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Abstract 

Interactive Educational Systems (IES) enabled researchers to 
trace student knowledge in different skills and provide rec-
ommendations for a better learning path. To estimate the stu-
dent knowledge and further predict their future performance, 
the interests in utilizing the student interaction data captured 
by IES to develop learner performance models is increasing 
rapidly. Moreover, with the advances in computing systems, 
the amount of data captured by these IES systems is also in-
creasing that enables deep learning models to compete with 
traditional logistic models and Markov processes. However, 
it is still not empirically evident if these deep models outper-
form traditional models on the current scale of datasets with 
millions of student interactions. In this work, we adopt 
EdNet, the largest student interaction dataset publicly availa-
ble in the education domain, to understand how accurately 
both deep and traditional models predict future student per-
formances. Our work observes that logistic regression models 
with carefully engineered features outperformed deep models 
from the extensive experimentation. We follow this analysis 
with interpretation studies based on Locally Interpretable 
Model-agnostic Explanation (LIME) to understand the im-
pact of various features on best performing model predic-
tions. 

 Introduction   

Technological advances in interactive learning environ-

ments have come to force to provide personalized and high-

quality education to students, especially accelerating learn-

ing and cutting teaching and training costs. This promise has 

successfully initiated the development process of the Inter-

active Educational Systems (IES) to teach different skills, 

such as English and mathematical problem solving. These 

systems integrate computational models based on ‘learning 

by doing’ principles to assess the students’ knowledge and 

understanding and then provide relevant material and indi-

vidual feedback. Students learning experience through these 

IES is as good as learning with a human tutor, which has 

been validated by previous research (VanLehn, 2011). 

 
 

However, one significant difference is that the cost of utiliz-

ing IES is low compared to a personal human tutor. There-

fore, these IES systems are gaining prominence in the de-

veloping countries that lack enough qualified human tutors, 

such as Southeast Asian countries, compared to the coun-

tries in North America (Hao, 2019).  

 Modeling learner performance by tracing their interac-

tions and knowledge over time is the primary characteristic 

of IES systems currently in production (Pelanek, 2017). This 

knowledge tracing and performance modeling also present 

some unique challenges in the Artificial Intelligence in Ed-

ucation (AIED) and Educational Data Mining (EDM) do-

mains. Given the history of learner interaction in IES, the 

learner performance models estimate their current 

knowledge and support the prediction of future learner per-

formances such as next problem correctness or the next so-

lution for a similar skill or problem. 

 Advances in data science methodologies and the wide-

spread availability of IES systems enabled researchers to de-

velop data-driven models to track learner performances. 

This modeling of learner performances has three significant 

implications: generate actionable insights that support better 

learning, develop adaptive instruction policy, and estimate 

the knowledge of learners to support their learning activity 

(Rose et al., 2019). Most of adaptive learning and instruction 

technologies require a learner to master one skill and move 

to another(Ritter et al., 2016; Koedinger et al., 2013).An-

other trend is to provide students with a feedback system in 

the form of their skill progress bar that supports learners 

metacognitive abilities (Bull and Kay, 2010), fosters learn-

ers confidence in the system, and facilitates discussion be-

tween learners and tutors. Ultimately, it is essential to inter-

pret models from the parameters fitted and outputs deliv-

ered. These model interpretations will allow researchers, en-

gineers, and instructors to develop actionable insights and 

further develop current IES systems to incorporating more 

 



accurate modeling methodologies that contribute to learning 

sciences (Rose et al., 2019). 

 The implications of learner performance tracking models 

are at odds with each other. To develop adaptive learning 

environments, predicting learner performance with high ac-

curacy matters most, whereas to develop actionable insights, 

it is crucial to focus more on interpretability than model ac-

curacy. To develop trustworthy learning model interfaces, 

both accuracy and interpretability of learner performance 

models play a pivotal role Prior studies that developed 

learner performance tracking models focused on developing 

models that balance the tradeoff between accuracy and in-

terpretability. Recent work by Gervet et al. (2020) discusses 

this issue in a detailed evaluation of deep learning and tradi-

tional model and recommends adopting black box models 

that provide higher accuracy in learner performance track-

ing for instructional policy and interpretable models to re-

fine learner modeling in the education domain. Their work 

also discussed that with a larger dataset, deep models per-

formed well compared to traditional models. Building off of 

the work done by Gervet et al. (2020), our work focuses on 

evaluating the performance of deep models compared to 

carefully engineered traditional models on a large dataset 

ever released in the education domain. As part of this work, 

we also focus on adopting Locally Interpretable Model Ex-

planations (LIME) to understand the importance of different 

features on model predictions (Ribeiro, Singh, and Guestrin, 

2016). 

Figure 1: General representation of Knowledge tracing 

models 

 The development of deep models as an alternative to tra-

ditional statistical models like Bayesian Knowledge Tracing 

(BKT; Corbett and Anderson 1994) and Performance Factor 

Analysis (PFA; Pavlik et al. 2009) came into prominence. 

The general representation of knowledge tracing (KT) with 

question-solving logs is shown in below figure 1. The S rep-

resents the student node, the K values represent the corre-

sponding Knowledge Components (KC) for each question, 

the Q represents the question accessed by a learner, the P(L) 

represents the initial learner knowledge, P(T) represents the 

knowledge gained by the learner that is transmitted to next 

question, P(G) and P(S) is the guess and slip probabilities 

for answering each question encountered by a learner in IES. 

In this work, we don’t use BKT modeling as earlier studies 

(Gervet et al, 2020) showed that BKT models consistently 

performed worse than other learner performance models.  

 An earlier study that developed a deep model named Deep 

Knowledge Tracing (DKT; Piech et al. 2015) showed a gain 

of 25% in tracking learner performance compared to the tra-

ditional statistical model BKT on multiple real-world da-

tasets. Later, a study performed by Xiong et al. (2016) 

showed that the initial performance increase showed by 

DKT over BKT is not substantial. An empirical study by 

Khajah et al. (2016) finds that BKT performs on par with 

DKT on four datasets with proper enhancements. In their 

paper, Gervet et al. (2020) evaluate multiple learner perfor-

mance models by comparing deep models with traditional 

models on multiple datasets with varying sizes. Their work 

shows evidence that logistic regression (LR) models with 

carefully engineered features perform better on small and 

moderate-sized datasets, whereas deep models perform bet-

ter on larger datasets or datasets that emphasize temporal in-

formation.  

 After carefully reviewing their results, we find that the 

deep model performance improvement is not much signifi-

cant. These findings demonstrate the contributions of our 

work in two folds. 

• Whether or not the datasets utilized in earlier studies 

are large enough to capitalize on the predictive power 

of deep learning models? This question is investigated 

by evaluating deep models on the largest dataset 

(EdNet; Choi et al, 2020) available in the education 

domain.  

• To what extent the deep models perform better than 

traditional and interpretable models. This question is 

investigated by deploying traditional models, espe-

cially LR models, on carefully engineered features ex-

tracted based on different theories researched in the 

education domain.  

 In addition to these two questions, this work also studies 

the importance of different features extracted from EdNet 

data (Choi et al, 2020) on the best model that predicts future 

student performance. Our work adopts a correlation-based 

LIME method to explain different feature importance. Cor-

relation-based LIME provides a correlation value between a 

feature and outcome variable for every sample in the dataset. 

Based on this correlation value, we categorize the variables 

into supporting or contradicting features. 

 The next sections in this paper review the earlier literature 

published in this area, discuss the developed approaches and 

methodologies to investigate the research questions, detail 

the dataset and evaluation metrics used, discuss the out-

comes of this work in detail. 



 Related Work 

Learner modeling is at the forefront of developing highly 

effective IES. These models require continuous collection 

and updating of data related to learners in a well-defined 

mechanism. Developing a learner model consists of three 

important steps: gathering data of learner characteristics/in-

teraction, constructing models based on the interaction, and 

updating the models by tracing learner activities on the IES. 

With the increased deployment of IES in educational set-

tings, collecting a huge amount of data for modeling is ac-

cessible to researchers. The primary challenge is related to 

the development of accurate and interpretable models based 

on learner’s activity and knowledge. A study by Chrysafiadi 

and Virvou (2013) focused on reviewing different modeling 

types based on different settings. This study showed that 

most of the researchers focused on combining multiple mod-

els to represent a wide variety of student learning character-

istics. However, this review study focuses on learner mod-

eling in general and not focused explicitly on IES. To un-

derstand various characteristics of developing learner mod-

els for IES, a study by Pelanek (2017) discusses the factors 

that influence choosing models for different learning con-

texts. This study also shows different issues in data collec-

tion, evaluation, and validation metrics. 

 As IES systems focus on accurate prediction of learner 

performance to improve adaptive learning, prior research fo-

cused on comparing different learner performance models 

to study their accuracy in predicting future learner perfor-

mance. One extensive study done by Gervet et al. (2020) fo-

cused on comparing traditional and deep learning models' 

accuracy on different datasets related to ITS publicly avail-

able in the education domain. Their study shows evidence 

that deep learning models based on recurrent neural net-

works perform well on data set with a huge number of stu-

dent interactions and has temporal dependencies. In con-

trast, traditional logistic regression models with features ex-

tracted based on Item Response Theory (IRT; van der Lin-

den and Hambleton, 2013) and Performance Factor Analysis 

(PFA; Pavlik, Cen, and Koedinger, 2009) performed better 

on the datasets with a moderate number of samples and 

learners with multiple ITS interactions. Additionally, they 

also investigated the performance of the time window fea-

tures studies in DAS3H (Choffin et al., 2019) on logistic re-

gression models. This analysis showed that time window 

features did not add much predictive power to the logistic 

regression model compared to the deep models that capital-

ize on the dataset’s temporal structures. However, one sig-

nificant challenge is related to the impact of deep learning 

on big datasets. Compared to other domains like image 

recognition and sensor data, where deep learning performs 

very well, these models’ impact in the education domain is 

not yet satisfactory. Therefore, an urgent need is to examine 

the intertwined relationship between modeling techniques 

and dataset characteristics.  

EdNet Dataset 

EdNet is a large-scale dataset consisting of learner interac-

tion with a multi-platform AI tutoring system named Santa 

(Choi et al, 2020). Santa facilitates tutoring English reading 

and listening to students interested in the Test of English for 

International Communication (TOEIC). It has 780,000 stu-

dents from South Korea and available on iOS, Android, and 

Web. The systems adapt to learner inputs by providing them 

with relevant video lectures, expert commentaries, and as-

sessing their solutions.  

 EdNet is the largest real-world IES student interaction da-

taset ever made available to the public in the education do-

main (Choi et al, 2020). It consists of more than 131 Million 

interactions collected from 784,309 students in the span of 

two years from 2017. This dataset enables researchers to 

solve some critical challenges in education with a specific 

focus on accurately predicting learner performance with 

IES. This dataset consists of 13,169 questions that were 

tagged to 293 skills and 1021 lectures. Each of them was 

consumed more than 95 Million times and 601,805 times, 

respectively. EdNet was organized by following a hierar-

chical structure. Each level of EdNet data has different data 

points and was named KT1, KT2, KT3, and KT4. As the 

hierarchy and postfix increases, the number of actions and 

the type of actions performed by learners in the dataset in-

creases. As this work focused on comparing the predictive 

power of traditional and deep models in learner performance 

tracking, we adopt the KT1 dataset, the simplest form of all 

four datasets released by EdNet. KT1 is the only dataset con-

sisting of interactions from 784,309 students, whereas KT2, 

KT3, and KT4 consist of interactions from fewer students, 

around 297,000. 

 KT1 is the simplest form of all the datasets provided in 

EdNet. It consists of student question logs that is the basic 

form of input features provided to different deep models like 

DKT and Self Attentive Knowledge Tracing (SAKT; Pan-

dey and Karypis 2019). This dataset consists of five fea-

tures: 

• The timestamp is the time in milliseconds when the 

learner encounters a question. 

• Question_id provides a unique ID for each question and 

represents by q{integer}. 

• Bundle_id provides the unique bundle ID related to each 

question answered by the learner. 

• User_answer is the feature that captures the multiple-

choice answer between alphabets a to d chosen by the user 

for a particular question. 

• Elapsed time is the amount of time in milliseconds spent 

by the learner on a particular question. 



 Some important statistics related to EdNet KT1 data are 

provided in the below table 1. These statistics were extracted 

after assigning KCs to questions and duplicating question 

samples if multiple KCs were assigned to each question. In 

this work, we use KC and skill tag alternatively as they both 

mean the same. 

Table 1: The description of EdNet KT1 dataset 

Description EdNet KT1 

Number of Students 784,309 

Number of Interactions after 

expanding KCs 

224,461,772 

Number of KCs 188 

Number of unique questions 12,284 

Number of correct answers 152,561,335 

Number of wrong answers 71,900,437 

Collection Period 2 Yr 7 Months 

Methodology 

The methodology section in this work is divided into three 

subsections. In the first subsection, we discuss the prepro-

cessing steps taken and the characteristics of the EdNet KT1 

dataset. In the second subsection, we discuss the features ex-

tracted from the EdNet KT1 dataset used in traditional mod-

els, and in the third subsection, we discuss the models used 

and detail the methodology used for explaining model pre-

dictions. 

Data Preprocessing 

The original EdNet dataset consists of five features repre-

senting learner question-solving logs captured by the Santa 

tutoring platform. These five features in the original form 

need some preprocessing to fit into deep models. To do that, 

we first map the user noted answer with the correct answer 

of the original question and generate a flag that specified 

whether the user-provided answer is correct or wrong. This 

answer flag will act as the ground truth label to fit a learner 

performance model. To be consistent with prior work that 

focused on evaluating learner performance models on dif-

ferent datasets, our work adopts the same data preprocessing 

steps detailed by Gervet et al (2020). We first assign the KC 

tags to each question answered by the learner. In the next 

step, learners with fewer than ten interactions and learner 

interactions with unspecified or NaN KC tags were removed 

from the dataset. As each question can be tagged to multiple 

KCs, our work converts the unique combination of KCs into 

a new KC tag that will be used for DKT and SAKT algo-

rithm. The statistics of the dataset after preprocessing were 

listed in Table 2. 

Table 2: The description of EdNet KT1 dataset after pre-

processing 

Description EdNet KT1 

Number of Students 607,610 

Number of Interactions 93,193,461 

Mean KCs per item/question 2.26 

Median items per KC 48.5 

Median learners per item 4201 

Median learners per KC 118892 

Median interactions per 

learner 

21 

 

It includes the total number of students present in the dataset 

after preprocessing, number of interactions, mean KC com-

ponents per item/question, median items per KC, Median 

learner per item and median learners per KC We found there 

are a total of 1302 unique KC combinations in addition to 

188 original KCs. Our work used original 188 KC tags for 

this analysis. Also, from table 2, it is evident that the total 

number of questions answered correctly was more than the 

questions answered incorrectly by all students. 

 Figure 2: Power-law distribution exhibited by EdNet data for 
number of interactions per learner. 

 An earlier study that reviewed multiple student interac-

tion datasets found that the dataset size directly influences 

learner prediction models' performance (Gervet et al, 2020). 

This phenomenon is based on the capability of different 

models to generalize on different sizes of datasets. Addition-

ally, this work also shows that the number of parameters fit-

ted linearly scales with the number of KCs and interactions. 

Based on these insights, the dataset size is also determined 

by the number of learners who attempt each KC and item. 

These statistics were available in Table 2 for all students in 

EdNet. Another important characteristic is the number of in-

teractions per learner that influences the learner model per-

formance. An earlier study showed that most datasets 



exhibit power-law distribution for the number of interac-

tions recorded for each learner. To study the distribution of 

interactions per learner, we plotted the number of interac-

tions vs. the number of learners, as shown in figure 2. Based 

on this plot, it is evident that the interaction per learner in 

EdNet data also follows the power-law distribution. 

Feature Extraction for Learner Performance 

Modeling 

Learner performance prediction modeling can be formalized 

as a supervised sequence of learner tasks. Given the history 

of learner past interactions with the IES, learner perfor-

mance models predict future learners characteristics. The 

EdNet dataset also specifies the KC for each question and 

extracts the learner's time on each question. These 

timestamps provide insights about the learner's time conti-

nuity of the problem, and the time interval between different 

actions aids in understanding learner practice patterns and 

forgetfulness outside of the IES. When tagged with learner's 

questions, knowledge components can be used to decom-

pose the individual knowledge types targeted in the instruc-

tion. Some examples of knowledge components in English 

grammar can be nouns and verbs. The experts in the field 

will assign these knowledge components per question. It is 

also possible to assign multiple KCs for the same question 

as the question might be addressing different skills.  

 Learner performance models probability to predict learn-

ers correct answer flag depends on the learners master of a 

particular KC they are encountering. This mastery of skill 

can be extracted based on the learner's previous interactions 

and answers for items and skill types. This understanding of 

KCs will help distinguish the features that need to be ex-

tracted from raw IES interaction data for a specific algo-

rithm. Two basic approaches were followed to develop 

learner performance models in supervised learner tasks. The 

first one is to extract features from the historical learner in-

teractions with IES and the second one is to adapt algorithms 

that were designed to process variable-length data captured 

by the IES. The performance of algorithms in the first ap-

proach depends on the quality of features engineered from 

the historical learner interaction data, whereas the second 

approach depends on the ability of an algorithm to remem-

ber the past interactions for different KCs. To be consistent 

with earlier work in this domain, we extract the following 

features from EdNet dataset. 

Item Response Theory Feature Vector: Item response 

theory (van der Linden and Hambleton 2013) is one of the 

most studied psychometric models that is also gaining pop-

ularity in computer-based adaptive testing environments and 

intelligent learning community. This model works on the 

principle that all questions given in a test are determined by 

a single skill referred to as a latent trait.  In this work, we 

one hot encode the items into independent features that rep-

resent the learner's question. IRT predictions will take the 

logistic form as shown in below equation. The C value rep-

resent the answer correctness for a given question Q. The a 

value represents the ability of a learner and the β represents 

the difficulty of a given question. The models identify it 

from the one hot encoded feature extracted from item id. For 

complete details, please go through the referenced articles. 

To be consistent with earlier work (Gervet et al., 2020), we 

only one hot encode items/questions in the dataset and does 

not fit student ability into IRT based modeling. 

p (
C

Q
)=

1

1+e(a-𝛽𝑞𝑠)
 

Performance Factor Analysis (PFA): Performance factor 

analysis (Pavlik et al. 2009) is a modification of learning 

factor analysis. In PFA, the model takes student practice and 

on relevant skills into consideration. This consideration is 

due to two reasons. First, the previous correct answers for a 

particular skill define students' strength in that skill and 

strengthen the model estimates. Another reason is that cor-

rect response increases student learning compared to incor-

rect responses due to greater processing during correct re-

sponses. Please refer to Pavlik et al (2009). for more details 

on PFA.  In line with the previous study (Gervet et al, 2020), 

our work extracts two important feature sets in PFA. The 

PFA features in this study consists of skill one hot encoding, 

rescaled value of past attempts for relevant skill and past 

wins (correct answers) for a relevant skill.  

 

DAS3H:  DAS3H is a student learning and forgetting model 

introduced by Choffin et al (2019). It stands for item/ques-

tion difficulty, ability, skill, and skill practice history. Ear-

lier model named DASH outperformed hierarchical Bayes-

ian based IRT, but not scalable to multiple skill item tag-

ging. Building off this earlier work, the DAS3H model was 

developed to scale for items with multiple KCs and consider 

the impact of the historical practice on current learner per-

formance to differ multiple skills. As DAS3H is based on 

time windowing of data samples, our work also extracts all 

the mentioned features based on time windowing followed 

in DAS3H. For more details on DAS3H, please refer to the 

following article authored by Choffin et al. (2019). In this 

work, we extract the following features as a part of DAS3H: 

item one hot encoding, skills one hot encoding, count of past 

attempt per skill with time windowing and count of past 

wins per skill with time windowing. 

 

Best LR-Features (Gervet et al. (2020)):  Based on prior 

study by that examined multiple features sets, they observed 

that DAS3H without time windowing and augmenting with 

total count features performed better compared to all other 



feature sets discussed above. We also extract these features 

to test the performance of models. These features include: 

All DAS3H features without time windows, past attempts 

for item, past attempt for all items, past wins for item, past 

wins for all items attempts. 

In addition to these features we also test the Best LR-fea-

tures in Gervet et al. (2020) by including time windowing 

property. All the features sets are referred in Table 3 of re-

sults section. 

Algorithms & LIME 

In this study, we focus on three major algorithms to compare 

traditional models vs. deep models. First, we develop a 

Baseline Model. This baseline model will extract the cor-

rectness probability based on each item/question in the train-

ing set and will be applied as prediction to the test set data. 

This is similar to IRT, but without fitting any model. As part 

of the traditional models, we evaluate logistic regression, a 

popular algorithm in the education domain, to evaluate fea-

tures extracted based on IRT, PFA, DAS3H, Best-LR fea-

tures (Gervet et al. 2020) and Bes-LR features with time 

windowing. In deep models, we evaluate Deep Knowledge 

Tracing (DKT) and Self Attentive Knowledge Tracing 

(SAKT). As deep models discard handcrafted features in fa-

vor of features directly learner from data, we use the original 

dataset to feed into these models 

Figure 3: RNN representation of Deep Knowledge Tracing algo-
rithm. The hidden states are represented by the tanh function and 

the input features are one hot encodings of user items. 

DKT is a Recurrent Neural Network (RNN) based algorithm 

that gains information from the temporal structures in the 

data. Figure 3 below shows the RNN representation of the 

DKT algorithm. The input features X1 to Xt are the unique 

one-hot encoding of interactions at a given time step. These 

encoded inputs were fed into the hidden nodes labeled from 

h1 to ht. These nodes are represented as the successive 

summary of information from historical observations related 

to future predictions. The nodes will then be connected to an 

output vector y1 to yt representing the probability of predict-

ing learner answers correctly. 

Multiple other deep models were developed post DKT in-

troduction, but they showed little improvement than the 

original DKT model, with one notable exception of SAKT. 

SAKT works based on an attention mechanism that first vis-

its the past interactions of a learner to predict future perfor-

mances. In this process, SAKT first computes the similarity 

between question embeddings and past interaction encod-

ings. A convex combination of past samples was weighed 

by normalized similarity score, and finally, the convex com-

bination is transformed into linear form and transmitted 

through a sigmoid function to obtain the probability of fu-

ture predictions. 

LIME for Explanations: One crucial area we explored in 

this work is understanding the importance of input features 

on algorithm predictions. To do this, we adopted an inter-

pretation method based on Locally Interpretable Model-ag-

nostic Explanations (LIME), as shown in figure 4. In this 

method, we first select the algorithm that performs better in 

predicting test data of EdNet KT1. Once the algorithm is 

chosen, we generate new samples for each sample present in 

the test data and assign labels based on the model predic-

tions. Finally, we calculate the correlation weights between 

features and the outcome variable. Once the correlation 

weights for features are available for every sample, we di-

vide the samples based on correct and incorrect predictions. 

Doing this will help us understand the features that contrib-

uted and contradicted both correct and incorrect features 

(Mandalapu and Gong, 2019).  This method of implement-

ing LIME is different from the original LIME proposed by 

Ribeiro et al. (2016), as the original method is slow and not 

compatible with categorical features. 

 

Figure 4: Correlation base Locally Interpretable Model Explana-

tion process. 

Experimental Setup:  This study adopted the python plat-

form for data preprocessing, feature extraction, and model 

evaluation. To be consistent with earlier work, we modified 

the codes provided by Gervet et al. (2020) to suit EdNet da-

taset. The logistic regression model with L-BFGS solver 

was adopted from the Scikit-learn package (Pedregosa et al., 

2011). The default hyperparameters were kept in evaluating 

models as earlier works observed no improvement with hy-

perparameter optimization on ITS datasets. The deep learn-

ing models DKT and SAKT were implemented in PyTorch 



(Paszke et al., 2017). For DKT hyperparameters, we adopted 

Adam optimizer, a learning rate of 0.001, dropout in the 

range of 0 to 0.5 in 0.25 increment, the batch size is adjusted 

based on the GPU size, and a hidden state dimension of 200. 

The SAKT sequence length is decided based on the median 

number of interactions per learner. For SAKT, we also se-

lected a single attention layer with a drop probability of 0.25 

and an embedding dimension of 200. The LIME model ex-

planations are implemented in the RapidMiner (Mierswa et 

al. 2006) data science tool. 

 One challenge we encountered with the dataset is related 

to the size and time complexity. For logistic regression 

model features extracted using IRT, PFA & DAS3H, the da-

taset size is very high, and the extraction time is not feasible 

for implementation with existing resources. Earlier research 

on multiple ITS datasets showed that DKT over fitted for 

small datasets and logistic regression model overfitted for 

very large datasets. As a workaround, we randomly selected 

50000 students from the EdNet dataset and extracted fea-

tures for all model evaluations. The skills, items, and cor-

rectness flag of these 50000 students are in proportion with 

the overall dataset. We performed a split validation where 

the dataset is divided into 80:20 percent split based on 

learner population. So, all the learner samples are present 

either in training or in the testing dataset but not both. Our 

study compares all the models based on the Area Under 

Curve (AUC) metric that is popular in education research. 

Results 

In this section, we detail the results of different models and 

LIME based feature importance’s. Table 3 below shows the 

AUC values on test data for both logistic regression (LR) 

models and the deep learning models on 50000 students da-

taset. Table 4 compares deep models on all EdNet KT1 data 

related to 607,610 students. For feature set details, please 

refer to Feature Extraction for Learner Performance Mod-

eling subsection in Methodology section of this paper. 

 From both tables 3 and 4, it is evident that a logistic re-

gression model evaluated on all Best LR-Features (Gervet 

et al.) with Time windowing performed better compared to 

any other model evaluated in this study. This finding is con-

sistent with an earlier study (Gervet et al, 2020) that com-

pared traditional and deep models on different ITS datasets. 

One interesting observation is that DKT's performance re-

duced when trained on more samples compared to logistic 

regression. This outcome is in contradiction with another 

study (Gervet et al, 2020) that showed DKT performs 

slightly better in large datasets. SAKT model showed simi-

lar performance when trained on both 50000 and 607,610 

students dataset. In an earlier study (Gervet et al, 2020), the 

authors observed that SAKT underperformed compared to 

DKT on the ASSISTment 2015 dataset. This is the largest 

dataset analyzed in that study. Authors in that study hypoth-

esized that ASSISTment 2015 is small for SAKT (Gervet et 

al, 2020). This hypothesis seems true as we observe that 

SAKT outperformed DKT on the largest dataset (EdNet) 

ever released in the education domain. 

Table 3: EdNet dataset (50000 students) performance for all mod-
els evaluated in this study 

Feature Set Model AUC 

Correctness Prob-

ability per Item 

Baseline Model 0.73 

IRT LR 0.73 

PFA LR 0.66 

DAS3H LR 0.76 

Best LR-Features 

(Gervet et al. 

2020) 

LR 0.68 

Best LR-Features 

with Time win-

dowing 

LR 0.77 

Original features DKT 0.76 

Original features SAKT 0.76 

Table 4: EdNet dataset (607,610 students) performance for all 
models evaluated in this study 

Feature Set Model AUC 

Original Features DKT 0.72 

Original Features SAKT 0.76 

Table 5: LIME based feature importance’s for logistic regression 

model trained on Best-LR features with time windows. 

Features Correct Predictions Incorrect Predictions 

Support Contra-

dict 

Support Contra-

dict 

KCs (One 

hot en-

coded) 

0.026 -0.028 0.014 -0.014 

Attempt 

(Counts) 

0.023 -0.028 0.012 -0.014 

Wins 

(Counts) 

0.021 -0.026 0.011 -0.013 

Item (One 

hot en-

coded) 

0.028 -0.028 0.014 -0.014 

 

 In our work, we also explored the importance of features 

based on LIME (Mandalapu and Gong, 2019). As the best 

algorithm is a logistic regression model trained on Best-LR 

features with time windowing, we evaluated it with LIME 

on 1000 students randomly selected from the test dataset to 



reduce time and space complexity. As LIME generates new 

samples (300 in this study) for every learner interaction in 

the dataset, even with 1000 students, it requires a huge 

amount of memory and time. Once LIME is applied, we ex-

tract feature importance metrics for correct and incorrect 

predictions, as shown in table 5. The best features are de-

cided based on the tradeoff between the importance of sup-

porting attribute in correct predictions and importance of 

contradicting attribute in incorrect predictions.  

Table 6: Importance of difficult and easy skills in model predic-

tions. 

Top 3 

Diffi-

cult 

Skills 

Cor-

rect-

ness 

Ratio 

LIME 

Im-

portance 

Top 3 

Easy 

Skills 

Cor-

rect-

ness 

Ratio 

LIME 

Im-

portance 

142 0.38 -0.038 3 0.81 0.032 

145 0.43 0.004 9 0.85 0.05 

169 0.43 0.009 16 0.86 0.0014 

 

Based on the LIME explanations, we observe that the fea-
ture set related to item one hot encoding supported the 

model in predicting the correct label. This observation is 

also supported by the model evaluation metric reported in 

table 3. A logistic regression model trained on IRT features 

has an AUC of 0.73. The feature set corresponding to wins 

(correct answers) in student question logs has less impact on 

model predictions. This phenomenon can be observed in the 

performance of PFA (AUC = 0.66) as in the absence of item 

related features, the attempt and win related features per-

form below any other model trained in this study.  

LIME helps understand the relationship between "tough-

ness of skill" and its importance in the model predictions. 
As the dataset is anonymized, we hypothesize that the 

"toughness of skill" can be determined based on the correct-

ness ratio. The correctness ratio is the ratio of correct an-

swers per skill by the total number of interactions per skill. 

Table 6 shows the top 3 skills that are easy to master by the 

learner and the top 3 skills that are difficult to master based 

on the correctness ratio and their respective local im-

portance. The positive value of importance indicates partic-

ular skill support correct predictions, and the negative value 

indicates a particular skill contradicts correct predictions. 

From Table 6, we can observe that the hardest skill is con-
tradicting correct predictions. This might be due to incon-

sistency in learner answers as it is hard to master a skill with 

high difficulty based on the EdNet dataset. One caveat: the 

importance shown in Table 6 are independent local feature 

importance’s. Model prediction performance is also depend-

ent on complex interactions between features at a global 

level. 

Discussion 

This work evaluates different learner performance models 

on the largest student interactions dataset (EdNet) released 

in the education domain.  The results show that logistic re-

gression models with carefully handcrafted features based 

on different education theories and expert tags perform bet-

ter than deep learning models that are complex and hard to 

interpret. One caveat: the logistic regression model is eval-

uated on 50000 students randomly selected from the total 

dataset available in EdNet KT1. This selection of a limited 

number of students for the logistic regression model is due 

to the space complexity as handcrafted features for 607K 
students take a tremendous amount of space and the amount 

of extraction time needed is not feasible in real-world appli-

cations. Earlier studies found that deep learning models like 

DKT and SAKT scaled well for datasets with larger student 

interactions and temporal structures, but they also hypothe-

size that the largest dataset (ASSISTment 2015) utilized in 

those studies is still not sufficient for deep models’ conver-

gence. Our work also evaluates this hypothesis by evaluat-

ing deep models on 93 Million interactions generated by 

607K students in the Santa tutoring platform. The results 

conclude that the deep model's test performance is similar to 
the logistic model on 50000 students, and with all student's 

data, DKT has a reduction in performance. This might be 

due to the difference in interactions per learner between a 

dataset with 50000 students and 607K students. Earlier 

study (Gervet et al. 2020) also noted that datasets with high 

number of interactions per learner have a reduction in DKT 

performance over logistic regression model. This is also due 

to inability of DKT to keep track of long-term information 

as reported by Hochreiter et al., (2001).  

In addition to evaluating multiple learner performance 

models, this work also focuses on interpreting feature sets 

that played an important role in the best performing model 
predictions. We explore the features based on a correlation 

LIME method that details feature correlation with predic-

tions at a local level. This understanding of features at a lo-

cal level will help researchers design systems that make 

highly accurate predictions of future learner performance.  

Future work will be to explore learner heterogeneity, for 

example, by modeling explicability of the ability in IRT. 

Further analysis of IRT should also focus on the amount of 

data needed for competitive modeling and representative-

ness. Another research topic could be studying the adaptive 

algorithm's effect on knowledge tracing and modeling stu-
dent learning curve related to a skill. Based on the im-

portance of IRT features in model predictions, it is important 

to study its scalability. One interesting question would be to 

identify the amount of item response data needed to reach 

satisfactory performance. This finding will help update 

trained models when a new question is added to the existing 

question bank. 
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