

APPROVAL SHEET

Title of Dissertation: Analysis of Irregular Event Sequences in Healthcare using Deep
 Learning, Reinforcement Learning, and Visualization

Name of Candidate: Filip Dabek
 Doctor of Philosophy, 2020

Dissertation and Abstract Approved: _______________________
 Dr. Tim Oates
 Professor
 Department of Computer Science and Electrical

Engineering

Date Approved: ___________________

NOTE: *The Approval Sheet with the original signature must accompany the thesis or
dissertation. No terminal punctuation is to be used.

November 23, 2020

ABSTRACT

Title of dissertation: Analysis of Irregular Event Sequences
in Healthcare using Deep Learning,
Reinforcement Learning, and Visualization

Filip Dabek, Doctor of Philosophy, 2020

Dissertation directed by: Professor Tim Oates
CSEE Department

Each year over 880 million doctor visits occur in the United States. Current

estimates place the yearly healthcare data records at 2,314 exabytes with projections

of reaching zettabytes and yottabytes. For a country with 329 million people that

spend $4 trillion on healthcare each year, understanding and uncovering the hid-

den patterns and trends within this big data is paramount in improving healthcare

outcomes through preventative care and early diagnosis, creating a more efficient

healthcare system with optimizations, and making clinicians’ and patients’ lives

easier. With the ever increasing availability of big data, these problems are more

important now than ever before.

While many event analysis and time series tools have been developed for the

purpose of analyzing such datasets, most approaches tend to target clean and evenly

spaced data (i.e., with a fixed time interval between observations). When faced with

noisy or irregular data, it is typical to use a preprocessing step of transforming the

data into being regular. This transformation technique arguably interferes on a

fundamental level as to how the data is represented, and may irrevocably bias the

way in which results are obtained. Therefore, operating on raw data, in its noisy

natural form, is necessary to ensure that the insights gathered through analysis are

accurate and valid.

In this dissertation novel approaches are presented for analyzing irregular event

sequences using a variety of techniques ranging from deep learning, reinforcement

learning, and visualization. We show how common tasks in event analysis can be

performed directly on an irregular event dataset without requiring a transformation

that alters the natural representation of the process that the data was captured from.

We focus our efforts on healthcare specifically, but also evaluate our approaches

against other domains to test for generalizability. The three tasks that we showcase

include: (i) predicting the probability of a future event occurring, (ii) summarizing

large event datasets, and (iii) modeling the processes that create events.

Analysis of Irregular Event Sequences in Healthcare using Deep
Learning, Reinforcement Learning, and Visualization

by

Filip J. Dabek

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2020

Advisory Committee:
Professor Tim Oates, Chair/Advisor
Professor Nilanjan Banerjee
Professor David Chapman
Professor Tim Finin
Dr. Jesus J. Caban

c© Copyright by
Filip J. Dabek

2020

For my parents who

taught me the value of hard work

and allowed me to dream big.

Dziękuję bardzo!

ii

Acknowledgments

This dissertation would not exist but for the support and guidance of many

close friends and family. I would like to take a moment to acknowledge their role in

assisting this endeavor.

Firstly, I would like to thank my advisor, Dr. Tim Oates, for taking me on

as a pupil for my graduate career, being a helpful resource, and cultivating my

growth as a student and a scientist. He helped walk me through difficult machine

learning challenges and focused on ensuring that I learned the correct process and

workflow. I reflect fondly upon the countless times that Dr. Oates and I discussed

research as well as topics beyond my PhD: entrepreneurship, running, soccer, and

events taking place around the world. He has always provided positive guidance

and has helped me achieve my goal of completing this PhD thesis. Whatever future

accomplishments I may yet achieve, I thank him for his role in building my career.

I would also like to thank my mentor, Dr. Jesus J. Caban, for his guidance

and unwavering support for over 9.5 years. I met Dr. Caban in my freshman year

during my undergraduate studies as a shy, nerdy, and unsure of himself student

and he helped me grow into an outgoing, confident, and eager to tackle the world

man. He has provided me countless opportunities and always guided me along the

right path, seemingly acting like a father figure to me. In addition, he has taught

me many invaluable lessons ranging from public speaking, PowerPoint story telling,

managing teams of individuals, research & development, and always working hard

each and every single day to produce results and make an impact. I owe a large

iii

part of this thesis and the tremendous growth that I have made to him.

I would also like to thank my committee members for their support throughout

my PhD and always pushing me with tough questions to ensure that I continue to

do great work.

I would like to thank Dr. Daniel Mollura for providing me with freelance work

opportunities to apply my talents and mentoring me on career and entrepreneurship

opportunities. He has always placed my school work as a priority from the moment

that I met him, all the while pushing me to become a better data scientist, product

builder, and business man. He has helped lay the groundwork for a successful career

ahead.

I give my thanks to the Computer Science and Electrical Engineering (CSEE)

department at UMBC for providing me with a solid educational foundation for

years to come. I have now been at UMBC and this department for 10 years (2010-

2020) and I greatly appreciate the flexibility afforded to me as I did not take a

traditional approach to my education: I worked on freelance projects throughout

my undergraduate career and then a full-time research job throughout my graduate

career, as well as taking advantage of the BS/MS program. The collective staff of

UMBC and the CSEE Department have always been there to provide guidance and

served as inspiration to me as pioneers in their fields.

I would like to thank my “work family”, the NICoE Informatics team, for all of

their support throughout this PhD thesis. They saw my ups and downs throughout

this thesis and were always there to provide support, whether that was statistical

advice, listening to me map out my problem, a simple laugh, or discussing sports

iv

with me. The team that I was a part of afforded me an outlet to express my

research interests and build products, while always pushing me to grow. I would

like to especially thank Dr. Jesus Caban, Peter Hoover, Niki Noprapa, and Elizabeth

Jimenez for their unwavering support and guidance.

I would like to thank my parents, Stanley and Ivona Dabek, for the selfless

support they have provided me throughout the years. They have made extraordinary

sacrifices to ensure that I had access to every opportunity possible to succeed in my

endeavors. My parents have been shining examples of hard work and perseverance

that has guided me my entire life. I would especially like to thank my Dad for

being my mentor in business strategies and the pursuit of my education; and I

would especially like to thank my Mom for always providing an ear to listen and

for prioritizing my education over everything else. During the final completion of

this PhD thesis I purchased a house and my parents took on the tremendous work

of renovating it, all the while ensuring that I was not disturbed from my research.

They have taught me many valuable life lessons and continue to guide me towards

the right path. Thank you, Mom and Dad.

I would like to thank my sister, Gosia, and brother-in-law, Bryan Curtin, for

setting an example of what it takes to succeed. Their dedication to excellence in

the medical field has shown me the value of sheer determination. They work long

and hard hours to be the best in their field, through nights, weekends, and holidays

and are truly an inspiration to push myself harder. In addition to a strong work

ethic, they have also taught me the importance of relaxation by hosting board game

nights for the three of us. I would like to also thank my niece, Claire, and nephew,

v

Max, for reminding me of the beautiful parts of life through play, laughter, and love.

I would also like to thank my family overseas in Poland for their words of

encouragement. I would like to thank my grandmother and grandfather (Babcia

and Dziadzio) that repeatedly inquired, through our countless Skype calls, about

the progress of my PhD and provided me words of support and guidance. I would

also like to thank the rest of my family in Poland, both living and deceased, for

always reminding me of my extraordinary talents and teaching me that I can do

anything that I set my mind to.

I would also like to thank my friends for supporting me throughout my PhD

by listening to me discuss my research, attempting to brainstorm new ideas with

me, and for being a caring support system and outlet that I could always rely on.

Of note I would like to thank Justin Pallett and Travis Barry for always being there

for me. Additionally, I would like to thank my soccer friends for providing me with

an escape from my research and for welcoming me with open arms into the various

teams that I found myself on.

Finally, I would like to thank those that I met along the way: each and every

person helped to shape me into who I am today, and I am forever grateful for that.

vi

Table of Contents

List of Tables xi

List of Figures xiii

List of Abbreviations xvii

1 Introduction 1
1.1 Overview . 1
1.2 Contributions . 3
1.3 Outline . 5

2 Temporal Events 6
2.1 Definition . 6

2.1.1 Regular and Irregular . 7
2.2 Machine Learning . 9
2.3 Visualization . 13

3 Suicide Prediction 17
3.1 Introduction . 17
3.2 Dataset . 20

3.2.1 Overview . 20
3.2.2 Cohort Construction . 23
3.2.3 Statistics . 26

3.3 Models . 28
3.3.1 Regular Models . 29

3.3.1.1 REACH-VET . 29
3.3.1.2 RETAIN . 32
3.3.1.3 Deepr . 34
3.3.1.4 Baselines . 35

3.3.2 NLP-based Models . 37
3.3.2.1 NLP Representation 37
3.3.2.2 Word2Vec . 38
3.3.2.3 Sent2Vec . 40

vii

3.3.2.4 Doc2Vec . 40
3.3.2.5 BERT . 41
3.3.2.6 NLP Baseline . 45

3.3.3 Results . 46
3.3.3.1 Metrics . 46
3.3.3.2 Optimization . 49
3.3.3.3 Evaluation . 54
3.3.3.4 BERT Evaluation . 60

3.4 BERT . 71
3.4.1 Model Base . 71
3.4.2 Truncating Sequences . 75
3.4.3 Demographics . 79
3.4.4 Number of Epochs . 81
3.4.5 Time Tokens . 82
3.4.6 Procedures . 89
3.4.7 Optimal Configuration . 91

3.5 BERT Classifier Introspection . 93
3.5.1 Related Work . 93
3.5.2 Feature Attribution Methods 95

3.5.2.1 LIME . 96
3.5.2.2 Integrated Gradients 97

3.5.3 Visualization . 97
3.5.3.1 Confusion Matrix . 98
3.5.3.2 Overall Feature Importances 99
3.5.3.3 Patient Matrix . 99
3.5.3.4 Individual Patient View 101

3.5.4 Doc2Vec Visualizations . 104
3.6 What Didn’t Work? . 109

3.6.1 BERT Ensemble . 109
3.6.2 Attempts without Ideation . 111
3.6.3 Downsampling & Weighted Loss 112

3.7 Limitations . 113
3.8 Conclusion . 114

4 Visual Summarization of Temporal Sequences 117
4.1 Introduction . 117
4.2 Temporal Events . 119
4.3 Related Work . 121
4.4 Mining Temporal Sequences . 125

4.4.1 Frequent Sequence Mining . 125
4.4.2 AWP-Span . 128

4.4.2.1 Window Merge . 130
4.4.2.2 Initial Evaluation . 135
4.4.2.3 Trajectory Analysis 136
4.4.2.4 Adaptive Windows 138

viii

4.5 Visualization . 147
4.5.1 Mapping Common Sequences 147
4.5.2 Sankey Diagram . 149
4.5.3 Event Summary Diagram . 151
4.5.4 Levels of Detail . 154

4.6 Case Studies . 156
4.6.1 Soccer Matches . 156
4.6.2 Web Traffic Logs . 159
4.6.3 EHR Data . 161

4.7 Limitations . 164
4.8 Conclusion . 165

5 Reinforcement Learning on User Interactions 167
5.1 Introduction . 167
5.2 Related Work . 169

5.2.1 User Interactions . 169
5.2.2 Reinforcement Learning . 171

5.2.2.1 Definitions . 172
5.3 Research Applications . 173
5.4 Approach . 176

5.4.1 Learning by Playing . 176
5.4.1.1 Exploration . 177

5.4.2 Reward Structure . 179
5.5 Visualization System . 181

5.5.1 Dataset . 182
5.5.2 Questions . 183

5.6 Building Models . 185
5.6.1 Learning Across Tasks . 188
5.6.2 Extracting Optimal Path . 188

5.7 Providing Guidance . 191
5.7.1 What to suggest? . 192
5.7.2 When to suggest? . 192
5.7.3 Preference Model . 193

5.8 User Study . 196
5.8.1 User Groups . 196
5.8.2 Overall Statistics . 197

5.9 Evaluation . 198
5.9.1 Model Inspection . 198
5.9.2 Guidance Impact . 200
5.9.3 Suggestion Accuracy . 202

5.10 Optimize Interface . 204
5.10.1 Methods of Optimization . 204
5.10.2 Model Inspection for Optimization 206
5.10.3 Path Analysis . 206
5.10.4 User Comparison . 210

ix

5.10.4.1 Correct vs Incorrect 210
5.10.4.2 How do correct users differ? 212

5.11 Discussion . 215
5.12 Limitations . 215

6 Conclusion 217

Bibliography 218

x

List of Tables

3.1 Encounters grouped into different categories. 20
3.2 Performance of various models on the suicide prediction task (* de-

notes baseline) on the train datasets. 54
3.3 Performance of various models on the suicide prediction task (* de-

notes baseline) on the test datasets. 55
3.4 Probability bins and counts for the histogram shown in Figure 3.8. . . 62
3.5 Breakdown of accuracy for patients with suicide before/after their

mTBI on the test set. 66
3.6 Model configuration used for comparing different BERT model bases. 72
3.7 Results obtained by training BERT on different model bases (train

datasets evaluation). 74
3.8 Results obtained by training BERT on different model bases (test

datasets evaluation). 74
3.9 Model configuration used for comparing sequence truncation methods. 78
3.10 Results of different sequence truncation methods for BERT. 79
3.11 Model configuration used for comparing the effect of including demo-

graphics. 80
3.12 Results comparing input with and without demographics in the BERT

model. 81
3.13 Model configuration used in comparing number of epochs for training. 82
3.14 Results for training BERT models over different number of epochs: 1

through 8. 83
3.15 Model configuration used in comparing different time token embeddings. 87
3.16 Results on different time token embeddings within patient sequences

in BERT (evaluated on the train datasets). 88
3.17 Results on different time token embeddings within patient sequences

in BERT (evaluated on the test datasets). 89
3.18 Model configuration used in comparing procedures vs diagnoses for

input. 90
3.19 Results on comparing diagnoses vs procedures as input for BERT. . . 91
3.20 Optimal BERT configuration based on evaluating each parameter in-

dividually. 92
3.21 Result of the BERT model with the optimal configuration. 92

xi

4.1 Example Dataset . 127

5.1 Pre vs Post Number of Questions Correctly Answered 201

xii

List of Figures

2.1 Illustration showing a set of temporal sequences with the trajectory
between event #1 (triangle) and event #4 (hexagon). As the size
and complexity of the data increases, there is a need to generate
a visual summarization of the sequences to better understand the
relationships between events. 7

3.1 Distribution of the encounter types. 21
3.2 Patient timeline for constructing the cohorts. Patients that had a

suicide code in the prediction period were placed into the Suicide
cohort, while all others were placed into the Control cohort. 25

3.3 Example representation of a patient within Deepr. 35
3.4 Model architecture of a transformer. Taken from original paper [1]. . 43
3.5 Example PR Curve. 47
3.6 Confusion matrix for the test set. 61
3.7 Precision-Recall Curve for the test set. 63
3.8 Histogram of the predicted probabilities for the test set. 64
3.9 Precision-Recall Curve for the high risk patients of the test set. . . . 65
3.10 Confusion matrix for high risk patients of the test set. 66
3.11 Precision-Recall Curve for the medium risk patients of the test set. . 67
3.12 Confusion matrix for medium risk patients of the test set. 68
3.13 Precision-Recall Curve for the low risk patients of the test set. 69
3.14 Confusion matrix for low risk patients of the test set. 70
3.15 An example of truncating a sequence of 6 to fit a fictional model

with a maximum sequence length of 4 using an oldest and newest
truncation method. 76

3.16 The AUC-PR performance over the number of epochs that the model
was trained for. Error bars are the standard deviation across the
three patient split at each epoch. 84

3.17 An overview of the interface for exploring BERT predictions. 98
3.18 An extracted patient matrix from the visualization. 100
3.19 An extracted patient matrix from the visualization with the heatmap

setting turned on. 101
3.20 Viewing a single patient’s document overlaid with feature importances.102

xiii

3.21 Example of hovering over a word in the patient document to identify
its feature importance value. 103

3.22 Example of hovering over the heatmap sidebar to view a distant lo-
cation in the patient document. 104

3.23 Word clouds for two random patients in the suicide cohort. 105
3.24 Word clouds for two random patients in the control cohort. 105
3.25 A 2D visualization for the first two components of PCA that was run

on the doc2vec vectors. 107
3.26 A 3D visualization for the first three components of PCA that was

run on the doc2vec vectors. (a) Both suicide and control patients,
(b) only control patients, and (c) only suicide patients. 108

4.1 Illustration showing an example of a temporal event dataset. 119
4.2 An example summarization of Figure 4.1, showing the usefulness of

summarizing a dataset of sequences. 120
4.3 A screenshot of a popular even mining tool used to visualize and

explore the longitudinal patterns within a soccer match dataset of
9,084 games and over 900,000 data points. 123

4.4 (Left) An example of a dataset being split into two windows each
of size ω and a support threshold of τ = 3. (Right) The frequent
subsequences that result from running PrefixSpan on W1 and W2.
The red lines indicate the subsequences that were ignored by the
algorithm as they occurred less than the support threshold. 129

4.5 An example of running WindowMerge on windows W1 and W2. On
the right the table is filled in both direct (orange arrow) and wildcard
(orange ∼) connections for each combination of frequent subsequences
found in Figure 4.4. On the left, the connections for the first two rows
and how the counts are determined is shown. 132

4.6 An example showcasing the reduction that our AWP-Span algorithm
performs. (Left) Shows a Sankey diagram of 10 sequences in the
dataset, without any reduction or algorithm run. Only 10 sequences
are able to be shown due to the space limitations. (Right) Shows the
results produced by our AWP-Span algorithm with window size of 30
for the large dataset of sequences. The yellow nodes correspond to
wildcard connections. 135

xiv

4.7 An example output of our AWP-Span algorithm mapped to a Sankey
and our event summary diagrams. (Left) Shows a Sankey diagram
containing wildcard nodes causing for extra clutter and noise to exist.
(Middle) Shows a Sankey diagram with the wildcard nodes converted
into red-colored edges that can be expanded with a click to show
the underlying wildcard data which provides multiple levels of detail.
(Right) Our event summary diagram where the edges have been re-
moved to decrease the analytical capacity needed to understand the
overall flow of events. Wildcard edges are now mapped to a tex-
ture rather than a red-colored edge and windows are separated by a
vertical gap. 150

4.8 An example showing the multiple levels of detail available upon click-
ing on a wildcard edge. In this example, the user clicked on subse-
quent wildcard edges to show the underlying data. 154

4.9 A dataset of over 9,000 European soccer matches were summarized
into event summary diagrams containing (Left) 6 windows and (Right)
12 windows. 157

4.10 A web traffic dataset containing 989,818 users was summarized using
our AWP-Span to produce a (Left) Sankey diagram and (Right) event
summary diagram. 160

4.11 (Left) An event summary diagram for EHR data. (Right) The same
EHR dataset loaded into an existing event analysis system. 162

5.1 A screenshot of our visualization system built for capturing user in-
teractions in a real-world type scenario. 181

5.2 (a & b) A separate blank model was trained on (a) question 5 and (b)
question 10. It can be seen that question 5 became optimal quicker
than question 10 and thus can be concluded to be an easier task. (c)
The model trained independently on question 5 is used as the starting
point for learning question 10 and produces the resulting graph. This
shows that the question 5 model had embedded knowledge about the
interface and can be applied across tasks. 187

5.3 A heatmap visualization of the trained model for question 6 where
rows and columns that had mostly white for the entire span were
removed. Inspecting the heatmap, it shows that the model learned
that clicking on “Kansas” and the variable “Submitted Amount” were
the most important. 190

5.4 An example of a suggestion being presented to a user. In this exam-
ple the user has the “Number of Services” variable selected, but the
“Submitted Amount” variable is highlighted to suggest for them to
take the associated action. 191

5.5 (a) The distribution of the time spent answering each question by all
users. (b) A layered distribution graph showing the distribution of
actions for both user groups. 197

xv

5.6 A heatmap of the preference model built and trained on two different
users. The rows correspond to the last two actions that a user took
and the block with the darker shade of green (and checkmark) indi-
cates whether or not the user should be provided guidance by means
of presenting a suggestion. 199

5.7 An example of how we construct our interaction pathway visualiza-
tion. (a) The interaction data is compiled, (b) a node is placed for
each action, (c) the users/rows are sorted and similar actions are
merged vertically, (d) a coloring scheme from yellow to green based
on reward is applied. 207

5.8 A visualization of the interaction pathways for question 9, as built by
Figure 5.7. Users in Group B took a subset of the actions taken by
users in Group A, presumably forgetting to change to the “Submitted
Amount” variable. Additionally, the trained model identified that
the Group A actions were more valuable, as evidenced by the darker
shades of green for the third column. With this, the data suggest to
optimize the interface to ensure that users take the path that leads
them towards answering correctly. 208

5.9 A comparison of users that answered a question correctly versus those
that did not. (a) For a single state it can be seen that the incorrect
users struggled to identify the state Kansas. (b) For the action Kansas
(KS), it can be seen that correct users took the action at a singular
state while the incorrect users took the action from an assortment of
states. 211

5.10 A comparison of correct users for question 9 in which for a single state
there was variance in the action reward between the users. While the
“submitted amount” correctly led users to the answer, it was discov-
ered that the other actions would present a visualization that would
also provide users with the correct answer. 214

xvi

List of Abbreviations

α alpha
β beta
ε epsilon
γ gamma

AI Artificial Intelligence
AHRQ Agency for Healthcare Research and Quality
AUC-PR Area Under the Precision Recall Curve
AUC-ROC Area Under the Receiver Operating Characteristic Curve
AWP-Span Adaptive-Window-PrefixSpan
BoW Bag-of-Words
CCS Clinical Classifications Software [2, 3]
CNN Convolutional Neural Network
CPT Current Procedural Terminology
DC/PC Direct Care/Purchased Care
DoD Department of Defense
EHR Electronic Healthcare Records
FSM Frequent Sequence Mining
HCI Human-Computer Interaction
HCPCS Healthcare Common Procedure Coding System
ICD-9/ICD-10 International Classification of Diseases
LIME Local Interpretable Model-agnostic Explanations [4]
LSTM Long Short-term Memory
MHS Military Health System
ML Machine Learning
mTBI Mild Traumatic Brain Injury
NLP Natural Language Processing
NN Neural Network
PCA Principal Component Analysis
RL Reinforcement Learning
RNN Recurrent Neural Network
TBI Traumatic Brain Injury
VHA Veterans Health Administration
Vis/Viz Visualization

xvii

Chapter 1: Introduction

1.1 Overview

Each year over 880 million doctor visits occur in the United States [5–7].

Current estimates place the yearly healthcare data records at 2,314 exabytes with

projections of reaching zettabytes and yottabytes [8]. For a country with 331 million

people that spend $4 trillion on healthcare each year [9], understanding and uncov-

ering the hidden patterns and trends within this big data is paramount in improving

healthcare outcomes through preventative care and early diagnosis, creating a more

efficient healthcare system with optimizations, and making clinicians’ and patients’

lives easier. With the ever increasing availability of big data, these problems are

more important now than ever before.

While many event analysis and time series tools have been developed for the

purpose of analyzing such datasets, most approaches tend to target clean and evenly

spaced data (i.e., with a fixed time interval between observations). When faced with

noisy or irregular data, it is typical to use a preprocessing step of transforming the

data into being regular through the removal of timestamps. This transformation

technique arguably interferes on a fundamental level as to how the data is repre-

sented, and may irrevocably bias the way in which results are obtained. Therefore,

1

operating on raw data, in its noisy natural form, is necessary to ensure that the

insights gathered through analysis are accurate and valid.

In this dissertation novel approaches are presented for analyzing irregular event

sequences using a variety of techniques ranging from deep learning, reinforcement

learning, and visualization. We show how common tasks in event analysis can be

performed directly on an irregular event dataset without requiring a transformation

that alters the natural representation of the process that the data was captured from.

We focus our efforts on healthcare specifically, but also evaluate our approaches

against other domains to test for generalizability. The three tasks that we showcase

include: (i) predicting the probability of a future event occurring, (ii) summarizing

large event datasets, and (iii) modeling the processes that create events.

First, effectively utilizing historical data to make predictions for the future

is important to ensure that we can properly optimize systems and tasks. Many

approaches in recent years have showcased improved results in prediction tasks on

sequential datasets, but there exists the potential to both expand on the existing

literature by embedding the sequential nature of the dataset into a prediction model

and to provide a method for prediction on irregular event sequences without biasing

the dataset through a transformation.

Second, as event datasets grow in both the number of sequences that they

contain and the number of events per sequence, understanding the common trajec-

tories and the various paths that are taken by sequences is important in developing

a thorough understanding of these large datasets. This issue is evermore present in

irregular datasets in which produced visualizations become very messy and compli-

2

cated due to the inherent noise caused by the irregularity. Therefore, an approach

that is able to generate an effective summary is important to ensure that a compre-

hensive overview can be gathered, compared to the existing technique of requiring

each individual sequence to be analyzed.

Third, for each event dataset there is a process that created the events. While

analyzing a dataset alone can provide information into the patterns contained, being

able to accurately model the process that created the events could allow for a multi-

tude of analyses to be performed, such as applying automatic learning to identify the

path to a certain event, comparing event sequences based on the differences learned

by the model, and generating a textual summary of the events that have taken

place. Through this model and its applications, a more thorough understanding of

the events could be obtained.

1.2 Contributions

In this dissertation, we aim to provide contributions in the analysis of irregular

events through the three different tasks described in Section 1.1. While our contri-

butions are aimed at irregular events within healthcare, because we generalized our

approaches, they also apply to regular event datasets and/or other domains.

First, we propose a predictive model that utilizes BERT for predicting suicide

risk in mild traumatic brain injury (mTBI) patients within a year post-injury. Our

model takes as input the entirety of the patient’s EHR prior to their mTBI. To

preserve the diagnosis codes, as were input by a clinician, we convert them into

3

their corresponding textual descriptions, and to preserve the irregular nature of the

EHR we embed time tokens into the constructed patient text. Through the com-

bination of a patient NLP-based representation and the embedded NLP knowledge

present within BERT, our model outperforms state of the art approaches for di-

agnosis prediction, standard clinical models used for suicide prediction, and other

common approaches utilized for binary classification tasks.

Second, we present our adaptive window-based algorithm that builds a sum-

mary of an event dataset by introducing the notion of temporal context into frequent

sequence mining algorithms. We show the mapping of the results of the algorithm to

our novel event summary diagram that reduces the visual complexity and analytical

capacity required. Through the summary that is produced, we show the utility of

our approach to visualizing events on three datasets from different domains.

Third, we present our automatic and adaptive approach, based on reinforce-

ment learning techniques, for modeling a process that creates events. For this task,

we explore the domain of user interaction events that are captured within a visual-

ization system; and show how our approach is able to find the optimal path to solve

a specific task and to gain an understanding of the behavior exhibited by users. We

perform a user study in which we show the wide applicability of our approach for

understanding user interactions, and thus how models can be built to learn from

the underlying structure embedded within events.

4

1.3 Outline

The rest of this document is broken up into five chapters.

Chapter 2 provides a formal definition for temporal events and background on

the existing work for events in both machine learning and visualization.

Afterwards, the document contains three approach chapters where each chap-

ter corresponds to a different task that we have addressed: Chapter 3 presents

our BERT model that utilizes an NLP-based patient representation to predict sui-

cide risk, Chapter 4 presents a mining algorithm and shows its results on our novel

event summary diagram, and Chapter 5 introduces the concept of automatically and

adaptively learning from the interaction event data generated from visual analytic

systems.

Following the three chapters of our approach, we conclude the dissertation in

Chapter 6.

5

Chapter 2: Temporal Events

2.1 Definition

It will be useful in what follows to formally define an event dataset. Event

datasets can be defined as a set of sequences D = {S0, S1, ..., Sn} where each se-

quence Si =< I0, I1, ...Im > contains a timestamped series of items Ii arranged in a

specific order with respect to the timestamps. The arrangement of the items can be

used to derive temporal relationships within the data such as Ii ≺ Ii+1 describing

that Ii happened before Ii+1. Each itemset, Ii, contains a set of event types such

that Ii =< T0, T1, ..., Tp > and Ti ∈ E where E = {e1, e2, ..., ek} is a dictionary of

event types. An example of a dataset of sequences is shown in Figure 2.1, where

each row represents a sequence Si that contains itemsets Ii with one or more event

types.

Event datasets also come in the form of time series datasets. A time series

dataset is identical to the definition of an event dataset with the exception of each

itemset Ii. In time series data each itemset contains a set of measurements such

that Ii =< M0,M1, ...,Mp > where Mi is an n sized vector corresponding to the n

values collected at each timestep.

6

Figure 2.1: Illustration showing a set of temporal sequences with the trajectory

between event #1 (triangle) and event #4 (hexagon). As the size and complexity

of the data increases, there is a need to generate a visual summarization of the

sequences to better understand the relationships between events.

2.1.1 Regular and Irregular

Both event and time series datasets are structured in two different ways: reg-

ular and irregular; or also referred to as evenly spaced and unevenly spaced respec-

tively.

A regular or evenly spaced time series is one that always occurs at fixed in-

tervals. A weather sensor that takes measurements every minute would produce a

dataset of evenly spaced measurements that are always exactly 60 seconds apart.

However, evenly spaced time series do not commonly occur in real world scenarios

due to either missing data or the data occurring at different frequencies. In the case

of a weather sensor, a single missing time point would alter the dataset from having

7

a perfect composition of each data point being exactly 60 seconds apart to being

one that has multiple different types of intervals.

Therefore, to describe this alternate type of dataset, irregular or unevenly

spaced time series are defined as a dataset where all of the intervals between timesteps

are not identical. These types of datasets are common and representative of a vast

array of processes that datasets are created from. For example, a dataset consisting

of customer orders would not be able to exist in the realm of being evenly spaced

due to a customer’s shopping patterns being sporadic and not always occurring at

the exact same moment in time. However, while irregular datasets commonly occur,

they also pose great challenges in analyzing them.

8

2.2 Machine Learning

As machine learning has roots in statistical methods, the common statisti-

cal models are the initial approaches that are taken for the modelling and pre-

dicting of events and time series. These common models include: autoregres-

sive integrated moving average (ARIMA), autoregressive–moving-average (ARMA),

autoregressive–moving-average model with exogenous inputs (ARMAX), and Pois-

son distributions. However, to move from the standard statistical models with the

hope of achieving better results, John Gamboa outlined the various deep learning

approaches that have been utilized for analyzing event and time series data, and

concluded that deep learning could still contribute a lot to these fields of event and

time series data [10]. Thus, there has been a growing interest in developing neural

network based approaches for these tasks.

Restricted Boltzmann Machines (RBM’s), are a special type of neural network

in which nodes are separated into two groups, only each pair of nodes from the two

groups have a connection between them, and there exist no connections between

nodes within a group [11]. In 2009 RBM’s became popular when Taylor and Hinton

developed a conditional RBM that was able to perform learning faster and more

efficiently. They showed its application in modelling time series data consisting of

captured motion [12]. Later in 2013, Ilya Sutskever developed a temporal RBM

model that had an RBM at each timestep and further improved the performance

gathered on time series tasks [13].

While RBM’s are one type of neural network architecture that has been ex-

9

plored, one of the most popular variants utilized for time series and event-based

analysis are recurrent neural networks (RNN’s). Jaeger and Haas adapted RNNs

based on echo state networks (ESNs) by only modifying the weights between the

hidden and output nodes during training. They showed the application of this new

architecture in predicting wireless communication activity, allowing for engineering

processes to reduce a signal’s error rate [14]. Sharat et al. implemented a bet-

ter method for back-propagation across many layers and then utilized deep RNN’s

to predict the future values of a time series [15]. Alex Graves showed how Long

Short-term Memory (LSTM) networks, a type of RNN, could be used to generate

longitudinal sequences, similar to those of event sequences, through an application of

predicting the next character or word in a document as well as predicting the correct

corresponding characters in a handwriting task [16]. Kaiser et al. at Google Brain

identified the difficulty in remembering events that rarely occur and thus they built

a memory module for use in deep learning applications that is capable of performing

life-long one-shot learning. They showed how their approach works on a variety of

tasks, and most specifically on predicting the next event in a sequence [17].

While both these statistical and neural network approaches have been able to

model time series and event datasets, they rely solely on datasets that occur at a

fixed interval and are evenly spaced. In practice events do not only occur at a set

frequency: network intrusion events occur at random moments in time, customers

place online orders with different gaps of time between orders, etc. Common ap-

proaches to addressing these types of datasets have consisted of repeating samples

or applying exponential smoothing in order to convert the irregular time series into

10

a regular one. This conversion, however, does not result in a true representation of

the original dataset and assumes that the data exists at a frequent interval. There-

fore, to avoid these standard techniques, steps have been taken to address this gap

in the literature and utilize irregular data in its purest form.

From a statistical perspective, Andreas Eckner has recently identified this

need and developed a framework for analyzing unevenly spaced time series data

in which he defined the current limitations and formulated the problem in a way

similar to that of evenly spaced data [18]. He has since presented algorithms that

are able to solve some of the basic tasks, such as computing the moving averages of

a dataset [19]. Zumbach and Müller also recognized the focus on regular time series

and presented a toolbox of operators that could be applied specifically to unevenly

spaced time series [20]. However, there still remains a gap in solving some of the

more complex tasks, such as prediction and classification, which has been explored

using RNN’s.

Using RNN’s, Lipton et al. utilized clinical measurements that were unevenly

spaced in order to classify 128 different diagnoses. To overcome the issue of the

irregular data, the authors repeated the previous test results for the points at which

data was not available [21]. Tresp and Briegel presented a combination model con-

sisting of both a nonlinear RNN and a linear error model that are trained together

to predict the glucose/insulin metabolism of patients based on their at-home blood

glucose measurements that can occur at irregular intrervals [22]. Neil et al. recog-

nized that data comes in different frequencies and thus they modified a standard

LSTM by adding a time gate that determined whether or not the node should acti-

11

vate at a particular timestep. This not only improved the performance on standard

benchmarks, but also allowed for two connected networks to be built that accepted

separate data streams at different frequencies [23]. The concept of accepting dif-

ferent frequences is similar to that of irregular or unevenly spaced data that does

not all occur at a fixed interval. In a recent masters thesis, it was identified that

predicting the time until a next event occurs in irregular datasets is a difficult and

unsolved task. Therefore, the author proposed a model: the Weibull Time To Event

RNN (WTTE-RNN), in which an RNN is trained to output the parameters of a

Weibull distribution at each timestep and then the distribution is utilized to deter-

mine whether or not an event will occur at the corresponding timestep [24].

12

2.3 Visualization

In the visualization field, a vast array of approaches have addressed both time

series and event analysis. Work has been done into evaluating existing approaches

and providing the best interface for user exploration and analysis of datasets. Javed

et al. evaluated multiple visual techniques and found that for visualizing and com-

paring multiple time series both small multiples and horizon graphs were most ef-

fective over longer time spans while standard line graphs were ideal for shorter

spans [25]. Aigner et al. evaluated the different visual and interactive techniques

for exploring time series data and stressed the importance of building visualizations

and systems that are user-centered and interaction-based [26]. Hao et al. presented

an approach for aggregating and visualizing time series data to fit different screen

resolutions [27]. Wang, Deshpande, and Schneiderman presented a more efficient

algorithm for searching for temporal patterns in an event dataset [28].

Moving beyond the standard visualization techniques, novel visualizations for

understanding the composition of datasets have been constructed. CloudLines visu-

alized multiple time series using a standard technique of representing each moment

in time as a circle. However, to help spot episodic moments they mapped an im-

portance function to the opacity and size of circles, allowing for multiple time series

to easily be compared in a compact display [29]. Weber et al. mapped time series

to a spiral chart and showed how using spirals revealed patterns in the data better

than a bar graph. For example, plotting the intensity of the sun’s rays in a spiral

allows for easily identifying the points throughout the year where the rays are the

13

strongest [30]. TimeNotes created a hierarchy of time series data allowing for a

user to select sections to zoom in onto a new panel and found that exploration of

data was enhanced using their technique [31]. ActiviTree provided an interface for

easily searching through event sequences through the notion of a graph. By enter-

ing a query, the possible subsequent events were drawn as branching nodes in a tree

where the opacity of each edge corresponded to the frequency of that event occurring

next [32]. Lin and Wei developed a symbolic approach to time series that allowed

for time series to be converted into a set of symbols without suffering from the high

dimensionality and lack of accurate distance measures that typical approaches such

as Fourier transforms, wavelets, eigenwaves, etc. have experienced. This better sym-

bolic representation was then utilized for various tasks, such as classification through

a decision tree, and shown to achieve superior results [33]. Building on this symbolic

approach, VizTree utilized the ability to convert a time series into a set of symbols

and then visualized the sequence of symbols into a suffix/subsequence tree in order

to arrive at a compact visual representation and make recurring subsequences easy

to notice [34].

However, as the size of datasets continue to grow, summarization approaches

have been increasingly more important. With this, Kumar et al. addressed the

issue of summarizing large time series databases through the use of bitmaps. Their

approach converted the features of a time series into a set of symbols and then

created a bitmap color representation from the symbols. Through the small bitmaps

created for each large dataset, they showed how a user scrolling through a list

of datasets could easily distinguish the similarities and differences between them

14

[35]. Another way to summarize time series was accomplished through linguistic

summaries, where the features and patterns of a time series are extracted into a

natural language summary that is easy to understand. This was initially introduced

by Yager [36], then further developed by Kacprzyk and Yager [37] and Kacprzyk et

al. [38,39]; and shown to help the interpretability of a dataset through experiments

on investment funds performance over eight years. LifeLines was built to aggregate

and understand a series of event records by stacking multiple records on top of one

another while providing the user with the ability to simplify and manipulate the

display [40,41]. Later LifeLines2 extended LifeLines by building temporal summaries

using bar charts that indicated the distribution of event types at each timestep

using stacked bars [42]. And most recently, EventFlow built on this system by

introducing the notion of merging and simplifying temporal event sequences [43].

Sips et al. built a visualization to summarize a time series at multiple different time

scales, allowing for overall trends at a large time scale as well as smaller trends at

small time scales to be evident; compared to that of a typical line graph [44]. In

VAET, the authors recognized that previous research on E-transaction time series

has focused primarily on identifying the temporal trends of transactions, but that

understanding each transaction individually is also important. Therefore, they built

a system that summarized the entire time series of transactions into a visualization

to allow an analyst to look at both the overall trends as well as interesting individual

transactions [45]. RankExplorer presented a visualization method to understand the

change in search query rankings over a long time series data [46]. They built on the

work of ThemeRiver [47], in which the authors visualized the change in themes for

15

a collection of documents over time, by utilizing the concept of flow and grouping

time series together to present an overall summary of the ranking changes.

While datasets continue to grow, the types of datasets that are analyzed also

continues to expand. The visualization community has also identified the need to

address unevenly spaced or irregular datasets. Aris et al. presented four different

representation methods to produce a normal, evenly-spaced time series from an

irregular one. Their methods consisted of repeating events, sampling a dataset

at lower frequencies, and representing the dataset without timestamps, thus solely

relying on the event indices [48]. Stroscope was developed for irregular time series

with the focus on being able to analyze both the frequency interval and actual

measurements simultaneously, something that a regular time series does not have to

deal with. The authors combined a line graph with a bar graph into a “ripple graph”

which made these two different aspects of an irregular time series easily interpretable

[49]. Schulz and Stattegger presented an approach for analyzing unevenly spaced

time series in the context of paleoclimatic data. They showed how their approach

did not require interpolating the dataset into a regular time series, but rather the

analysis and visualizations highlighted the irregular aspect of the dataset [50].

16

Chapter 3: Suicide Prediction

3.1 Introduction

Every 11 minutes a person in the US dies from suicide [51]. In 2018 suicide

claimed the lives of 48,000 people [51]. Beyond these numbers, 10.7 million American

adults seriously thought about suicide, 3.3 million made a plan, and 1.4 million

attempted suicide [52]. Suicide is clearly a large and growing public health problem

and is currently the 10th leading cause of death in the US [51].

Suicide rates can vary by race/ethnicity, age, and other characteristics. How-

ever, veterans and military members face significantly higher incidence of suicide

than other groups. It has been estimated that veterans and active duty personnel

commit suicide at a rate of 18 to 22 per day [53]. In 2014 this count was 7,400 which

accounted for 18% of all suicides in the US, while the military population makes up

less than 9% of the entire US population [54]. Veterans are 1.5 times more likely to

die by suicide than Americans who never served in the military [54].

The World Health Organization (WHO) has called on nations to make suicide

prevention a “global imperative” [55]. About 60-70% of at risk individuals that are

seen by primary care practitioners prior to their suicide attempt are not properly

identified [56, 57]. Many of the people who die by suicide are known to the mental

17

health care system well before death. In the US, two-thirds of suicide decedents are

in contact with the mental health care system in the year before their death, 30%

are either hospitalized for a psychiatric disorder or make an emergency department

visit for a psychiatric problem during that year, and one-third of suicide decedents

are in outpatient treatment for a mental disorder in the month before their death

[56,58–60].

To address this ever growing problem, a significant amount of research has

been done from both medical and predictive modeling perspectives. Within the

medical literature a series of risk factors have been identified: mental and addictive

disorders, substance abuse, neurochemical risk factors, family matters, etc. [61].

These risk factors support healthcare workers at the point of care to be aware and

be able to take action when necessary.

While risk factors help to identify patients that are at risk to have suicidal

thoughts or attempt to commit suicide, predictive models have been built to sum-

marize the risk, flag patients, and help to avoid oversights [62]. Most notably, within

the military and veteran population, the US Veterans Health Administration (VHA)

developed a model, REACH-VET, that identifies the patients that are at a high risk

of committing suicide using their Electronic Health Record (EHR) history [63, 64].

A majority of these have used hand-tuned features, such as the presence of a de-

pression diagnosis, which can be inaccurate and do not capture the entirety of data

available [65, 66]. To build more accurate models it is necessary to utilize machine

learning techniques that can analyze a large number of variables and identify the

complex associations [67].

18

In this chapter we present our work on building a model for predicting suicide

risk, where suicide risk is defined as both attempts and ideation, based off of the

popular BERT model. We introduce our NLP-based technique in which we convert

the diagnosis codes into their corresponding textual description before inputting

them into a model. We believe that this is novel and allows for the model to discern

the data in its natural form, as clinicians search for diagnosis codes via text rather

than memorizing codes [68].

This chapter is organized as such: first, we compare our model against the

state of the art techniques for diagnosis prediction and a famous military population

model for suicide (REACH-VET). Then, we provide an in depth overview of how we

built our model and design decisions made. Next, we present our work on creating

a visualization to inspect the BERT model to evaluate the feature importances

towards the binary classification task. Finally, we address the approaches that we

attempted and did not work before concluding the chapter.

19

Inpatient Outpatient Totals

Direct Care 98,872 29,509,032 29,607,904

Purchased Care 79,280 15,253,048 15,332,328

Totals 178,152 44,762,080 44,940,232

Table 3.1: Encounters grouped into different categories.

3.2 Dataset

3.2.1 Overview

The dataset used was collected from the Military Health System (MHS). The

parameters for the collection included patients over the age of 18 who underwent

an mTBI while active duty. This yielded 182,596 patients and a total of 45 million

encounters.

The encounters can be separated into two different types: Direct Care (DC)

and Purchased Care (PC), where Direct Care indicates that the patient went to a

DoD medical facility and Purchased Care indicates that the patient sought care at a

non-DoD medical facility and then the facility was reimbursed. The encounters can

also be split into inpatient and outpatient, indicating whether the patient stayed for

an extensive period of time or not. The four different groupings that result from

these two categories, along with their respective counts, can be seen in Table 3.1.

Additionally, Figure 3.1 shows the distribution of the encounter types to give a

visual overview of how the dataset is weighted towards outpatient encounters.

20

Figure 3.1: Distribution of the encounter types.

21

Comprehensive metadata is attached to each encounter. First, each encounter

includes the date on which it occurred. For the outpatient encounters this is a

single date, whereas for the inpatient encounters this consists of admittance and

discharge dates. However, to create a common structure between these two types of

encounters, the admittance date is assumed to be the single date for the inpatient

encounters.

Basic patient demographics at the time of the encounter are also attached,

these include: patient age, gender, state of residence, military branch, pay grade,

and whether the patient is active at the time of the encounter.

Each encounter also includes the diagnosis and procedure codes that were

assigned to it. These codes are assigned to the encounter in the order of relevance

and severity. For this data pull, only the top three diagnosis codes and top three

procedure codes were used. Some encounters have less than three codes or have

zero diagnosis/procedure codes. The diagnosis codes are in either ICD-9, ICD-10,

or DoD specific formats. As a pre-processing step, all of the ICD-9 codes were

converted to their equivalent ICD-10 code. A total of 44,170 unique diagnosis codes

exist within the dataset where 25 are DoD specific codes (prefixed with “DOD”) and

the rest are ICD-10 diagnosis codes. Compared to the over 69,000 possible ICD-10

diagnosis codes [69], this is a significant portion.

The procedure codes are in ICD-9, ICD-10, CPT, HCPCS, and DoD specific

formats. No pre-processing steps were performed for these codes as these five formats

vary widely and creating a mapping between them is not guaranteed to have exact

matches as was possible with diagnosis codes. The total number of unique procedure

22

codes within the dataset is 19,751 which, compared to the 71,000 ICD-10 procedure

codes [69] alone, shows that the diagnoses vary widely and that the procedures tend

to be a pre-defined set.

3.2.2 Cohort Construction

Because the relation of suicide to a patient’s mTBI is of interest, the cohorts

were constructed with this in mind. First, the set of TBI and suicide diagnosis codes

was obtained. The TBI codes were pulled from the Health.mil Surveillance Case

Definitions [70] and were merged with the TBI codes supplied within the MHS data

repository during the data pull to create a comprehensive list. These TBI codes

provide a classification of mild, moderate, penetrating, severe, and unclassified.

Because we want to make sure that our patient count remains high so that the

models have a lot of examples to learn from, we keep the noise within the dataset

by keeping the codes corresponding to personal history of TBI within the dataset.

To obtain the suicide codes, the Clinical Classifications Software (CCS) map-

ping created by the Agency for Healthcare Research and Quality (AHRQ) [3] was

consulted and category 5.13 was utilized. However, the ICD-10 diagnosis code Z915,

indicating personal history of self-harm, was removed due to it signifying a previous

history of suicide and was assumed to not be a new occurrence.

Using these suicide codes along with the encounters allows us to identify suicide

ideation, failed suicide attempts, and successful suicides. However, it must be noted

that there may be other occurrences of each of these conditions within the dataset as

23

it may not have been reported, did not warrant a hospitalization, or was recorded

within a different system. This is a natural limitation of this dataset and many

health records that must be taken into account when interpreting the results.

With the TBI and suicide codes defined and because of particular interest in

mTBI’s, each patient’s first occurrence of an mTBI was identified. This date will

henceforth be referred to as “Day 0” and will be used as the prediction point, the

moment in time where the model will attempt to make a prediction. The models

will be given the entirety of data that is available prior to and including Day 0, and

this time period is considered the “Observation Period”. Days within this period

will be referred to as negative days. For example, “Day -10” corresponds to the 10th

day prior to Day 0.

To build a clinically applicable scenario, in which a clinician is interested in

understanding the risk of the patient attempting or having thoughts of suicide within

the next year, the 365 days after Day 0 are considered to be the “Prediction Period”.

Contrary to the observation period, these days will be referred to as positive days;

such that “Day 30” corresponds to 30 days post the mTBI date/Day 0. If a patient

has a suicide diagnosis code within the prediction period then they are placed into

the Suicide cohort. All other patients, those that do not have a suicide code within

the prediction period, are then placed into the Control cohort. A visual timeline of

this cohort construction is shown in Figure 3.2.

24

Figure 3.2: Patient timeline for constructing the cohorts. Patients that had a suicide

code in the prediction period were placed into the Suicide cohort, while all others

were placed into the Control cohort.

25

3.2.3 Statistics

To understand the dataset and the cohorts, a statistical breakdown is provided.

Of the 182,596 patients there were 180,390 that had a TBI code. While the

data pull was done with the parameter of all patients possessing a TBI encounter,

the removal of the personal history of TBI code removed these patients. All 180,390

patients had a mild TBI.

Looking at the other severities of TBIs: 51,154 patients had an additional TBI

other than mild. 43,219 of these patients had the non-mTBI occur prior to their

first mTBI (Day 0). Within these 43,219 patients: 1,071 were severe, 42,998 were

moderate, and 215 were penetrating. While it may be unusual to have one of these

more severe TBI’s prior to the first mTBI, this could be attributed to a misclassified

TBI or the patient simply having an additional more severe TBI prior to their first

mTBI. This once again shows the uncertainty of health record data that must be

taken into account when building a model.

Looking at the entirety of the data and not limiting within the first 365 days

after the mTBI (known as the prediction period), a total of 14,831 patients had a

suicide code somewhere in their history. Prior to Day Zero 10,806 patients had a

suicide code. On the other hand, post Day Zero 5,003 patients had a suicide code.

Analyzing the occurrence of the first suicide code after the mTBI (day zero):

the mean was 472 days, standard deviation was 658.9, twenty five percent fell within

73 days, and 202 fell within 202 days. Breaking down the first twelve months post

mTBI: 2,635 patients were within the first six months, 3,122 were within the first

26

nine months, and 3,417 were within the first twelve months. Note that these are

total patient counts for each timeframe.

Comparing the two time periods, observation period and prediction period,

for the patients that had a suicide code within the first twelve months: 858 had a

suicide code in both time periods, 2,561 had a suicide code in the prediction period

but not in the observation period, and 10,031 had a suicide code in the observation

period but not in the prediction period. Through this, it is possible to see that this

dataset of patients does not have a bias towards being able to automatically predict

patients with a history of suicide as high risk for a future suicide. Rather the model

will have to discern which patients it should discard that have a history and which

it should newly identify.

27

3.3 Models

This section outlines the set of models that were built and presents a com-

parison of the results to evaluate the optimal model. These models are split into

standard models and NLP-based models. The standard models perform feature en-

gineering that attempts to summarize the dataset through transformations that may

cause a loss of information. Whereas in the NLP-based models we perform a novel

transformation of the dataset into text that attempts to preserve the raw nature of

the dataset and use it with pre-trained NLP models that have a rich understanding

of language and words built into them.

28

3.3.1 Regular Models

3.3.1.1 REACH-VET

The US Veterans Health Administration (VHA) has identified the need to

predict suicide risk among their retired veteran population. Because of this, they

have created a statistical model, named REACH-VET, that attempts to predict the

risk of suicide within a patient by utilizing the available data from the VHA.

To create this model, McCarthy et al. aggregated 381 measures that were

found to be risk factors for suicide based on previous studies [63]. Some examples

of these measures include: age, gender, race/ethnicity, marital status, urban or

rural residence, geographic region, homelessness, any presence of mental health or

substance abuse diagnosis, utilization of VHA inpatient service, and prescription for

certain medications. Most of these were calculated for the previous 12 or 24 months

from the prediction time point. But in other cases some measures, such as number

of emergency department visits, were calculated for the previous 1, 2, 3, 6, 12, 18,

and 24 previous months.

Utilizing these measures, a multivariate logistic regression model was fit and

the predicted probability of suicide for each person was extracted. Due to the com-

putational complexity of running a logistic regression model with the full features,

as described by the REACH-VET authors, an extension of the 381 measures was

performed by passing them through an elastic net (or penalized logistic regression)

in order to arrive at the most significant and contributing predictors [64]. This

29

resulted in a reduction to 61 predictors which had comparable sensitivity to the

original logistic regression with all 381 predictors.

To evaluate this statistical model technique against this new dataset, the 61

measures were attempted to be recreated. However, as this dataset currently does

not contain the same breadth of data sources as the REACH-VET system, about

half (37) of the 61 predictors were able to be re-created. These 37 included (note

that only variables that begin with “Days of” are raw numbers, otherwise they are

boolean flags):

Demographics

• Age ≥ 80

• Male

• Region (West)

Prior Suicide Attempts

• Any suicide attempt in prior 1 month

• Any suicide attempt in prior 6 months

• Any suicide attempt in prior 18 months

Diagnoses

• Arthritis (prior 12 months)

• Arthritis (prior 24 months)

30

• Bipolar I (prior 24 months)

• Head and neck cancer (prior 12 months)

• Head and neck cancer (prior 24 months)

• Chronic pain (prior 24 months)

• Depression (prior 12 months)

• Depression (prior 24 months)

• Diabetes mellitus (prior 12 months)

• Systemic lupus erythematosus (prior 24 months)

• Substance Use Disorder (prior 24 months)

• Homelessness or services (prior 24 months)

VHA utilization

• Emergency Dept visit (prior 1 month)

• Emergency Dept visit (prior 2 months)

• Psychiatric Discharge (prior 1 month)

• Psychiatric Discharge (prior 6 months)

• Psychiatric Discharge (prior 12 months)

• Psychiatric Discharge (prior 24 months)

31

• Any mental health (MH) tx (prior 12 months)

• Any mental health (MH) tx (prior 24 months)

• Days of Use (0-30) in the 13th month prior

• Days of Use (0-30) in the 7th month prior

• Emergency Dept visits (prior 1 month)

• Emergency Dept visits (prior 24 months)

• First Use in Prior 5 Years was in the Prior Year

• Days of Inpatient MH (0-30) in 7th month prior, squared

• Days of Outpatient (0-30) in 7th month prior

• Days of Outpatient (0-30) in 8th month prior

• Days of Outpatient (0-30) in 15th month prior

• Days of Outpatient (0-30) in 23rd month prior

• Days with outpt MH use in prior month, squared

This was then run against both a base logistic regression model and a penalized

logistic regression model (elastic net).

3.3.1.2 RETAIN

Recently, the popularization of recurrent neural networks (RNNs) has resulted

in state of the art results across a wide range of domains, including healthcare.

32

However, the adoption of these models has lowered the interpretability of these

clinical models due to the “black box” nature of neural networks. Because of this

Choi et al. utilized RNNs with an attention mechanism that is able to provide insight

into the encounters and diagnoses that contribute towards a positive prediction [71].

They apply their technique to a heart failure prediction task, which like suicide

prediction has a big class imbalance of 10 controls to 1 heart failure.

Due to the high number of ICD-9 diagnosis codes, the authors grouped the

codes based off of the Clinical Classifications Software for ICD-9 [2] which resulted

in a reduction from 14,000 to 283 codes. A similar process was performed for

medication and procedure codes. While this reduction helps the network to have

fewer codes to discern from and understand the groupings of the codes, this also

results in a loss of information.

A visualization, RetainVis, was built on top of this model [72]. This dashboard-

like interface displays all of the patients in a scatterplot, an overview of the different

patient attributes, and a detailed patient view that shows the encounters for each

patient and the extracted contribution score to the overall prediction from the RE-

TAIN model. This tool allows users to be able to explore the RNN’s predictions

and attempt to make it less of a black box.

The RETAIN model was taken from a Keras implementation built from the

original paper [73].

33

3.3.1.3 Deepr

Statistical models and neural networks typically require significant feature

engineering: referencing previous medical studies, performing correlation analysis

between variables, and attempting to input different combinations or alterations of

variables. All of this creates a massive bottleneck for creating predictive EHRmodels

and does not help to utilize the power of neural networks to learn from extensive,

raw data. Because of this Nguyen et al. found an approach, named Deepr, where

they input the diagnoses for patient encounters into a convolutional neural network

(CNN) without any extensive data manipulation [74].

Borrowing from the NLP domain where CNNs have found a boost in perfor-

mance over RNNs, Deepr treats each patient as a document and transforms each

encounter into a sentence. The sentence transformation is performed by thinking

of each diagnosis as a word. To limit the number of possible diagnoses, and thus

vocabulary size, the ICD diagnosis codes were shortened to level 3. For example, the

code “S06.2X9D” was shortened to “S06”. Furthermore, borrowing from traditional

NLP tasks, any words/diagnoses that occur infrequently were converted to a unique

“RAREWORD” token. Infrequent was defined as occurring less than 100 times in

the dataset.

To express a context of time within the patient document, each sentence

was separated by a time token indicating the amount of time until the next en-

counter/sentence. The time tokens were created based on months and included five

intervals: “(0-1], (1-3], (3-6], (6-12], 12+”. These intervals were then represented as

34

Figure 3.3: Example representation of a patient within Deepr.

a word where “(0-1]” was converted to “0-1m”.

An example of a patient encoded using the Deepr technique can be seen in

Figure 3.3. Using this representation, the authors input patients into a CNN and

attempted to predict the risk of unplanned readmission within 6 months post dis-

charge. The results of their experiments show that their Deepr model outperforms

a standard bag of words (BoW) approach using a logistic regression model [74].

Furthermore, comparing the classification boundaries of the Deepr model against

logistic regression shows that the Deepr model had a clearer boundary with mini-

mal overfitting, while the BoW approach suffered from severe overfitting.

3.3.1.4 Baselines

For a baseline evaluation against these regular models a standard RNN was

built. Each diagnosis code was transformed into a unique integer to be input to

an embedding layer. We explored using all of the diagnoses or only the primary

diagnosis at each encounter. Additionally, we attempted different truncations of

the diagnosis codes to simplify them and create a smaller embedding space for when

converting the diagnoses into integers. The embedding layer is ultimately connected

35

to a recurrent layer with GRU nodes [75], followed by a hidden layer, and finally an

output layer with a single sigmoid output.

Additionally, borrowing from our past work on constructing windows of time

and aggregating the number of diagnoses within each window [76], a second baseline

was evaluated. For this we converted all of the diagnoses into a corresponding high

level group as defined in Clinical Classifications Software for ICD-10 [3]. Then we

divided the observation period into distinct windows, using the optimal windows

identified in the past, and counted the number of diagnoses for each group. The

optimal windows that are utilized are: “[-365, -30], [-30, 0]” in terms of days within

the observation period. These count vectors were then input into a standard feed-

forward neural network as we have found that it outperforms both logistic regression

and SVM models.

36

3.3.2 NLP-based Models

3.3.2.1 NLP Representation

When faced with the task of entering their final diagnosis/diagnoses into an

EHR system, clinicians often search for ICD codes through textual search rather

than memorizing codes or searching for them directly [68]. Because of this, models

that rely on the ICD code hierarchy are not able to capture the exact thought process

followed by clinicians.

Additionally, there exist key terms within the textual descriptions of ICD codes

that can differentiate the meaning of the diagnoses, which cannot be appreciated

by a simple movement in the hierarchy. For example, the general ICD-10 code for

a single episode of a major depressive disorder is F32. The corresponding textual

descriptions for this general code and its more detailed codes include:

• F32 Major depressive disorder, single episode

• F32.0 Major depressive disorder, single episode, mild

• F32.1 Major depressive disorder, single episode, moderate

• F32.2 Major depressive disorder, single episode, severe without psychotic fea-

tures

• F32.3Major depressive disorder, single episode, severe with psychotic features

When entering a diagnosis code, clinicians select between the more detailed

versions, and looking at these descriptions it is clear that a small change in the code

37

can have a big impact on the severity and nature of the disease that the patient

experienced. For a model to learn this big difference using only the hierarchy is a

tremendous task; and when typical models, such as RETAIN and Deepr, reduce all

codes to a general hierarchy removing the detailed information, this makes it even

harder for models to fully grasp the nature of the patient.

Therefore, to overcome the limitation of encoding the ICD hierarchy into a

model, to provide the full context of a diagnosis, and to build off of the great

progress shown recently with NLP models, a transformation of the dataset into an

NLP representation, similar to that of Deepr in Section 3.3.1.3 is performed.

To perform this transformation, each patient is treated as a document and

each encounter is treated as a sentence. To form a textual sentence from each

encounter, the diagnosis codes for each encounter are converted into the ICD-10’s

corresponding full text description. Using this representation, a set of NLP-based

models is explored.

3.3.2.2 Word2Vec

Text cannot be directly input to a model, but requires a conversion to num-

bers. A popular technique to convert each word within a document into a vector

is word2vec [77]. The word2vec model is a shallow neural network that is trained

using one of two methods: continuous bag of words (CBOW) or skip-gram. Within

the CBOW method, the network predicts a word given the words surrounding it.

Whereas in the skip-gram method, the network takes a word as input and must

38

predict the words surrounding it.

Upon training completion, for each word the corresponding vector in the net-

work’s hidden layer is extracted and utilized as the word’s representation. These

vectors have been found to be effective at a wide range of NLP tasks [78] due to

the information that is embedded within them. For example, with a pre-trained

word2vec model released by Google [79] the vectors representing the words “king”,

“man”, and “woman” can be extracted. Then by performing the mathematical op-

eration ~king − ~man + ~woman, the result is the vector corresponding to the word

“queen”.

As the number of words within each patient document will be extremely large

for this dataset, inputting these word vectors into an RNN where each timestep

corresponds to a word would result in a very deep network. Therefore, it is nec-

essary to attempt to reduce the number of timesteps. We accomplished this by

transforming each patient from words into sentences, as previously explained. A

common technique to construct sentence vectors from word2vec is to average all of

the word vectors that make up the sentence. While this potentially removes some

information, it has shown success across a variety of tasks [80–83].

Given that each patient will have n sentence vectors, an RNN is built where

the n sentence vectors are input for each patient and then the network attempts to

predict suicide risk using a sigmoid activation output node. To compute the word

vectors, Gensim’s implementation of the word2vec model was utilized [84].

39

3.3.2.3 Sent2Vec

While the averaging of word vectors to create a sentence vector is a common

technique, this results in some loss of information as the word2vec model was not

built for this use case. To overcome this limitation a recent approach, sent2vec, was

introduced to build the sentence vectors directly [85]. This algorithm is based off

of the word2vec CBOW training method and extends it to include n-grams as an

input, rather than just words; and the entire sentence is used as a context instead

of the dynamic context windows in word2vec. The sent2vec model also includes an

averaging operation across the words of a sentence within the network’s architecture

to allow for it to learn the single sentence vector.

The final sentence vectors obtained by sent2vec are input into a similary built

RNN as the one described for the averaged word2vec vectors in Section 3.3.2.2. To

compute the sentence vectors the publicly available C++/Python implementation

of the original paper was utilized [85].

3.3.2.4 Doc2Vec

Due to the difficulty of training RNN’s, especially when a large number of sen-

tences (encounters) are present, creating a vector for the entire patient “document”

is another potential avenue. With this, the algorithm Doc2vec can be utilized.

Doc2vec is an approach that was created to embed an entire paragraph of sen-

tences into a singular vector [86]. The network behind Doc2vec is trained using the

same methods as word2vec, but extended to include a document/paragraph id: the

40

CBOW method still predicts the surrounding word but also includes the id for the

input and averages or concatenates the words together prior to the hidden layer,

and the skip-gram method attempts to predict context words given an id.

Using the doc2vec approach, all of a patient’s encounters are concatenated

together to create a document and then a vector is learned for each patient. This

vector is then fed into a variety of classifiers: standard feedforward neural network,

logistic regression, support vector machine (SVM), and random forest. To compute

the document vectors, Gensim’s implementation of the doc2vec model was utilized

[84].

3.3.2.5 BERT

A popular architecture within NLP that has recently shown state of the art

(SoTA) performance across many domains and tasks is BERT [87]. BERT is a

model, based on transformers, that was developed by Google AI [1] and is currently

used for suggestions within Google Search, GMail compose, and across other Google

products [88]. To understand how the BERT model is structured and processes text,

a detailed explanation is provided below.

First, recurrent neural networks (RNNs) were utilized to accept input of se-

quences and to allow information to persist throughout the sequence. However, the

issue of exploding gradients (long-term dependencies) arises when the RNN is un-

able to remember a critical keyword over a long sequence [89]. To overcome this the

Long-Short Term Memory (LSTM) neuron was created, where it has additional logic

41

gates that learn when to remember or discard each part of a sequence [90]. However,

LSTMs are still faced with multiple issues: (i) over really long sequences they tend

to suffer from similar long-term dependencies problems as RNNs, (ii) both RNNs

and LSTMs cannot be parallelized resulting in significant computational concerns,

and (iii) the distance between parts of a sequence is linear such that the probability

of keeping a word decreases exponentially.

To again overcome the long-term dependencies, an attention mechanism was

found in which the RNN chooses which parts of the sequence to pay attention to

(attend to) when making predictions [91]. Additionally, to overcome the issue of

parallelization, convolutional neural networks (CNNs) were adapted to NLP as they

can easily be parallelized and the distance between any part of a sequence to another

is log(N) where N is the height/number of layers in the network [92–95]. Using a

CNN allows for the entire sequence of words to be read in at once, rather than a

word at a time, thus strengthening the prediction ability.

Using all of the above breakthroughs, a transformer is a CNN that uses mul-

tiple attention models and more specifically self-attention as seen in Figure 3.4 [1].

One of the additional innovations included within transformers is a positional en-

coding: the position of each word is also encoded as the positions are key to being

able to perform many NLP tasks.

With this, researchers at Google built the Bidirectional Encoder Represen-

tations (BERT) model based on a transformer [87]. One of the other innovations

included in the BERT model are WordPiece tokens [96]. Rather than mapping each

individual word to an integer, where different prefixes and suffixes create unique

42

Figure 3.4: Model architecture of a transformer. Taken from original paper [1].

43

integers, the vocabulary of the model is represented at a subword level. For exam-

ple, the word “walk” is broken up into “wa” and “##lk” or “embeddings” is broke

up into: “em”, “##bed”, “##ding”, “##s”. This allows for the model to handle a

larger variation of words with a smaller set of tokens.

The BERT model training process is broken up into two stages: pre-training

and fine-tuning. During pre-training a language model that understands the associ-

ations between words is built. During fine-tuning, the model is applied to a specific

NLP task. This shows how the knowledge embedded within BERT can be applied

to a wide variety of tasks and domains.

The pre-training process attempts to maximize its performance on two tasks

simultaneously: next sentence prediction (NSP) and word masking. For the first

task the model is given two sentences, A and B, and it must predict the probability

that B follows and is connected to A. For the second task, 15% of the words in a

sequence are replaced with a universal “[MASK]” token and the model must predict

the original word that occupied the space. This pre-training process was run on

the Wikipedia (2,500M words) and BookCorpus (800M words) [97] datasets for 1

million update steps.

For the fine-tuning process, an untrained layer of neurons is added to the end

of the model and then it is trained for the specific task of interest.

Because the BERT models trained by Google on the Wikipedia and BookCor-

pus datasets have a maximum sequence length of 512 tokens, the patient document

representation as described in Section 3.3.2.1 was truncated to only include the first

500 tokens. Further work on understanding the impact of this truncation is explored

44

in Section 3.4.

3.3.2.6 NLP Baseline

To establish a baseline performance on our dataset, a bag of words (BoW)

approach was used. Term frequency-inverse document frequency (TF-IDF) [98] was

the preferred BoW method of choice due to its popularity and ability to encode the

statistical importance of a word to a document. The TF-IDF vectors were fed into

logistic regression, elastic net, and support vector machine models.

45

3.3.3 Results

3.3.3.1 Metrics

Given a set of patients, a model predicts the probability that each patient will

be at risk for suicide in the future. These probabilities can be used to identify which

group to place each patient into: suicide or control. Due to the significant class

imbalance, the model performance was evaluated using the precision-recall curve.

To understand this curve, understanding precision, recall, and their associations is

important.

Precision is the measure of how well the model can predict suicide patients

out of all of the patients that it placed into the group: given 10 patients predicted

as suicide but only 4 are correct then the precision is 4/10 = 40%. Recall is the

measure of how well the model is able to identify all of the suicide patients: given

25 total suicide patients in the test set and 4 of them were correctly predicted as

suicide then the recall is 4/25 = 16%.

It is difficult to perform well at both precision and recall at the same time.

If precision is high, then recall tends to be low. If recall is high, then precision

tends to be low. For example, if a model can identify a single patient as suicide

then the precision will be 1.0 or 100%, but the recall will be awful. Similarly, if the

model attempts to identify all suicide patients to achieve high recall, it is bound to

mistakenly add non-suicide patients which will lower its precision.

With this in mind, the precision-recall curve shows the trade off between the

46

two. An example curve is shown in Figure 3.5. With this the trade-off between

precision and recall can be seen. An end-user could choose to have a recall of about

10% and thus obtain a high precision of 80%. This would result in a small number

of patients to be predicted, but very accurately. Alternatively to attempt to predict

a lot of patients with a low accuracy, the end-user could select a recall of 80% and

obtain a precision of about 40%.

Figure 3.5: Example PR Curve.

To summarize the curve in a singular value, for easy comparison of model

performances, the area under the curve can be calculated. This is referred to as

the Area Under the Precision Recall Curve (AUC-PR). Of note the AUC-PR met-

ric is different than the Area Under the Receiver Operating Characteristic Curve

47

(AUC-ROC) and has been found to be more informative in the context of binary

classification tasks on class imbalanced datasets [99,100].

The AUC-PR will typically have smaller values. To give context into expected

values, two recent papers measure their performance in terms of AUC-PR. Edward

Choi et al. build a multilevel medical embedding, named MiME, for heart failure

prediction [101] where the class imbalance was about 10 to 1 (3,414 positive out

of 30,764 total cases). MiME and baseline models were tested against several ex-

periments and the comparisons between the baseline and MiME respectively are as

follows: (0.2462 and 0.2831), (0.2771 and 0.2750), (0.2505 and 0.2589), and (0.4415

and 0.4787).

In another paper, Kemp et al. from Google Health build a hierarchical re-

current neural network model for discharge diagnosis classification [102]. While the

class breakdowns are not cited, two tasks were evaluated using the AUC-PR met-

ric. For the first task, mortality prediction, the baseline bag-of-words (BoW) model

achieved 0.479(±0.008) while the author’s model achieved 0.479(±0.007). For the

second task, all ICD-9 diagnosis codes at discharge were attempted to be predicted:

BoW was at 0.331(±0.001) while the author’s model was at 0.352(±0.001).

Within both of these papers, the difficulty to obtain a high AUC-PR score

compared to the AUC-ROC has been brought into context. To provide more infor-

mation, we will report the loss and AUC-ROC in addition to the AUC-PR.

48

3.3.3.2 Optimization

For each model that was presented in Sections 3.3.1 and 3.3.2, different hy-

perparameters were explored and the configuration with the best performance is

reported. A train/val/test split methodology was utilized where the dataset was

split into training and testing using an 80%/20% split and then the training set was

split again using 80%/20% to arrive at the final training and validation sets. To

account for the variation that exists within the patient dataset, this train/val/test

split was performed three separate times to construct three datasets. When report-

ing the results the metrics across these three datasets are aggregated and the mean

and standard deviation are reported.

Below the attempted hyperparameters and final best configuration of each

model is provided:

• REACH-VET

– Final A linear elastic net with alpha of 0.01, l1 ratio of 0.15, maximum

iterations of 1000, and tolerance of 0.0001.

– Explored A comparison between logistic regression, elastic net utilizing

stochastic gradient descent (SGD), and a native linear elastic net were

tested. For the elastic net alpha’s of [0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0]

were explored. For the logistic regression C’s of [0.25, 0.5, 0.75, 1, 2, 4] and

both “l1” and “l2” penalties were explored.

• RETAIN

49

– Final All of the diagnoses were utilized for input to the network. Embed-

ding and recurrent dimensions were 128, l2 of 0.0001, maximum timestep

length before truncation of 300, 10 epochs, batch size of 32, and dropouts

(both embedding and context vector) of 0.6.

– Explored The utilization of all diagnosis codes compared to only the

primary diagnosis for each encounter was tested. Epochs [5, 10] and

dropouts of [0, 0.6]. Bayesian Optimization [103] was attempted as it has

been found to be useful [104], but no improvement and rather a decrease

in performance was observed.

• Deepr

– Final 250 filters, kernel size of 3, embedding layer of 50, hidden layer of

250, learning rate of 0.001, 5 epochs, 32 batch size, and dropouts (both

embedding and output) of 0.4.

– Explored Epochs [2, 5, 10], learning rates [0.1, 0.01, 0.001, 0.0001], dropouts

[0.0, 0.2, 0.4, 0.6, 0.8], embedding dimension [25, 50, 100], hidden dimen-

sion [125, 250, 500], filters [125, 250, 500]. Bayesian Optimization [103]

was attempted as it has been found to be useful [104], but no improve-

ment and rather a decrease in performance was observed.

• RNN with Embedding Baseline

– Final All diagnosis codes truncated to first two characters, embedding

layer of 25, recurrent layer of 50 using GRU nodes, hidden layer of 50, 5

50

epochs, 32 batch size, no dropout, and learning rate of 0.001.

– Explored Using all diagnosis codes versus only the primary at each en-

counter, truncating diagnosis codes to the first [1, 2, 3] characters, epochs

[2, 5, 10], learning rates [0.01, 0.001], embedding size [25, 50, 100, 200], hid-

den dimension [25, 50, 100], recurrent layer dimensions [25, 50, 100].

• Window Configuration Baseline

– Final Epochs of 20, learning rate of 0.0001, hidden dropout of 0.4, hidden

layer activation function of tanh, hidden layer of 100 nodes, batch size of

32.

– Explored Window configurations tested: “[−365, 0]”, “ [−730, 0]”,

“[−365,−30], [−30, 0]”, “ [−730,−365], [−365,−30], [−30, 0]”,

epochs [5, 10, 20, 30], learning rates [0.01, 0.001, 0.0001], hidden layer node

counts [50, 100, 200], hidden layer activation functions [relu, tanh], hidden

layer dropout rate [0.0, 0.2, 0.4, 0.6, 0.8].

• Word2Vec RNN

– Final Word2Vec: size of 100, window of 5, min count of 1, 5 iterations.

RNN: learning rate of 0.0001, 10 epochs, hidden layer of 50, embedding

layer of 400, recurrent layer of 200, batch size of 32, zero dropout.

– Explored Word2Vec: Default gensim implementation. RNN: Epochs

[10, 20], learning rates [0.1, 0.01, 0.001, 0.0001],

embedding dimensions [200, 400, 600], hidden dimensions [50, 100, 200],

51

recurrent dimensions [100, 200, 400],

recurrent layer dropout [0.0, 0.2, 0.4, 0.6, 0.8].

• Sent2Vec RNN

– Final Sent2Vec: Default FastText implementation [85]. RNN: Learning

rate 0.0001, recurrent layer dropout rate 0.4, embedding size of 200, re-

current layer number of nodes 200, hidden layer of 100 nodes, 20 epochs,

batch size of 32.

– Explored Sent2Vec: Default FastText implementation [85]. RNN: Learn-

ing rates [0.1, 0.01, 0.001, 0.0001], epochs [5, 10, 20], recurrent layer dropout

rates [0.0, 0.2, 0.4, 0.6, 0.8], embedding dimensions [200, 400, 600], hidden

layer dimension [50, 100, 200], recurrent layer dimension [100, 200, 400].

• Doc2Vec NN

– Final Doc2Vec: Default Doc2Vec implementation in scikit-learn [105].

NN: hidden dropout of 0.5, suicide class weight of 100, 20 epochs, batch

size of 32, learning rate of 0.01, hidden layer activation relu.

– Explored Doc2Vec: Default Doc2Vec implementation in scikit-learn [105].

NN: hidden droput rates [0.0, 0.3, 0.5, 0.7, 0.9], hidden layer dimensions

[25, 50, 100, 200, 400], suicide class weights [1, 50, 100].

• Doc2Vec LogReg

– Final Doc2Vec: Default Doc2Vec implementation in scikit-learn [105].

52

LogReg: scikit-learn default implementation [105] using liblinear solver.

L2 penalty, C of 1.0, 100 maximum iterations, suicide class weight of 100.

– Explored Doc2Vec: Default Doc2Vec implementation in scikit-learn [105].

LogReg: suicide class weights [1, 100], C values [0.2, 0.5, 1, 2, 4].

• Doc2Vec SVM

– Final Doc2Vec: Default Doc2Vec implementation in scikit-learn [105].

SVM: scikit-learn default SVC implementation [105].

– Explored Doc2Vec: Default Doc2Vec implementation in scikit-learn [105].

SVM: scikit-learn default SVC implementation [105]. *Long time to con-

verge.

• Bag of Words (BoW) SVM

– Final Default TF-IDF implementation in scikit-learn. SVM: default SVC

implementation in scikit-learn [105].

– Explored Default TF-IDF implementation in scikit-learn. SVM: default

SVC implementation in scikit-learn [105]. *Long time to converge.

• BERT

– Final “bert-base-uncased” model base, diagnoses as input, time words for

tokens, 2 epochs, truncation at 500 tokens using the oldest encounters

first, no pre-training, and no demographics.

53

– Explored A comprehensive exploration into optimizing BERT is provided

in Section 3.4.

3.3.3.3 Evaluation

Train

Model Loss AUC-ROC AUC-PR

REACH-VET —– 0.531(±0.03) 0.021(±0.00)

RETAIN 0.074(±0.00) 0.871(±0.00) 0.177(±0.01)

Deepr 0.074(±0.00) 0.902(±0.01) 0.209(±0.02)

Basic RNN with embed* 0.075(±0.00) 0.860(±0.00) 0.179(±0.01)

Window Configuration* 0.070(±0.00) 0.894(±0.00) 0.286(±0.01)

Word2Vec RNN 0.085(±0.00) 0.764(±0.00) 0.067(±0.00)

Sent2Vec RNN 0.086(±0.00) 0.748(±0.03) 0.081(±0.02)

Doc2Vec NN 1.731(±0.04) 0.779(±0.01) 0.090(±0.00)

Doc2Vec LogReg — 0.629(±0.01) 0.025(±0.00)

Doc2Vec SVM — 0.413(±0.27) 0.110(±0.17)

BoW* — 0.640(±0.05) 0.041(±0.01)

BERT 0.008(±0.00) 0.889(±0.00) 0.298(±0.01)

Table 3.2: Performance of various models on the suicide prediction task (* denotes

baseline) on the train datasets.

54

Test

Model AUC-ROC AUC-PR

REACH-VET 0.530(±0.03) 0.021(±0.00)

RETAIN 0.723(±0.02) 0.073(±0.01)

Deepr 0.831(±0.01) 0.146(±0.00)

Basic RNN with embed* 0.813(±0.00) 0.136(±0.01)

Window Configuration* 0.827(±0.00) 0.173(±0.01)

Word2Vec RNN 0.760(±0.01) 0.064(±0.00)

Sent2Vec RNN 0.625(±0.03) 0.034(±0.00)

Doc2Vec NN 0.741(±0.03) 0.072(±0.01)

Doc2Vec LogReg 0.624(±0.01) 0.026(±0.00)

Doc2Vec SVM 0.497(±0.07) 0.023(±0.01)

BoW* 0.620(±0.04) 0.029(±0.01)

BERT 0.868(±0.01) 0.227(±0.02)

Table 3.3: Performance of various models on the suicide prediction task (* denotes

baseline) on the test datasets.

55

Tables 3.2 and 3.3 contain the performance of the regular and NLP-based

models that were evaluated on the train and test datasets respectively. Analyzing

this table it is evident that the BERT model outperforms the other techniques in

terms of both AUC-ROC and AUC-PR across both the train and test data, with

the sole exception of the train AUC-ROC being higher for two other models.

Our decision to utilize both the AUC-ROC and AUC-PR as metrics, with a

primary focus on the AUC-PR, is validated by the results. Most models that perform

poorly in terms of the AUC-PR tend to have a lower AUC-ROC. A generalization

that can be realized by the table is that an AUC-PR of less than 0.100 coincides

with an AUC-ROC of less than 0.800. However, an increase in one metric does

not directly translate to an increase in the other metric. For example, the Deepr

model has an AUC-ROC/AUC-PR of 0.831/0.146 whereas the Window Configura-

tion baseline model has 0.827/0.173. An increase in the AUC-PR was accompanied

with a decrease in the AUC-ROC. Ultimately, we can infer that we can utilize both

metrics for an overall decision, but for the best performing models the AUC-PR

should be the deciding factor as was also previously outlined in Section 3.3.3.1.

The two state of the art (SoTA) approaches, RETAIN and Deepr, had dras-

tically different results. RETAIN could be classified as a poor performer with its

AUC-ROC under 0.800 and AUC-PR under 0.100. Whereas Deepr was the third

best model in terms of AUC-PR, which was double that of RETAIN (0.073 versus

0.146). We initially hypothesized that the reason for RETAIN’s poor performance

was due to its simplification of diagnosis codes using the CCS mapping [2]. How-

ever, a similar simplification was performed for the Window Configuration model

56

which did not see the same performance decrease. Thus, we believe that this poor

performance can be attributed to the difficulty of training an RNN and the required

truncation of sequences. In contrast, the Deepr model chose to simplify the diag-

nosis codes in their approach to a lesser degree by truncating each code to its first

three characters. This, combined with the CNN utilized, seems to have benefited

the Deepr model greatly. It should be noted that the Deepr model also removed the

rare diagnosis codes, with good reason. However, our BERT model does not have

this limitation and allows us to keep the dataset intact through the conversion of

codes to their textual description.

The models that performed the worst across all metrics, REACH-VET, Doc2Vec

LogReg, Doc2Vec SVM, and BoW, all shared a commonality of utilizing either a lo-

gistic regression or SVM model as its classifier. These models also had two different

types of inputs: (REACH-VET) one was hand-selected count features and (Doc2Vec

& BoW) the other was our NLP-based patient documents. The structure of these

features are drastically different, which allows us to conclude that logistic regression

and SVM based models do not seem to be a good fit for these tasks compared to

neural networks. However, we cannot conclude that both of these feature types are

not suitable for this task as they are reused across other models.

The baseline models, which we define as models that are commonly used across

domains and not specifically tailored towards a specific task, varied widely in per-

formance. The BoW model performed the worst, while the other two were within

the top performing models. The “Basic RNN with embed” model outperformed the

RETAIN model, when it utilizes a similar technique of simplifying diagnosis codes

57

and inputting them into an RNN. This shows that the additional modifications to

RETAIN provided no benefit for our suicide prediction task. Much to our surprise,

the Window Configuration model was the second best model out of all models that

we tried. This model shows the benefit of counting the number of diagnoses per

time interval/window as a baseline, but at the same time its high training AUC-PR,

that rivals that of the BERT model, did not translate to the test AUC-PR shows

its lack of generalization and the relative ease of overfitting it.

Our NLP-based models, excluding the BERT model, did not perform as well

as expected and overall performed worse than the “regular” models. The Doc2Vec

NN model matched the performance of the SoTA model, RETAIN, but otherwise

ended up being the best performer within this group. We ultimately think that

these poor results are due to the difficulty of summarizing the large text documents

that we created as well as the difficulty of training RNN’s over long sequences.

With that, the BERT model was the best performing model by a drastic

margin. The BERT model had a higher testing AUC-PR than that of the second

best model by a factor of 0.054. This is equivalent to the difference between the

RETAIN (SoTA) model and the worst performing, VHA created, REACH-VET

model. This also rivals the drop off from the worst of the higher performing models

(AUC-PR ≥ 0.100) to the best of the lesser performing models (AUC-PR < 0.100).

Clearly our NLP approach did not fare well across the majority of models, but

the BERT model was the exception. We hypothesize that our NLP-based patient

representation pares strongly with the recent growth of NLP models, most notably

the BERT model, and that these two make for a great pair. Additionally, while the

58

baseline models perform reasonably well, they suffer from a lack of generalizability

seen in the transition from training to testing data and they also lack the ability to

provide that extra boost in performance needed for this task. This boost can be the

difference needed to identify a patient and save a life.

59

3.3.3.4 BERT Evaluation

With the BERT model outperforming all of the approaches, an in depth eval-

uation of its predictions and results was performed. This evaluation was done on

the test data to understand its application on a new dataset. For this evaluation a

cut point of 0.2 was used on the predictions, such that patients that were predicted

to have a probability of 0.2 or higher were classified as suicide and anything below

as control.

The test set contained 36,078 patients and of these 692 were positive for suicide.

The AUC-ROC is 0.8748 and the AUC-PR is 0.2444. The confusion matrix for these

predictions is shown in Figure 3.6 and the Precision-Recall (PR) curve is shown in

Figure 3.7. From the confusion matrix it can be seen that the model predicts the

control patients very well, as to be expected. Only a minimal 319 control patients

were incorrectly predicted. This results in precision and recall scores of 99% for the

control patients. The suicide patients are much more difficult to predict and thus

160 of the 692 were correctly predicted resulting in a precision score of 33% and

recall score of 23%.

While the model is not able to predict all of the suicide patients, it is important

for the model to at least be able to predict the high risk patients well. Looking at

the PR curve, it can be seen that at about a recall of 10% the precision is relatively

high at about 70%. This is promising for the deployment of such a model in a

clinical setting, where the end-user is able to choose the configuration of the model

that they would like to utilize. With this, we break the patients down into risk

60

Figure 3.6: Confusion matrix for the test set.

categories based on their predicted probabilities.

Figure 3.8 presents a histogram of the predicted probabilities showing a sig-

nificant skewed right distribution. Table 3.4 provides the raw bin cut points and

the respective patient count for each bin. Using these probabilities we construct a

hierarchy of risk for patients:

• High: 0.48 ≤ P (Suicide) ≤ 1

• Medium: 0.2 ≤ P (Suicide) < 0.48

• Low: 0 ≤ P (Suicide) < 0.2

61

Bin Count

0.0749 34,207

0.1553 1092

0.2357 463

0.3161 163

0.3965 59

0.4769 38

0.5572 28

0.6376 11

0.7180 12

0.7984 5

Table 3.4: Probability bins and counts for the histogram shown in Figure 3.8.

62

Figure 3.7: Precision-Recall Curve for the test set.

With these risk levels, the test set is broken up such that 53 (0.15%) are high

risk, 426 (1.18%) are medium risk, and 35,599 (98.67%) are low risk. Breaking

down these risk levels further: the PR Curve and confusion matrix for the high risk

patients are shown in Figures 3.9 and 3.10, medium risk are shown in Figures 3.11

and 3.12, and low risk are shown in Figures 3.13 and 3.14. The AUC-PR for each

of these levels is 0.7843, 0.3895, and 0.1167 respectively.

The high AUC-PR for the high risk patients is very promising and shows

the model’s ability to predict these patients well. Furthermore, the medium risk

patients also maintain a high AUC-PR of 0.3895 which outperforms the model’s

overall AUC-PR of 0.2444.

63

Figure 3.8: Histogram of the predicted probabilities for the test set.

In Section 3.2.3 an analysis of patients with a history of suicide versus those

without was performed and it was found that an even distribution of those patients

exists, such that a model cannot simply only choose to predict patients with a prior

history as suicide and expect to perform well. With this, we will check this break-

down to ensure that the model did not attempt to make these types of predictions

and that the model can generalize. First, for patients that did not have a suicide

code before or after their mTBI (control cohort) the model was 99.27% accurate.

Next, for the patients that had a suicide code before and after their mTBI (suicide

cohort) the model was 33.71% accurate. For the patients that had suicide before,

but did not have it after (control cohort) the model was 96.09% accurate. And

finally for the patients that did not have a suicide code before, but had it after the

64

Figure 3.9: Precision-Recall Curve for the high risk patients of the test set.

model was 19.46% accurate. These values are visualized in Table 3.5.

It is promising that the model was able to correctly identify that the 1,968

patients with a history of suicide should be predicted as control. Clearly the model

struggled the most with the patients without a history of suicide before their mTBI,

but the fact that the model did not completely fail on these patients is a good

indicator that it did not simply utilize a history of suicide to make a determination.

Overall, predicting suicide at the point of an mTBI within patients is a difficult

task. Compared to state-of-the-art approaches on diagnosis prediction, the conver-

sion of diagnoses into an NLP representation and the use of BERT outperformed

and shows promise.

65

Figure 3.10: Confusion matrix for high risk patients of the test set.

Suicide Before? Suicide After? # Patients Accuracy

Yes Yes 178 33.71%

Yes No 1,968 96.09%

No Yes 514 19.46%

No No 33,418 99.28%

Table 3.5: Breakdown of accuracy for patients with suicide before/after their mTBI

on the test set.

66

Figure 3.11: Precision-Recall Curve for the medium risk patients of the test set.

67

Figure 3.12: Confusion matrix for medium risk patients of the test set.

68

Figure 3.13: Precision-Recall Curve for the low risk patients of the test set.

69

Figure 3.14: Confusion matrix for low risk patients of the test set.

70

3.4 BERT

To understand the tuning of the suicide BERT model that was performed to

arrive at the most optimal model in Section 3.3.3, an in depth breakdown of each

parameter will be provided. For each parameter tuned, the rest of the model’s

parameters will be kept constant, and the constant values will be listed as well as

the performance comparison of the various parameter values.

3.4.1 Model Base

As explained in Section 3.3.2.5, the BERT model undergoes two stages: pre-

training and fine-tuning. During the pre-training phase, the model is trained on

masked token prediction and next sentence prediction. Then, for the fine-tuning

phase an untrained layer of neurons is added to the end of the model and then

it is trained for the specific task of interest. For the original BERT model, the

Google researchers pre-trained on a Wikipedia and BookCorpus dataset for 1 million

update steps and released the associated models. These pre-trained models thus

contain a wealth of NLP knowledge embedded within the datasets and can be used

for different domains and tasks. With this, different pre-trained versions from the

original paper, as well as subsequent work, was compared. Table 3.6 contains the

standard configuration used across the different bases.

The version released with the original BERT paper is the “bert-base-cased”

model. This model contains word tokens with capital letters which allow the model

to understand pronouns, beginnings of sentences, etc. However, these capitalizations

71

Configuration Value

Model Base —–

Extra Pre-Training? No

Num Epochs 2

Max Seq Length 500

Reverse Truncate? No

Demographics? No

Time Tokens None

Data Input Diagnoses

Table 3.6: Model configuration used for comparing different BERT model bases.

of letters may not always be necessary. We hypothesize that for our suicide task

this would be the case because the patient documents made up of ICD-10 diagnosis

descriptions do not contain capital letters, compared to formal writing.

With this, “bert-base-uncased” is an alternate version where all of the word

tokens are lower cased. The number of word tokens (vocabulary size) for the model

changes from 28,996 for the cased version to 30,522 for the uncased version. The

reason for the increase in size is that the uncased version came subsequently and

thus contains updated word tokens as well as significantly more “unused” tokens

that can be replaced with custom words.

As these official BERT model bases were trained on a corpus that contains a

wide array of domains, researchers have attempted to further pre-train them on clin-

72

ical notes to embed clinical knowledge and make them more specialized. Alsentzer

et al. utilize the MIMIC-III dataset [106] to pre-train a BERT model on (i) all

note types and (ii) only discharge summaries [107]. These clinically trained models

were found to outperform the standard BERT on various NLP tasks. As the version

trained on all notes, named Clinical BERT, is most applicable to suicide prediction,

a comparison will be performed.

As the notes contained within the MIMIC-III dataset do not follow a similar

structure as the patient documents that have been constructed for this approach,

pre-training a BERT model on the constructed patient documents may lead to an in-

crease in performance. Thus, the patient documents are aggregated and pre-trained

on the “bert-base-uncased” base. With this, the BERT model should theoretically

learn the structure of the code descriptions and the characteristics of this unique

dataset. For this pre-training only, masked token prediction is used as next sentence

prediction was found to not be important to the training success [108].

Finally, to put the benefit of using any pre-trained models into context, a

BERT model that was never pre-trained was evaluated. Note that this model was

only fine-tuned and never had any pre-training, thus it is expected to perform worse,

which would confirm that the pre-trained versions do have knowledge built into them

that contributes towards the suicide prediction task.

Tables 3.7 and 3.8 contain a summary of the comparison of the various pre-

trained model bases/versions that were evaluated. Analyzing the results, it can

be seen that the model that was never pre-trained (“None”) performed significantly

worse in terms of all metrics. Notably the AUC-PR for test was 0.141 compared

73

Train

Base Loss AUC-ROC AUC-PR

bert-base-cased 0.008(±0.00) 0.885(±0.00) 0.281(±0.02)

bert-base-uncased 0.008(±0.00) 0.885(±0.00) 0.281(±0.01)

Clinical 0.008(±0.00) 0.883(±0.00) 0.262(±0.03)

None (cased) 0.009(±0.00) 0.846(±0.01) 0.141(±0.02)

Pre-train 0.009(±0.00) 0.748(±0.22) 0.164(±0.13)

Table 3.7: Results obtained by training BERT on different model bases (train

datasets evaluation).

Test

Base AUC-ROC AUC-PR

bert-base-cased 0.864(±0.01) 0.207(±0.01)

bert-base-uncased 0.863(±0.01) 0.209(±0.02)

Clinical 0.861(±0.01) 0.203(±0.01)

None (cased) 0.835(±0.01) 0.140(±0.02)

Pre-train 0.738(±0.20) 0.140(±0.11)

Table 3.8: Results obtained by training BERT on different model bases (test datasets

evaluation).

74

to the 0.20 for the rest of the models. On the other hand, the pre-trained model

performed about the same or worse than the model that was never trained. But more

importantly, this pre-trained model had a significantly higher standard deviation

than all other models.

Amongst the rest of the models there was a small deviation between each.

Surprisingly the Clinical version performed the worst out of the three, showing

that the clinical knowledge embedded from the MIMIC-III dataset did not help to

improve the model. It was expected for the “bert-base-uncased” version to perform

better than the “bert-base-cased”, but the difference is not significant. Ultimately,

due to the tiny differences in performances either the “bert-base-cased” or “bert-

base-uncased” would be a reasonable choice. However, due to the more expressive

vocabulary for the uncased model, the “bert-base-uncased” is the base that we settled

on for the final optimal model.

3.4.2 Truncating Sequences

When creating a BERT model, a maximum sequence length must be defined.

Input to the model must then be at most the sequence length and may be any

value less than the maximum. Because the BERT model utilizes WordPiece tokens,

as previously described, rather than word indices, a larger count of inputs will be

utilized for each sequence. The pre-trained models released in the original BERT

paper have a maximum sequence length of 512 tokens, which for larger documents

is easy to surpass. To modify this value to be larger the knowledge embedded from

75

the massive pre-training would be lost and thus for larger sequences an approach

must be made that satisfies this constraint.

An example of the truncation is shown in Figure 3.15 where a patient has 6

diagnoses, but the fictional model has a maximum sequence length of 4. With this

2 of the diagnoses must be removed. Two different approaches for truncating the

sequence are visualized within the figure: keeping the 4 oldest diagnoses or keeping

the 4 newest diagnoses. It would be expected for the newest truncation method to

outperform the oldest truncation due to it containing the most recent patient history

and current state of the patient, but both of these approaches will be attempted

and compared.

Figure 3.15: An example of truncating a sequence of 6 to fit a fictional model with

a maximum sequence length of 4 using an oldest and newest truncation method.

To understand the necessity of truncation to fit within the 512 maximum

sequence length set by the BERT models, the number of word tokens required for

representing each patient’s diagnosis history was calculated. For all 180,390 patients,

the mean number of tokens was 2,720 with a standard deviation of 3,539.18. The

minimum number of tokens for a patient was 12. 25% of the patients fell within

551 tokens, 50% within 1,508, and 75% within 3,521. Only 42,530 patients could fit

within the 512 maximum sequence length set by the pre-trained BERT models. For

76

the purposes of our analysis we utilized 250 and 500 for truncation and only 22,374

and 41,750 patients could fit into each without truncation.

Additionally, the suicide cohort tends to have longer sequences than that of

the control cohort: 3,250 vs 2,709 for the mean with similar standard deviations. Of

the 3,434 total suicide patients only 558 could fit into BERT’s maximum sequence

length, whereas of the 176,956 control patients 41,972 could fit into the same limit.

This 16% versus 23% difference illustrates the tendency for the suicide cohort to

have longer sequences and the bias that could exist when choosing a truncation

strategy and limit.

Table 3.9 contains the standard configuration used across the models and

Table 3.10 includes the results of the attempted truncation methods. Clearly keeping

the newest diagnoses performed significantly worse than the oldest diagnoses, and in

terms of AUC-PR it had half of the performance. While this was not expected and

is surprising, analyzing the patients and method of cohort construction further can

reveal insights into this significant gap. When truncating to keep the newest data

first, all of the patients will have an mTBI and other associated diagnoses from Day

0 within the data. Therefore the similarity between the patients will be high and

the BERT model will have less potential patterns to distinguish between. Whereas

the older data contains much more variability that a model is able to learn from.

Additionally, as the suicide cohort tend to have longer sequences compared to the

control cohort, the suicide cohort’s diagnoses are more likely to be truncated and

for their past to not be included within the model.

The importance of the older data can further be seen in the results of the

77

oldest 250 and 500 truncation methods. For both of these, the test AUC-PR’s are

identical at 0.207. This shows the significance of the oldest diagnoses and how only

a small number of the oldest are needed before the performance levels off. Compared

to the newest truncation method where doubling from 250 to 500 resulted in a boost

in performance. Therefore, we can conclude that the oldest diagnoses outperform

and are the method of choice when truncation is required.

Configuration Value

Model Base bert-base-cased

Extra Pre-Training? No

Num Epochs 2

Max Seq Length —–

Reverse Truncate? —–

Demographics? No

Time Tokens None

Data Input Diagnoses (Cased Tokens)

Table 3.9: Model configuration used for comparing sequence truncation methods.

In future work alternate forms of trimming the sequences down to the max-

imum sequence length could be attempted. For example, each encounter contains

up to three diagnosis codes that are ranked by order of importance: the diagnoses

in the third position across all encounters could first be removed to attempt to fit

the patient document within the maximum sequence length. This would allow for

78

Train Test

Truncation Loss AUC-ROC AUC-PR AUC-ROC AUC-PR

Oldest 250 0.008(±0.00) 0.880(±0.00) 0.273(±0.01) 0.857(±0.00) 0.207(±0.01)

Oldest 500 0.008(±0.00) 0.885(±0.00) 0.281(±0.02) 0.863(±0.01) 0.207(±0.01)

Newest 250 0.009(±0.00) 0.816(±0.00) 0.121(±0.01) 0.787(±0.01) 0.091(±0.01)

Newest 500 0.009(±0.00) 0.836(±0.01) 0.147(±0.01) 0.809(±0.01) 0.105(±0.01)

Table 3.10: Results of different sequence truncation methods for BERT.

the entirety of patient data to still be utilized without missing a potentially crucial

moment in time.

Additionally, extensions of the BERT model, such as XLNet [109] and BigBird

[110], have developed techniques to overcome the maximum sequence limit and could

be attempted to allow for the entire patient history to be input.

3.4.3 Demographics

Thus far the BERT models have only received encounters as input in the

form of diagnosis descriptions. However, most models tend to utilize the patient’s

demographics as a lot of patterns and risks can be identified or ruled out from

them. For example, the REACH-VET model has multiple boolean features based

off of demographics: age ≥ 80, patient lives on the west coast, and patient is a male

to name a few.

To similarly utilize the demographics into our BERT model we input them

79

raw to allow the model to identify the patterns that should be expected. The de-

mographics are appended to the beginning of the patient document in the following

manner: age represented as an integer, gender as text (“male”/“female”), and the

branch of service for the patient as text (i.e. “army”, “air force”, “navy”). Once

again, it should be noted that the inclusion of demographics reduces the number of

diagnoses that can fit within the maximum sequence length.

Configuration Value

Model Base bert-base-uncased

Extra Pre-Training? No

Num Epochs 2

Max Seq Length 500

Reverse Truncate? No

Demographics? —–

Time Tokens None

Data Input Diagnoses (Uncased Tokens)

Table 3.11: Model configuration used for comparing the effect of including demo-

graphics.

We compare a standard model that strictly has diagnoses against one that

has demographics appended at the front of the diagnoses. Table 3.11 contains

the configuration for these two models and Table 3.12 contains the results. The

difference between these two models is minimal, but the inclusion of demographics

80

Train Test

Demo? Loss AUC-ROC AUC-PR AUC-ROC AUC-PR

No 0.008(±0.00) 0.885(±0.00) 0.281(±0.01) 0.863(±0.01) 0.209(±0.02)

Yes 0.008(±0.00) 0.884(±0.00) 0.276(±0.01) 0.861(±0.01) 0.208(±0.02)

Table 3.12: Results comparing input with and without demographics in the BERT

model.

seems to slightly decrease the performance of the model. The AUC-PR for the train

dataset shows the biggest decrease from 0.281 to 0.276, whereas for the test dataset

it is minimal from 0.209 to 0.208. While the expectation is for the demographics to

increase the performance, the patients within this dataset exhibit little variability:

the mean age is 28 with a standard deviation of 8.11. Additionally, there exists the

potential that the demographics can be inferred from the diagnoses and thus the

network does not see an advantage in duplicated information.

In summary the demographics seem to provide no benefit to the network, but

rather they cause a slight decrease in performance.

3.4.4 Number of Epochs

When fine-tuning, the number of epochs to run for must be optimized to

ensure that the model is properly trained and does not overfit the validation/test

data. Most applications of the BERT model tend to fine-tune it for 2 to 3 epochs

[87, 111, 112]. However, to identify the optimal number of epochs for this task, a

81

comparison of epochs 1 through 8 was performed. The standard configuration used

across runs is shown in Figure 3.13.

Configuration Value

Model Base bert-base-cased

Extra Pre-Training? No

Num Epochs —–

Max Seq Length 500

Reverse Truncate? No

Demographics? No

Time Tokens None

Data Input Diagnoses (Cased Tokens)

Table 3.13: Model configuration used in comparing number of epochs for training.

Table 3.14 displays the results of the runs and Figure 3.16 visualizes the AUC-

PR over the epochs. While the AUC-PR on the train data increases along with the

epochs, the test AUC-PR begins to show a higher standard deviation at epoch 3 and

eventually begins to decrease. Therefore, 2 epochs appears to be the most optimal

for this application.

3.4.5 Time Tokens

While the BERT models have been able to perform exceptionally well on the

encounters, and more specifically the diagnosis descriptions, embedding the time

82

Train Test

Epochs Loss AUC-ROC AUC-PR AUC-ROC AUC-PR

1 0.299(±0.50) 0.878(±0.00) 0.234(±0.01) 0.861(±0.01) 0.199(±0.02)

2 0.008(±0.00) 0.885(±0.00) 0.281(±0.02) 0.864(±0.01) 0.207(±0.01)

3 0.008(±0.00) 0.887(±0.00) 0.310(±0.05) 0.862(±0.01) 0.205(±0.02)

4 0.008(±0.00) 0.891(±0.00) 0.391(±0.02) 0.862(±0.01) 0.205(±0.02)

5 0.007(±0.00) 0.894(±0.00) 0.433(±0.02) 0.859(±0.00) 0.191(±0.01)

6 0.007(±0.00) 0.893(±0.00) 0.418(±0.05) 0.859(±0.01) 0.189(±0.01)

7 0.006(±0.00) 0.902(±0.00) 0.542(±0.01) 0.853(±0.01) 0.170(±0.01)

8 0.006(±0.00) 0.901(±0.00) 0.548(±0.02) 0.850(±0.00) 0.161(±0.01)

Table 3.14: Results for training BERT models over different number of epochs: 1

through 8.

between encounters is crucial in building a contextual understanding of what the

patient underwent. For example, a depression code many years before the patient’s

mTBI may impact their suicide risk differently than one that was present shortly

before the mTBI. Or a patient that routinely sees a doctor, where less than seven

days passes between their encounters, may be predicted differently than that of a

patient that waits months between their visits. Because of this, we hypothesize that

it is important to embed the context of time into the patient documents that are

input.

Existing work tends to remove time or apply simple aggregations. In the

83

Figure 3.16: The AUC-PR performance over the number of epochs that the model

was trained for. Error bars are the standard deviation across the three patient split

at each epoch.

RETAIN model, the time between encounters was removed. The REACH-VET

model calculated the total number of diagnoses within arbitrarily picked time periods

such as 1 month, 6 months, 12 months, 24 months, etc. In our own past work, we

employed a window technique similar to that of REACH-VET when inputting into

a neural network [76].

Rather than removing time, the Deepr model embedded time directly into their

CNN by creating time tokens represented as words. However, to avoid exploding the

number of word tokens within the model and to allow the model to understand the

similarity between times, they had to aggregate chunks of time into a single word.

The intervals used were measured in months: (0− 1], (1− 3], (3− 6], (6− 12], 12+,

and each interval was translated into a word such that (0 − 1] was represented as

84

“0-1m”. While the Deepr model is able to embed a more true representation of the

EHR compared to that of the window aggregation technique, it still lacks the ability

to provide the network with the detailed time information and requires expertly

crafted intervals.

We extend the Deepr time token implementation by utilizing the ability of the

WordPiece tokens to represent any word, and thus any time input. With this the

number of days between each patient’s encounter, d, was utilized to create several

different embeddings. Each embedding was placed in between encounters within the

patient documents.

• Integer Days: d was represented as an integer.

• Word Summary: d was converted to its logical word representation.

d < 7 day

7 ≤ d ≤ 30 week

d > 30 month

• Plural Time Words: d was converted to a plural integer and word represen-

85

tation. d = 1 1 day

7 ≤ d ddays

7 ≤ d ≤ 14 1week

7 ≤ d ≤ 30 bd/7cweeks

30 ≤ d ≤ 60 1month

60 ≤ d ≤ 365 bd/30cmonths

365 ≤ d ≤ (365 ∗ 2) 1year

d >= (365 ∗ 2) bd/365cyears

The intuition behind the plural time words approach is that BERT has been

found to understand the importance of plural words and the context associated with

them [113].

It should also be noted that the inclusion of time tokens influences the maxi-

mum sequence length of 512 and results in less diagnoses being able to be included.

With this, a large number of time tokens would reduce the amount of diagnosis

information that a model is able to learn from and could ultimately hurt perfor-

mance. To potentially overcome this issue, both the word summary and plural time

words techniques were extended to create variations of each that did not contain the

“SEP” token between encounters. The rationale behind this is that a visualization

of the feature importances, as will be introduced in Section 3.5, it was found that

the BERT model pays a lot of attention to these “SEP” tokens. Plus, the removal

of these tokens would minimize the amount of diagnoses that likewise would need

to be removed.

86

Configuration Value

Model Base bert-base-cased

Extra Pre-Training? No

Num Epochs 2

Max Seq Length 500

Reverse Truncate? No

Demographics? No

Time Tokens —–

Data Input Diagnoses (Cased Tokens)

Table 3.15: Model configuration used in comparing different time token embeddings.

Table 3.15 outlines the model configuration used for the evaluation of the time

tokens and Table 3.17 contains the results for these models. Based on the results

obtained, the embedding of time tokens does in fact improve the performance of the

models. The AUC-PR of 0.207 when no time tokens are used instantly improves

to 0.226 with the “Integer Days” embedding technique. By including contextual

words of “day”, “week”, and “month” within the “Time Words” embedding, a further

improvement to 0.231 is seen.

Introducing plurality to the time words decreases the performance to 0.224,

despite BERT’s ability to understand singular versus plural. Typically BERT dis-

tinguishes between singular and plural when trying to predict the next word to place

within a sentence and the correct grammar is important. In this diagnosis scenario,

87

Train

Time Tokens Loss AUC-ROC AUC-PR

None 0.008(±0.00) 0.885(±0.00) 0.281(±0.02)

Integer Days 0.008(±0.00) 0.891(±0.00) 0.298(±0.01)

Time Words 0.008(±0.00) 0.891(±0.00) 0.296(±0.02)

Time Words, No SEP 0.008(±0.00) 0.888(±0.00) 0.273(±0.02)

Plural Words 0.008(±0.00) 0.887(±0.00) 0.282(±0.01)

Plural Words, No SEP 0.008(±0.00) 0.886(±0.00) 0.274(±0.01)

Table 3.16: Results on different time token embeddings within patient sequences in

BERT (evaluated on the train datasets).

it could be reasoned that the plurality is an unnecessary addition as the meaning

of the word exists regardless and BERT does not need to predict the next word or

token. However, because the “Plural Words” embedding takes utilizes more tokens

and thus removes diagnoses due to the maximum sequence length limit, the reduced

performance could also be attributed to this.

The removal of the separator tokens provided an overall decrease in perfor-

mance. For the “Time Words” embedding it significantly dropped from 0.231 to

0.219. However, for the “Plural Words” embedding the performance increased to

0.225 along with an increase in standard deviation.

Ultimately, the “Time Words” technique with the separator tokens fared the

best within this application. However, the minimal decrease in performance seen

88

Test

Time Tokens AUC-ROC AUC-PR

None 0.864(±0.01) 0.207(±0.01)

Integer Days 0.871(±0.01) 0.226(±0.01)

Time Words 0.874(±0.01) 0.231(±0.01)

Time Words, No SEP 0.871(±0.00) 0.219(±0.00)

Plural Words 0.869(±0.01) 0.224(±0.01)

Plural Words, No SEP 0.868(±0.01) 0.225(±0.02)

Table 3.17: Results on different time token embeddings within patient sequences in

BERT (evaluated on the test datasets).

by the removal of separator tokens for the “Plural Words” technique could be an

insight into the additional context providing benefit that could only be seen with

a model that does not have a maximum sequence length limit. Therefore, for this

work “Time Words” will be utilized, but “Plural Words” should be re-explored in

future extensions.

3.4.6 Procedures

Thus far the diagnoses, and occasionally demographics, have been the only

source of input into the BERT models. While diagnoses provide a wealth of in-

formation, the procedures that patients undergo is an extra source of data that

both complements diagnoses and contains unique insights that the diagnoses cannot

89

describe. Therefore, we construct patient sentences and documents using the pro-

cedure codes in a similar fashion as that of the diagnoses. Because we do not know

how long it will take the model to be fine-tuned on procedures, we run the model

for 2 and 3 epochs as a comparison. Table 3.18 shows the standard configuration

utilized and Table 3.19 shows the results of the procedure runs against a diagnosis

model.

Configuration Value

Model Base bert-base-uncased

Extra Pre-Training? No

Num Epochs 2

Max Seq Length 500

Reverse Truncate? No

Demographics? No

Time Tokens None

Data Input —– (Uncased Tokens)

Table 3.18: Model configuration used in comparing procedures vs diagnoses for

input.

Clearly, the procedures are unable to match the performance of the diagnoses.

Part of this can be explained by the dominance of diagnoses within the dataset

and the sparseness of procedures. Of the 45 million encounters within the dataset,

28.7 million spanned the observation period for constructing features. For these

90

Train Test

Input Loss AUC-ROC AUC-PR AUC-ROC AUC-PR

Diagnoses 0.008(±0.00) 0.885(±0.00) 0.281(±0.01) 0.863(±0.01) 0.209(±0.02)

2 Epochs 0.009(±0.00) 0.848(±0.01) 0.176(±0.02) 0.831(±0.01) 0.131(±0.01)

3 Epochs 0.009(±0.00) 0.854(±0.01) 0.218(±0.01) 0.829(±0.01) 0.136(±0.01)

4 Epochs 0.008(±0.00) 0.0857(±0.01) 0.261(±0.02) 0.831(±0.01) 0.132(±0.02)

Table 3.19: Results on comparing diagnoses vs procedures as input for BERT.

encounters, all but 56,983 contained at least one diagnosis code and these empty

diagnosis encounters did not have any procedure codes either. More importantly,

procedure codes only appeared along with diagnosis codes and never on their own.

Of the almost 28.7 million encounters with diagnosis codes, 11 million of them had

procedure codes.

This 28.7 versus 11 shows the disparity of procedure codes and how the BERT

model received less information when using only procedure codes resulting in lower

performance. However, because the procedures can serve as a complement to the

diagnoses a method to utilize both needs to be explored. In Section 3.6.1 we describe

an ensemble approach that we attempted, but were initially unsuccessful with.

3.4.7 Optimal Configuration

Using the learned information about the different configurations of BERT we

run a final model to obtain the optimal performance. Table 3.20 contains the con-

91

figuration for this optimal model and Table 3.21 contains the performance achieved.

An in depth evaluation of this optimal model was presented in Section 3.3.3.3.

Configuration Value

Model Base bert-base-uncased

Extra Pre-Training? No

Num Epochs 2

Max Seq Length 500

Reverse Truncate? No

Demographics? No

Time Tokens Time Words

Data Input Diagnoses (Uncased Tokens)

Table 3.20: Optimal BERT configuration based on evaluating each parameter indi-

vidually.

Train Test

Loss AUC-ROC AUC-PR AUC-ROC AUC-PR

0.008(±0.00) 0.890(±0.00) 0.298(±0.01) 0.868(±0.01) 0.227(±0.02)

Table 3.21: Result of the BERT model with the optimal configuration.

92

3.5 BERT Classifier Introspection

While the BERT model has been shown to improve performance over existing

approaches, understanding the inner workings of the model and how it arrives at

the decisions that it provides is imperative. Clinicians seek AI tools that are easily

understandable and that can complement their workflow [114]. Building trust and

ensuring proper care is essential and can only be achieved through an explainable

model.

3.5.1 Related Work

BERT, because it is based on neural networks, is inherently considered a black

box and difficult to discern the reasoning behind the decisions that it makes. How-

ever, a tremendous amount of effort has recently been placed into explaining neural

networks and the decisions that they make.

First, attention mechanisms have been introduced into neural networks to

improve performance by allowing the network to learn to only focus on specific

components of the input. With this, the attention vectors can be analyzed to identify

the components that the network pays attention to and thus understand how it

arrived at the corresponding decision. For example, when predicting the next word

in the sentence “In France they speak ” the network would ideally focus on

the previously seen word “France” and thus the vector of possible words would

be weighted the most at the index corresponding to this word. This method of

utilizing attention was seen within the RETAIN approach previously described in

93

Section 3.3.1.2 where the authors utilized the attention mechanism to identify which

past diagnoses contributed the most to a future prediction of heart failure.

An alternative to the purely computational approach is to create visualizations

that attempt to provide introspection. To understand networks learned on images,

CNNVis was created in which the visualization shows what is learned at each layer

of a CNN [115]. For example, in the early layers the network learns colors, patterns,

and textures before slowly evolving into objects and concepts that are finally utilized

to make a prediction. Krause et al. developed a workflow and visualization based

on “instance-level explanations” that attempt to identify which features influence

a correct/incorrect decision [116]. In our own previous work, we have attempted

to build a visualization, similar to that of CNNVis, that attempts to summarize an

entire neural network on raw-valued/vector-valued datasets rather than images [117].

Within this work, we found that it is especially difficult to understand all of the

connections within a network when faced with raw-valued datasets as the data

cannot be visualized as simply as an image can.

As the BERT model is complex such that a series of attention layers are

utilized in the last layer, this makes it even more difficult to visualize the inner

workings compared to that of a simple network that we attempted in our previous

work. Most work on visualizing BERT has focused on understanding the structure

of the model and the correctness of individual neurons. Clark et al. visualized

the various heads of BERT and evaluated the accuracy of each head for part of

speech tagging [118]. Whereas Reif et al. visualized the word embeddings formed

and attempted to understand whether or not the model’s attention vectors contain

94

a representation of the syntactic features [119]. Jesse Vig created a tool called

BertViz that creates a visual representation of each attention layer for the next

word prediction task. The end-user is able to inspect each individual layer to find

model bias or to link a certain neuron to a model behavior [120].

While these existing visualizations have begun the difficult step of understand-

ing BERT, they have focused on the next word prediction task or on the inner struc-

ture of the model. Visualizing the influence of features for a binary decision, such

as suicide risk, presents a different challenge of summarizing the attention heads

and their influence into the final output neuron. This ultimately requires a new

visualization and technique to be created.

As these existing BERT visualizations focus on next word prediction and our

model is based on a binary decision of suicide risk, a new visualization was necessary

to be created. To achieve this, we will attempt to identify which features contributed

the most towards the prediction and then present a visualization.

3.5.2 Feature Attribution Methods

Two feature attribution methods were utilized: Local Interpretable Model-

agnostic Explanations (LIME) [4] and Integrated Gradients [121]. A brief overview

of each of these is given next.

95

3.5.2.1 LIME

As an extensive amount of effort is required to dissect the inner workings of

a model in order to understand the predictions that it makes, LIME was created

to be able to explain the predictions of any classifier, regardless of the underlying

model. For text classification tasks, the end result is a list of the words and their

contribution score for each class. To achieve this LIME takes a text sample and

inputs it into the model to obtain the prediction probability. Then it perturbs the

words within the text to create additional samples. For example, given the sentence

“I hate this movie”, the following samples will be created: “I hate movie”, “I this

movie”, “I movie”, “I hate”, etc.

The probabilities for each of these samples is obtained and then LIME analyzes

how similar each sample is to the original by a metric of distance and applies a linear

model to learn how well the model works around the original text. With the linear

model LIME is able to extract an approximate feature importance towards a class

for each word.

We run LIME on our patient documents to compute the feature importance

scores. The hyperparameters utilized for the LIME explainer were 20 for the number

of samples (size of the neighborhood) and 999999 for the maximum number of

features to include in the explanation. Higher values for the sample size was not

able to run, due to the size of our documents, and the maximum number of features

was set at a large number to ensure that all possible words could be explored.

96

3.5.2.2 Integrated Gradients

Another common approach to computing feature importance is to multiply

the gradient of a neural network by its input to identify which components, often

in the form of pixels, contributed the most to the prediction made by the network.

However, due to a flattening phenomenon within gradients this method is unable

to account for a large part of the prediction and mischaracterizes the features that

contributed the most. Therefore, a new method called Integrated Gradients was

created where a baseline input is utilized and the input is changed one feature at a

time towards the baseline and the gradients are analyzed. With this, small changes

within the gradient are able to be more clearly seen and better contribution scores

are computed more correctly.

For a text prediction task, the input and baseline are tokens to input to a

network and the baseline usually consists of filler tokens. With this, we ran our

patient documents against this Integrated Gradients method using the Captum im-

plementation [122]. The method was run for a total of 20 steps for each input.

3.5.3 Visualization

We integrate the aforementioned feature attribution methods and our best

performing BERT model into an interactive visualization, which can be seen in

Figure 3.17. The split point for this visualization was chosen to be 0.2, where

p ≥ 0.2 was classified as a suicide patient while p < 0.2 was classified as a control

patient.

97

Figure 3.17: An overview of the interface for exploring BERT predictions.

Breaking this interface down: (a) a confusion matrix of the model’s predictions,

(b) the top words or tokens for each respective feature attribution method over all

patients, and (c) the top feature importances for each individual patient.

3.5.3.1 Confusion Matrix

The confusion matrix displayed in section A of Figure 3.17 breaks down the

classification accuracy for each group of patients. Along the vertical columns, the

true suicide and control groups can be seen. Whereas along the horizontal rows the

98

predicted groups are seen. With this it can be seen that 160 patients had suicide

and were predicted correctly, while 532 suicide patients were incorrectly classified

as being control patients.

To encourage exploration of the data and to drill down on the other visualiza-

tions, each cell of the confusion matrix can be selected to restrict the other views of

the interface to only utilize the data within the selection.

3.5.3.2 Overall Feature Importances

Because each feature attribution method computes different importances, Fig-

ure 3.17b contains the top and average words/tokens for each attribution method.

3.5.3.3 Patient Matrix

To encourage exploration of the dataset of patients and to create an under-

standing of the makeup of patients, we build a patient matrix display into Fig-

ure 3.17c where each box corresponds to a single patient. A zoomed in version of

this matrix is shown in Figure 3.18. We break down the components of each patient

box: (i) the cohort that the patient belongs to is shown in the bottom left hand

corner, (ii) a two-sided bar chart showing the top tokens that influenced either a

suicide or control prediction based on positive and negative values respectively, and

(iii) a yellow border and background for patients that were incorrectly classified.

Alternatively the user can choose to toggle the matrix display to heatmaps as

shown in Figure 3.19. With this approach the patient document, that is fed into

99

Figure 3.18: An extracted patient matrix from the visualization.

the BERT model, is displayed token by token within the heatmap filling each row

left to right and then top to bottom. Each token is then colored with its respective

positive or negative influence color, where red corresponds to suicide/positive and

grey corresponds to control/negative. Note that only a subset of the patient docu-

ment is able to be displayed within each box as the entire documents are too large,

but this still gives the user a brief overview of the patient.

The displayed influence scores for both the two-sided bar chart and the heatmaps

are obtained from the selected feature attribution method selected within Fig-

ure 3.17b. This patient matrix view allows the end-user to easily identify patients

that were incorrectly classified and to seek out interesting patterns within the patient

100

Figure 3.19: An extracted patient matrix from the visualization with the heatmap

setting turned on.

documents.

3.5.3.4 Individual Patient View

To provide a more in-depth look at a patient the user is able to click on the

“More Information” button located at the bottom right corner of each box to be

presented with a popup of the patient. An example of this is shown in Figure 3.20.

Within this view, the available cohort, accuracy of the prediction, and demographics

are shown on the left hand side. In the center of the screen the patient document

101

Figure 3.20: Viewing a single patient’s document overlaid with feature importances.

is displayed, in the format that the feature attribution method received it. Each

word of the document is highlighted based on its classification influence. In the

example shown it can be seen that the words “3 day case” strongly influenced the

ultimate suicide prediction. Whereas the words “medical” and “syndrome” were the

most significant at attempting to sway the prediction towards control. Users can

hover over words to identify their feature importance value via a tooltip as shown

in Figure 3.21.

Additionally, to provide an overview of the entire document, on the left and

102

right hand side there exists a column for LIME and IG respectively. Each of these

columns contain an enlarged heatmap of the patient document, as was described

for the patient box in the matrix. By hovering over the sidebar the user can see a

preview of the text that is contained within that section of the document and can

jump directly to it by clicking on it. An example of this is shown in Figure 3.22.

Figure 3.21: Example of hovering over a word in the patient document to identify

its feature importance value.

Altogether this visualization takes a step towards encouraging exploration into

the feature importances for a binary classification task within a BERT model that

previously was not possible. This visualization tool can be used to both identify

weaknesses of the model from a machine learning perspective or to provide clin-

icians and public health decision makers the ability to evaluate this model prior

to deployment. While this is a first step towards interpreting the binary classifier

component of BERT models, more advanced techniques for identifying the feature

importances could greatly improve this visualization.

103

Figure 3.22: Example of hovering over the heatmap sidebar to view a distant location

in the patient document.

3.5.4 Doc2Vec Visualizations

To give additional context into the difficulty of the problem at hand, we utilize

the doc2vec vectors created in Section 3.3.2.4 and visualize them. First, we generate

word clouds for both the suicide patients and the control patients. Two random

suicide patients are shown in Figure 3.23, while two random control patients are

shown in Figure 3.24. Inspecting these word clouds, and those for many other

patients, it can quickly be seen the difficulty in predicting suicide for a given patient.

For the suicide patient labeled “a” there exists “alcohol dependence” and depressive

words which lead to an easier prediction. However, for the suicide patient labeled “b”

104

there exists a lot of words, but nothing that jumps out as being a typical suicide risk

factor. Ultimately, this suicide “b” patient is very similar to the control patients that

also do not have anything that can easily be highlighted as a reason for predicting

suicide.

Figure 3.23: Word clouds for two random patients in the suicide cohort.

Figure 3.24: Word clouds for two random patients in the control cohort.

To better visualize and understand the similarities between the suicide and

control cohorts, we extract the doc2vec vectors for each document and run principal

component analysis (PCA) to reduce the vectors from a high dimensional space to

a low dimensional space that can be visualized. For this the vectors were of size 100

and we utilized the first two or three PCA components to plot the vectors in 2D

and 3D space respectively.

105

Figure 3.25 shows the first two PCA components where red data points corre-

spond to the suicide cohort and blue data points correspond to the control cohort.

It is easy to see that the suicide cohort generally is contained to a specific area,

but these patients are directly overlapped on top of control patients. Figure 3.26

further shows this overlap in the 3D space where (a) contains the combined suicide

and control patients, (b) contains only the control patients, and (c) contains only

the suicide patients. In (a) it is impossible to see the red data points for suicide

patients and exploring this 3D space interactively the red data points are not visible

from any angle. Analyzing (b) and (c) to understand the distribution of these two

cohorts, we identify that the red suicide patients are nested within the blue control

patients.

While this is a massive simplification of the problem, through the use of

doc2vec and PCA, these examples underscore the difficulty of discerning between

the suicide and control cohorts. The computed patient documents are relatively

similar in nature and identifying the correct characteristics for classification is a

challenging task for any model to perform.

106

Figure 3.25: A 2D visualization for the first two components of PCA that was run

on the doc2vec vectors.

107

Figure 3.26: A 3D visualization for the first three components of PCA that was

run on the doc2vec vectors. (a) Both suicide and control patients, (b) only control

patients, and (c) only suicide patients.

108

3.6 What Didn’t Work?

There were a couple of approaches that were attempted throughout this chap-

ter, but were unsuccessful at achieving better performance. For completeness and

for future work to build off of, these approaches are described below.

3.6.1 BERT Ensemble

As the base BERT model is limited by the 512 token maximum sequence

length that was defined by Google when building and training their BERT model

bases, we took steps to work within this limit by truncating the patient sequences.

We found that keeping the oldest diagnoses first when trimming produced the best

results. However, there could be additional information in the newer diagnoses that

could help steer the model towards better predictions. Additionally, as we focused

only on diagnoses there may be indicators within the procedures that could further

improve our models.

With this in mind we attempted to create a BERT ensemble where we trained

two separate BERT models: one on truncated diagnoses and one on truncated

procedures. Then we extracted the final hidden state of the BERT model, prior

to the binary output layer, and created an ensemble-like neural network. This

neural network took as input the extracted diagnosis hidden states and fed them

into an RNN to create a final vector, and similarly took the extracted procedure

hidden states and fed them into another RNN to create a final vector, and then

concatenated these two final vectors along with a vector of patient demographics to

109

then feed through a standard feedforward layer. Both of the RNN layers utilized

LSTM nodes and the hidden layer used the RELU activation.

There were two challenges faced within this ensemble model: (1) which hidden

state to extract and (2) poor performance when utilizing multiple factors.

First, the architecture of the BERT model is such that prior to the single

output node for the binary classification task, there exist a series of attention layers.

In a typical RNN layer there is a single hidden state at each timestep and thus

the single vector can be extracted. But within the series of attention layers in

BERT this results in a two-dimensional vector. This vector can either be flattened,

resulting in an extremely large and difficult to train vector, or a single layer can be

utilized. Commonly the first layer’s hidden state, corresponding to the beginning

of the sentence token, is extracted. When only using this hidden state in an RNN

without any other factors we found that the performance was similar to or worse

than that of the BERT model, which is to be expected as information was removed.

Therefore, identifying a way to utilize the entirety of the BERT model within an

ensemble would be a logical next step.

Second, we found introducing a demographic vector to the diagnoses when

training the ensemble caused the performance to significantly decrease. We at-

tempted to encode the age into the demographic vector by normalizing it between 0

and 1, age/120, or logarithmically scaling the age, log(age) or log(120− age). The

gender was encoded as 0 for males and 1 for females. And the patient’s branch of

service was converted to a one-hot vector. Throughout each of these encodings, the

model’s performance would significantly decrease in an unknown manner. There are

110

two intuitions behind this drastic decrease in performance: (i) the diagnoses may

already have some encoding or representation of the patient embedded within them

and (ii) the age and gender distribution of the patients possesses little variation and

the branch of service may not have as big of an impact on suicide as was expected.

For the future we seek to attempt to use one of the iterations of BERT that

have been developed, such as XLNet [109] or Big Bird [110], that allow for infinitely

long sequences to be input. With these, our model would not require the truncation

of sequences and we could attempt multiple variations of models: (i) we could input

the diagnoses, procedures, and demographics all at once into a single BERT model

and allow it to discern between the features or (ii) we could build a separate model for

each component (diagnoses, procedures, and demographics) and build an ensemble

that uses what each of these models has learned to arrive at a final prediction.

3.6.2 Attempts without Ideation

Initially when building our model, we defined the patient populations such

that the suicide cohort consisted only of patients with a suicide attempt diagnosis

code. This meant that the patients with only a suicide ideation code were placed in

the control cohort. The intuition behind this was that a suicide ideation would be

more noisy and less informative than that of an attempt. However, the performance

of our models significantly suffered such that the BERT model was only achieving

an AUC-PR of about 0.07 (which was still the best performing model). Upon

consultation with a clinician (MD and board certified), we identified that both

111

attempts and ideation are important for this task and that suicide ideation codes

are well documented and clearly defined.

3.6.3 Downsampling & Weighted Loss

We attempted to utilize downsampling such that our roughly 1 to 100 ratio of

suicide to control was converted to 1 to 10 by removing control patients. Addition-

ally, we attempted to weight the loss of each classifier by placing a higher importance

on the suicide patients compared to that of the control patients. For both of these

variations we found that the performance of our models slightly decreased or stayed

about the same, thus nullifying the need for either of these alterations.

112

3.7 Limitations

While our NLP patient representation and optimal BERT model have shown

to outperform the existing state of the art, suicide-based, and baseline models, there

is additional work that is necessary to improve the efficacy of this model. Given

that the REACH-VET model [64] is currently deployed by the Veterans Health Ad-

ministration (VHA), there is evidence that these models are currently being utilized

within healthcare settings. Thus, when making a selection between a model such as

the REACH-VET and our own BERT model, a decision between performance and

interpretability must be made. While we have attempted and hope to lessen the gap

to inspecting the BERT model through the feature visualization that we outlined in

Section 3.5, additional work is still necessary. Furthermore, a recent critical review

of suicide prediction models found that most of the developed tools have no clinical

value [62]. They suggest that new approaches should be linked directly to concrete

clinical questions where the models and tools can be evaluated based on an overall

net-benefit rather than sensitivity or positive predictive value (PPV). While we be-

lieve that our approach is different from that of the traditional logistic regression

and time removal techniques, we seek to learn from this review and further evaluate

our model in this new manner.

Additionally, while our BERT model did not see a boost in performance, and

occasionally a decrease in performance, when appending demographics to the input

this can be seen as a cause for concern. The hypothesis behind this result is that

the ages within the dataset are relatively similar, that the diagnoses inherently em-

113

bed the demographics within them, and that the addition of demographic tokens

removed potentially vital diagnosis tokens due to the maximum sequence length

limitation of the base BERT model. However, both demographics [123] and ser-

vice branch [124] have been shown to be vital suicide risk factors. Because of this,

we should expect to see an increase in performance through the addition of demo-

graphics rather than the result that we observed. We believe that an ensemble model

should be utilized in the future to overcome this as was discussed in Section 3.6.1.

3.8 Conclusion

Within this chapter we introduced our model for predicting suicide risk in

mTBI patients a year post injury. For this we explored state of the art models

for diagnosis prediction and baseline models for clinical data as well as NLP data.

Ultimately our BERT model significantly outperformed the existing models in terms

of AUC-PR. For the future, we look to extend this model onto different variations

of the BERT model that do not possess the same maximum sequence length as the

base BERT.

Through our introduction of BERT into this suicide prediction task, we pre-

sented our novel NLP-based patient representation. For this we identified that

clinicians search for diagnosis codes within the EHR using text rather than directly

searching for codes. Because of this and the difficulty of expressing differences

between two codes, we chose to operate on the diagnoses using their textual de-

scriptions rather than the raw ICD-10 code structure to preserve the original form

114

of the code as intended by the clinician. This results in a complex “document” for

each patient that can be fed into a model. While past NLP models and approaches

did not seem to fare well with this patient representation, the recent explosion of

NLP model performances and the introduction of BERT seem to make for a great

pairing as can be evidenced through our results.

Finally, to begin to explore the interpretability of a BERT model fine-tuned on

the binary classification task we constructed a visualization using multiple feature

attribution methods. To our knowledge this is the first work of its kind, as other

visualizations and inspections have been based on the next sentence prediction task.

Within this visualization it is possible to identify the tokens/words that our model

attends to the most and finds the most important in making its final prediction.

While the increase in performance of our model, compared to that of existing sui-

cide prediction models, already encourages deployment into a clinical scenario, by

providing clinical interpretability we aim to strengthen the use case.

As most of these datasets contain large amounts of sequences and are ever-

increasingly growing, being able to visualize and understand the entirety of the

dataset is a challenging task. For example, a dataset that has a million sequences

does not have enough screen space, in terms of pixels, to display all of the records.

Additionally, even if there was enough screen space there would be a large amount

of patterns for one to have to inspect and discern between to understand the dataset

as a whole. Therefore, while we are now able to predict irregular events through

the work shown within this chapter, it is necessary to support the exploration of a

dataset through a summarization technique that allows for large scale data to be

115

simplified for easy interpretation.

116

Chapter 4: Visual Summarization of Temporal Sequences

4.1 Introduction

Events exist everywhere in life: online consumers perform a series of compar-

isons and clicks before purchasing an item [125], patients go to different doctors and

try different therapies during the recovery from a specific condition [43, 126, 127],

sports teams make plays and score back-and-forth during a match [43]. Through-

out all domains, a temporal event can be described as a data point denoted by a

timestamp and event type. During the last few years, the increased availability of

large-scale temporal datasets that contain complex and long sequences has under-

scored the importance for designing scalable techniques to easily identify trends and

to answer important questions from irregular, noisy, and large longitudinal datasets.

However, while events can exist in a vast array of domains, summarizing a

large temporal event dataset remains a difficult task. Many techniques have been

developed in recent years that provide analysts with the ability to filter, explore,

and simplify their data. However, while these approaches have been shown to work

on regular event datasets, they face significant challenges when time is introduced.

Rather than taking into account that a series of events during a certain temporal

window can be vastly different than the exact same events within another temporal

117

window, these approaches treat them as identical and thus lose crucial information.

Because time can be vital to the exploration and understanding of event

datasets, an approach that is able to handle large scale temporal data, generate

a summary, and provide the ability to explore at multiple levels of detail could

greatly assist the analytical requirements of temporal event researchers and ensure

that vital temporal information is not lost.

In this chapter we present TrajectoryFlow, a scalable algorithm and visual-

ization, that has been built to effectively analyze and summarize temporal event

datasets. The primary contributions of this work include: (1) An adaptive window-

based algorithm that summarizes large datasets of temporal sequences by taking into

account the temporal context of patterns and trajectories and creating an overall

view, and (2) a novel event summary diagram that reduces the analytical complexity

used to visualize the results of event mining approaches.

118

Figure 4.1: Illustration showing an example of a temporal event dataset.

4.2 Temporal Events

A temporal event dataset can be defined as a set of sequencesD = {S0, S1, ..., Sn}

where each sequence Si =< I0, I1, ...Im > contains a timestamped series of items Ii

arranged in a specific order with respect to the timestamps. The arrangement of the

items can be used to derive temporal relationships within the data such as Ii ≺ Ii+1

describing that Ii happened before Ii+1, also referred to as “temporal context”. Each

itemset, Ii, contains a set of event types such that Ii =< T0, T1, ..., Tp > and Ti ∈ E

where E = {e0, e1, ..., en} is a dictionary of event types. An example of a dataset

of sequences is shown in Figure 4.1, where each row represents a sequence Si that

contains itemsets Ii with one or more event types. Additionally, each row represents

time in the horizontal direction such that time increases from left to right. Note

that the term sequence and record are and can be used interchangeably.

At first glance some of the patterns in Figure 4.1 are easy to notice due to

119

Figure 4.2: An example summarization of Figure 4.1, showing the usefulness of

summarizing a dataset of sequences.

the relatively small nature of the dataset, but more hidden and embedded patterns

are difficult to identify and would require analyzing each sequence individually to be

able to pick them out. As the size of this dataset grows from only 5 rows to hundreds

or even millions of rows and from a maximum of 15 data points to millions of data

points, these patterns become increasingly more difficult to identify and spot.

Additionally, a common task associated with these datasets is to extract the

trajectory between two events. Within the healthcare domain this allows for the

diagnoses that a patient will experience to be highlighted. For example, understand-

ing the path/trajectory from the moment that a patient has a concussion to when

they commit suicide could help to identify beneficial moments for intervention.

With this in mind, Figure 4.2 shows a summary of the dataset where the

summary contains the most common path of events that occur between event #1

(triangle) and event #4 (hexagon), taking temporal positioning (horizontal) into

account. This event summary provides a concise description of the dataset and

shows how an analyst could easily understand the patterns contained within their

dataset easier.

120

4.3 Related Work

In the visualization field, a common method of understanding event sequences

has been to visualize a single record/sequence to understand its path over time

[41,128–131]. More recently, a dataset of sequences has been visualized by stacking

sequences vertically on top of one another and attempting to merge identical paths

to allow for interactive clustering [132, 133], filtering [134], exploration [135], and

searching [32,134,136–139].

There are several notable examples of systems that employ these visualization

techniques on event datasets. EventFlow [43] presents an aggregated display of

event sequences and allows users to simplify large, complex datasets into a concise

display through filters and merging of events. MatrixWave [140] adapted the concept

of a Sankey diagram into a matrix visualization for comparing event sequences.

CareFlow [127] used a similarity distance metric to identify a population of similar

records and display them in a flow visualization allowing for users to be able to

identify the most effective outcomes based on sequence paths. Outflow [141] aligned

sequences on a specific event and aggregated them into a directed acyclic graph

(DAG) which was used to visualize results in a Sankey-type interactive visualization.

While these approaches are powerful and novel in their applications, they lack

the ability to properly evaluate temporal sequences. Each of these approaches rely

on merging events together based off of their index within a sequence rather than

the time at which the event occurred. For example, we obtained a soccer match

dataset of 9,084 games and over 900,000 data points and loaded it into the popular

121

EventFlow system [43] to explore the longitudinal patterns that occur over the span

of the game. The result can be seen in Figure 4.3. At first glance we can see that the

tool is effective at making it easier for users to identify that the green and blue events

are the most common events that occur at the beginning of the sequences. However,

beyond that initial starting point the visualization becomes complex and patterns

become very difficult to identify. What are the most common types of events to

occur near the end of the game? What about events that occur around halftime?

Knowledge of the game of soccer would cause a user to expect to see substitutions to

be very common towards the end of the game, but in this visualization this cannot

be found.

The reason for this limitation in existing systems is that sequences are at-

tempted to be merged together at each event and the moment that a mismatch

occurs, the sequences are diverged. However, knowledge of temporal sequences tells

us that there could be noise in between common patterns and thus those common

patterns should ideally be identified to be merged together.

To help identify common patterns throughout a dataset, recent approaches

have utilized Frequent Sequence Mining (FSM) algorithms to identify the frequent

patterns contained within a dataset and present a concise view to users. FSM is a

popular technique for finding the most frequently occurring subsequences of events in

datasets of sequences [142]. These algorithms are able to identify the most common

patterns of events within a dataset and extract them, regardless of where they occur.

Using FSM, Liu et al. presented both the most frequent patterns and an icicle plot

of all sequences within a dataset [143]. Kwon et al. also utilized an FSM algorithm

122

Figure 4.3: A screenshot of a popular even mining tool used to visualize and explore

the longitudinal patterns within a soccer match dataset of 9,084 games and over

900,000 data points.

123

to display similar information in addition to a histogram and network of the overall

dataset [144]. DecisionFlow [126] combined FSM and statistical methods to identify

frequent sequences and their correlations to specific outcomes which was presented in

a timeline and pattern diagram to understand the statistical results. Frequence [145]

modified an FSM algorithm to visualize the most frequent subsequences and their

outcome measures in a Sankey diagram.

While these approaches using FSM assist users in identifying patterns that

frequently occur they still lack the ability to take into account the context of time

due to the limitation that FSM algorithms do not factor in the temporal position

of each frequent pattern. Thus, a pattern that exists at the beginning of a sequence

is considered the same as one that occurs at the end of a sequence. Continuing to

use the game of soccer as an example from Figure 4.3, two substitutions in a row at

the beginning of a game would be considered the same as ones that occurred at the

very end of the game. However, in the domain of soccer, these are not the same as

the ones at the beginning of a game are considered more of an anomaly. Therefore,

while FSM algorithms have provided progress in analyzing event datasets, there still

exists room for integrating temporal context into these analyses.

124

4.4 Mining Temporal Sequences

Our first contribution is an adaptive window-based algorithm that introduces

a temporal context to a popular mining algorithm, PrefixSpan [146, 147]. We title

our algorithm: Adaptive-Window-PrefixSpan (AWP-Span) and the pseudocode is

shown in Algorithm 1. In order to understand our algorithm, we first provide an

explanation and example of FSM algorithms, and most specifically the PrefixSpan

algorithm.

4.4.1 Frequent Sequence Mining

Frequent Sequence Mining (FSM) is a popular technique for finding the most

frequently occurring subsequences of events in datasets of sequences [142]. These

algorithms define a subsequence as being “frequently occurring” when the number

of sequences that it is contained in is more than a certain support threshold. FSM

algorithms stem from either Apriori-based or pattern-growth-based approaches [142,

148–150], but the general structure of an FSM algorithm is to build a frequent set

of events that are each of length one and then to continue growing these events by

concatenating more events until the defined threshold is met. This results in the

algorithm producing a list of frequent subsequences and the number of sequences

that each of them appear in.

When computing the frequent subsequences of a dataset, a sequence, Si =<

Ii1, Ii2, ...Iim >, is considered to be a subsequence of another sequence, Sj =<

Ij1, Ij2, ...Ijn > if there are m itemsets in Sj that satisfy Ii1 ⊆ Ij1, Ii2 ⊆ Ij2, Ii3 ⊆

125

Ij3, ..., Iim ⊆ Ijm. It can also be said in reverse that Sj contains Si.

The support, τ , of a subsequence, Sk, is defined as the fraction of all sequences

in a dataset that contain the subsequence Sk. In FSM algorithms a support threshold

is predefined such that when the “frequently occurring” subsequences are returned,

they have a support at least as large as the threshold.

To better explain FSM algorithms, we will provide an example of how to

determine if a subsequence is frequently occurring. In this example we will utilize

the dataset D shown in Table 4.1 and a support threshold, τ , of 50% to determine

if the subsequence Sf =< A,B,D > is frequently occurring. The support threshold

of 50% means that at least 50% of all sequences in the dataset, D, must contain the

subsequence Sf for it to be considered “frequently occurring”.

Iterating through the sequences we first can see that S1 does contain Sf as

it has A in the first itemset, followed by B in the second itemset, and D in the

third itemset. Looking at the next sequence, S2, we can see that it contains A in

the first itemset, but does not contain B in its second itemset which would initially

seem that it does not contain Sf . However, starting from the second itemset we

can see that it contains A, followed by a B in the third itemset, and finally a D in

the fourth itemset. This means that S2 does in fact contain Sf and shows how the

subsequence can be contained anywhere in the location of the sequence. Moving

along to the final sequence, S3, we can see that it contains A followed by B in its

first two itemsets, but in its third itemset it lacks the D event resulting in it not

containing Sf .

Through iteratively looking at the sequences we could see that S1 and S2

126

Table 4.1: Example Dataset

Items #1 Items #2 Items #3 Items #4

S1 {A, C} {B, D} {C, D}

S2 {A} {A, C} {B, D} {C, D}

S3 {A} {B} {C} {D}

contained Sf , while S3 did not, resulting in Sf being present in 66% of the dataset,

thus we can conclude that Sf is frequently occurring due to 66% being at least as high

as the threshold of 50%. In this example we have shown how FSM algorithms are

able to identify all of the frequent subsequences, but instead of taking a brute-force

approach they operate on efficient data structures for an optimal search strategy.

While FSM algorithms can identify the most frequent subsequences in a dataset,

they do not possess the ability to take into account temporal context and build a

trajectory between two events. One of the issues with lacking temporal context was

highlighted in the example shown in Section 4.4.1 and Table 4.1 where the frequent

subsequence Sf occurred in a different location within S2 than it did in S1. While

the example contained sequences of relatively short length, in real world data the

sequences may be very long and frequent patterns at the beginning of a sequence

may not necessarily contain the same meaning as a pattern at the end of a sequence.

This limitation poses a problem for tasks where an event dataset researcher seeks to

identify the most common patterns within a certain stage of all sequences because

the frequent subsequences obtained from FSM algorithms will potentially be present

127

in a different section of each sequence.

In addition, as event researchers also attempt to understand the various paths

that sequences may take, mapping the output of an FSM algorithm to a visualization

would result in little information on the trajectories embedded within the dataset.

For example, representing the frequent subsequences within a Sankey diagram would

simply show the most common patterns within the dataset, but not provide an

analyst with information on the most common trajectories and the varying paths

followed by sequences.

With these limitations in mind we extend the work of PrefixSpan to include a

window technique that is able to take into account the temporal context of a dataset

in each window and build an overall pattern followed by the majority of sequences.

4.4.2 AWP-Span

Our algorithm, AWP-Span takes as input a dataset of sequences D, a support

threshold τ , and a list of windows W of size ω denoting the number of segments the

dataset should be split into. The execution of AWP-Span begins with splitting the

dataset D into the windows defined by W and then identifying the most frequently

occurring subsequences in each window using PrefixSpan. For example, Figure 4.4

provides an example of this beginning execution step. In this example the dataset

in Figure 4.4 (left) is split into two windows of size ω such that W = W1,W2.

Then Figure 4.4 (right) shows a table of the subsequences that occur in W1 and the

subsequences that occur in W2. The red lines through certain subsequences indicate

128

Figure 4.4: (Left) An example of a dataset being split into two windows each of size

ω and a support threshold of τ = 3. (Right) The frequent subsequences that result

from running PrefixSpan on W1 and W2. The red lines indicate the subsequences

that were ignored by the algorithm as they occurred less than the support threshold.

that they are not “frequently occuring” as the number of times that they occur

is less than the support threshold of three. By splitting a dataset into windows,

like we have shown, we are able to incorporate a temporal context into PrefixSpan

allowing for it to identify the common patterns at different stages of a sequence

rather than ignoring the premise that sequences change over time and patterns in

different temporal locations may not be indicative of the same pattern. Being able to

evaluate the various stages of a sequence is an important task that event researchers

seek to accomplish and this modification of the PrefixSpan algorithm builds this

ability directly into the algorithm.

Once we have identified the most common subsequences in each window, con-

129

necting the windows together such that events flow from one window to the next is

the next step in building a common flow and understanding the long term patterns

in a dataset.

4.4.2.1 Window Merge

To connect two adjoining windows, a simple approach would be to concate-

nate two windows’ frequent subsequences together based on the beginning and end-

ing events. For instance given the frequent subsequences for two example windows

W1 = [< A,B,C >,< A,D >] and W2 = [< C,D >,< C, F >], the subsequence

“ABC” in the first window would be connected to “CD” in the second window such

that it forms “ABCD”. “ABC” would also be concatenated with “CF” to form “ABCF”

and this process would continue for all possible combinations between the two win-

dows. However, connecting windows in this manner is a challenging task as it is

not guaranteed that there will be connecting events, which can be seen in the sub-

sequences “AD” in W1 and “CF” in W2 where the ending event of ‘D’ in “AD” is not

equal to ‘C’ in “CF”.

Another issue with this simple method of concatenation is that there may

exist extra information between the frequent subsequences that could be valuable.

For example, many patients could have the frequent subsequences of <“Cancer”,

“Chemotherapy”>followed by <“MentalHealth”, “Chemotherapy”>, but some pa-

tients may have gone to a “GroupTherapy” class in between the frequent subse-

quences that would reveal some extra information. Rather than discarding this

130

additional information it is important to keep it.

In the example of “ABC” and “CD” forming “ABCD”, there may be information

in the dataset records that exist between these two subsequences. For example,

there may be a record that consists of “ABCEFCD” which would indicate that

the concatenation “ABCD” is not representative of all records in the dataset. While

analyzing an event dataset, researchers are interested in all of the varying paths that

sequences can take and this simple concatenation would not represent the smaller,

hidden patterns.

Therefore, we recognize that a single event sequence may contain one of two

types of information in between its two windows: either noise or no information

at all; and to resolve the issues present in the simple concatenation, we develop a

method WindowMerge that conjoins windows by using both a direct connection and

a wildcard connection, where a direct connection is indicative of no information in

between subsequences and a wildcard connection is indicative of extraneous infor-

mation. Using this methodology, we can iteratively combine the frequent patterns

found in adjoining windows to create an overall flow of events throughout a dataset.

We include our WindowMerge in Algorithm 1.

Breaking this method down WindowMerge takes two windows to connect, Wi

and Wj, where Wi < Wj, and returns the number of direct connections, Cd, and

the number of wildcard connections, Cw between the two windows. The method’s

execution begins by filtering the dataset of sequences D to only look at the section of

the sequences that span the windows such that: Sij = D ∈ {Wi,Wj}. Then for each

frequent subsequence in each window, Fim ∈ Wi and Fjn ∈ Wj where m is the mth

131

Figure 4.5: An example of running WindowMerge on windows W1 and W2. On

the right the table is filled in both direct (orange arrow) and wildcard (orange ∼)

connections for each combination of frequent subsequences found in Figure 4.4. On

the left, the connections for the first two rows and how the counts are determined

is shown.

132

frequent subsequence inWi and n is the nth frequent subsequence inWj, it identifies

the index locations of these frequent subsequences in the sequences of the windows

such that the index locations are at the closest possible indices to the connection

between the windows: Lim = max(index(Sij, Fim)) and Ljn = min(index(Sij, Fjn)).

By choosing the indices closest to the edge where the two windows meet, this ensures

that each sequence can only be counted once in the case of repeated events.

Then for each pair of index locations that exist, the method identifies if there

exist events between the locations or not. If the locations contain no events in the

middle, Ljn − Lim = 0, then the direct connection count for that pair of frequent

subsequences is incremented Cd ← Cd + 1, or otherwise if Ljn − Lim > 0 then the

wildcard connection is incremented Cw ← Cw + 1.

An example of the WindowMerge method is shown in Figure 4.5 where the

windows W1 and W2 are merged together. The table on the right is populated with

the combination of frequent subsequences that were obtained previously for both

windows. Each respective combination is connected via a direct connection and a

wildcard connection which can be seen by the arrows and tilde in the table. To com-

pute the number of occurrences for the first combination of frequent subsequences,

which corresponds to the first two rows of the table, Figure 4.5 highlights where the

subsequences from the combination occurs in the dataset between the windows. In

this example it can be seen that the first sequence contains an extra blue square

between the two green triangles indicating that the triangles are joined together by

a wildcard connection, then in the third sequence there exists a red circle in between

the triangles indicating that it is also a wildcard connection, and finally in the last

133

sequence there exists no extra events between the two green triangles indicating that

they have a direct connection between each other. Therefore, the table is filled in

with a value of one for the direct connection and a value of two for the wildcard

connection. This process would continue for the rest of the combinations of frequent

subsequences to obtain the final result between windows.

In this example that we have presented, we can see the issue of repeated

events that was mentioned in the definition of the window connections: the first

and last sequences in Figure 4.5 contain multiple triangle events which would alter

the counts that we obtain. Had each possible index location been considered for

these two sequences then each possible pair of triangles would have been counted

resulting in the first sequence containing four wildcard connections and the last

sequence containing three wildcard and one direct connection. However, counting

multiple connections for a single sequence would present the assumption that the

sequence takes multiple varying paths which would not be accurate against the

premise that each sequence is a series of events. For example, in the first sequence if

we evaluated both triangle, triangle, square, triangle and triangle, square, triangle

then we would be making the assumption that the sequence went through both of

these subsequences at different times when in reality the second is just a subset of

the first. By misrepresenting the number of sequences in the dataset, we would not

be able to correctly evaluate the task of identifying the most common trajectories

that sequences followed as a minority trajectory consisting of repeated events would

become heavily weighted and lead to inaccurate insights of the dataset.

134

4.4.2.2 Initial Evaluation

Figure 4.6: An example showcasing the reduction that our AWP-Span algorithm

performs. (Left) Shows a Sankey diagram of 10 sequences in the dataset, without any

reduction or algorithm run. Only 10 sequences are able to be shown due to the space

limitations. (Right) Shows the results produced by our AWP-Span algorithm with

window size of 30 for the large dataset of sequences. The yellow nodes correspond

to wildcard connections.

To show an example of how our AWP-Span algorithm is able to provide a

reduction and a summary of the overall sequences in a dataset, we extract seven

sequences from an EHR dataset that will further be explored in the EHR case study

in Section 4.6.3. This dataset contains a patient’s diagnosis at each temporal event.

Figure 4.6 Left shows the seven sequences prior to our algorithm being run. We

limit the Sankey diagram to only seven sequences due to space limitations, but we

can already see the complexity that these sequences contain and the difficulty in

135

performing any analysis. The complexity increases exponentially as the size of the

dataset increases.

With this, we show the results of our algorithm in Figure 4.6 Right where

the mined patterns are displayed on the Sankey diagram and the yellow nodes

correspond to wildcard connections. We will describe the approach that we take

in generating this Sankey diagram in more detail in Section 4.5, but at first glance

we can already see the reduction in complexity and the ease of identifying patterns

in our algorithm’s results.

4.4.2.3 Trajectory Analysis

A common challenge faced by researchers when analyzing temporal sequences

is exploring the trajectory from one event to another. For example, a researcher

commonly asks the question: “What path did sequences follow to get from A to C?”.

The path that is followed can vary from being short in length, “A ->B ->C”, or very

long, “A ->B ->E ->F ->G ->C”. We embed the ability to build such a trajectory

into our algorithm by providing the option to specify beginning, Eb, and/or ending,

Ee, events. When either of these events is set, then the algorithm will only consider

frequent subsequences that occur between the two events and prune any incoming

connections to the beginning event or any outgoing connections from the ending

event. We will now define the pruning that our algorithm employs.

Given a sequence, S1, our algorithm will identify the index of the first oc-

currence of Eb such that Ib = index(S1, Eb) and the index of the last occurrence

136

of Ee such that Ie = index(S1, Ee). Then for each frequent subsequence that is

encountered in the algorithm, Sf , it will identify the index of the subsequence in

the encompassing sequence such that If = index(S1, Sf). If the index of the subse-

quence falls between the first and last occurrence of the beginning events and ending

events then it will be considered (Ib ≤ If ≤ Ie). However, if it does not fall within

the bounds then the algorithm will skip that frequent subsequence.

To remove the connections leading into the beginning event and stemming from

the ending event, anytime that the algorithm encounters a beginning event Eb in a

frequent subsequence, no incoming connections are made to the event. For example,

a subsequence of < A,B,C > in window Wi with a beginning event Eb = “B′′ will

cause the subsequence to be pruned to < B,C > as the “A” event occurred before

the beginning event. In addition, any frequent subsequences in the prior window,

Wi−1, will not make a direct or wildcard connection to this subsequence.

Conversely, anytime that the algorithm encounters an ending event Ee in a

frequent subsequence, no outgoing connections are made from the event, such that

a subsequence of < D,E, F > in window Wj with an ending event Ee = “E ′′ will

be pruned to < D,E > and no connections to the window Wj+1 will be made.

By allowing for a trajectory to be built from the first beginning event to the

last ending event, there exists the possibility that there may be multiple beginning

or ending events contained within these bounds. We do not attempt to remove

these repeated events as keeping them allows for researchers to better understand

varying pathways. For example, if the beginning event exists in multiple windows

then this indicates that the relevant trajectories may have begun at different time

137

points which can assist in providing researchers the ability to accomplish their task

of understanding all of the various paths that the sequences within their dataset can

follow.

4.4.2.4 Adaptive Windows

While the AWP-Span algorithm that we have developed is effective at identi-

fying common subsequences or building a trajectory within a temporal context, we

recognized through test runs of our algorithm that identifying the optimal windows

to split a dataset on is challenging and can be the deciding factor in obtaining a

meaningful result for a specific domain. For example, consider a dataset that con-

tains events on an interval unit of a day and events that are sparsely distributed over

the sequences, where a lot of events occur at the beginning of sequences but very

few events occur at the end of sequences. Setting a fixed window size of ω = 30 days

would cause the number of events in later windows to be significantly less than those

in earlier windows. With this difference important patterns may become “chunked”

together in earlier windows or not enough events may exist in later windows for

patterns to be identified. In addition, identifying the exact number of windows that

should exist is another difficult challenge similar to that of identifying the optimal

number of clusters in clustering algorithms [151–153]. Because of these challenges,

it would be beneficial to provide an optional functionality to automatically identify

the optimal number of windows and for these windows to be varying in size such

that areas where data is sparse would be combined and areas of density would be

138

split.

To provide a solution to this challenging problem, we devised a complementary

algorithm that returns the optimal window configuration, W , to be used as input to

the AWP-Span algorithm. We define optimal as a window configuration where the

events are about evenly spaced out across the windows, such that no window has too

sparse or too dense of temporal data. We refer to this algorithm as “AdaptiveWin-

dows” as it adapts the windows such that they fit the dataset and domain that are

being analyzed. This adaption of windows is accomplished by ensuring that the

windows are expanded or collapsed such that the number of sequences embedded

within each window is similar. We present the algorithm in Algorithm 3 and will

provide a brief explanation.

The AdaptiveWindow algorithm takes a dataset of event sequences, D, an

application specific window measurement, n, and returns a list of windows with

their respective upper and lower bounds. We introduce the idea of an application

specific window measurement as it allows for domain knowledge to be embedded

into the configuration of the windows. The window measurement, n, is a window

size that represents how data in the domain is usually segmented or it can be a

value that the researcher believes would be the best fit for segmentation through

windows. For example, in a financial domain a researcher may input a quarter of a

year for the window measurement as sales data is typically measured per quarter.

In another domain, such as sports, a researcher may choose to split the data based

on possession of a ball as changes in possessions may lead to different types of

patterns. By providing an avenue to embed domain knowledge and application

139

specific requirements into our AdaptiveWindow algorithm, the windows returned

will fit both the dataset and the domain.

Breaking down the algorithm it first creates a temporary list of windows:

Wt =< T0, T1, ..., Tk > where each temporary window is equally spaced such that

they are all of size n: (T1 − T0) = n. As each sequence in the dataset, D, contains

a list of itemsets, I, and each itemset is denoted by a timestamp such that It is

the timestamp of when the events in I occurred; the first window in the temporary

windows begins at the earliest timestamp, t0, that exists in the dataset. Building

from there the window boundaries occur at t0 + (n ∗ i) where i is the window

index. Using this domain specific window measurement the algorithm places the

itemsets of the data into the respective temporary window in which they occur.

Once the temporary windows have been built the number of itemsets in each window

is calculated, |Tk|, and then averaged together to identify the average across the

dataset, A = 〈< |T0|, |T1|, ..., |Tk| >〉. This average itemsets, A, represents the

average number of events contained in each window when spaced by the domain

measurement n.

Once the average has been calculated it is then used to construct the optimal

list of windows, Wo, where each window contains approximately A itemsets. By

constructing windows that contain approximately A itemsets each, this means that

the final set of windows will be reflective of the domain that was input into the al-

gorithm. To construct the optimal windows, Wo, a famous method of discretization,

also known as equal-frequency binning is utilized [154].

With the optimal windows identified, both sparse and dense areas of events

140

in the dataset will be eliminated allowing for windows of varying size that contain

approximately an equal amount of data.

141

Algorithm 1 AWP-Span Part 1
Input: D, dataset of event sequences

E, event dictionary

W , windows of size ω

τ , support threshold

Eb, beginning event(optional)

Ee, ending event (optional)

Output: F , frequent subsequences for each window

C, connection values between each window

{Filter for beginning and ending events}

if Eb ∈ E then

for Si ∈ D do

Si ← Si ∈ index(Si, Eb),

end for

end if

if Ee ∈ E then

for Si ∈ D do

Si ← Si ∈ index(, Si, Ee)

end for

end if

142

{Separate D into windows, W , of size ω}

n = |W |

WD ←< T0, T1, ..., Tn > where Ti = Wi

for Ti ∈ WD do

Ti ← |D ∈ Ti, Ti+1|

end for

{Compute PrefixSpan results, R =< R1, R2, ...Ri >, for each window, Wi}

F ←< F0, F1, ..., Fn >

Fi ← PrefixSpan(sequences=Fi, support=τ)

{Sort each result Fi by support value}

Fi = sort(Fi, dir=ASC) {Sorting by support value}

{Keep only the top k subsequences in each result Fi}

Fi = Fi[0 : k]

143

{Merge adjoining windows using WindowMerge}

C ←<>

for Wi ∈ WD do

for Wj ∈ WD do

C ← C ∪ WindowMerge(Wi, Wj)

end for

end for

return F , C

144

Algorithm 2 WindowMerge(i, j)
Sij ← D ∈ Wi,Wj

Cd ← Cw ← 0

for fi ∈ Fi do

for fj ∈ Fj do

if Eb /∈ fj and Ee /∈ fi then

if fi ∈ Dij and fj ∈ Dij then

if index(Dij, fj)− index(Dij, fi) = 0 then

Cd ← Cd + 1

end if

if index(Dij, fj)− index(Dij, fi) > 0 then

Cw ← Cw + 1

end if

end if

end if

end for

end for

return < Cd, Cw >

145

Algorithm 3 AdaptiveWindows
Input: a dataset of event sequences D

domain window size n

Output: adapted windows W

t0 ← earliest timestamp in D

Wt ←< T0, T1, ..., Tk > where Ti = t0 + (n ∗ i)

for Ti ∈ Wt do

Ti ← |D ∈< Ti, Ti+1 > |

end for

A← 〈Wt〉 {Average itemsets per windows of n}

Wo ← equal_freq_bin(dataset=D, freq=A)

return Wo

146

4.5 Visualization

Once we obtained the results from our AWP-Span algorithm, we sought to

visualize the overall flow of events and understand the various connections between

windows. We show the results of our algorithm on two different visualizations: the

Sankey diagram and our own event summary design.

4.5.1 Mapping Common Sequences

Due to the atypical nature of our algorithm results which contain various types

of connections (direct and wildcard), we needed to devise a mapping from the results

obtained to the Sankey diagram. Next we will describe the mapping that we have

defined.

First, we represent each event as a node in the Sankey diagram and place

the restriction that each window in our results must contain its own separate set

of nodes, such that the windows are initially not connected. By requiring each

window to have its own set of nodes, this ensures that the Sankey diagram contains

a temporal context as events that happen in different locations of a dataset (in

different windows) are not equivalent to one another. To build each window’s set

of nodes we convert the frequent subsequences contained in the window to a series

of nodes such that similar events that occur in the same index of a subsequence

are merged. For example, given a window that contains the frequent subsequences

S1 =< A,C,B > and S2 =< C,D,A >, C would be represented as a single node

due to it occurring in the same itemset index 0, but A would not be merged as it

147

occurs in different indices 0 and 1.

Second, for each pair of nodes in a window that have different index positions,

an edge is drawn in between them. Using the previous example of S1 and S2, two

edges would be drawn from the node C: an edge from C to B and an edge from C

to the A node in the second index. As each edge represents the flow from one event

to the next, we encode the number of times that the respective transition occurred

between the events into the edges.

Third, we link adjoining windows, Wi and Wj, through two methods: a di-

rection connection and a wildcard node. Given the frequent subsequences of each

window, Fim ∈ Wi and Fjn ∈ Wj, these two methods are utilized on the last event

in each Fim such that Eim = Fim(−1) and the first event in each Fjn such that

Ejn = Fjn(0). For the direct connection the two events, Eim and Ejn, are connected

by an edge that is encoded with the direct count between Fim and Fjn that was

identified by our algorithm.

For the wildcard node an extra node is drawn between the two events, Eim

and Ejn, which is labeled as a “wildcard node”. Two edges are then drawn: (1) from

the event Eim to the wildcard node and (2) from the wildcard node to the event

Ejn. Both of these edges are encoded with the wildcard count that was returned by

the algorithm.

While the wildcard node is powerful at representing extra information that is

contained between two events, for some visualization techniques this creates extra

nodes and thus noise. Therefore, to reduce this noise and clutter caused by the

wildcard nodes we alter the mapping so that instead of creating a wildcard node,

148

a colored edge between Eim and Ejn is drawn. This change reduces the amount of

nodes in the graph and still allows for the difference between direct and wildcard

connections to be understood through visual inspection of the graph.

4.5.2 Sankey Diagram

A popular visualization, the Sankey diagram, has been used to understand

the flow of resources in data [155]. We utilize the Sankey diagram by mapping our

algorithm’s results to the diagram which allows for us to visualize the flow of events

in the various trajectories.

An example of a Sankey diagram produced by mapping our algorithm is shown

in Figure 4.7 Left and Middle where wildcard nodes and edges are used respectively.

Through visual inspection we can see that Figure 4.7 Middle contains less clutter

and is easier to understand due to the encoding of the wildcard into the edges.

Analyzing Figure 4.7 Middle we can describe the overall flow of events: first

an event of f is the most frequent while D, T , and H also occur at much lower

frequencies. Next, the events D, T , and H proceed to another D with the sequences

being split about 50% for going to the second D on a direct connection or with

extra, infrequent events in between. At the same time, the f event proceeds to a

different D, f , and H before ultimately ending up at the same D as the previous

events. Once all of the events have reached the large D on the right side of the

diagram, only a small portion move further into another repeated event of D. The

reason that there exists a small path out of a large event node is that the final D

149

Figure 4.7: An example output of our AWP-Span algorithm mapped to a Sankey and

our event summary diagrams. (Left) Shows a Sankey diagram containing wildcard

nodes causing for extra clutter and noise to exist. (Middle) Shows a Sankey diagram

with the wildcard nodes converted into red-colored edges that can be expanded with

a click to show the underlying wildcard data which provides multiple levels of detail.

(Right) Our event summary diagram where the edges have been removed to decrease

the analytical capacity needed to understand the overall flow of events. Wildcard

edges are now mapped to a texture rather than a red-colored edge and windows are

separated by a vertical gap.

is infrequent in its window relative to the other windows. This means that the D

event is a frequent subsequence in its own window, but that the other windows have

frequent subsequences of a much higher frequency.

Through this analysis of the Sankey diagram it can be seen how a business

analyst could identify the most popular marketing channels, in this case the D

channel would be indicative of being very popular, as well as understand the varying

150

paths that users take: most users will end up at the largest D node but in the first

column the D, T , and H are all just as likely to end up at D as the f channel.

Furthermore, in the healthcare domain a clinician would be interested to see that

most patients end up with a diagnosis of D, but that the paths that the patients

took differed.

While the Sankey diagram is able to show the flow of sequences between events

for all of the windows, it suffers in its visual complexity and ease of use. When

analyzing the Sankey diagram, a user is required to follow the edges out from a

node to be able to understand the destination events because of the fact that edges

can be curved and are overlapped in the diagram. In addition, as the size of the

data being represented increases, and in our case the number of windows, the size

of the diagram grows significantly causing for it to be difficult to obtain a general

overview of the data. These are limitations of the Sankey diagram which directly

apply to the data that is attempted to be visualized from our AWP-Span algorithm,

and thus we sought to identify a better method of visualizing the data.

4.5.3 Event Summary Diagram

As the Sankey diagram suffers from difficulties in identifying the flow of events

with the spaced-out edges, as was identified by MatrixWave [140], we developed an

edge-free visualization that reduces the complexity of analyzing and understanding

the different flow of trajectories. We will outline the steps taken to construct our

event summary diagram to overcome these limitations.

151

First, in the Sankey diagram there is no requirement for event nodes to be

aligned as the edge between a set of nodes is flexible to ensure that the connection

is fully made. While this ensures flexibility, it also requires immense visual thinking

to be able to thoroughly understand the connections. To overcome this issue we

removed all edges in the graph and aligned each node next to the node that it

originated from. This alignment causes for a clear path to be understood through a

quick glance at the graph.

Second, as we removed edges between nodes, and thus removed the encoded

wildcard edges, we textured a portion of the destination event node to indicate

that the sequence passed through a wildcard prior to reaching this event. Adding a

texture to the node adds minimal noise to the diagram while adding key information.

We chose to only texture a small portion of the destination node over applying the

texture to the entire node, because through a user evaluation we found that texturing

the entire node created confusion as to which connection contained the wildcard:

whether it was the connection into or out of the node.

Third, as our AWP-Span algorithm is built on the premise of dividing event

sequences into windows, we added a vertical spacing between each set of windows so

that through visual inspection it is possible to understand the frequent subsequences

contained within the window. By ensuring that each window can be individually an-

alyzed, users across many domains can understand a particular section of a dataset.

For instance, a clinician could isolate a specific window to evaluate the most common

diagnoses and paths followed within a certain time span.

Finally, as each window in our AWP-Span algorithm contains its own frequent

152

subsequences, it is possible that certain windows will contain more sequences than

another window. As an example situation: an event A could go to event B with a

value of 5, followed by B going to C with a value of 10, where A, B, and C are in

separate windows. In this example, the event B would be of size 5 while the event

C would be of size 10 and following our first requirement of aligning nodes next to

the node that they originated from, this difference in size would not be possible as

there is not enough B to flow into C. Therefore, to overcome this limitation we

utilize proportions on each window to ensure that the events can be drawn and that

the relative frequency within a window is sustained.

We utilize the example data shown in Figure 4.7 (Left and Middle) to present

our new design in Figure 4.7 Right. Through visual inspection, we can see that our

new design contains the same information present in the Sankey diagram, but does

so in a simpler and more easily understood manner. For instance, we can see that

the majority of the events in the first window were red, but in the event summary

diagram we can better see the proportion difference as there are no gaps between

the events. Then, we can see that the first window also has an additional series of

events that come from the red nodes, but the rest of the events/nodes do not have

any additional events. This is very difficult to identify in the sankey diagram due

to its algorithm for attempting to move the nodes around and thus they do not line

up with the first large red node.

Looking at the additional windows, it is much easier to see that all of the

events have wildcard edges and the proportion of them is also easier to identify.

Finally, we can see that the blue and orange nodes in the first window are the only

153

nodes that have any events in the final window. Compared to the sankey diagram,

this is impossible to identify in it. Ultimately, the simplification of edges decreases

the analytical capacity required by the user and simultaneously reduces the virtual

screen space occupied by the diagram.

4.5.4 Levels of Detail

Figure 4.8: An example showing the multiple levels of detail available upon clicking

on a wildcard edge. In this example, the user clicked on subsequent wildcard edges

to show the underlying data.

As an extension to the wildcard edges produced, we recognize that the in-

formation contained in these connections may be interesting and contain useful

information, thus we extend both of our visualizations to allow for expanding and

collapsing of wildcard connections. Through an interactive action of clicking on a

red-colored or textured wildcard edge, the wildcard is exploded such that the events

154

contained within it are drawn as nodes in place of the edge. An example of this is

shown in Figure 4.8, where a wildcard on the blue “H” node was clicked to display

the underlying wildcard data. This provides both of our visualizations with multiple

levels of detail by helping to identify certain patterns or trends embedded within

the wildcards and allowing for further exploration of a dataset of sequences than

what the overall summary is able to present.

155

4.6 Case Studies

We demonstrate the capabilities of our algorithm and visualization on three

datasets from vastly different domains that contain a large amount of records and

have been used in real world analysis scenarios. For the purposes of evaluating the

insights that can be discovered within these datasets, we interviewed three analysts

that each have experience in their own respective domains.

4.6.1 Soccer Matches

Sports interests analysts and researchers because of the high volume of data

that is produced throughout the course of a game: events are produced on and off

the field and each player contains an assortment of attributes that can be learned

from. For this case study, we utilized a Kaggle dataset that contains 9,084 soccer

matches captured from the 2011/2012 season to the 2016/2017 season for the 5

biggest European leagues1. These matches, in total, produced over 900,000 events

which were categorized into 11 different event types. The generated event summary

diagrams for two different window counts, n, are shown in Figure 4.9 where the

images correspond to 6 and 12 windows respectively.

We first presented the sports analyst this dataset loaded into an existing event

analysis system as we had previously shown in Figure 4.3. Then we presented

our tool with the initial number of windows set to 6, as shown in Figure 4.9 Left.

Immediately upon seeing this visualization, before even attempting to change the
1https://www.kaggle.com/secareanualin/football-events

156

https://www.kaggle.com/secareanualin/football-events

Figure 4.9: A dataset of over 9,000 European soccer matches were summarized into

event summary diagrams containing (Left) 6 windows and (Right) 12 windows.

number of windows parameter, n, the analyst was intrigued as to the existence of

the red events in the 5th window. Upon analyzing the legend, the analyst identified

that the red event corresponds to a substitution event and confirmed that this is a

typical behavior present in all soccer matches.

Next, the analyst began to change the parameter, n, and saw minimal changes

in the visualization until they arrived at a value of 12 windows, shown in Figure 4.9

Right. At this window configuration, the purple event became present for the first

time and through these series of parameter changes the analyst highlighted to us

that they noticed two different patterns. The first pattern that they said they were

able to uncover is that the purple event, which corresponds to a corner kick, did

not appear until they had reached 12 windows. The analyst quickly began to think

157

out loud and realize that as the number of windows increased, the size of each

window decreased. Thus they concluded that corner kicks were not frequent enough

to appear in the larger size windows, but when confined to only the first 10 minutes

of a game corner kicks were frequent enough. This was a very interesting trend to

the analyst that they wished to investigate further.

The second pattern that they highlighted and were puzzled by was the large

presence of green and blue events, corresponding to free kicks and attempts on goal

respectively. The analyst eagerly opened the dataset in a statistical software and

produced a histogram of the event types over the dataset where they noted that

the green and blue events dominate the entire dataset. Through this they were

able to identify a flaw with the dataset: that the majority of the dataset contained

green and blue events which results in a dataset that contains very little useful

information. This insight ultimately saved the analyst from performing any potential

future analysis or at least identifying the flaw before they choose to analyze..

The analyst concluded by stating that compared to the existing event analysis

system, our visualization was key in performing a top-down analysis of the dataset

rather than a bottom-up approach. Most notably, they did not find it possible to

arrive at the same insight of substitutions occurring in the later parts of a game

in the existing system as its purpose is not catered to capturing a summary of the

contained events.

158

4.6.2 Web Traffic Logs

We performed the next case study on web traffic logs with an analyst that

manages front-end developers and is in charge of ensuring that a system is optimized

for the end users. Traffic and access log files are an interesting data source to

researchers from many different perspectives ranging from cybersecurity [156,157], to

advertising and marketing purposes [158,159], to website and usability optimization

[160,161]. However, these datasets commonly exist in large data sizes to the extent

of gigabytes and even terabytes of data. At these large scales, it is paramount that

analysts are able to fully understand the dataset that they are presented with, and

thus a summary is greatly beneficial for these types of analyses.

For this case study, we utilized a dataset released by msnbc.com containing

the server logs for the entire day of September 28, 1999 [162]. The dataset con-

tains 989,818 tracked users which make an average of 5.7 visits across 17 different

categories of pages on the website. Due to extreme outliers present in the data we

removed the 10,000 users that made over 50 clicks, leaving us with a still sizable

dataset of 979,133 users.

We presented the web traffic analyst with the summary mined from our AWP-

Span algorithm mapped to both a Sankey diagram and our event summary diagram

as displayed in Figure 4.10. The analyst immediately was offput by the Sankey dia-

gram, and stated that the only insights that they could safely discover in this “mess”

were that users typically visit the blue page first, corresponding to the frontpage of

the website, and that over time less users clicked due to the smaller nodes in the

159

Figure 4.10: A web traffic dataset containing 989,818 users was summarized using

our AWP-Span to produce a (Left) Sankey diagram and (Right) event summary

diagram.

Sankey diagram.

However, upon switching to our event summary diagram, the analyst began

to quickly pick out interesting patterns and trends. They identified that most users

stay on the frontpage between clicks, because of the large series of blue in the middle

of the diagram, but that some of them move to the orange (news), red (as seen tv),

and pink (sports) before coming back to the frontpage, as seen in the upper left

section. Next they eagerly pointed to the bottom section of the diagram where the

initial red events lead into repeated orange events that continue through all of the

windows, which indicates that users that visit the website through the “as seen on

tv” (red) section will stay on the website for a long time, clicking through different

news (orange) pages. They noted this as being a helpful insight into user retention

160

and pointed out a comparison to the middle section of the diagram where users that

entered the website through the frontpage leave after a significantly lower amount

of clicks than those that enter through the “as seen on tv” section. Based on this

insight, they stated that the frontpage could potentially be optimized to attempt to

guide users towards these pages with higher retention rates or that more advertising

of the website could be done on TV.

4.6.3 EHR Data

With the challenge of EHR data in mind, as discussed in Section 4.2, we

performed a final case study with a large, complex, clinical dataset. This dataset

consisted of 89,840 patients that have been diagnosed with a mild Traumatic Brain

Injury (a.k.a. concussion). The longitudinal data included 5.3 million TBI-related

clinical encounters over 10 years and over 8.7 million clinical diagnoses (i.e., events),

where a TBI-related encounter was defined as a visit to the doctor where the pa-

tient was treated with one or more of the conditions that are commonly known

to be related to concussions such as behavioral disorder, sleep problems, cognitive

deficiencies, and audiology complaints. The patients under consideration had an

average of 59.06 encounters.

As a common task in evaluating and understanding TBIs involves analyzing

the first year after an injury, we filtered the dataset to contain the first 365 days

after a patient’s concussion before running our AWP-Span algorithm. A mined event

summary is shown in Figure 4.11 Left and a subset of the dataset (only 1,000 patients

161

Figure 4.11: (Left) An event summary diagram for EHR data. (Right) The same

EHR dataset loaded into an existing event analysis system.

due to performance limitations) loaded into an existing event analysis system is

shown in Figure 4.11 Right.

The healthcare analyst looked at both types of visualizations displayed in

Figure 4.11 and first noted three similarities: (1) they both show that patients that

suffered a concussion (orange) and then had no more events available afterwards, (2)

they both indicate that patients have repeated diagnoses, and (3) that Depression

(light green) and PTSD (dark green) are very common to occur amongst concussion

patients. Beyond these similarities, the analyst liked that the Figure 4.11 Right

showed all of the different types of events, but they stated that they struggle to

identify any patterns due to little change in diagnoses/colors for each record. Thus,

they moved to the diagram shown in Figure 4.11 Left and expressed their satisfaction

for time periods being present at the top of the diagram to aid in the understanding

of the trajectory. With these time periods (window configurations), they found

162

it interesting to see that the size of the windows increased in the later windows,

indicating that patients utilized less healthcare and doctor visits as time went on.

Additionally, the analyst noticed that the light blue (headaches) diagnoses only

occurred in the first couple of windows after a concussion which they confirmed

follows the medical literature.

The analyst was further interested in understanding what diagnoses the pa-

tients had between diagnoses that our system did not find to be common and thus

they began to click wildcard edges and arrived at a diagram similar to the one found

in Figure 4.8 Right. Through the expansion of these wildcard edges, the analyst

discovered that patients seemed to only have diagnoses of sleep (dark blue) near

their concussion, but not in the later windows. They found this interesting and

noted that there could be a relation between the diagnoses of sleep and headaches

only occurring in similar windows.

163

4.7 Limitations

While our approach is able to produce an effective summary visualization,

there are limitations that must be taken into account when utilizing it. Many

approaches take a bottom-up approach, such as EventFlow [43], where the user is

presented the entire dataset and must perform operations to simplify it and create a

summary. However, our approach takes a top-down approach by presenting the user

with a simplified visualization that they can interact with to gradually view more

detail. Because of this different method there may be information that is crucial

for the user to identify within the dataset, but was removed during the process of

summarization. Thus, extra care should be taken to understand that our summary

visualization is strictly used for providing a high level overview and does not reveal

all patterns within the dataset.

Also, because we build a representation of the dataset using the mined frequent

subsequences and their connections between windows the summary visualization

generated is not a true view of the dataset but rather a simulated view. Thus,

there is a lot of information that is hidden or removed that causes for the summary

visualization to be prone to misinterpretation. To overcome this limitation, in the

future we seek to build a summary that attempts to follow the bottom-up approach

and create an algorithm that performs the typical simplification techniques followed

by users in an automatic manner. With this alternate approach the entire dataset

would be visualized and the frequent patterns could be highlighted while the rest of

the dataset is hidden (or greyed out into transparency). Additionally, the algorithm

164

could identify sequences to remove from the visualization or condense into another

in order to arrive at a visualization that is able to support large scale datasets.

Ultimately, this alternate technique would ensure that the summary visualization is

a true representation of the dataset while still providing the benefits of a top-down

approach.

4.8 Conclusion

Previously frequent sequence mining (FSM) algorithms had been used to un-

derstand the patterns contained within a dataset and did not take into account

the location of each pattern. Through the development of our algorithm we have

shown how the temporal context of each mined pattern can be utilized by breaking a

dataset into temporal windows and constructing a trajectory of the various common

paths that sequences may follow. Compared to displaying all possible event paths

which suffers from scaling issues, our unique method of utilizing an FSM algorithm

provides a condensed overview of an event dataset while still allowing for exploration

at multiple levels of detail. In addition, due to the window nature of our algorithm

the computation for each window can be run in parallel allowing for results to be

obtained quickly.

Additionally, through our new novel event summary design we have reduced

the visual complexity existent in a typical Sankey diagram. We have demon-

strated the effectiveness and usefulness of our algorithm and event summary di-

agram through three case studies, where analysts from different domains were able

165

to quickly find insights and identify the aid that our approach provides for solving

tasks faced each and everyday by event researchers in large scale temporal datasets.

Because we are now able to both predict and summarize irregular events,

analysts and end-users can be provided with the models and visualizations to further

understand their datasets and utilize them correctly. As users interact with these

different components, there is a lot of knowledge that can be learned from the way in

which they interact. For instance, “can the visualization be improved?”, “is the user

lost?”, “did the user identify a pattern in the dataset?”, and many more questions

can be asked. With this, the interactions that the users perform are also irregular

in nature and we can model these interactions as irregular events to also learn from

them and further improve our models, visualizations, and users’ analytic capabilities.

166

Chapter 5: Reinforcement Learning on User Interactions

5.1 Introduction

Imagine a typical scenario where a user has a specific task or question to an-

swer: they open a visualization tool, load their dataset, map attributes of the data

to visual representations, employ filters to manipulate the data or visual representa-

tions, and continue to go through an analytical process of exploring the information

until they reach a state where the task under consideration is complete. Throughout

this process, no matter the knowledge level of the user, each interaction that they

take leads them closer or further away from their goal as well as provides some value,

whether that be large or small. There is a wide range of questions that can be asked

of these interactions, such as: Does the user seem to be confused by the visualiza-

tion? Is the user lost and do they need assistance? How important is applying a

specific filter onto the data? Can the interface be made better?

However, despite the growth of visual analytics and the widespread use of visu-

alization tools, mining and modelling these user interactions and applying the knowl-

edge embedded within them continues to be a difficult task. Current approaches

are limited by either relying on users to analyze their own thought process [163] or

on experts to undergo a laborious process to construct task specific rules [164–166].

167

To further extract the wealth of knowledge that is contained within the user inter-

action process, an approach that moves beyond the standard techniques, that can

automatically learn by itself, and that can generalize across tasks and domains is

needed.

We introduce the application of reinforcement learning onto user interactions

within a visual analytic system. Reinforcement learning has the ability to uncover

the hidden knowledge and insights embedded within interactions, and most notably

can be performed in an automatic manner. In this paper we build and outline the

connection of reinforcement learning to user interactions and show its utility through

three applications: (i) providing guidance to users towards the completion of a task,

(ii) personalizing guidance to match each individual user’s behavior and preferences

such that the guidance is “polite” and unobtrusive, and (iii) optimizing the visual

analytic interface to maximize user performance.

168

5.2 Related Work

5.2.1 User Interactions

The capturing, modelling, and analysis of user interaction data to understand

a user’s analytical process in a visualization has been an active research area in the

visualization [167–171], human-computer interaction (HCI) [172–174], and worflow

mining communities [175,176]. Multiple systems have been developed that provide

users with manual methods of understanding their own interactions, which include:

presenting a historical timeline of interaction data to the user and allowing for them

to analyze their own analytical process [163], visually encoding a user’s interaction

history to promote exploration [177], and providing users with the functionality to

annotate and share their actions [178]. While these manual techniques allow for

users to evaluate their own missteps, the reliance on users to correctly classify their

own actions is problematic when users are lost and unsure of how to accomplish

their task, or even for new tasks that they have never encountered.

To allow for an external evaluation of where users become lost in a visual-

ization, researchers have attempted to understand interactions by capturing and

analyzing the user’s analytic provenance by means of eye movement data [179–182],

interaction logs [183,184], and thinking aloud videos [185]. This work has aided the

understanding of a user’s thought process, but relies on an expert to identify the

missteps.

With the goal of building systems that automatically learn and adapt to users,

169

Gotz and Zhou defined the different tiers of the visual analytic process [186] and

Ragan et al. developed a framework of user provenance types to assist researchers

in evaluating designs and capturing provenance information [187]. Building on this

defined interaction data, Xiao et al. utilized past visualization states and actions to

construct an improved and more relevant visualization for future users [188]. Brown

et al. used low-level interactions, specifically mouse activity, to classify fast and slow

users as well as personality traits [189]. Predicting the next click that a user will

make using mouse activity was found to be feasible [190, 191]. Gotz and Wen built

a system that analyzes users’ actions using regular expressions to suggest alternate

visualizations [192]. VisTrails captured user actions in a visualization and analyzed

the various branches in activity that users took [193]. And Dabek et al. developed a

system that applies a grammar induction algorithm onto a group of user interactions

to identify the various paths that users can take and then defined a set of explicit

rules that defined when and how to provide assistance to users [194].

170

5.2.2 Reinforcement Learning

Reinforcement learning is a class of machine learning algorithms that learn

how to optimally choose actions to accomplish a task. Recent successful applica-

tions have shown utility in a wide range of tasks [195–199]. The underlying principle

behind reinforcement learning is that it builds a value structure of the possible ac-

tions through learning from experiences of playing a game repeatedly or performing

simulations of a task. By learning the value of each action, the algorithm can identify

the optimal actions to take at every point of the task.

One area in which reinforcement learning has found tremendous success are

in games such as Chess and Go [200–202]. Both of these are historic games that

require a lot of thought and future planning of moves. They are regarded as highly

intellectual games that while relatively easy to play, are difficult to master. Within

both games’ communities, an extensive analysis into different strategies and key

opening moves to maximize a player’s chance of winning have been identified [203].

This analysis required a lot of exploration to be identified, but reinforcement learning

models have been able to identify these same insights as well as uncover new ones

that had yet to be discovered [204,205].

A visual analytic interface can be thought of as a game. Similar to chess, the

interface can be easy to interact with, but difficult to master. There are also key

interactions that users take which lead to their success at accomplishing a task. And

similarly, there are many discoveries that are yet to be uncovered.

171

5.2.2.1 Definitions

Reinforcement learning algorithms are composed of multiple components. The

agent is the actor, user, or robot that interacts within the space. The environment is

the simulation, scenario, or world that an agent interacts with and changes as actions

are performed. Each unique scenario that the agent encounters is referred to as a

state. Actions are the finite set of things that can be done within the environment.

And rewards are associated with moving between states and tell you what you get

for the transition. The agent’s goal is to learn a policy that indicates the action to

take in each state by maximizing the sum of future discounted rewards.

We relate these key terms directly to a visualization system:

Agent The actor that takes actions and moves. (Ex. User/Robot interacting

with the interface)

Environment The world with which the agent interacts. (Ex. Visual Analytic

System)

State The current situation of the environment that the agent is in. (Ex. The

current configuration of the interface and visualizations: data variables enabled,

data manipulations, visualization types, etc.)

Action Possible moves for the agent to take within the environment. (Ex.

Clicking a button, filter, visualization, etc.)

Reward A scalar value that indicates how good or bad it is to take specific

actions in specific states. (Ex. Assign +10/-10 for arriving a the goal configuration

and -1 for each click/interaction taken)

172

5.3 Research Applications

To help introduce the concept of reinforcement learning on user interactions,

we present three applications and areas of exploration using these class of algorithms.

A1 Provide Guidance: Typically when confronted with a new task, visual an-

alytic system, or a particularly challenging dataset users may have a difficult

time identifying answers to their questions or new insights in their data. Be-

cause of this hurdle, users may take missteps or a path that does not lead them

towards completing their task and they may ultimately become frustrated and

discouraged. Therefore, it is important to ensure that users stay on track by

guiding them when they get stuck or require assistance.

Using a reinforcement learning model and training it within a simulated visual

analytic environment, the value structure of each action at each state could be

obtained. Through this value structure, the model captures the value of in-

teractions, controls, and visualizations within the interface. Then when a user

interacts with the real world system, for each state that the user enters within

the system the optimal action could be presented in the form of guidance.

A2 Polite Guidance: While determining what to suggest to a user when guid-

ing them is an initial first step, it has been highly documented that providing

assistance to users in a polite manner is important to not impede on already

established workflows [206]. Therefore, it is crucial to identify when to provide

suggestions to users to avoid being intrusive and widely disliked as Clippy in

173

Microsoft Office famously was [207]. As shown in the related work, recent

methods for user assistance have relied on manually creating rules to deter-

mine when to assist a user, but these methods lack the ability to conform to

user preferences and dynamically adapt to the interface that they are being

presented with.

With a reinforcement learning model the states and actions could correspond

to the interaction history and whether or not to make a suggestion, respec-

tively. This model could then receive rewards dependent on if the user follows

the prompt or chooses to dismiss it. Through this, a policy of the user’s

preferences could be learned and thus we can improve how we assist users by

determining when to assist them and allowing the model to adapt to their

preferences over time with continuous training.

A3 Optimize Interface: The placement of elements within an interface have

been shown to be important to the effectiveness of a user accomplishing

tasks [208–210]. This can be extended to visual analytic systems in which

the placement of buttons, filters, and visualizations are crucial to assist the

user in understanding the data and going through their analytic process.

However, identifying the correct arrangement of an interface is a difficult task

which typically requires extensive user studies, use of eye tracking devices, and

other methods [211, 212]. These methods rely on the feedback of the users,

but can be lackluster as users may not themselves know the best method or

arrangement [213]. Additionally, studies rely on the statistics of the users’

174

performance and typically do not place enough emphasis on the interactions

performed.

Therefore, utilizing user interactions is a key way to identify which clicks are

the most valuable and optimize the interface in terms of the design and layout

in order to maximize the users’ performance and analytical understanding.

With reinforcement learning, the overall value of actions at each state could

be analyzed to identify potential areas of the visual analytic system where

users may be become stuck or otherwise areas that are of tremendous value.

With these three research applications defined, we formulate hypotheses to

test with our approach that we will build:

H1 The use of reinforcement learning will lead to more accurate or faster solutions

by users within a visualization system.

H2 We can learn a policy that makes suggestions to users at the correct times,

without disturbing them.

H3 Through the presentation of suggestions, users will be more correct.

H4 We will be able to identify the optimal user interaction path for a given task

within a visualization system without any user input or data.

175

5.4 Approach

Our approach uses the Q-Learning algorithm [214] due to the interpretability

of the underlying matrix that is built. Therefore, an in depth explanation of the

algorithm is explored.

5.4.1 Learning by Playing

Q-Learning is an algorithm that attempts to learn a value for all possible

actions within each state. Thus when the algorithm reaches a state, it picks the

action with the most value for the given state. For this algorithm, the value is a

function such that it is equal to the expected total reward that would be obtained

after picking the associated action if the agent was to follow the policy afterwards.

The equation for the value can be thought of as:

Qπ(st, at)← Eπ{Rst,at + γmaxQ(st+1, a)} (5.1)

where the sum of the maximum reward at all future states, up to the goal state, is

computed. Through this value function, an agent learns to take actions to maximize

their future rewards.

To obtain the associated value for all actions within each state, Q-Learning

builds a matrix/table where the rows correspond to states and the columns corre-

spond to actions. Each time that the agent needs to take an action, it looks at

the state (row) that it is currently in and identifies the action (column) with the

176

most value. Then upon taking the action, it receives a reward for taking it. In the

simplest of cases it would receive +10 for a win and -10 for a loss, with all other

cases resulting in 0. Using this reward, the algorithm then updates the cell of the

action that it had just taken. The update rule is defined as:

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a
Q(st+1, a)−Q(st, at)] (5.2)

where Q(st, at) corresponds to the current cell of the action that was selected; rt+1

corresponds to the reward that was obtained upon taking the action; maxaQ(st+1, a)

is the maximum reward possible at the future state that the agent just moved to

(by looking at the entire row of the state that it had just moved to after taking

the action); and α and γ are two parameters that are set prior to training the

model, such that α is the learning rate, how much the newly acquired reward should

override the old information, and γ is the discount factor, how much of the future

reward should be taken into account. With this update function and states/actions

the Q-Learning algorithm performs the number of simulations, n, that are set for it

and builds the associated matrix. The pseudocode using the update rule is shown

in Alogrithm 4 [214].

5.4.1.1 Exploration

While a model is being trained, there may be instances where the algorithm

has learned a specific path of interactions to take in order to reach the goal, but may

still not yet have arrived at the optimal interactions to take. This is similar to where

177

Algorithm 4 Q-Learning
Initialize Q(s, a), for all s ∈ S+, a ∈ A(s),

arbitrarily except that Q(terminal, ·) = 0

for each episode do

Initialize S

for each step of the episode (until S is terminal) do

Choose A from S using policy derived from Q

Take action A, observe R, S ′

Q(S,A)← Q(S,A) + α[R + γmaxaQ(S
′, a)−Q(S,A)]

S ← S ′

end for

end for

a user follows a set interaction path to arrive at the answer that they are looking for

without realizing that there is a more optimal path. This different path could present

the data in a more impactful and intuitive manner for the user and thus it would

be best for them to follow it. To resolve this issue, ε-greedy Q-Learning introduces

an instance of randomness into the algorithm: at each point when the algorithm

needs to identify the action with the most value for a given state, it occasionally

will choose to select a random action. This ensures that the algorithm is able to

continue to explore throughout its learning and potentially identify better actions

to take than what it had initially learned. The equation for ε-greedy Q-Learning is

displayed below:

178

with probability ε : choose an action at random

with probability 1− ε : a = argmax
a
Q(s, a)

5.4.2 Reward Structure

While a simple example of a reward structure is to provide a +10 for winning

and a -10 for losing, there are alternate structures that could be utilized to achieve

different goals. For instance, with the simple reward structure of +10/-10 for a

win/loss, the agent would not prioritize the number of actions that it takes to arrive

at the goal. This means that within a visualization system, the model could identify

an optimal path that consists of extra, unnecessary clicks. This type of example

shows the importance of crafting the reward structure such that the desired outcome

can be achieved.

To overcome this issue of the number of moves it takes, one could add an

additional element to the reward structure such that the agent receives -1 for every

action that it takes. With this updated structure the agent is still motivated most

by a win/loss, but it will also attempt to find the shortest path to arrive at the

goal because of the constant penalty it receives from making a move. In another

example, the reward structure could be modified to motivate the agent to simplify

the visualizations by assigning a +1 reward for each time that an unimportant

variable is removed from the data being displayed. Additionally, when the discount

factor γ present within the Q-Learning algorithm is less than 1, γ < 1, then the

179

agent is motivated to win quickly or put off losing as long as possible. Through

these examples of a movement penalty, simplification reward, and discount factor

tuning, it is possible to see how a carefully crafted reward structure, through the

magnitude and sign of the rewards, is crucial to arrive at the goal set out.

180

Figure 5.1: A screenshot of our visualization system built for capturing user inter-

actions in a real-world type scenario.

5.5 Visualization System

To evaluate the effectiveness of applying reinforcement learning algorithms

within a visualization user interface, a coordinated multi-view visualization system

was built. In this system we sought to create a real-world type scenario similar to

those visualization frameworks/tools that are created by Tableau [215] and D3 [216].

In these dashboards, users typically look to either explore the data to uncover in-

sights or have a specific question to answer. For both of these tasks, it is necessary

for users to click around the interface to manipulate the view and alter the visual-

ization that is being presented.

The visualization system that we built is shown in Figure 5.1. The various

components of this system include a list of variables on the left-hand side, a clickable

181

map in the top center with controls for switching between partitioning the USA

into regions or states, a multiple bar chart in the bottom center with a control for

switching between three different graphs and the ability to change the year. Finally,

at the top of the screen there is a question along with four multiple answer choices

at the top right.

5.5.1 Dataset

To mimic a real-world scenario, we chose to represent a dataset in the system

that would not easily be understood and thus would require exploration of the data

for insights to be discovered. Because of this requirement we focused on healthcare

data due to its complexity and inherent lack of understanding compared to standard

datasets such as weather, sports, etc. The final dataset chosen consists of medicare

provider utilization and payment data taken from the Centers for Medicare and

Medicaid Services (CMS) website1. The dataset covers the years 2012, 2013, and

2014 and provides an assortment of variables for each physician: the number of

services that they performed, the number of patients that they saw, the average

amount that they were reimbursed for services, the average age and race breakdown

of patients, etc.
1https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-

reports/medicare-provider-charge-data/physician-and-other-supplier.html

182

https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/medicare-provider-charge-data/physician-and-other-supplier.html
https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/medicare-provider-charge-data/physician-and-other-supplier.html

5.5.2 Questions

For the study, we devised 10 multiple choice questions that were similar to the

types of questions asked by media outlets, doctors, patients, and researchers in the

healthcare domain 2 3. We ensured that each question required interaction for the

answer to be visible in the corresponding visualizations. A listing of the 10 questions

can be found below:

1. In 2012, how many services did female nurse practitioners perform in the East

South Central region?

2. What specialty submitted the highest medicare charges in Nebraska (NE) for

2014?

3. In 2012, which gender submitted the largest payments in New Mexico (NM)?

4. For all physician assistants in Texas (TX) in 2013, which race had the second

highest submitted payments?

5. For the Mountain region in 2013, which age group had the highest reimburse-

ments over all specialties?

6. Over all degrees and genders, which specialty had the highest submitted pay-

ments for 2014 in Kansas (KS)?

7. For the South Atlantic region in 2012, which specialty had the most number

of patients in the 75 to 84 age range?

8. How much were physical therapists reimbursed for white patients in the New

England region in 2012?
2Wall Street Journal: http://graphics.wsj.com/medicare-billing/
3Washington Post: http://wapo.st/1hAFRFE

183

http://graphics.wsj.com/medicare-billing/
http://wapo.st/1hAFRFE

9. For physician assistants, which gender was able to submit higher amounts in

Nevada (NV) for 2012?

10. For family practice physicians in Florida (FL) in 2013, which age group offered

the second highest reimbursement?

184

5.6 Building Models

With our visual analytic system and associated dataset defined, models can be

built to solve the tasks presented by the posed questions. As typical applications of

reinforcement learning are performed in an automatic way such that a bot undergoes

training runs/simulations through the environment in order to build a model, it is

similarly possible to do this with a user interface and treat the bot as simulating a

user. For a user interface, a bot would pick the different actions to take to manipulate

the interface until it is notified of having reached the goal, which is defined as the

state at which the solution to the question/task is displayed within the interface.

Because the bot is simply looking for the state at which the solution is visible

and the question can be answered, there exists only a single goal state which we de-

fine as being the “winning” state. Thus, after attempting multiple reward structures

we arrived at one that optimizes for arriving at the goal state quickly: assigning -1

for each action taken and a 0 once arriving at the goal state. With this structure

the agent learns to not explore endlessly, but rather to find the goal state to stop

being penalized.

To accomplish this training of a bot we utilized a popular reinforcement learn-

ing library, OpenAI Gym [217]. A separate model was built for each question and

each was trained by running for a series of 10,000 training runs (an attempt at an-

swering the question). The maximum amount of time that it took to train a model

was 30 seconds.

To provide an overview of the models we analyzed the training process that

185

each model underwent. For this, we gathered the total amount of reward gained

for each run, allowing us to see how well the model performed at each point. By

analyzing the reward gained we can identify the moment where the model moves

from being unintelligent to the point at which it is able to answer the question

and receive a maximal reward the majority of the time. To better see this shift in

learning, we applied a mean smoothing of size 100 to the reward data.

Figures 5.2a & 5.2b show the training process for two separate models for

questions 5 and 10. The maximal reward is negative for each of these cases because

in the optimal scenario it would arrive at the answer in a low number of actions

which would be summed to be a negative number. The sign (positive/negative) of

the number does not matter as simply arriving at the maximum possible value is

the key.

Inspecting Figure 5.2a we can see that for answering question 5 the bot became

optimal at about 6,000 training runs because of the large vertical spike, while for

question 10 in Figure 5.2b it became optimal in the final few training runs before

10,000. This indicates that the bot found question 10 to be more difficult compared

to question 5. This difference in difficulty can reveal a lot about the interface and

the way in which users interact with it. For example, a task that is constructed with

the intention of being relatively simple for an interface, but is found to be difficult

by the model would reveal that the interface may need to be refined to have more

specific controls for accomplishing the associated task.

186

(a) (b)

(c)

Figure 5.2: (a & b) A separate blank model was trained on (a) question 5 and (b)

question 10. It can be seen that question 5 became optimal quicker than question 10

and thus can be concluded to be an easier task. (c) The model trained independently

on question 5 is used as the starting point for learning question 10 and produces the

resulting graph. This shows that the question 5 model had embedded knowledge

about the interface and can be applied across tasks.

187

5.6.1 Learning Across Tasks

While we trained independent models for each question, we can also utilize a

trained model as the starting point for a different question to show how knowledge

is embedded and the applicability across tasks (referred to as transfer learning).

Figure 5.2c shows this process and the performance on the newly trained task. By

analyzing the improved model graph against Figure 5.2b, it can be seen that this

model was able to answer question 10 in almost 2,000 less training runs. This

indicates that even though the model was trained for a different question, it had

learned and embedded information about the system which was then utilized to

identify the path to answering question 10 in a quicker manner. This is directly

applicable to a real-world scenario where a never before seen task has arisen and

the optimal path needs to be discovered.

5.6.2 Extracting Optimal Path

Using the built models it is possible to extract the optimal path to complete a

task. This can be achieved by starting at the state that corresponds to the beginning

of the system, the “start state”, then choosing the action with the most reward, and

continuing to move through the states until the goal state has been reached. The

sequence of actions that were taken is then considered the optimal path for answering

the question and what the agent would look to take.

Looking at question 3 (“In 2012, which gender submitted the largest payments

in New Mexico (NM)?”), the extracted path from the model is [states, NM, submitted

188

amount, 2012]. This path corresponds to a user clicking on the “States” button to

switch the map view from regions to states, clicking on the state of New Mexico,

changing the displayed metric to “Submitted Amount” by selecting it, and then

changing the year of interest by clicking the “2012” button. This shows that the

model learned the correct path to arriving at the goal state because the actions

align directly with the keywords of the question and is the logical shortest path to

arriving at the answer. Similar patterns were seen across the different questions.

It is also possible to see the optimal paths by inspecting the model’s matrix.

Using question 6 (“Over all degrees and genders, which specialty had the highest

submitted payments for 2014 in Kansas (KS)?”) as an example, Figure 5.3 contains

a heatmap representation of the model learned. To construct the heatmap, rows

and columns were removed if they contained all white, or nearly white, cells as this

indicated almost no reward. This removal constrained the heatmap from thousands

of rows down to ten.

This heatmap clearly shows that the model learned that the actions “Kansas”

and “Submitted Amount” were the most important and provided the most reward to

answer the question. Additionally, very light green cells can be seen which indicate

that the model had explored other pathways that eventually led to the answer, but

that it learned that these were not valuable to answering the question.

189

Figure 5.3: A heatmap visualization of the trained model for question 6 where rows

and columns that had mostly white for the entire span were removed. Inspecting

the heatmap, it shows that the model learned that clicking on “Kansas” and the

variable “Submitted Amount” were the most important.

190

Figure 5.4: An example of a suggestion being presented to a user. In this example

the user has the “Number of Services” variable selected, but the “Submitted Amount”

variable is highlighted to suggest for them to take the associated action.

5.7 Providing Guidance

With the ultimate goal of providing guidance, we outline how we provide the

suggestions and then how these suggestions are personalized/tailored to the user

automatically using reinforcement learning. Figure 5.4 shows an example of how a

suggestion will be presented to a user. In this example the “Number of Services”

variable is selected, but the “Submitted Amount” variable is highlighted to suggest

for the user to switch to. We chose to keep the suggestion unobtrusive to ensure that

we follow the expectation of being polite to the user [207]. Even with this subtle

suggestion, our results will show that users did follow the suggestions.

191

5.7.1 What to suggest?

As shown in Section 5.6, we build a model for each question by training it on

simulations within the visualization system. Then the value of all possible actions in

each state of the system can be identified. Using this value structure, guidance can

be provided by presenting the user with a tooltip for the action that would provide

the user with the most value/lead them towards answering the question correctly.

Therefore, we utilize this knowledge in order to present suggestions to users with the

goal of improving their accuracy as well as time and the number of actions taken.

5.7.2 When to suggest?

While we will be able to utilize our interaction models to provide guidance to

users in the form of suggestion tooltips, this only solves the challenge of determining

what to suggest and does not solve the problem of when to suggest. As it is has

been highly documented that providing assistance to users in a polite manner is

important to not impede on already established workflows [206], it is crucial to

identify when to provide suggestions to users to avoid being intrusive and widely

disliked as Clippy in Microsoft Office famously was [207]. Recent methods for user

assistance have relied on manually creating rules to determine when to assist a user,

but these methods lack the ability to conform to user preferences and dynamically

adapt to the interface that they are being presented with. Based on this criteria

reinforcement learning algorithms can improve how we assist by exploring how the

user is interacting, determine when to assist them, and over time adapt to their

192

preferences.

Therefore, to personalize this guidance for each user we built a separate model

called a “Preference Model” that also utilizes reinforcement learning, but instead

focuses on determining the most opportune time to present the user with a sugges-

tion. Some users prefer to receive suggestions frequently, others less so. The model

can learn that certain users prefer to always get a suggestion after performing cer-

tain interactions while others may not like a suggestion because they find it too

distracting to their analysis process or they already know what they would like to

do.

5.7.3 Preference Model

The preference model has a different state, action, and reward structure than

the one defined in Section 5.4, but follows the similar principle of utilizing rein-

forcement learning and a matrix learned through Q-Learning. To keep this model

simple and interpretable we constrained it to two possible actions: “suggest” or “not

suggest” which indicate whether or not the user should be presented with a guidance

suggestion. Furthermore, when devising the reward structure we sought one that

would encourage the model to only present suggestions at the most opportune time

and ensure that it remains polite to the user. Thus, we wanted to make sure that

the model would choose not to present a suggestion if it was unsure of the user’s

preference rather than potentially interrupting and agitating the user. With this the

reward was structured such that if a suggestion is presented and followed then the

193

model receives a +5, but if the suggestion is not followed then it is penalized with a

-5. And if the model chooses not to present a suggestion then it receives a -1. With

the high values of +5 and -5 compared to the -1, the model is able to learn that

suggestions are very valuable, but risky; and with the constant -1 it is encouraged

to identify moments that the user would follow the suggestion and receive a +5.

As we sought for the preference model to generalize across tasks we defined

the states of the model to correspond to the history of actions that a user had

taken. Using a history parameter, h, the states are built such that each state

corresponds to the last h actions that were taken. For example, given a user

creating a chart in Tableau a set of actions within the software could include:

Upload, SetChart, SetColor, F ilterV ariable and with h = 2, such that the last

two actions make up the states, then possible states for this model would include

SetChart−SetColor, SetChart−FilterV ariable, SetColor−FilterV ariable, etc.

Thus a user at the state SetChart − SetColor would have changed the chart type

followed by changing the color scheme, resulting in the model learning over all times

that the user had performed these two actions whether or not they prefer to have a

suggestion displayed to them.

An extra action is also included in the preference model’s possible set of actions

called “time”. This action represents a user not having taken an action for the last

s seconds and allows the model the ability to evaluate users that may have become

lost or unsure about where to click next and act upon this.

With this model structure the parameters, h and s, can be configured based

on the system it is contained within. For our system we initialized the parameters

194

to s = 5, representing a “time” action to be triggered after 5 seconds of inactivity,

and h = 2, representing a history look-up of two actions.

195

5.8 User Study

To apply our models and system, we conducted an IRB approved (Y17TO37149)

user study in which participants were presented with our system and asked to answer

a series of questions related to the data. The participants were recruited through

Amazon Mechanical Turk, presented with a tutorial of the system, and provided a

monetary reward of $1 upon completion of the study.

5.8.1 User Groups

We divided the participants into two groups. The first group consisted of 50

users that received no guidance, while the second group consisted of 50 users that

received guidance, in the form of suggestions, for their last 5 questions. All users

received questions in a random order.

We identified 100 users as being a sufficient amount for this user study because

after running through the two groups of 50 users, we analyzed the data and were

able to find insights immediately. Additionally, the 100 users mimics a real world

scenario in which a large cohort of users may not be available. By showing an

effective approach on a relatively small cohort we can show that our model is able

to learn even with limited data and can extrapolate to what could be learned from

a large population that has a vast amount of information and pathways.

196

(a) (b)

Figure 5.5: (a) The distribution of the time spent answering each question by all

users. (b) A layered distribution graph showing the distribution of actions for both

user groups.

5.8.2 Overall Statistics

On average users scored 78% over all ten questions and took 64.82 (±62.53)

seconds while performing 4.24 (±2.13) actions per question. Users that correctly

answered a question performed 4.32 (±2.12) actions while users that incorrectly

answered a question performed 3.68 (±2.3) actions. Figure 5.5a shows the distri-

bution of time to answer a question where users took about 30 seconds to answer

a question. Figure 5.5b shows a layered distribution graph in which the number of

actions for each user group is shown.

197

5.9 Evaluation

To evaluate the effectiveness of our approach on providing personalized guid-

ance to users we will perform two different methods of analysis: (i) we will inspect

the Preference Models to identify whether individual user preferences were able to be

captured and learned by the models and (ii) we will evaluate the statistical impact

that the suggestions had on the users.

5.9.1 Model Inspection

Using the matrix learned by our Preference Model we can examine what was

learned about the user. Figure 5.6 shows a heatmap of the model for two different

users. In the first row of the heatmap, which is the initial load of the question before

any actions are taken, the model learned a larger value for not providing suggestions

to user 1 while the opposite occurred for user 2. This indicates that user 1 preferred

not to receive suggestions at the beginning of the task while user 2 did. Looking at

the entirety of users as a whole, we found that the majority aligned similarly with

user 1.

Furthermore, looking at subsequent rows it is easy to identify, based on the

checkmarks and different shades of green, moments that the model learned to pro-

vide suggestions and moments where it learned to stay dormant. Places at which

the shades of green differ significantly indicate that the model learned a definitive

decision to make. On the other hand, when the shades of green are close in shade

then this indicates that either the model requires more experience to better learn

198

Figure 5.6: A heatmap of the preference model built and trained on two different

users. The rows correspond to the last two actions that a user took and the block

with the darker shade of green (and checkmark) indicates whether or not the user

should be provided guidance by means of presenting a suggestion.

199

this state or that the user is unsure of which way they prefer the most.

5.9.2 Guidance Impact

To understand the statistical impact that guidance had on users, we analyzed

the effect that suggestions had on users and identified two key discoveries when

analyzing the first five questions that users saw versus the last five questions that

they saw. Because group 2 received suggestions for their last five questions and

group 1 did not, we will name these two sets of questions as “pre” and “post” where

“pre” corresponds to the first five questions and “post” corresponds to the last five.

For the first key discovery, we found that the groups did not differ significantly

between each other when comparing their pre and post average completion times

(t-statisticpre=0.4918, t-statisticpost=1.0471). However, comparing all user’s pre

against all user’s post did prove to be significant at an α = 0.05 (t-statistic=2.31,p-

value=0.0229). This is something that we thought could be expected due to the

user learning the system, even though we attempted to mitigate it with a tutorial at

the beginning of the session. However, through further analysis we found that this

was not the case. Looking at only group 1’s pre versus post, we found that their

time difference was not significant(t-statistic=1.06,p-value=0.295); and looking at

only group 2’s pre versus post, we found that their time differences were significant

(t-statistic=2.66,p-value=0.011). Therefore, we can rule out any learning effect in

the post section and can conclude that group 2’s that the suggestions made group

2 fast enough that they were able to shift the entire sample population of users as

200

Table 5.1: Pre vs Post Number of Questions Correctly Answered

Pre Post

Group 1 193 198

Group 2 180 209

a whole to be significantly different.

For the second key discovery, we found similar results as before: proportion-

ally, users in group 2 had a higher accuracy rate in the post section than in the pre

section (χ2=9.08,p-value=0.0026). Looking at group 1 with the same parameters

shows that they proportionally did not exhibit the same behavior (χ2=0.188,p-

value=0.665). This can be seen in Table 5.1 where a McNemar χ2-test of the num-

ber of questions answered correctly by both groups shows a significant difference

(χ2=69.25,pvalue<0.0001).

To validate these discoveries, we ensure that both groups (first 50 users vs

last 50 users) are similar. To accomplish this we ran a t-test on the amount of

time spent on all ten questions as a whole and found that the two groups were not

significantly different at an α = 0.05 (t-statistics=0.903,pvalue=0.249). We also ran

a t-test for time taken on each question and once again did not find a significant

difference between the two groups (t-statistic=1.15,pvalue=0.369). Next, we also

ran χ2-test for the number of actions that it took a user to complete a question and

due to the relatively low number of actions taken and thus low variances, we did

not find any significant differences (χ2=0.277,pvalue=0.599). Furthermore, we ran

a final test on the accuracy of group 1 versus group 2 and did not also find any

201

significance (χ2=0.0058,pvalue=0.939). Using these tests, we can conclude that the

two groups of users behaved similarly and that despite some outliers we can treat

them as similar users.

With the two key discoveries and confirmed similarity of the user groups,

we can conclude that the guidance provided to users significantly improved their

performance, in terms of both accuracy and time. We were not able to identify any

significance in the number of actions that they took due to the small variance within

the data. Also, due to a small sample size with randomized question order we were

not able to identify significance on a per question basis.

5.9.3 Suggestion Accuracy

Additionally, we sought to verify if the suggested action chosen by our inter-

action model was correct. To accomplish this we aggregated each time that a user

was presented a suggestion and the associated reward value from the model. Then

we split the rewards into the times that the user followed the suggestions versus the

times that it did not and ran a t-test on these rewards. With this we found that the

rewards were significant at an α = 0.05 level such that the suggestions that users

followed had a significantly higher reward value than those that users did not (t-

statistic=-3.13,p-value=0.002). From this we can gather that when our interaction

model was confident in its suggestion (had a high reward value) the user followed it.

We also assessed the effect of the number of suggestions a user received to

their accuracy and we found that as users received more suggestions their accuracy

202

increased (t-statistic=3.88,p-value=0.0002), indicating that the presence of sugges-

tions was of assistance to them.

203

5.10 Optimize Interface

With A1 and A2 accomplished, we will explore how A3 could similarly be ac-

complished. First, we will outline the different methods of optimization that could

be implemented for a visual analytic system. Then, we will verify that potential

avenues of optimization can be identified in our reinforcement learning models using

a manual method of inspection. Because the application of these models to auto-

matically optimizing an interface without manually inspection requires substantial

research effort we seek for future work in this area to be performed to extend the

introduction of reinforcement learning to user interactions that we have shown.

5.10.1 Methods of Optimization

Interface Layout Users utilize visual analytic interfaces for a wide range

of tasks and follow different sets of analytic steps to accomplish the same task.

Additionally, tasks across domains may require or highlight different controls. Thus,

it is necessary to customize the layout of the tool and its controls for each user and

the domain/task that they utilize it for.

Predictive Tasks: A user may commonly perform a series of tasks. For

instance, a financial analyst may always apply a green color scheme upon activating

a specific chart, while a healthcare analyst may always look to a blue color scheme for

the same chart. Rather than requiring the user to make the extra click each time,

an interface that can predict common tasks that a specific user performs could

automatically change the color scheme to the one that the specific user prefers.

204

Therefore, even though the color scheme cannot be applied as a general rule for all

users or cohorts of users, it can be identified for the individual.

Learn Cohorts: While it is typical to personalize to a singular user, it is

also possible to use knowledge learned and apply it towards certain cohorts of users.

For example, analysts across different domains utilize visual analytic systems differ-

ently, focusing on different controls and performing different domain-specific tasks.

Because of this, a separate model could be built for each cohort of users to identify

the differences. Using these separate models, a new user that has never interacted

with the system and is being introduced into a cohort could be provided with a

model learned from the overall cohort and through the user’s interactions with the

system the model would learn and tune itself to match the unique behaviors of this

individual user.

Visualization: Users interpret and understand each type of visualization

and interface differently [218]. Some may prefer one over another. For example,

in some domains a specific visualization, such as a heatmap, may be widely used

causing experts within the domain to understand a heatmap over other visualiza-

tions. Therefore, being able to identify the visualizations that a user prefers or

understands the most as well as the variations of the visualization can ensure that

users are properly supported by a tool.

205

5.10.2 Model Inspection for Optimization

With different methods of optimization defined, we build the same models

as previously built using a bot, but this time we use the user interaction data

from the user study. Then we inspect these models built from users to identify

knowledge that was gained from the reinforcement learning algorithms. The insights

into optimization are broken down into three methods: (1) analysis of interaction

pathways, (2) user comparison, and (3) difficulty of the assigned task.

Of note: for each of these insights, due to the size of the visualizations caused

by the large matrix learned by the Q-Learning model, we extract and choose to only

display parts of the visualizations into the figures. These extractions are insights

that we gained from an analysis of our models and their visualizations. We refer the

reader to the Appendix for the full visualizations.

5.10.3 Path Analysis

Evaluating the interaction pathways that users took can reveal differences

between users as well as provide information into the types of interactions that are

taken within an interface. To understand these pathways, we built a matrix-like

visualization where the rows correspond to the users and the columns correspond

to the actions that users took, as shown in Figure 5.7. This allows for being able to

follow the path of each user by following along horizontally. Furthermore, we sort

the rows of users such that similar users are placed next to each other, allowing for

interactions to be grouped together. The sorting is accomplished by adapting the

206

(a) (b) (c) (d)

Figure 5.7: An example of how we construct our interaction pathway visualization.

(a) The interaction data is compiled, (b) a node is placed for each action, (c) the

users/rows are sorted and similar actions are merged vertically, (d) a coloring scheme

from yellow to green based on reward is applied.

radix sort [219] algorithm to to this task. Through the grouping that results from

sorting, the amount of users that took each type of interaction is evident by the size

of the node.

Figure 5.8 contains a visualization of the final pathway visualization for the

sequences of actions that users took to answer question 9. The color scheme was

taken from the reward values learned from the models. In addition, red vertical bars

were placed on the rows of users that had answered the question incorrectly.

Analyzing this visualization there are two dominant paths to highlight: the

large section of users that correctly answered the question at the top, denoted as

“Group A”, and the large section of users that answered the question incorrectly

towards the bottom, denoted as “Group B”. These two sections immediately jump

out because of the similarity that exists within a large block of users and the fact

that the majority of Group A users answered the question correctly whereas the

majority of Group B answered incorrectly.

207

Figure 5.8: A visualization of the interaction pathways for question 9, as built by

Figure 5.7. Users in Group B took a subset of the actions taken by users in Group

A, presumably forgetting to change to the “Submitted Amount” variable. Addition-

ally, the trained model identified that the Group A actions were more valuable, as

evidenced by the darker shades of green for the third column. With this, the data

suggest to optimize the interface to ensure that users take the path that leads them

towards answering correctly.

208

As indicated in black text on top of each node, users in Group A took the path

[“states”, “NV”, “2012”, “Submitted Amount”, “Answered Correctly”] whereas the

majority of the users in Group B took the path [“2012”, “states”, “NV”, “Answered

Incorrectly #1”]. The interesting realization between these two paths is that the

there exists an intersection in the actions, such that Group B had taken a subset of

the moves made by Group A. However, Group B had not taken all of the actions that

Group A did, presumably forgetting to switch to the “Submitted Amount” variable.

Additionally, the model had identified, without any user data, that the path taken

by Group A was more valuable than the path taken by Group B. This can be seen

in the third action of the path by comparing the darker shade of green for “2012”

against the light green for “NV” within the same column.

Based on this knowledge, it can be learned that it is advantageous for users to

follow the path of clicking on the “states” button first rather than first clicking on the

year “2012”. Therefore, the data suggests that the interface could be optimized to

ensure that this aspect is presented first. A potential layout alteration that could be

made would be to place each set of controls vertically such that the controls could

be treated as steps, thus forcing users to follow this path for a specific question.

While this layout alteration may be most applicable to Amazon Mechanical Turk

users, it still shows that our model is able to identify these kinds of insights.

209

5.10.4 User Comparison

Another important aspect of understanding user interactions is to understand

how users differ. Identifying where users took missteps and the reasons behind the

different actions that they took is paramount in having a deep and rich understand-

ing of where the interface could be optimized. Common techniques for performing

user comparisons consist of using statistical methods in which the amount of time,

number of actions, and correctness are taken into account. However, these tech-

niques are limiting in that they are not able to identify the interactions at which

users differed. For example, if two cohorts of users both took about the same amount

of time and clicks, how did they differ? With this, we show our interaction model

applied to this problem on two different comparisons.

5.10.4.1 Correct vs Incorrect

The first type of common analysis that is performed is to compare users that

answered a question correctly against those that did not. For this, we utilize ques-

tion 6 (“Over all degrees and genders, which specialty had the highest submitted

payments for 2014 in Kansas (KS)?”) and split the users into two groups: those

that answered the question correctly (blue) and those that did not (red). A model

is trained for each group and then the two models are subtracted to produce a

heatmap included within the Appendix. We extracted from the heatmap a single

state into Figure 5.9a and a single action over many states into Figure 5.9b. For

both of these representations, a more blue cell indicates that the blue group took

210

(a)

(b)

Figure 5.9: A comparison of users that answered a question correctly versus those

that did not. (a) For a single state it can be seen that the incorrect users struggled

to identify the state Kansas. (b) For the action Kansas (KS), it can be seen that

correct users took the action at a singular state while the incorrect users took the

action from an assortment of states.

those actions more frequently and a more red cell indicates the same but for the red

group. Additionally, the values of the cells correspond to the reward learned by the

model.

In Figure 5.9b it can be learned that both sets of users had taken the correct

action, but that correct users seemed to have always been in the same state of the

system when they had taken it compared to incorrect users that had taken it from

a variety of system configurations. To understand why incorrect users had clicked

on Kansas from different states, Figure 5.9a shows that for a single state incorrect

users had clicked on a wide variety of US states while correct users always clicked

211

on the correct one. Additionally, the light shade of blue within the figure indicates

some of the incorrect users had also clicked on “KS” and that it wasn’t limited to

only correct users, which would correspond to a dark shade of blue.

The knowledge extracted from this figure provides two helpful insights: (1)

incorrect users struggled to identify the state of Kansas and thus the interface should

be updated to assist these users that require assistance and (2) some incorrect users

had taken the correct action of Kansas and thus further inspection into other states

within the model is required to understand where those users had deviated. Both

of these insights could be utilized to help optimize the interface, such as displaying

the names of the states directly onto the map to make them easier to find for users

that are lost.

5.10.4.2 How do correct users differ?

Another interesting comparison that is difficult and sometimes even impossible

to perform is to understand how users that correctly answered a question differ. The

reason that this task is typically very difficult is because even when a divergence of

paths is able to be found, identifying the reason for the divergence requires immense

research: did the user diverge because they made a mistake or did they diverge

because they had extra knowledge? In the latter case, it is near impossible for

standard techniques to make a concrete conclusion as two users may have taken a

similar amount of actions, but one of the users may have identified a more intelligent

manner to arrive at the answer. For our interaction model, this analysis is simple.

212

To accomplish this we built a model utilizing only users that correctly answered

a question. We then normalized each row (state) of the model such that its reward

values would be between 0 and 1, and plotted it as a heatmap. An extraction of a

singular row/state within the heatmap for question 4 is shown in Figure 5.10.

Because this heatmap only contains correct users and is not a subtraction of

two cohorts as we saw in the correct versus incorrect users, the analysis on this

heatmap is different. To evaluate this heatmap, we must look for rows (states)

where the variance between actions is high. These variances can reveal the extra

knowledge that expert users may possess and thus would provide information into

alternate use cases or benefits of a system that were not intended or identified upon

its construction. While these types of insights would be more possible and easier to

identify within a more complex system where alternate pathways have the potential

to be present, we provide a simple example from our user study on a question where

the insight was able to be found.

Inspecting Figure 5.10 and the different rewards for each action for the given

state, we can see that correct users had clicked on three different variables: “Number

of Patients”, “Submitted Amount”, and “Allowed Amount”. The dominant and most

rewarding path consisted of “Submitted Amount” which is what the question had

asked for. However, other correct users had also taken alternate paths and upon

inspection of these variables we found that the user would still arrive at the same

answer even if they had taken these wrong paths. This insight reveals to us that

the dataset had some commonalities which for this question had allowed for users

to take a multitude of paths.

213

Figure 5.10: A comparison of correct users for question 9 in which for a single state

there was variance in the action reward between the users. While the “submitted

amount” correctly led users to the answer, it was discovered that the other actions

would present a visualization that would also provide users with the correct answer.

214

5.11 Discussion

With this work, we have laid the foundation for a more intelligent and in

depth learning of user interactions. The model and framework that we have outlined

utilizes reinforcement learning to automatically model and learn, thereby removing

the previous limitation of experts constructing rules or users analyzing their own

interactions via historical timelines. This newly applied technique on interaction

data allows for analyses and applications that would not be possible with standard

techniques, thus opening a new window into future work to build upon this work.

5.12 Limitations

Due to the new introduction of reinforcement learning to visualization, we

acknowledge that our approach contains limitations but we recognize this as being a

necessary first step. First, the task provided to users was simple in nature compared

to many visualization tasks that users perform on a daily basis. This constraint in

the difficulty was necessary in order to evaluate the effectiveness of our modelling

without needing to account for the noise and challenges associated with complex

tasks. However, because the theory and concept of reinforcement learning have

been proven to be successful for this task, scaling to more complex tasks can easily

be accomplished.

Second, while one of the exciting applications of such automatic models is

towards exploration tasks where a user enters a visualization system without a

215

predefined question or task, our user study did not tackle such tasks. We believe

that this type of research is interesting and should be a long-term goal, but there

exists work that is still required to be completed before we can reach this goal and

accomplish such tasks.

216

Chapter 6: Conclusion

Within this dissertation, we presented methods for operating on irregular

events within healthcare across three tasks: (i) predicting the probability of a future

event occurring, (ii) modeling the processes that create events, and (iii) summariz-

ing large event datasets. Our approaches do not bias the dataset by altering it, but

rather keep it in its original irregular format. Through operating on the raw dataset,

we have shown a boost in prediction performance metrics and more representative

visualizations.

217

Bibliography

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008, 2017.

[2] Agency for Healthcare Research and MD Quality, Rockville. Clinical classifi-
cations software (CCS) for ICD-9-CM, 2018.

[3] Agency for Healthcare Research and MD Quality, Rockville. Beta Clinical
Classifications Software (CCS) for ICD-10-CM/PCS, 2018.

[4] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i
trust you?" explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data
mining, pages 1135–1144, 2016.

[5] Centers for Disease Control, Prevention, et al. National hospital ambulatory
medical care survey: 2011, 2011.

[6] P Rui and K Kang. National hospital ambulatory medical care survey: 2015.
Emergency Department Summary Tables Available from: https://www. cdc.
gov/nchs/data/nhamcs/web_tables/2015_ed_web_tables. pdf. Accessed Sept,
13, 2018.

[7] Prevention CfDCa. National hospital ambulatory medical care survey: 2016.
Emergency Department Summary Tables, 2016.

[8] Wullianallur Raghupathi and Viju Raghupathi. Big data analytics in health-
care: promise and potential. Health information science and systems, 2(1):3,
2014.

[9] Sean P Keehan, Gigi A Cuckler, John A Poisal, Andrea M Sisko, Sheila D
Smith, Andrew J Madison, Kathryn E Rennie, Jacqueline A Fiore, and
James C Hardesty. National health expenditure projections, 2019–28: Ex-
pected rebound in prices drives rising spending growth: National health ex-
penditure projections for the period 2019–2028. Health Affairs, 39(4):704–714,
2020.

218

[10] John Cristian Borges Gamboa. Deep learning for time-series analysis. arXiv
preprint arXiv:1701.01887, 2017.

[11] Paul Smolensky. Information processing in dynamical systems: Foundations
of harmony theory. Technical report, DTIC Document, 1986.

[12] Graham W Taylor and Geoffrey E Hinton. Factored conditional restricted
boltzmann machines for modeling motion style. In Proceedings of the 26th
annual international conference on machine learning, pages 1025–1032. ACM,
2009.

[13] Ilya Sutskever. Training recurrent neural networks. PhD thesis, University of
Toronto, 2013.

[14] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication. science, 304(5667):78–
80, 2004.

[15] Sharat C Prasad and Piyush Prasad. Deep recurrent neural networks for time
series prediction. arXiv preprint arXiv:1407.5949, 2014.

[16] Alex Graves. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850, 2013.

[17] Łukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Bengio. Learning to
remember rare events. arXiv preprint arXiv:1703.03129, 2017.

[18] Andreas Eckner. A framework for the analysis of unevenly spaced
time series data. Preprint. Available at: http://www. eckner.
com/papers/unevenly_spaced_time_series_analysis, 2012.

[19] Andreas Eckner. Algorithms for unevenly-spaced time series: Moving averages
and other rolling operators. In Working Paper, 2012.

[20] Gilles Zumbach and Ulrich Müller. Operators on inhomogeneous time se-
ries. International Journal of Theoretical and Applied Finance, 4(01):147–177,
2001.

[21] Zachary C Lipton, David C Kale, Charles Elkan, and Randall Wetzell.
Learning to diagnose with lstm recurrent neural networks. arXiv preprint
arXiv:1511.03677, 2015.

[22] Volker Tresp and Thomas Briegel. A solution for missing data in recurrent
neural networks with an application to blood glucose prediction. Advances in
Neural Information Processing Systems, pages 971–977, 1998.

[23] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: Accelerating
recurrent network training for long or event-based sequences. In Advances in
Neural Information Processing Systems, pages 3882–3890, 2016.

219

[24] Egil Martinsson. Wtte-rnn : Weibull time to event recurrent neural network.
Master’s thesis, Chalmers University Of Technology, 2016.

[25] Waqas Javed, Bryan McDonnel, and Niklas Elmqvist. Graphical perception of
multiple time series. IEEE transactions on visualization and computer graph-
ics, 16(6):927–934, 2010.

[26] Wolfgang Aigner, Silvia Miksch, Wolfgang Müller, Heidrun Schumann, and
Christian Tominski. Visual methods for analyzing time-oriented data. IEEE
transactions on visualization and computer graphics, 14(1):47–60, 2008.

[27] Ming C Hao, Umeshwar Dayal, Daniel A Keim, and Tobias Schreck. Multi-
resolution techniques for visual exploration of large time-series data. In EU-
ROVIS 2007, pages 27–34, 2007.

[28] Taowei David Wang, Amol Deshpande, and Ben Shneiderman. A temporal
pattern search algorithm for personal history event visualization. IEEE Trans-
actions on Knowledge and Data Engineering, 24(5):799–812, 2012.

[29] Milos Krstajic, Enrico Bertini, and Daniel Keim. Cloudlines: Compact display
of event episodes in multiple time-series. IEEE transactions on visualization
and computer graphics, 17(12):2432–2439, 2011.

[30] Marc Weber, Marc Alexa, and Wolfgang Müller. Visualizing time-series on
spirals. In Infovis, volume 1, pages 7–14, 2001.

[31] James Walker, Rita Borgo, and Mark W Jones. Timenotes: a study on effec-
tive chart visualization and interaction techniques for time-series data. IEEE
transactions on visualization and computer graphics, 22(1):549–558, 2016.

[32] Katerina Vrotsou, Jimmy Johansson, and Matthew Cooper. Activitree: inter-
active visual exploration of sequences in event-based data using graph similar-
ity. Visualization and Computer Graphics, IEEE Transactions on, 15(6):945–
952, 2009.

[33] Jessica Lin, Eamonn Keogh, Wei Li, and Stefano Lonardi. Experiencing sax:
a novel symbolic representation of time series. Data Mining and knowledge
discovery, 15(2):107, 2007.

[34] Jessica Lin, Eamonn Keogh, and Stefano Lonardi. Visualizing and discovering
non-trivial patterns in large time series databases. Information visualization,
4(2):61–82, 2005.

[35] Nitin Kumar, Venkata Nishanth Lolla, Eamonn Keogh, Stefano Lonardi,
Chotirat Ann Ratanamahatana, and Li Wei. Time-series bitmaps: a practical
visualization tool for working with large time series databases. In Proceedings
of the 2005 SIAM international conference on data mining, pages 531–535.
SIAM, 2005.

220

[36] Ronald R Yager. A new approach to the summarization of data. Information
Sciences, 28(1):69–86, 1982.

[37] Janusz Kacprzyk and Ronald R Yager. Linguistic summaries of data using
fuzzy logic. International Journal of General System, 30(2):133–154, 2001.

[38] Janusz Kacprzyk, Ronald R Yager, and S Zadrożny. A fuzzy logic based ap-
proach to linguistic summaries of databases. International Journal of Applied
Mathematics and Computer Science, 10(4):813–834, 2000.

[39] Janusz Kacprzyk, Anna Wilbik, and S Zadrożny. Linguistic summarization
of time series using a fuzzy quantifier driven aggregation. Fuzzy Sets and
Systems, 159(12):1485–1499, 2008.

[40] Catherine Plaisant, Brett Milash, Anne Rose, Seth Widoff, and Ben Shneider-
man. Lifelines: visualizing personal histories. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 221–227. ACM,
1996.

[41] Catherine Plaisant, Rich Mushlin, Aaron Snyder, Jia Li, Daniel Heller, and
Ben Shneiderman. Lifelines: using visualization to enhance navigation and
analysis of patient records. In Proceedings of the AMIA Symposium, page 76.
American Medical Informatics Association, 1998.

[42] Taowei David Wang, Catherine Plaisant, Ben Shneiderman, Neil Spring, David
Roseman, Greg Marchand, Vikramjit Mukherjee, and Mark Smith. Temporal
summaries: Supporting temporal categorical searching, aggregation and com-
parison. IEEE transactions on visualization and computer graphics, 15(6),
2009.

[43] M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman. Temporal Event
Sequence Simplification. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2227–2236, December 2013.

[44] Mike Sips, Patrick Köthur, Andrea Unger, Hans-Christian Hege, and Doris
Dransch. A visual analytics approach to multiscale exploration of environmen-
tal time series. IEEE Transactions on Visualization and Computer Graphics,
18(12):2899–2907, 2012.

[45] Cong Xie, Wei Chen, Xinxin Huang, Yueqi Hu, Scott Barlowe, and Jing Yang.
Vaet: A visual analytics approach for e-transactions time-series. IEEE trans-
actions on visualization and computer graphics, 20(12):1743–1752, 2014.

[46] Conglei Shi, Weiwei Cui, Shixia Liu, Panpan Xu, Wei Chen, and Huamin
Qu. Rankexplorer: Visualization of ranking changes in large time series data.
IEEE Transactions on Visualization and Computer Graphics, 18(12):2669–
2678, 2012.

221

[47] Susan Havre, Beth Hetzler, and Lucy Nowell. Themeriver: Visualizing theme
changes over time. In Information Visualization, 2000. InfoVis 2000. IEEE
Symposium on, pages 115–123. IEEE, 2000.

[48] Aleks Aris, Ben Shneiderman, Catherine Plaisant, Galit Shmueli, and Wolf-
gang Jank. Representing unevenly-spaced time series data for visualization
and interactive exploration. Human-Computer Interaction-INTERACT 2005,
pages 835–846, 2005.

[49] Myoungsu Cho, Bohyoung Kim, Hee-Joon Bae, and Jinwook Seo. Stroscope:
Multi-scale visualization of irregularly measured time-series data. IEEE trans-
actions on visualization and computer graphics, 20(5):808–821, 2014.

[50] Michael Schulz and Karl Stattegger. Spectrum: Spectral analysis of unevenly
spaced paleoclimatic time series. Computers & Geosciences, 23(9):929–945,
1997.

[51] Web-based injury statistics query and reporting system (wisqars), Jul 2020.

[52] Key substance use and mental health indicators in the united states: Results
from the 2018 national survey on drug use and health (hhs publication no.
pep19-5068, nsduh series h-54), Jul 2018.

[53] Janet Kemp and Robert Bossarte. Suicide data report: 2012. Department of
Veterans Affairs, Mental Health Services, Suicide Prevention . . . , 2013.

[54] Department of Veterans Affairs et al. Suicide among veterans and other amer-
icans 2001-2014. Washington, DC: Office of Suicide Prevention, 2016.

[55] World Health Organization: Mental Health and Substance Use. Preventing
suicide: A global imperative. World Health Organization, 2014.

[56] Brian K Ahmedani, Gregory E Simon, Christine Stewart, Arne Beck, Beth E
Waitzfelder, Rebecca Rossom, Frances Lynch, Ashli Owen-Smith, Enid M
Hunkeler, Ursula Whiteside, et al. Health care contacts in the year before
suicide death. Journal of general internal medicine, 29(6):870–877, 2014.

[57] Diane L Frankenfield, Penelope M Keyl, Andrea Gielen, Lawrence S Wis-
sow, Lisa Werthamer, and Susan P Baker. Adolescent patients—healthy or
hurting?: Missed opportunities to screen for suicide risk in the primary care
setting. Archives of pediatrics & adolescent medicine, 154(2):162–168, 2000.

[58] Jason B Luoma, Catherine E Martin, and Jane L Pearson. Contact with men-
tal health and primary care providers before suicide: a review of the evidence.
American Journal of Psychiatry, 159(6):909–916, 2002.

[59] Anna Pearson, Pooja Saini, Damian Da Cruz, Caroline Miles, David While,
Nicola Swinson, Alyson Williams, Jenny Shaw, Louis Appleby, and Navneet
Kapur. Primary care contact prior to suicide in individuals with mental illness.
British Journal of General Practice, 59(568):825–832, 2009.

222

[60] Ayal Schaffer, Mark Sinyor, Paul Kurdyak, Simone Vigod, Jitender Sareen,
Catherine Reis, Diane Green, James Bolton, Anne Rhodes, Sophie Grigo-
riadis, et al. Population-based analysis of health care contacts among sui-
cide decedents: identifying opportunities for more targeted suicide prevention
strategies. World Psychiatry, 15(2):135–145, 2016.

[61] Eve K Mościcki. Identification of suicide risk factors using epidemiologic stud-
ies. Psychiatric Clinics of North America, 20(3):499–517, 1997.

[62] Ronald C Kessler, Robert M Bossarte, Alex Luedtke, Alan M Zaslavsky, and
Jose R Zubizarreta. Suicide prediction models: a critical review of recent
research with recommendations for the way forward. Molecular psychiatry,
pages 1–12, 2019.

[63] John F McCarthy, Robert M Bossarte, Ira R Katz, Caitlin Thompson, Janet
Kemp, Claire M Hannemann, Christopher Nielson, and Michael Schoenbaum.
Predictive modeling and concentration of the risk of suicide: implications for
preventive interventions in the us department of veterans affairs. American
journal of public health, 105(9):1935–1942, 2015.

[64] Ronald C Kessler, Irving Hwang, Claire A Hoffmire, John F McCarthy,
Maria V Petukhova, Anthony J Rosellini, Nancy A Sampson, Alexandra L
Schneider, Paul A Bradley, Ira R Katz, et al. Developing a practical sui-
cide risk prediction model for targeting high-risk patients in the veterans
health administration. International journal of methods in psychiatric re-
search, 26(3):e1575, 2017.

[65] Joseph C Franklin, Jessica D Ribeiro, Kathryn R Fox, Kate H Bentley, Evan M
Kleiman, Xieyining Huang, Katherine M Musacchio, Adam C Jaroszewski,
Bernard P Chang, and Matthew K Nock. Risk factors for suicidal thoughts
and behaviors: a meta-analysis of 50 years of research. Psychological bulletin,
143(2):187, 2017.

[66] JD Ribeiro, JC Franklin, Kathryn Rebecca Fox, KH Bentley, Evan MKleiman,
BP Chang, and Matthew K Nock. Self-injurious thoughts and behaviors as
risk factors for future suicide ideation, attempts, and death: a meta-analysis
of longitudinal studies. Psychological medicine, 46(2):225–236, 2016.

[67] Colin G Walsh, Jessica D Ribeiro, and Joseph C Franklin. Predicting risk of
suicide attempts over time through machine learning. Clinical Psychological
Science, 5(3):457–469, 2017.

[68] Jan Horsky, Elizabeth A Drucker, and Harley Z Ramelson. Accuracy and
completeness of clinical coding using icd-10 for ambulatory visits. In AMIA
Annual Symposium Proceedings, volume 2017, page 912. American Medical
Informatics Association, 2017.

223

[69] Icd - icd-10-cm - international classification of diseases,(icd-10-cm/pcs transi-
tion, Nov 2015.

[70] Surveillance case definitions, Dec 2015.

[71] Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy
Schuetz, and Walter Stewart. Retain: An interpretable predictive model for
healthcare using reverse time attention mechanism. In Advances in Neural
Information Processing Systems, pages 3504–3512, 2016.

[72] Bum Chul Kwon, Min-Je Choi, Joanne Taery Kim, Edward Choi, Young Bin
Kim, Soonwook Kwon, Jimeng Sun, and Jaegul Choo. Retainvis: Visual ana-
lytics with interpretable and interactive recurrent neural networks on elec-
tronic medical records. IEEE transactions on visualization and computer
graphics, 25(1):299–309, 2018.

[73] Tim Rosenflanz and Ryan Caldwell. Retain-keras: Keras reimplementation of
retain. https://github.com/Optum/retain-keras, 2020.

[74] Phuoc Nguyen, Truyen Tran, Nilmini Wickramasinghe, and Svetha Venkatesh.
Deepr: a convolutional net for medical records. IEEE journal of biomedical
and health informatics, 21(1):22–30, 2016.

[75] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

[76] Filip Dabek and Jesus J Caban. A neural network based model for predicting
psychological conditions. In International conference on brain informatics and
health, pages 252–261. Springer, 2015.

[77] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

[78] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. Neural architectures for named entity recogni-
tion. arXiv preprint arXiv:1603.01360, 2016.

[79] word2vec, Jul 2013.

[80] Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer, Eduard Hovy, and
Noah A Smith. Retrofitting word vectors to semantic lexicons. arXiv preprint
arXiv:1411.4166, 2014.

[81] Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen Pulman. Deep
learning for answer sentence selection. arXiv preprint arXiv:1412.1632, 2014.

224

https://github.com/Optum/retain-keras

[82] Samuel Gershman and Joshua B Tenenbaum. Phrase similarity in humans
and machines. In CogSci. Citeseer, 2015.

[83] Tom Kenter and Maarten De Rijke. Short text similarity with word em-
beddings. In Proceedings of the 24th ACM international on conference on
information and knowledge management, pages 1411–1420, 2015.

[84] Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010.
ELRA. http://is.muni.cz/publication/884893/en.

[85] Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised learning
of sentence embeddings using compositional n-gram features. Proceedings of
the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), 2018.

[86] Quoc Le and Tomas Mikolov. Distributed representations of sentences and
documents. In International conference on machine learning, pages 1188–
1196, 2014.

[87] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[88] Pandu Nayak. Understanding searches better than ever before. Google Blog,
October, 25, 2019.

[89] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term de-
pendencies with gradient descent is difficult. IEEE transactions on neural
networks, 5(2):157–166, 1994.

[90] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[91] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[92] Yoon Kim. Convolutional neural networks for sentence classification, 2014.

[93] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional
neural network for modelling sentences, 2014.

[94] Peng Wang, Jiaming Xu, Bo Xu, Chenglin Liu, Heng Zhang, Fangyuan Wang,
and Hongwei Hao. Semantic clustering and convolutional neural network for

225

http://is.muni.cz/publication/884893/en

short text categorization. In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 2: Short Papers), pages 352–
357, Beijing, China, July 2015. Association for Computational Linguistics.

[95] Rie Johnson and Tong Zhang. Effective use of word order for text categoriza-
tion with convolutional neural networks, 2014.

[96] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
et al. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[97] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. In Pro-
ceedings of the IEEE international conference on computer vision, pages 19–27,
2015.

[98] Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets.
Cambridge University Press, 2011.

[99] Jesse Davis and Mark Goadrich. The relationship between precision-recall and
roc curves. In Proceedings of the 23rd international conference on Machine
learning, pages 233–240, 2006.

[100] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more in-
formative than the roc plot when evaluating binary classifiers on imbalanced
datasets. PloS one, 10(3), 2015.

[101] Edward Choi, Cao Xiao, Walter Stewart, and Jimeng Sun. Mime: Multilevel
medical embedding of electronic health records for predictive healthcare. In
Advances in neural information processing systems, pages 4547–4557, 2018.

[102] Jonas Kemp, Alvin Rajkomar, and Andrew M Dai. Improved patient classi-
fication with language model pretraining over clinical notes. arXiv preprint
arXiv:1909.03039, 2019.

[103] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian opti-
mization of machine learning algorithms. In Advances in neural information
processing systems, pages 2951–2959, 2012.

[104] Yikuan Li, Shishir Rao, Jose Roberto Ayala Solares, Abdelaali Hassaine,
Dexter Canoy, Yajie Zhu, Kazem Rahimi, and Gholamreza Salimi-Khorshidi.
Behrt: Transformer for electronic health records, 2019.

[105] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

226

Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[106] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei, Mengling
Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony
Celi, and Roger G Mark. Mimic-iii, a freely accessible critical care database.
Scientific data, 3(1):1–9, 2016.

[107] Emily Alsentzer, John R Murphy, Willie Boag, Wei-Hung Weng, Di Jin, Tris-
tan Naumann, and Matthew McDermott. Publicly available clinical bert em-
beddings. arXiv preprint arXiv:1904.03323, 2019.

[108] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
RoBERTa: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[109] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdi-
nov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in neural information processing systems,
pages 5753–5763, 2019.

[110] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. Big bird: Transformers for longer sequences. arXiv preprint
arXiv:2007.14062, 2020.

[111] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology:
What we know about how bert works. arXiv preprint arXiv:2002.12327, 2020.

[112] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-tune bert for
text classification? In China National Conference on Chinese Computational
Linguistics, pages 194–206. Springer, 2019.

[113] Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of
lstms to learn syntax-sensitive dependencies, 2016.

[114] Christopher J Kelly, Alan Karthikesalingam, Mustafa Suleyman, Greg Cor-
rado, and Dominic King. Key challenges for delivering clinical impact with
artificial intelligence. BMC medicine, 17(1):195, 2019.

[115] Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, and Shixia Liu.
Towards better analysis of deep convolutional neural networks. IEEE trans-
actions on visualization and computer graphics, 23(1):91–100, 2016.

[116] Josua Krause, Aritra Dasgupta, Jordan Swartz, Yindalon Aphinyanaphongs,
and Enrico Bertini. A workflow for visual diagnostics of binary classifiers using
instance-level explanations. In 2017 IEEE Conference on Visual Analytics
Science and Technology (VAST), pages 162–172. IEEE, 2017.

227

[117] Filip Dabek, Peter Hoover, and Jesus J Caban. Addressing the need for
raw-valued dataset exploration in neural network visualization. Interpreting,
Explaining and Visualizing Deep Learning Workshop at NIPS 2017, 2017.

[118] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning.
What does bert look at? an analysis of bert’s attention. arXiv preprint
arXiv:1906.04341, 2019.

[119] Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B Viegas, Andy Coenen,
Adam Pearce, and Been Kim. Visualizing and measuring the geometry of
bert. In Advances in Neural Information Processing Systems, pages 8594–
8603, 2019.

[120] Jesse Vig. A multiscale visualization of attention in the transformer model.
arXiv preprint arXiv:1906.05714, 2019.

[121] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution
for deep networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 3319–3328. JMLR. org, 2017.

[122] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Jonathan
Reynolds, Alexander Melnikov, Natalia Lunova, and Orion Reblitz-
Richardson. Pytorch captum. https://github.com/pytorch/captum, 2019.

[123] James C Overholser, Abby Braden, and Lesa Dieter. Understanding suicide
risk: Identification of high-risk groups during high-risk times. Journal of
clinical psychology, 68(3):349–361, 2012.

[124] Chandru Ravindran, Sybil W Morley, Brady M Stephens, Ian H Stanley, and
Mark A Reger. Association of suicide risk with transition to civilian life among
us military service members. JAMA network open, 3(9):e2016261–e2016261,
2020.

[125] David A Wooff and Jillian M Anderson. Time-weighted multi-touch attribu-
tion and channel relevance in the customer journey to online purchase. Journal
of Statistical Theory and Practice, 9(2):227–249, 2015.

[126] D. Gotz and H. Stavropoulos. DecisionFlow: Visual Analytics for High-
Dimensional Temporal Event Sequence Data. IEEE Transactions on Visu-
alization and Computer Graphics, 20(12):1783–1792, December 2014.

[127] Adam Perer and David Gotz. Visualizations to support patient-clinician com-
munication of care. In ACM CHI Workshop on Patient-Clinician Communi-
cation, Paris, France, 2013.

[128] Wolfgang Aigner, Silvia Miksch, Bettina Thurnher, and Stefan Biffl. Plan-
ninglines: novel glyphs for representing temporal uncertainties and their eval-
uation. In Information Visualisation, 2005. Proceedings. Ninth International
Conference on, pages 457–463. IEEE, 2005.

228

https://github.com/pytorch/captum

[129] Steve B Cousins and Michael G Kahn. The visual display of temporal infor-
mation. Artificial intelligence in medicine, 3(6):341–357, 1991.

[130] Ragnar Bade, Stefan Schlechtweg, and Silvia Miksch. Connecting time-
oriented data and information to a coherent interactive visualization. In Pro-
ceedings of the SIGCHI conference on Human factors in computing systems,
pages 105–112. ACM, 2004.

[131] Beverly L Harrison, Russell Owen, and Ronald M Baecker. Timelines: an
interactive system for the collection and visualization of temporal data. In
Graphics Interface, pages 141–141. Citeseer, 1994.

[132] Michael Burch, Fabian Beck, and Stephan Diehl. Timeline trees: visualizing
sequences of transactions in information hierarchies. In Proceedings of the
working conference on Advanced visual interfaces, pages 75–82. ACM, 2008.

[133] Doantam Phan, Andreas Paepcke, and Terry Winograd. Progressive multiples
for communication-minded visualization. In Proceedings of Graphics Interface
2007, pages 225–232. ACM, 2007.

[134] Taowei David Wang, Catherine Plaisant, Alexander J Quinn, Roman Stan-
chak, Shawn Murphy, and Ben Shneiderman. Aligning temporal data by sen-
tinel events: discovering patterns in electronic health records. In Proceedings
of the SIGCHI conference on Human factors in computing systems, pages
457–466. ACM, 2008.

[135] Emanuel Zgraggen, Steven M Drucker, and Danyel Fisher. (s|qu)eries: Visual
regular expressions for querying and exploring event sequences. Proceedings
of CHI 2015, 2015.

[136] Jerry Alan Fails, Amy Karlson, Layla Shahamat, and Ben Shneiderman. A
visual interface for multivariate temporal data: Finding patterns of events
across multiple histories. In Visual Analytics Science And Technology, 2006
IEEE Symposium On, pages 167–174. IEEE, 2006.

[137] Krist Wongsuphasawat and Ben Shneiderman. Finding comparable temporal
categorical records: A similarity measure with an interactive visualization. In
Visual Analytics Science and Technology, 2009. VAST 2009. IEEE Symposium
on, pages 27–34. IEEE, 2009.

[138] Katerina Vrotsou, Kajsa Ellegård, and Matthew Cooper. Everyday life discov-
eries: Mining and visualizing activity patterns in social science diary data. In
Information Visualization, 2007. IV’07. 11th International Conference, pages
130–138. IEEE, 2007.

[139] Krist Wongsuphasawat, Catherine Plaisant, Meirav Taieb-Maimon, and Ben
Shneiderman. Querying event sequences by exact match or similarity search:
Design and empirical evaluation. Interacting with computers, 24(2):55–68,
2012.

229

[140] Jian Zhao, Zhicheng Liu, Mira Dontcheva, Aaron Hertzmann, and Alan Wil-
son. Matrixwave: Visual comparison of event sequence data. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing Systems,
pages 259–268. ACM, 2015.

[141] Krist Wongsuphasawat and David Gotz. Outflow: Visualizing patient flow
by symptoms and outcome. IEEE VisWeek Workshop on Visual Analytics in
Healthcare, Providence, Rhode Island, USA, pages 25–28, 2011.

[142] Florent Masseglia, Maguelonne Teisseire, and Pascal Poncelet. Sequential
pattern mining. Encyclopedia of Data Warehousing and Mining, pages 1028–
1032, 2005.

[143] Zhicheng Liu, Yang Wang, Mira Dontcheva, Matthew Hoffman, Seth Walker,
and Alan Wilson. Patterns and sequences: Interactive exploration of click-
streams to understand common visitor paths. IEEE Transactions on Visual-
ization and Computer Graphics, 23(01), 2016.

[144] Bum Chul Kwon, Janu Verma, and Adam Perer. Peekquence: Visual analytics
for event sequence data. In ACM SIGKDD Workshop on Interactive Data
Exploration and Analytics (IDEA 2016), 2016.

[145] Adam Perer and Fei Wang. Frequence: Interactive Mining and Visualization of
Temporal Frequent Event Sequences. In Proceedings of the 19th International
Conference on Intelligent User Interfaces, IUI ’14, pages 153–162, New York,
NY, USA, 2014. ACM.

[146] Jian Pei, Jiawei Han, B. Mortazavi-Asl, Jianyong Wang, H. Pinto, Qiming
Chen, U. Dayal, and Mei-Chun Hsu. Mining sequential patterns by pattern-
growth: the PrefixSpan approach. IEEE Transactions on Knowledge and Data
Engineering, 16(11):1424–1440, November 2004.

[147] Tao Li. Event Mining: Algorithms and Applications, volume 38. CRC Press,
2015.

[148] Mohammed J Zaki. Spade: An efficient algorithm for mining frequent se-
quences. Machine learning, 42(1-2):31–60, 2001.

[149] Theophano Mitsa. Temporal data mining. CRC Press, 2010.

[150] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining
association rules. In Proc. 20th int. conf. very large data bases, VLDB, volume
1215, pages 487–499, 1994.

[151] Greg Hamerly and Charles Elkan. Learning the k in a> means. Advances in
neural information processing systems, 16:281, 2004.

230

[152] Duc Truong Pham, Stefan S Dimov, and CD Nguyen. Selection of k in k-
means clustering. Proceedings of the Institution of Mechanical Engineers, Part
C: Journal of Mechanical Engineering Science, 219(1):103–119, 2005.

[153] Mark Ming-Tso Chiang and Boris Mirkin. Intelligent choice of the number of
clusters in k-means clustering: an experimental study with different cluster
spreads. Journal of classification, 27(1):3–40, 2010.

[154] James Dougherty, Ron Kohavi, Mehran Sahami, et al. Supervised and un-
supervised discretization of continuous features. In Machine learning: pro-
ceedings of the twelfth international conference, volume 12, pages 194–202,
1995.

[155] P. Riehmann, M. Hanfler, and B. Froehlich. Interactive Sankey diagrams. In
IEEE Symposium on Information Visualization, 2005. INFOVIS 2005, pages
233–240, October 2005.

[156] Takayuki Itoh, Hiroki Takakura, Atsushi Sawada, and Koji Koyamada. Hi-
erarchical visualization of network intrusion detection data. IEEE Computer
Graphics and Applications, 26(2):40–47, 2006.

[157] Kwan-Liu Ma. Cyber security through visualization. In Proceedings of the
2006 Asia-Pacific Symposium on Information Visualisation-Volume 60, pages
3–7. Australian Computer Society, Inc., 2006.

[158] Juhnyoung Lee, Mark Podlaseck, Edith Schonberg, and Robert Hoch. Visu-
alization and analysis of clickstream data of online stores for understanding
web merchandising. In Applications of Data Mining to Electronic Commerce,
pages 59–84. Springer, 2001.

[159] Harry Hochheiser and Ben Shneiderman. Coordinating overviews and detail
views of www log data. In Workshop on New Paradigms in Information Vi-
sualization and Manipulation (NPIVM 2000), ACM Press, 2000.

[160] Juhnyoung Lee and Mark Podlaseck. Visualization and analysis of clickstream
data of online stores with a parallel coordinate system. In International
Conference on Electronic Commerce and Web Technologies, pages 145–154.
Springer, 2000.

[161] Ed Huai-hsin Chi. Improving web usability through visualization. IEEE In-
ternet Computing, 6(2):64–71, 2002.

[162] Igor V Cadez, David Heckerman, Christopher Meek, Padhraic Smyth, and
Steven White. Visualization of navigation patterns on a web site using model-
based clustering. In KDD, page 280, 2000.

231

[163] N. Kadivar, V. Chen, D. Dunsmuir, E. Lee, C. Qian, J. Dill, C. Shaw, and
R. Woodbury. Capturing and supporting the analysis process. In IEEE Sym-
posium on Visual Analytics Science and Technology, 2009. VAST 2009, pages
131–138, October 2009.

[164] Wesley Willett, Jeffrey Heer, and Maneesh Agrawala. Scented widgets: Im-
proving navigation cues with embedded visualizations. IEEE Transactions on
Visualization and Computer Graphics, 13(6):1129–1136, 2007.

[165] Marc Streit, Hans-Jorg Schulz, Alexander Lex, Dieter Schmalstieg, and Hei-
drun Schumann. Model-driven design for the visual analysis of heterogeneous
data. IEEE Transactions on Visualization and Computer Graphics, 18(6):998–
1010, 2012.

[166] Gary M Olson, James D Herbsleb, and Henry H Rueter. Characterizing the se-
quential structure of interactive behaviors through statistical and grammatical
techniques. Human-Computer Interaction, 9(4):427–472, 1994.

[167] Wenwen Dou, Dong Hyun Jeong, F. Stukes, W. Ribarsky, H.R. Lipford, and
R. Chang. Recovering Reasoning Processes from User Interactions. IEEE
Computer Graphics and Applications, 29(3):52–61, May 2009.

[168] Magdalini Eirinaki and Michalis Vazirgiannis. Web Mining for Web Personal-
ization. ACM Trans. Internet Technol., 3(1):1–27, February 2003.

[169] Peter Pirolli and Stuart Card. The sensemaking process and leverage points for
analyst technology as identified through cognitive task analysis. In Proceedings
of international conference on intelligence analysis, volume 5, pages 2–4, 2005.

[170] S. Kandel, A. Paepcke, J.M. Hellerstein, and J. Heer. Enterprise Data Analysis
and Visualization: An Interview Study. IEEE Transactions on Visualization
and Computer Graphics, 18(12):2917–2926, December 2012.

[171] T.M. Green, R. Maciejewski, and S. DiPaola. ALIDA: Using machine learning
for intent discernment in visual analytics interfaces. In 2010 IEEE Symposium
on Visual Analytics Science and Technology (VAST), pages 223–224, October
2010.

[172] Alan J Munro, Kristina Höök, and David Benyon. Social navigation of infor-
mation space. Springer Science & Business Media, 2012.

[173] Ionathan Grudin. History and focus. interaction, 1994.

[174] JE Allen, Curry I Guinn, and E Horvtz. Mixed-initiative interaction. IEEE
Intelligent Systems and their Applications, 14(5):14–23, 1999.

[175] Wil MP Van der Aalst, Boudewijn F van Dongen, Joachim Herbst, Laura
Maruster, Guido Schimm, and Anton JMM Weijters. Workflow mining: a
survey of issues and approaches. Data & knowledge engineering, 47(2):237–
267, 2003.

232

[176] Wil Van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining:
Discovering process models from event logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

[177] Mi Feng, Cheng Deng, Evan M Peck, and Lane Harrison. Hindsight: En-
couraging exploration through direct encoding of personal interaction history.
IEEE Transactions on Visualization and Computer Graphics, 23(1):351–360,
2017.

[178] Adam Perer and Ben Shneiderman. Systematic yet flexible discovery: guiding
domain experts through exploratory data analysis. In Proceedings of the 13th
international conference on Intelligent user interfaces, pages 109–118. ACM,
2008.

[179] Sung-Hee Kim, Zhihua Dong, Hanjun Xian, Benjavan Upatising, and Ji Soo
Yi. Does an eye tracker tell the truth about visualizations?: findings while
investigating visualizations for decision making. IEEE Transactions on Visu-
alization and Computer Graphics, 18(12):2421–2430, 2012.

[180] Gennady Andrienko, Nathaliya Andrienko, Peter Bak, Daniel Keim, Slava
Kisilevich, and Stefan Wrobel. A conceptual framework and taxonomy of
techniques for analyzing movement. Journal of Visual Languages & Comput-
ing, 22(3):213–232, 2011.

[181] Mathias Pohl, Markus Schmitt, and Stephan Diehl. Comparing the readability
of graph layouts using eyetracking and task-oriented analysis. In Computa-
tional Aesthetics, pages 49–56, 2009.

[182] RJ Jacob and Keith S Karn. Eye tracking in human-computer interaction and
usability research: Ready to deliver the promises. Mind, 2(3):4, 2003.

[183] Hua Guo, Steven R Gomez, Caroline Ziemkiewicz, and David H Laidlaw. A
case study using visualization interaction logs and insight metrics to under-
stand how analysts arrive at insights. IEEE transactions on visualization and
computer graphics, 22(1):51–60, 2016.

[184] Jeffrey Heer, Jock Mackinlay, Chris Stolte, and Maneesh Agrawala. Graphical
histories for visualization: Supporting analysis, communication, and evalua-
tion. IEEE transactions on visualization and computer graphics, 14(6), 2008.

[185] Zhicheng Liu and Jeffrey Heer. The effects of interactive latency on exploratory
visual analysis. IEEE transactions on visualization and computer graphics,
20(12):2122–2131, 2014.

[186] D. Gotz and M.X. Zhou. Characterizing users’ visual analytic activity for
insight provenance. In IEEE Symposium on Visual Analytics Science and
Technology, 2008. VAST ’08, pages 123–130, October 2008.

233

[187] E.D. Ragan, A. Endert, J. Sanyal, and Jian Chen. Characterizing Prove-
nance in Visualization and Data Analysis: An Organizational Framework of
Provenance Types and Purposes. IEEE Transactions on Visualization and
Computer Graphics, 22(1):31–40, January 2016.

[188] Ling Xiao, J. Gerth, and P. Hanrahan. Enhancing Visual Analysis of Network
Traffic Using a Knowledge Representation. In Visual Analytics Science And
Technology, 2006 IEEE Symposium On, pages 107–114, October 2006.

[189] E.T. Brown, A. Ottley, H. Zhao, Quan Lin, R. Souvenir, A. Endert, and
R. Chang. Finding waldo: Learning about users from their interactions. IEEE
Transactions on Visualization and Computer Graphics, 20(12):1663–1672, De-
cember 2014.

[190] Tiffany CK Kwok, Eugene Yujun Fu, Erin You Wu, Michael Xuelin Huang,
Grace Ngai, and Hong-Va Leong. Every little movement has a meaning of its
own: Using past mouse movements to predict the next interaction. In 23rd
International Conference on Intelligent User Interfaces, pages 397–401. ACM,
2018.

[191] Eugene Yujun Fu, Tiffany CK Kwok, Erin You Wu, Hong Va Leong, Grace
Ngai, and Stephen CF Chan. Your mouse reveals your next activity: Towards
predicting user intention from mouse interaction. In Computer Software and
Applications Conference (COMPSAC), 2017 IEEE 41st Annual, volume 1,
pages 869–874. IEEE, 2017.

[192] David Gotz and Zhen Wen. Behavior-driven visualization recommendation.
In Proceedings of the 14th International Conference on Intelligent User Inter-
faces, IUI ’09, pages 315–324, New York, NY, USA, 2009. ACM.

[193] L. Bavoil, S.P. Callahan, P.J. Crossno, J. Freire, C.E. Scheidegger, C.T. Silva,
and H.T. Vo. VisTrails: enabling interactive multiple-view visualizations. In
IEEE Visualization, 2005. VIS 05, pages 135–142, October 2005.

[194] Filip Dabek and Jesus J Caban. A grammar-based approach for modeling
user interactions and generating suggestions during the data exploration pro-
cess. IEEE Transactions on Visualization and Computer Graphics, 23(1):41–
50, 2017.

[195] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learn-
ing domains: A survey. Journal of Machine Learning Research, 10(Jul):1633–
1685, 2009.

[196] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the National Academy of Sciences, 114(13):3521–
3526, 2017.

234

[197] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David
Ha, Andrei A Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evo-
lution channels gradient descent in super neural networks. arXiv preprint
arXiv:1701.08734, 2017.

[198] Aniruddh Raghu, Matthieu Komorowski, Leo Anthony Celi, Peter Szolovits,
and Marzyeh Ghassemi. Continuous state-space models for optimal sep-
sis treatment-a deep reinforcement learning approach. arXiv preprint
arXiv:1705.08422, 2017.

[199] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274, 2017.

[200] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human knowledge. nature,
550(7676):354–359, 2017.

[201] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[202] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hass-
abis, Thore Graepel, et al. Mastering atari, go, chess and shogi by planning
with a learned model. arXiv preprint arXiv:1911.08265, 2019.

[203] Nick De Firmian. Modern Chess Openings: MCO-15. Random House Incor-
porated, 2008.

[204] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484–489, 2016.

[205] Murray Campbell. Knowledge discovery in deep blue. Communications of the
ACM, 42(11):65–67, 1999.

[206] Eric Horvitz, Andy Jacobs, and David Hovel. Attention-sensitive Alerting.
In Proceedings of the Fifteenth Conference on Uncertainty in Artificial In-
telligence, UAI’99, pages 305–313, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

[207] Brian Whitworth. Polite computing. Behaviour & Information Technology,
24(5):353–363, September 2005.

[208] Cheri Speier and Michael G Morris. The influence of query interface design
on decision-making performance. MIS quarterly, pages 397–423, 2003.

235

[209] David Roldán-Álvarez, Estefanía Martín, Manuel García-Herranz, and
Pablo A Haya. Mind the gap: impact on learnability of user interface design
of authoring tools for teachers. International Journal of Human-Computer
Studies, 94:18–34, 2016.

[210] Jörn Hurtienne and Luciënne Blessing. Design for intuitive use-testing image
schema theory for user interface design. In 16 th International Conference on
Engineering Design. Citeseer, 2007.

[211] Robert JK Jacob. Eye tracking in advanced interface design. Virtual environ-
ments and advanced interface design, pages 258–288, 1995.

[212] Claudia Ehmke and Stephanie Wilson. Identifying web usability problems
from eye-tracking data. In Proceedings of the 21st British HCI Group Annual
Conference on People and Computers: HCI... but not as we know it-Volume
1, pages 119–128. British Computer Society, 2007.

[213] Andreas Sonderegger and Juergen Sauer. The influence of design aesthetics in
usability testing: Effects on user performance and perceived usability. Applied
ergonomics, 41(3):403–410, 2010.

[214] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction, volume 1. MIT press Cambridge, 1998.

[215] Tableau. http://www.tableau.com/.

[216] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven
documents. Visualization and Computer Graphics, IEEE Transactions on,
17(12):2301–2309, 2011.

[217] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[218] Raquel O Prates, Clarisse S de Souza, and Simone DJ Barbosa. Methods
and tools: a method for evaluating the communicability of user interfaces.
interactions, 7(1):31–38, 2000.

[219] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

236

http://www.tableau.com/

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Overview
	Contributions
	Outline

	Temporal Events
	Definition
	Regular and Irregular

	Machine Learning
	Visualization

	Suicide Prediction
	Introduction
	Dataset
	Overview
	Cohort Construction
	Statistics

	Models
	Regular Models
	NLP-based Models
	Results

	BERT
	Model Base
	Truncating Sequences
	Demographics
	Number of Epochs
	Time Tokens
	Procedures
	Optimal Configuration

	BERT Classifier Introspection
	Related Work
	Feature Attribution Methods
	Visualization
	Doc2Vec Visualizations

	What Didn't Work?
	BERT Ensemble
	Attempts without Ideation
	Downsampling & Weighted Loss

	Limitations
	Conclusion

	Visual Summarization of Temporal Sequences
	Introduction
	Temporal Events
	Related Work
	Mining Temporal Sequences
	Frequent Sequence Mining
	AWP-Span

	Visualization
	Mapping Common Sequences
	Sankey Diagram
	Event Summary Diagram
	Levels of Detail

	Case Studies
	Soccer Matches
	Web Traffic Logs
	EHR Data

	Limitations
	Conclusion

	Reinforcement Learning on User Interactions
	Introduction
	Related Work
	User Interactions
	Reinforcement Learning

	Research Applications
	Approach
	Learning by Playing
	Reward Structure

	Visualization System
	Dataset
	Questions

	Building Models
	Learning Across Tasks
	Extracting Optimal Path

	Providing Guidance
	What to suggest?
	When to suggest?
	Preference Model

	User Study
	User Groups
	Overall Statistics

	Evaluation
	Model Inspection
	Guidance Impact
	Suggestion Accuracy

	Optimize Interface
	Methods of Optimization
	Model Inspection for Optimization
	Path Analysis
	User Comparison

	Discussion
	Limitations

	Conclusion
	Bibliography

