Conduction with Heat Generation 

In order to validate Thermal Desktop and SINDA let us model several textbook 

example problems. The first problem shown below concerns one dimensional steady state 

conduction with heat generation from the textbook [1]. The problem statement and diagram 

are shown in Figure 11. A Thermal Desktop model of the example problem is shown in 

Figure 12. 

  

Figure 11: Example Problem 1 Description [1] 

 

 

Figure 12: Example Problem 1 Thermal Desktop Model 
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Figure 13: Example Problem 1 Solution [1] 

As seen above in Figure 13, the analytical solution and the Thermal Desktop 

solution exactly match, as expected. It is important to note that due to the finite difference 

method the Thermal Desktop temperature profile in section A of the wall (0 ≤ 𝑥 ≤ 50) 

varies linearly between each node, as opposed to a smooth second order variation in the 

analytical solution. Despite this, the temperatures at the interfaces between sections A and 

B, and between B and the fluid are identical to those of the analytical solution.  

2.2.3.3. Example 2: 3D Transient Conduction 

Let us now validate Thermal Desktop for a three-dimensional transient heat 

conduction problem. Figure 14 below shows the example problem to be solved, again from 

the textbook [1].  
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Figure 14: Example Problem 2 Description [1] 

 

   

Figure 15: Example Problem 2 Thermal Desktop Temperature Profile 

 

Figure 15 above shows the temperature profile of the cylinder calculated by Thermal 

Desktop after submersion in the oil bath for 180 seconds.  
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Table 2: Analytical vs Thermal Desktop Results

 

Figure 16: Example Problem 2 Thermal Desktop Solution 

 

Figure 16 shows the transient solution for two points on the cylinder. As expected, 

the point on the outer edge, 𝑇(𝐷, 𝐿), quickly cools down from its initial temperature, while 

the point in the center of the cylinder, 𝑇(0, 0), does not greatly change temperature until 

approximately 20 seconds after submersion. Table 2 shows a comparison between the 

textbook analytical solution and that of Thermal Desktop. The results are very close and 

may be improved to an arbitrarily small error by applying a smaller timestep within 

Thermal Desktop. 

2.3. Thermal Desktop Final Mathematical Formulation 

As discussed in section 2.2.3.1, Thermal Desktop and SINDA use the resistor-

capacitor (R-C) network representation of thermal systems on which to apply the finite-

difference method. Each node acts as a capacitor in the electrical analogy, storing and 

releasing thermal energy based on its thermal capacitance and mass. Nodes are connected 

to each other with conduction, radiation, and/or convection paths depending on the model 

geometry. The paths between nodes are sometimes referred to as “conductors” with values 

given as the thermal conductance, which is simply the inverse of the thermal resistance. 

Analytical 

Solution

Thermal 

Desktop

Absolute 

Error

T(0, 0, 3 min) 405.0 403.1 1.9

T(r0, L, 3 min) 365.0 362.4 2.6
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The term “conductor” is a slight misnomer as there can exist multiple conduction, 

convection, and radiation heat transfer “conductor” paths acting in parallel from a single 

node [26].  

Thermal Desktop utilizes the finite difference method for conduction between 

nodes, the formulation of which was discussed in section 2.1.4.2. Radiation view factors 

are calculated using the RadCAD module which implements Monte Carlo ray tracing, as 

discussed in section 2.2.2. This is done to numerically solve the general 3D heat diffusion 

equation, Eqn (15), with radiative boundary conditions. The radiative heat flux is not 

explicitly defined, but rather calculated via Monte Carlo ray tracing.  

Assuming there is no convection, the final steady state energy balance equation on 

node 𝑖 is 

 𝑄𝑖 =∑𝑄𝑐𝑜𝑛𝑑,𝑖−𝑗

𝑀

𝑖=1

+∑𝑄𝑟𝑎𝑑,𝑖−𝑗

𝑁

𝑖=1

= 0 (24)  

Where 𝑀 is the number of nodes conductively coupled to node 𝑖, and 𝑁 is the total number 

of nodes in the model. The conduction from node 𝑖 to node 𝑗 is 

 𝑄𝑐𝑜𝑛𝑑,𝑖−𝑗 =
𝑘𝐴𝑖−𝑗

𝐿𝑖−𝑗
(𝑇𝑗 − 𝑇𝑖) (25)  

where 𝑘 is the thermal conductivity, 𝐴𝑖−𝑗 is the cross-sectional area between the nodes, 

𝐿𝑖−𝑗 is the distance between the nodes, and overall 
𝑘𝐴𝑖−𝑗

𝐿𝑖−𝑗
 term is the thermal conductance. 

The radiation exchange from node 𝑖 to node 𝑗 shown below is a slightly modified version 

of Eqn (19) 

 𝑄𝑟𝑎𝑑,𝑖−𝑗 =
𝜎(𝑇𝑗

4 − 𝑇𝑖
4)

1 − 𝜀𝑖
𝜀𝑖𝐴𝑖

+
1

𝐴𝑖𝐹𝑖−𝑗
+
1 − 𝜀𝑗
𝜀𝑗𝐴𝑗

 
(19) [1] 
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where the view factor 𝐹𝑖−𝑗 is calculated via Monte-Carlo ray tracing as described in 

section 2.2.2. 

Equation (24) is developed for every node in the model. The system of equations 

for all nodes are collected into a single matrix and solved for simultaneously using an 

iterative advanced algebraic multigrid solver which exploits the conjugate gradient 

method, called AMG-CG [26]. 

2.4. Thermal Desktop Isogrid Model 

A Thermal Desktop thermal model of an isogrid cavity array was developed. The 

array is constructed of 2D finite difference surfaces for the cavity walls and base. The 

thickness of the cavity walls is only used in the finite difference conduction formulation as 

described in section 2.1.4.2. Even if the walls are given an arbitrarily large thickness, the 

physical geometry of the wall remains 2D. This means that the view factor calculations 

from each surface are independent of the wall thickness. Modelling the surfaces as 2D 

objects preserves the assumption that the wall is isothermal through its thickness.  

Recall from section 2.1.3 that the base of the isogrid array is assumed to be at a 

prescribed base temperature, 𝑇𝑏. In the model we set 𝑇𝑏 = 300𝐾. This prescribed base 

temperature and the fact that the isogrid array is in space are the only boundary conditions 

present. There is no prescribed heat flux on the cavity. The radiative heat flux is implicitly 

calculated by Thermal Desktop as described in section 2.3. 

2.4.1. Determining Appropriate Isogrid Array Size 

Unlike various other modelling software Thermal Desktop does not have the ability 

to impose a cyclic boundary condition, which could be used to approximate an infinite 
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array. This presents an issue as one of the assumptions made in section 2.1.2 is that of a 

single cell immersed within an arbitrarily large array of isogrid. The question then 

becomes: what is the minimum array size necessary to approximate an infinitely large 

isogrid array? To answer this question, several Thermal Desktop models were made of 

rectangular isogrid arrays of various sizes, as shown below in Figure 17. 

 

Figure 17: Varying Rectangular Isogrid Array Size 

 

This model was tested with a cavity parameters 𝐿 = 200𝑚𝑚, 𝐻 = 100𝑚𝑚, 𝑡 =

2𝑚𝑚, and 𝜀𝑠𝑢𝑟𝑓 = 0.70. The results of varying the array size on the 𝜀𝑒𝑓𝑓 of the center cell 

are shown in Figure 18. 
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Figure 18: Center Cell εeff for Varying Array Size 

 

The array size does play a role in the center cell’s 𝜀𝑒𝑓𝑓, but after the addition of a few cells 

the effect is diminished. Edge effects are discussed further in section 3.7. 

2.4.2. Isogrid Model Overview 

Based on these results from section 2.4.1 it was decided to create a rectangular 

isogrid array of 22x11 cells with the cavity of interest located directly in the center. This 

arrangement gives the central cavity 10.5 cells to the edge in the 𝑥 direction, and 5 cells in 

the 𝑦 direction. In Figure 19 below the central cavity is shown in red.  
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Figure 19: Thermal Desktop Isogrid Array Model 

In the model the only radiative exchange with space takes place in the +𝑧 direction, through 

the cavity opening. There is no radiative heat transfer to space either from the outer surface 

of the model, nor from the back of the array in the −𝑧 direction. 

2.4.3. Effect of the Wall Nodalization on 𝜀𝑒𝑓𝑓  

In order to determine the appropriate level of nodalization on the cavity walls, a 

mesh coarseness sensitivity study was conducted. Section 3.4.4 will show the importance 

of accurate knowledge of the temperature gradient in determining the overall 𝜀𝑒𝑓𝑓 at any 

given 𝜂 for a nonisothermal cavity. Due to the finite difference method, the only way to 

accurately capture this nonlinear temperature profile is by discretizing the wall into more 

elements (nodes). The effect of varying the nodalization (also referred to as the mesh 

coarseness or discretization) is shown below in Figure 20, where 𝜂 is the nondimensional 

wall height and 𝜆 is the nondimensional wall thickness, both of which are defined in section 

3.1. 
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Figure 20: Varying Nodalization for 𝜂 = 0.010 

There is good agreement between the nodalizations for small values of 𝜂, due to the small 

temperature gradient. The differences between the nodalizations only becomes significant 

for larger 𝜂, in this case approximately 𝜂 > 20. As a majority of the Thermal Desktop 

model runs were completed with a 5x3 nodalization, the results for this chapter are only 

presented for the range 0 ≤ 𝜂 ≤ 20. This 𝜂 range was determined to be acceptable because 

all cases analyzed have their 𝜂𝑐𝑟𝑖𝑡 < 20, which is the most important value to have 

knowledge of from an engineering perspective.  
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Chapter 3: Results 

3.1. Model Parameters 

3.1.1. Nondimensional Wall Height (𝜂) 

Recall the coordinate system from section 2.1.1. Figure 4 is reproduced below for 

convenience. 

 

Figure 4: Coordinate System for the Isogrid and Designation of Its surfaces 

The main nondimensional parameter used in this work is η, which is defined as the ratio of 

a cavity’s inner wall surface area with that of its base. For the case of isogrid 

 𝜂 =
𝐴𝑤𝑎𝑙𝑙𝑠
𝐴𝑏𝑎𝑠𝑒

=
3𝐿𝐻

𝐿2√3/4
=
12𝐻

√3𝐿
 (26) 

where 𝐿 and 𝐻 are the isogrid’s length and height respectively and are shown above in 

Figure 4. The reason for using 𝜂 instead of various other nondimensional parameters is that 

the relationship between 𝜂 and 𝜀𝑒𝑓𝑓 holds for cavity geometries beyond just isogrid. This 
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is discussed further in section 3.8. An 𝜂 value of 3.46 is used throughout this chapter 

because it represents the height at which 𝐻 = 𝐿/2. 

 In the model, 𝐿 = 200𝑚𝑚 and 𝐻 is varied from 0𝑚𝑚 to 1500𝑚𝑚, resulting in 𝜂 

values within the range of 0 − 51.96. Results are only shown for 𝜂 ≤ 20 due to the large 

temperature gradients and fine nodalization required at these larger 𝜂 values. This is 

discussed further in section 2.4.3. 

3.1.2. Nondimensional Wall Thickness (𝜆) 

 The wall thickness is converted to a nondimensional parameter, 𝜆, as the ratio of 

the wall thickness 𝑡 with side length 𝐿. 

 𝜆 = 𝑡/𝐿 (27) 

In this thesis only very small values of 𝜆 are used to maintain the validity of the assumption 

discussed in section 2.1 that the cavity walls are 2D when calculating the view factors.  

 In the model, 𝑡 ranges from 0.1𝑚𝑚 − 3𝑚𝑚 resulting in a range in 𝜆 from 0.0005 −

0.015. 

3.1.3. Characteristic Wall Resistance (𝑅𝑐ℎ𝑎𝑟) 

The characteristic resistance of the wall is the total resistance in the 𝑧 direction.  

 𝑅𝑐ℎ𝑎𝑟 =
𝐻

𝑘(𝑡𝐿)
 (28) 

where 𝑘 is the wall material’s thermal conductivity, and 𝑡𝐿 represents the wall’s cross-

sectional area in the 𝑥- 𝑦 plane. Since 𝑅𝑐ℎ𝑎𝑟 is the thermal resistance, it has units of ℃/𝑊. 
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 In the model, the isogrid is assumed to be constructed out of aluminum with a 

thermal conductivity of 𝑘 = 151.5
𝑊

𝑚𝐾
. This conductivity is held as a constant and is not 

varied. 

3.1.4. Base Temperature (𝑇𝑏) 

The temperature on base of the cavity (surface 4) was held as a constant throughout 

this study at 𝑇𝑏 = 𝑇4 = 300𝐾. The effect that varying 𝑇𝑏 has on the temperature profile 

and 𝜀𝑒𝑓𝑓 is left as future work.  

3.2. View Factors Across Surface 1 

Recall from section 2.1.4.4 that the view factor is defined as the percentage of 

radiation leaving surface leaving surface 𝐴1 that is incident upon some other surface 𝐴2. 

Due to the geometry of the isogrid, the view factor varies across each surface and is highly 

dependent on the 𝑥 and 𝑧 position. The view factors from surface 1 to surfaces 2, 3, 4, and 

to space for 𝜂 = 3.46 are shown below in Figure 21.  

 

  

𝐹 1−2 𝐹 1−𝑠𝑝𝑎𝑐𝑒 
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𝐹 1−3 𝐹 1−4 

Figure 21: View Factors Across Surface 1 for η=3.46 

 

Due to the geometry’s symmetry, 𝐹 1−2 and 𝐹 1−3 are mirrored about the line 𝑋 =
𝐿

2
. 

Similarly, the view factors 𝐹 1−4 and 𝐹 1−𝑠𝑝𝑎𝑐𝑒 are mirrored about 𝑍 =
𝐻

2
. 

 

Figure 22: 𝐹1−𝑆𝑝𝑎𝑐𝑒 Across z for 𝜂 = 3.46 

Figure 22 above shows the nonlinear nature of 𝐹1−𝑆𝑝𝑎𝑐𝑒 as a function of position on the 

wall in the 𝑧 direction. This nonlinearity is especially present in the corners of the cavity 

at 𝑥 = 0 and 𝑥 = 𝐿.  

3.3. Temperature Profile 

The temperature profile across surface 1 is shown in Figure 23, Figure 24, and 

Figure 25. In these figures the temperatures are reported as deltas with the base temperature 

(𝑇4 = 𝑇𝑏), such that Δ𝑇(𝑥, 𝑧) = 𝑇𝑏 − 𝑇(𝑥, 𝑧).  

0.00

0.10

0.20

0.30

0.40

0.50

0 0 1 1 1

F 1
-S

p
ac

e

Z

F1-Space Across Z for η=3.46 

X=0 X=L/4 X=L/2

H1/2 H 3/4 H1/4 H



40 

 

Figure 23: ΔT Temperature Profile for 𝜀𝑠𝑢𝑟𝑓 = 0.7, 𝜂 = 3.46, 𝜆 = 0.010 

 

 

Figure 24: ΔT Temperature Profile Across 𝑧 for 𝜀𝑠𝑢𝑟𝑓 = 0.7, 𝜂 = 3.46, 𝜆 = 0.010 
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Figure 25: ΔT Temperature Profile Across 𝑥 for 𝜀𝑠𝑢𝑟𝑓 = 0.7, 𝜂 = 3.46, 𝜆 = 0.010 

 

Figure 24 shows that the temperature profile in the z direction is nonlinear, especially as 

𝑧 → 𝐻. Figure 25 shows that the temperature profile across the x direction is at a minimum 

at 𝑥 = 𝐿/2 and at maximum at the ends when 𝑥 = 0 and 𝑥 = 𝐿. These ends also correspond 

to an adiabatic condition as discussed in section 2.1.3. The coldest point on surface 1 occurs 

at 𝑥 = 𝐿/2, 𝑧 = 𝐻. The temperature profile seen in the previous figures is non-linear due 

to the radiation heat flux on surface 1 to/from the other surfaces and to space. The value of 

this radiative heat flux is not explicitly defined in the model. Rather it is calculated by 

Thermal Desktop for each individual node based on the node’s temperature, optical 

properties, and view factors as described in section 2.3. 

The maximum ∆𝑇, defined as 𝑇 (
𝐿

2
, 𝐻)−𝑇𝑏, is also a function of 𝜂 as shown in 

Figure 26. 
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Figure 26: Maximum ∆𝑇 vs 𝜂 for 𝜀𝑠𝑢𝑟𝑓 = 0.7, 𝜆 = 0.010 

The maximum ∆𝑇 is inversely proportional to 𝜂, due mainly to the fact that the wall’s 

characteristic thermal resistance is a function of 𝐻, and thus directly related to 𝜂. The wall’s 

resistance is discussed further in section 3.6. 

3.4. Effect of Varying Wall Height (η) 

3.4.1. Characteristic 𝜀𝑒𝑓𝑓 vs 𝜂  

The characteristic plot of 𝜀𝑒𝑓𝑓 vs 𝜂 is split into three regions, which are qualitatively 

shown below in Figure 27.  
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Figure 27: Characteristic Regions of 𝜀𝑒𝑓𝑓 vs 𝜂 

As shown in Figure 27, 𝜂𝑐𝑟𝑖𝑡 is the critical wall height for which the effective emissivity is 

at its maximum (𝜀𝑒𝑓𝑓 𝑚𝑎𝑥). 𝜂𝑒𝑞𝑢𝑖𝑣 is the wall height at which 𝜀𝑒𝑓𝑓 = 𝜀𝑠𝑢𝑟𝑓 and is therefore 

equivalent to that of a flat plate.  

The demarcation between regions 1 and 2 is 𝜂𝑐𝑟𝑖𝑡, while the demarcation between 

regions 2 and 3 is 𝜂𝑒𝑞𝑢𝑖𝑣. Region 1 is characterized by 𝜀𝑒𝑓𝑓 monotonically increasing 

starting at a value of 𝜀𝑠𝑢𝑟𝑓 at 𝜂 = 0 and ending with a value of 𝜀𝑒𝑓𝑓 𝑚𝑎𝑥 at 𝜂𝑐𝑟𝑖𝑡. In region 

2, 𝜀𝑒𝑓𝑓 monotonically decreases from its maximum value of 𝜀𝑒𝑓𝑓 𝑚𝑎𝑥 at 𝜂𝑐𝑟𝑖𝑡, until it 

reaches 𝜀𝑠𝑢𝑟𝑓 at 𝜂𝑒𝑞𝑢𝑖𝑣. Region 3 is characterized by 𝜀𝑒𝑓𝑓 < 𝜀𝑠𝑢𝑟𝑓 which occurs for 𝜂 >

 𝜂𝑒𝑞𝑢𝑖𝑣. It is hypothesized that lim
𝜂→∞

𝜀𝑒𝑓𝑓 = 0, though this has yet to be tested. Region 1 is 

the only region in which an isogrid radiator should be designed. This is because in this 

region 𝜀𝑒𝑓𝑓 > 𝜀𝑠𝑢𝑟𝑓 while requiring less total mass than an equivalent 𝜀𝑒𝑓𝑓 in region 2. 
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3.4.2. Results of 𝜀𝑒𝑓𝑓 vs 𝜂  

The results of 𝜀𝑒𝑓𝑓 vs 𝜂 for various values of 𝜀𝑠𝑢𝑟𝑓 are shown in Figure 28. The 

same data is expanded upon for different values of 𝜆 in Table 2.  

 

Figure 28: 𝜀𝑒𝑓𝑓 vs 𝜂 for Various 𝜀𝑠𝑢𝑟𝑓 and 𝜆 = 0.010  

 

Table 2: Characteristic Regions Tabulated Values 

𝝀 𝜺𝒔𝒖𝒓𝒇 𝜺𝒆𝒇𝒇 𝒎𝒂𝒙 𝜼𝒄𝒓𝒊𝒕 𝜼𝒆𝒒𝒖𝒊𝒗 

0.005 

0.90 0.94 2.08 4.31 

0.70 0.86 2.77 6.31 

0.50 0.77 4.16 >20 

0.30 0.65 5.54 >20 

0.10 0.44 12.12 >20 

0.010 

0.90 0.95 2.77 6.67 

0.70 0.88 4.16 18.73 

0.50 0.79 5.54 >20 

0.30 0.68 6.93 >20 

0.10 0.47 13.86 >20 
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0.015 

0.90 0.96 2.42 >20 

0.70 0.88 4.16 >20 

0.50 0.81 4.85 >20 

0.30 0.69 8.31 >20 

0.10 0.48 13.86 >20 

 

 In Figure 28 and Table 2 it is clear that larger values of 𝜀𝑠𝑢𝑟𝑓 have correspondingly 

larger values of 𝜂𝑐𝑟𝑖𝑡, 𝜂𝑒𝑞𝑢𝑖𝑣, and 𝜀𝑒𝑓𝑓 𝑚𝑎𝑥. This makes intuitive sense as one would expect 

that a cavity with an 𝜀𝑠𝑢𝑟𝑓 of 0.90 would have a larger 𝜀𝑒𝑓𝑓 𝑚𝑎𝑥 than that of an identical 

cavity with an 𝜀𝑠𝑢𝑟𝑓 of 0.10. However, what is not immediately obvious is that the cavity 

with the lower 𝜀𝑠𝑢𝑟𝑓 will have a larger relative increase in the 𝜀𝑒𝑓𝑓 𝑚𝑎𝑥. This effect is 

measured by looking at the ratio 𝜀𝑒𝑓𝑓/𝜀𝑠𝑢𝑟𝑓, for various values of 𝜀𝑠𝑢𝑟𝑓, below in Figure 

29.  

 

Figure 29: 𝜀𝑒𝑓𝑓/𝜀𝑠𝑢𝑟𝑓 vs 𝜂 for Various 𝜀𝑠𝑢𝑟𝑓 and 𝜆 = 0.010 
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As discussed in section 1.1, 𝜀𝑒𝑓𝑓 ≤ 1 for any case. A cavity with an 𝜀𝑠𝑢𝑟𝑓 of 0.90 is already 

very close to that of a blackbody, and so does not have much “room to grow” by increasing 

𝜂. On the other hand, a cavity with an 𝜀𝑠𝑢𝑟𝑓 of 0.10 has much more room to grow with 

increased 𝜂 before it approaches the 𝜀𝑒𝑓𝑓 ≤ 1 limit. As such, the ratio 𝜀𝑒𝑓𝑓/𝜀𝑠𝑢𝑟𝑓 has a 

larger maximum value for the lower 𝜀𝑠𝑢𝑟𝑓 case, as it both has a smaller value in the 

denominator and has more room to grow with increased 𝜂. 

3.4.3. Contributions to the Critical Wall Height 

The phenomenon of 𝜀𝑒𝑓𝑓 increasing with 𝜂 until some critical value of 𝜂𝑐𝑟𝑖𝑡 is 

analogous to the classical heat transfer problem of the critical insulation thickness of a pipe. 

Adding additional layers of insulation decreases the conduction rate from the pipe while 

simultaneously increases the rate of convection and radiation to the environment due to the 

increased surface area [1]. There exists a critical insulation thickness beyond which the 

addition of more insulation causes the overall heat transfer with the environment to 

increase. In the same way, there exists a critical 𝜂 for which the 𝜀𝑒𝑓𝑓 is at a maximum (i.e., 

𝜂𝑐𝑟𝑖𝑡) and beyond which the 𝜀𝑒𝑓𝑓 begins to decrease. The competing factors in this case are 

the resistance up the cavity walls (in the 𝑧 direction), the decreased temperature at the top 

of the walls (at 𝑧 = 𝐻), and the bases’ view factor to space.  

The relative effect of the cavity walls (surfaces 1-3) and the base (surface 4) on the 

overall 𝜀𝑒𝑓𝑓 by can be seen by recognizing that the total effective emissivity can be split 

into contributions from the base and from the walls:  

 𝑄𝑠𝑝𝑎𝑐𝑒 = 𝑄𝑏𝑎𝑠𝑒−𝑠𝑝𝑎𝑐𝑒 +𝑄𝑤𝑎𝑙𝑙𝑠−𝑠𝑝𝑎𝑐𝑒 (29) 
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The effect of these varying factors can be seen in Figure 30 which compares the heat 

rejected to space from the base and walls of the cavity to that of a reference blackbody.  

 

Figure 30:Contributing Factors to 𝜂𝑐𝑟𝑖𝑡 for 𝜀𝑠𝑢𝑟𝑓 = 0.7 and 𝜆 = 0.010 

 

At 𝜂 = 0 the wall height is 0 and 𝑄𝑤𝑎𝑙𝑙𝑠−𝑠𝑝𝑎𝑐𝑒 = 0 and the entirety of 𝑄𝑠𝑝𝑎𝑐𝑒 comes from 

the cavity base. As 𝜂 increases, the contribution from the base quickly decreases, as the 

base’s view factor to space is reduced. At the same time, the contribution from the walls 

increases, the net effect of which is that 𝑄𝑠𝑝𝑎𝑐𝑒 also increases while within region 1.  

As 𝜂 increases, the effect of the wall’s characteristic resistance becomes more of a 

factor. The resistance increases linearly with the wall height. This increased resistance 

makes it more difficult for the walls to wick heat up from the base to the top of the wall 

where heat may be more efficiently radiated to space. The view factor to space becomes 

larger towards the top of the wall (as seen in Figure 21), which increases its ability to be 

rejected to space. Consequently, it is desirable to reduce the resistance associated with the 
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wall height so that the higher temperature near the top of the wall is coupled with the larger 

view factor for enhanced radiation heat transfer to space. Due partially to this increased 

view factor, the temperature of the wall as 𝑧 → 𝐻 decreases (as seen in Figure 24). This 

reduction in temperature significantly decreases the ability for heat to be rejected to space 

due to the 𝑇4 relationship between temperature and radiative emission (as described in 

2.1.4.3). The effect of these factors is that 𝑄𝑠𝑝𝑎𝑐𝑒 reaches a maximum value at 𝜂𝑐𝑟𝑖𝑡, and 

then continues to decrease as 𝜂 goes beyond 𝜂𝑐𝑟𝑖𝑡.  

3.4.4. Isothermal vs Nonisothermal Cavity Walls 

Throughout this thesis the assumption has been made that the cavity walls are 

nonisothermal. If instead the cavity walls are assumed to be isothermal at temperature 𝑇𝑏, 

it is found that there is no reduction in 𝜀𝑒𝑓𝑓 after 𝜂𝑐𝑟𝑖𝑡. In this case the 𝜀𝑒𝑓𝑓 approaches 

some maximum value 𝜀𝑒𝑓𝑓,𝑚𝑎𝑥,𝑖𝑠𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 as seen in Figure 31. This isothermal condition 

can be obtained by constructing the cavity out of a material with a very high thermal 

conductivity. 
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Figure 31: Isothermal vs Nonisothermal 𝜀𝑒𝑓𝑓 for 𝜆 = 0.010   

The difference in 𝜀𝑒𝑓𝑓 between the isothermal and nonisothermal cases is virtually 

nonexistent for small values of 𝜂 (in this case 𝜂 < 2). This is due to the small temperature 

gradient up the walls and the small overall influence of the walls in the 𝑄𝑠𝑝𝑎𝑐𝑒 as shown 

previously in Figure 30. The difference between the isothermal and nonisothermal cases 

only becomes noticeable with larger values 𝜂, and continues to become more significant 

with ever larger 𝜂 values. For example, in Figure 31 at 𝜂 = 20 the 𝜀𝑒𝑓𝑓 in the isothermal 

case is 0.92 while in the nonisothermal case it is only 0.68.  

3.5. Effect of Varying Wall Thickness (λ) 

3.5.1. Results of Varying Wall Thickness (λ) 

Recall that the nondimensionalized wall thickness, 𝜆, is defined as 𝜆 =
𝑡

𝐿
 in 

section 3. The wall thickness is directly related to the wall resistance (see section 3.1.3) 
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and thus the amount of heat able to be conducted to the top of the walls. This effect on 𝜀𝑒𝑓𝑓 

is shown in Figure 32.  

 

Figure 32: 𝜀𝑒𝑓𝑓 vs 𝜂 for Various 𝜆  

For small values of 𝜂 the effect of the wall thickness is minimal. This quickly changes for 

larger 𝜂 which becomes highly dependent on 𝜆. Higher values of 𝜆, and thus larger wall 

thicknesses, lower resistance, and ultimately lower temperature gradients along the wall 

height, have the effect of increasing the 𝜀𝑒𝑓𝑓.  

3.6. Effect of Varying Characteristic Wall Resistance (Rchar) 

Recall from section 0 that the characteristic wall resistance is the wall’s thermal 

resistance in the 𝑧 direction. The relationship between 𝜀𝑒𝑓𝑓 and 𝑅𝑐ℎ𝑎𝑟 for various values of 

𝜀𝑠𝑢𝑟𝑓 is shown below in Figure 33. 
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Figure 33: 𝜀𝑒𝑓𝑓 vs Rchar for Various𝜀𝑠𝑢𝑟𝑓  

𝑅𝑐ℎ𝑎𝑟 is directly proportional to 𝐻, and thus is also proportional to 𝜂. It is no surprise then 

that Figure 33 looks very similarly to the plots of 𝜀𝑒𝑓𝑓 vs 𝜂. However, a main difference is 

that 𝑅𝑐ℎ𝑎𝑟 combines both the wall height and the wall thickness. The resulting Figure 33 

has more variation in the 𝜀𝑒𝑓𝑓 value for any given 𝑅𝑐ℎ𝑎𝑟. 

3.7. Edge Effects 

Recall from section 2.4 that the isogrid array model used in this thesis consists of 

an array of 22x11 cavities. Recall also that the outer edge of the array is assumed to have 

an emissivity of 0 and thus does not radiate to space. Due to symmetry, we will only look 

at the 𝜀𝑒𝑓𝑓 of cavities from 0 ≤ 𝑥 ≤ 11 and 0 ≤ 𝑦 ≤ 5. This quadrant is representative of 

the entire array and is shown in green in Figure 34 below.  
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Figure 34: Isogrid Array 

In Figure 34 the green cells are the ones who’s 𝜀𝑒𝑓𝑓 values were calculated and are shown 

below in Figure 35 and Figure 36. The red cavity at the center is also shown in the Figures 

below. The edge effect in the x direction is shown below in Figure 35. 

 

Figure 35: Cavity Array Edge Effect in the X Direction 
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Figure 36: Cavity Array Edge Effect in the Y Direction 

 

In Figure 35 and Figure 36 the 𝜀𝑒𝑓𝑓 varies only in the 𝑥 direction and not in the 𝑦 direction. 

This is due to the fact that the edge cavities along 𝑥 = 11 are not equilateral triangles like 

the other cavities, but rather are right triangles. This geometry has a different 𝜂 value even 

though it has the same wall height as the rest of the array. The 𝜂 for the right triangle is 

𝜂𝑟𝑖𝑔ℎ𝑡 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 =
(
3

2
+
√3

2
)𝐿𝐻

√3

8
𝐿2

=
(12+4√3)𝐻

√3𝐿
 compared to that of an equilateral triangle with 

𝜂𝑒𝑞𝑢𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒  =  
12𝐻

√3𝐿
. This larger value of 𝜂 corresponds to a larger 𝜀𝑒𝑓𝑓 for the right 

triangle edge cavities. The edge cavities at 𝑦 = 5 are equilateral triangles identical to the 

rest of the array, so they do not have a larger 𝜂 value for the given height. The increased 

𝜀𝑒𝑓𝑓 of the edge cavities is so slight as to be negligible, though the thermal designer should 

take care to ensure that the overall percentage of edge cavities is small.  
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3.8. Isogrid vs. Other Geometries 

The entirety of this thesis has focused on isogrid cavity arrays, which begs the 

question: what about other geometries besides isogrid? To determine the difference, a 

single cell model was made for a triangle (isogrid), square (orthogrid), pentagon, hexagon 

(honeycomb), and a circle. It is well known that pentagons and circles cannot tile a surface 

and thus cannot readily be used in an array. However, they are examined here to illustrate 

the effect of various geometric shapes. As seen in Figure 37, the number of sides increases 

from the triangular isogrid, 3 sides, to a cylinder with an infinite number of sides.  

 

 

Figure 37: Different Cavity Geometries Tested 

 

The calculation of 𝜂 for the various geometries is shown in Eqn (30). The 

dependence of 𝜀𝑒𝑓𝑓 on 𝜂 is shown below in Figure 38.  
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𝜂𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 =
3𝐿𝐻

√3𝐿2/4
 

𝜂𝑠𝑞𝑢𝑎𝑟𝑒 =
4𝐿𝐻

𝐿2
 

𝜂𝑝𝑒𝑛𝑡𝑎𝑔𝑜𝑛 =
5𝐿𝐻

√5(5 + 2√5)𝐿2/4

 

𝜂ℎ𝑒𝑥𝑎𝑔𝑜𝑛 =
6𝐿𝐻

3√3𝐿2/2
 

𝜂𝑐𝑖𝑟𝑐𝑙𝑒 =
2𝜋𝐿𝐻

𝜋𝐿2
 

(30)  

 

 

Figure 38: 𝜀𝑒𝑓𝑓vs 𝜂 for Single Cell of Different Geometries 
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is dominated by the base (as shown in Figure 30). As 𝜂 increases, the triangle maintains 

the largest 𝜀𝑒𝑓𝑓, and the differences between geometries becomes more apparent.  

The fact that the triangle maintains the largest 𝜀𝑒𝑓𝑓 means that a radiator designer 

should always choose isogrid (triangles) over other geometries. For a given amount of heat 

rejected from the radiator, an isogrid radiator will necessitate the smallest total base area 

and ultimately the lowest total mass. To explain why this is the case it is prudent to examine 

the perimeter to area ratio of the geometries in question, shown in Figure 39. 

 

Figure 39: Perimeter to Area Ratio for Various Shapes 

Compared to the other shapes, triangles have by far the largest perimeter to area ratio. This 

implies that for a given value of 𝜂 a triangle will have the smallest 𝐻, therefore the lowest 

𝑅𝑐ℎ𝑎𝑟, therefore the lowest temperature gradients, and correspondingly the highest 𝜀𝑒𝑓𝑓. 

 Figure 39 confirms the fact that circles have the largest area for a given perimeter. 

This is why soap bubbles are circular and not triangular (bubbles optimize for the lowest 

surface tension which is proportional to perimeter). Of course, circles cannot tile a surface, 

which is why honeybees make honeycomb from hexagons. They are trying to maximize 
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the area for a given amount of wax [27]. Perhaps if honeybees were instead trying to 

maximize the effective emissivity of their hives, honeycomb would look like isogrid!  
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Chapter 4: Variable Emissivity Isogrid Radiator Concept 

4.1. Description 

The usefulness of a variable emissivity spacecraft radiator in reducing the required 

makeup heater power has been discussed in section 1.3.1. The traditional method for 

achieving variable emissivity is by using a louver as discussed in section 1.3.1.2. Louvers 

typically vary their emissivity by exposing or covering a high-ε surface with a low-ε blade. 

The blade is actuated by a bi-metallic strip which expands and contracts based on the 

temperature.  

Another method for producing a variable-ε radiator would be with an isogrid array 

varying one or more of its parameters as a function of the base temperature 𝑇𝑏. As was 

shown in section 3.4, the 𝜀𝑒𝑓𝑓 is highly dependent on the wall height. For this reason, the 

main parameter to be varied to produce a variable-e isogrid radiator is 𝜂. The wall height 

is perhaps the easiest parameter to dynamically vary, which is the parameter that will be 

focused on in the following section. 

4.2. Variable Emissivity Actuation Methods  

4.2.1. Variable Base  

The first method proposed that could be used to dynamically vary 𝜂 is by actuating 

the base up and down the cavity, as shown in Figure 40.  
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Figure 40: Constant Walls & Variable Base Radiator Schematic 

 

In the hot case the movable base is at the bottom of the cavity, producing the largest 

possible 𝜂 and thus the highest possible 𝜀𝑒𝑓𝑓. As the radiator cools, the base moves up the 

cavity by means of a shape memory alloy or bi-metallic strip. This lowers the 𝜂 and thus 

the 𝜀𝑒𝑓𝑓.  

A benefit of this method is that the cavity walls do not need to be coated with a 

single 𝜀𝑠𝑢𝑟𝑓. Rather, the top of the walls may be coated with a low- ε coating (lowering the 

𝜀𝑒𝑓𝑓 in the cold case) and coated with a high- ε finish at the bottom of the cavity (increasing 

the 𝜀𝑒𝑓𝑓 in the hot case). Furthermore, the base itself could be coated with a thermochromic 

finish which itself varies 𝜀𝑠𝑢𝑟𝑓 with temperature. 
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A major challenge with this design is that there necessarily exists a gap between 

the spacecraft (from which we are trying to reject heat) and the base of the cavity. A flexible 

thermal strap, or some other method, would need to be employed to thermally couple the 

spacecraft with the cavity base. The thermal strap increases both the mass and complexity 

of this actuation scheme.  

4.2.2. Variable Walls  

The other broad method of varying 𝜂 with temperature is to keep the base at a fixed 

location and instead to vary the wall height. This method has the advantage of not needing 

a thermal strap to couple the spacecraft surface with the base of the cavity.  

One way to achieve this physically would be the “propeller” method, shown in 

Figure 41. 

 
 

Figure 41: Constant Base and Variable Walls “Propeller” Radiator Schematic 

 

A single mast at the center of the propeller holds 3 “blades” at 120° intervals. Each mast 

forms the corner of an isogrid cavity, with the blades acting as the walls. The mast changes 

height with temperature and the cavity walls fold in an accordion fashion.   

One challenge with this design is that the walls must be flexible enough to fold up 

while at the same time having a low enough thermal resistance as to allow enough heat to 
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be conducted to the top of the cavity. Constructing the walls so that they reliably fold up 

even after many thousands of cycles would also be a challenge. More analysis of this 

technique is needed due partially to the fact that in this scheme the 𝑅𝑐ℎ𝑎𝑟 is constant even 

with increasing 𝜂. This is because heat must be conducted up the entire height of the wall 

material even when it is folded up.  
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Chapter 5: Summary and Future Work 

5.1. Conclusion 

While the cavity effect has been known and studied for some time, there have been 

few studies investigating the effective emissivity of nonisothermal cavities. Those that do 

investigate nonisothermal cavities tend to prescribe a temperature distribution along the 

wall before solving for the effective emissivity. This study aimed to simultaneously solve 

for both the temperature profile and for the effective emissivity. Furthermore, most studies 

investigate a single cylindrical cavity. This thesis investigated an array of isogrid. A cavity 

within a larger array interacts with its neighbors while, by its nature, a single cavity has no 

neighbors with which to interact.  

This thesis has shown that the effective emissivity of nonisothermal isogrid is 

primarily dependent on the wall height, wall thickness, wall resistance, and surface 

emissivity. Increasing the wall height also increases the effective emissivity, but only until 

the critical wall height (𝜂𝑐𝑟𝑖𝑡) is reached. Beyond the critical wall height, the effective 

emissivity begins to decrease due to the increased thermal resistance up the wall, an 

increased temperature gradient, and a smaller view factor from the cavity base to space. 

Further increasing the wall height beyond this critical value has the effect of decreasing the 

effective emissivity. At a certain point the effective emissivity drops below the surface 

emissivity of the walls and base (at 𝜂𝑒𝑞𝑢𝑖𝑣). At the limit, the effective emissivity is 

hypothesized to asymptotically approach zero as the temperature at the top of the wall 

approaches that of space.  
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5.2. Future Work 

One of the most important next steps which should be taken is validating the 

thermal model and verifying the results by testing a sample of isogrid in a thermal-vacuum 

chamber. Validating and correlating the model to test data is needed to verify the results 

presented in this thesis. 

It was shown that increasing the wall thickness directly reduces the thermal 

resistance up the wall, and correspondingly decreases the temperature gradient. However, 

there is a possible limit to this increase in the effective emissivity. As the wall thickness 

increases so too does the area at top of the cavity (at 𝑧 = 𝐻). The top of the cavity 

corresponds to the lowest temperature on the wall, and thus will radiate the least amount 

of heat and will contribute to lowering the effective emissivity. This effect should be 

examined by creating a thermal model in which the cavity walls are not assumed to be 

infinitesimally thin. A model such as this could be used to better characterize the effect of 

varying the wall thickness in the overall effective emissivity. In making this model one 

would need to relax the assumption that the temperature is isothermal through the thickness 

of the walls. More importantly, this model would also account for radiation from the top 

of the walls which is at the lowest temperature and thus radiates the least.  

This thesis only presented results for 𝜂 ≤ 20 due to the fine nodalization needed to 

accurately capture the large non-linear temperature gradients which occur at large 𝜂 values. 

It is suggested that 𝜂 be increased up to at least 1000 to determine if the hypothesis that 

lim
𝜂→∞

𝜀𝑒𝑓𝑓 = 0.  

The edge effect of the cavity array should be better studied. It was shown that the 

increase in 𝜀𝑒𝑓𝑓 of some of the edge cavities at was due to having a different geometry, a 
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larger value of 𝜂, and correspondingly having a larger 𝜀𝑒𝑓𝑓. The temperature profile across 

all of the cavity surfaces (not just surface 1 of the center cavity) should be examined.  

In industry it is common to use isogrid to provide structural strength on curved 

surfaces (such as on cylindrical rocket components). The effective emissivity of isogrid on 

a curved surface should therefore be examined. If the surface’s radius of curvature is large, 

then the effective emissivity can be assume to be that of a flat planar isogrid, which was 

presented in this thesis. The question is: what the largest radius of curvature, in terms of 

the characteristic length 𝐿, for which the flat plane assumption may be made? What is the 

effect of having a radius of curvature smaller than this value? If the surface is concave, a 

cavity will have a view to the rest of the array. This would decrease the overall view factor 

to space and therefore likely decrease the 𝜀𝑒𝑓𝑓. A convex surface would have a view factor 

similar to that of a flat cavity and would not have a view to the rest of the array. In both the 

concave and convex cases, the cavity’s base area (at 𝑧 = 0) and the cavity’s opening area 

(at 𝑧 = 𝐻) would no longer be the same due to the cavity being on a curved surface. The 

effect of these non-equal areas should be examined. 

The effect of varying the base temperature should be examined. In the extreme 

cases, if 𝑇𝑏 ≈  𝑇𝑠𝑝𝑎𝑐𝑒 the temperature gradient on the wall will likely be very small (the 

wall will be approximately isothermal). If 𝑇𝑏 ≫  𝑇𝑠𝑝𝑎𝑐𝑒 the temperature gradients would 

likely be much larger, even for the same value of 𝜂 across both cases. It was shown that 

moving away from the isothermal ideal case leads to a lower 𝜀𝑒𝑓𝑓. It is therefore likely that 

increasing 𝑇𝑏 will increase the temperature gradients and therefore decrease the 𝜀𝑒𝑓𝑓. 

Finally, the directionality of radiative emission from an isogrid cavity opening 

should be examined. Even if the surfaces composing the cavity are assumed to be diffuse, 
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emission from the cavity opening could have a strong dependence on the angle. One could 

imagine that for a large value of 𝜂 the temperature at the top of the cavity wall would be 

much lower than the temperature lower on the wall and would thus not radiate as strongly. 

This could lead to much stronger emission when close to the cavity opening normal, which 

could quickly decrease with decreasing angle.    
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