A Requirements Engineering Process for OPEN Development

Danielle Fowler
Swinburne University of Technology
Email: dfowler@swin.edu.au

Brian Henderson-Sellers
University of Technology, Sydney
Email: brian@socs.uts.edu.au

Paul Swatman
Deakin University
Email: paul . swat nan@eaki n. edu. au

Abstr act

The impact of forces such as the internet and the rise of e-commerce has led to an
increasingly distributed and diverse style of systems development environment. With this
change has come the call for methods suited to this type of development. The object
technology community has developed a number of techniques which facilitate development in
such an environment (e.g. components, design patterns and templates). However
comprehensive software process support is dill lacking, particularly in the area of
requirements elicitation and specification. This paper describes an implementation of the
OPEN methodology which incorporates formal specification into the requirements
engineering process through integration of the requirements engineering method FOOM, and
how such an approach benefits the types of systems devel opment projects described above.

Keywords

Requirements engineering, formal specification, object orientation, methodology, FOOM,
OPEN.

THE TARGET SYSTEM DEVELOPMENT ENVIRONMENT

Brooks (1994) argued that building software is hard, and will continue to be, because of four
inherent properties of modern software systems. complexity, conformity, changeability and
invisibility. Addressing complexity as an issue, systems development methods must take into
account

the complexity of the problem domain

the difficulty of managing the developmental process

the flexibility possible through software, and

the problems of characterising the behaviour of discrete systems (Booch 1994, p.5)

This complexity has only increased in recent years, as system development projects are
increasing developed, owned and run across a variety of platforms, geographical locations and
organisational areas. Examples are prevalent: electronic commerce initiatives, for instance,
range from supply chain improvement schemes such as evaluated receipt management (ERS)
or quick response (QR), to internet-based catalogue or payment systems. All are dependent on
I'T, al involve the cooperation of more than one organisation, will likely require the technical
and management skills of people from multiple organisations, and many are distributed across
platform, distance and time zones. The current growth in open-source projects, as another

example, presents challenges for the way traditional project management is approached (Lin
and Henderson-Sellers 1998), as little conventional software engineering practice applies to
systems developed in this manner.

In the light of these challenges, where traditional views on the requirements of a software
engineering process do not hold, or are insufficient, development methods must either be
amed at specific domains and development types (“strong” vs “weak” methodologies
(Vessey and Glass 1998)) or must be flexible and tailorable to a wide range of situations.

Current efforts in the Object Technology community to address this increasingly diverse
environment have focused on a component, or “plug and play” based view of development:
the construction of common models suited to particular environments (e.g. the business
objects of a financial institution, or design templates useful in the building of accounting
systems) which allow not only for reuse but also, hopefully, increased quality through peer
review/refinement. Developments in the areas of OO enterprise modelling and architecture
are similarly focused on leveraging the strength of the object paradigm in facilitating the
partitioning of complex situations into manageable parts, and allowing for reuse of not only
code, but architecture, design and even analysis level models. With this change in approach
comes the need for process support, and flexibility in object-oriented methodologies.

THE COMBINING OF METHODS

FOOM (Formal Object Oriented Method) (Fowler 1996; Swatman 1992,1996) is the result of
an ongoing research project which originated at Curtin University in the early 1990s with the
focus of improving the understanding and quality of the requirements elicitation and
specification process, and particularly in examining the benefits of using formal specification
in MIS systems.

The core theoretic principles on which FOOM is based were socio-organisational theory,
particularly SSM, object orientation, and formal methods. The development of FOOM has
evolved over the course of a number of separate studies, the result of which has been the
development of an | S development approach grounded in these three areas:

socio-organisational contextual analysis, following the work of Checkland (1981, 1989,
1995) and Checkland and Scholes (1990) which, in the general case, denies the existence of a
single, objective requirements specification waiting to be discovered by the systems analyst

mathematically formal specification languages (Fraser et a. 1994) in particular, the object-
oriented specification language Object-Z (Duke et a. 1991) by means of which the abstract
characteristics of classes may be described precisely and unambiguously

the object-oriented approach (Booch 1994; Rumbaugh et al. 1991; Henderson-Sellers and
Edwards 1994) to systems modelling.

All three areas offer a contribution to the systems analysis and requirements modelling
process; in combination, they offer the potential for both increasing understanding of the
problem situation and representing it in a precise and rigorous manner.

Why Formal Specification?

Formal specification techniques offer a solution to the problem of poor requirements
specification by enabling a statement of requirements to be specified in an unambiguous,
precise manner which can be reasoned about formally. Such a document allows for distributed
or outsourced development of the requirements specification, and enables improved
understanding and communication of requirements between users and developers.

Traditionally, the industrial uptake of formal methods (Hinchey and Bowen 1995; Craigen et
al. 1993) has been most noticeable in safety and security-critical systems (Bowen and
Stavridou 1993; Gerhart et a. 1994) where the cost of software failure could be catastrophic.
More recently, however, formal methods have gained popularity in those systems which must
achieve commercial viability (Gerhart et al. 1994): mission critical systems, where quality is
paramount and the perceived increased cost (largely a myth (Bowen and Hinchey 1995)) and
resource demands associated with using formal methods are no longer automatically
considered insurmountable barriers.

In particular, it has become increasingly recognised that formally specifying systemsinthe IS
domain has tangible benefits where €licitation of functional requirements is much more open
to misinterpretation than in the relatively more “objective” scientific/technical context.
Perhaps the most important benefit in improving the requirements specification process is the
contribution they can make to better problem understanding (Hall 1990; Swatman and
Swatman 1992).

The precison of formal methods offers the potential for enhanced communication and
validation of the requirements specification process. Not only can specifications be
communicated with more precision downstream along the development channel (improving
the process of producing products from specifications), but more precise validation of the
specification against the users needs is possible, improving the quality of requirements
captured from the customer.

The traditional benefits of using formal methods include:

- higher quality systems - the match between computer programs and their specifications
can be mathematically verified
a more manageable development process - it is simple to compare a formal requirements
specification with the progress which has been made in implementing the system
cheaper, faster development - athough the requirements specification phase may be
longer, overall implementation time and cost are reduced due to the early identification of
specification errors, omissions or ambiguities (Cunningham et al. 1985; Hall 1990).

As their potential for MIS development has become established, several research projects
have been initiated to examine the incorporation or integration of formal specification
techniques into mainstream 1S methodologies (e.g. the SAZ project (Polack and Mander
1994; Mander and Polack 1995), which is looking at the integration of the formal
specification language Z (Spivey 1992) and the SSADM methodology). These approaches
have all tended to focus on combining formal specification with traditional structured analysis
or design, however, and on using the formal specification process to yield the traditional,
“downstream” benefits: in other words, as a way of facilitating greater understanding of the
specification by developers. They have not focused on the promise of formal specifications as
ameans of improving the requirements validation process.

The additional benefits to be gained from using forma methods in the requirements

engineering process for the IS community include:

- more relevant systems - the use of formal methods as an analytic tool assists in
identifying conflicts among the various Weltanschauungen (world views) that will exist
regarding the functional goals of a system
providing a deeper insight into the system being specified
a formally documented requirements specification, which provides a precise medium for
communication, both between specifier and developers and between specifier and clients
formal specifications, which provide a clear basis for acceptance testing, and also for
litigation in the event of legal disputes

FOOM was developed as a requirements engineering approach incorporating the use of
formal specification techniques within the requirements specification process in order to take
advantage of these benefits.

The Benefits of Object Orientation

The second pillar of FOOM’s development is object orientation. Much more widely adopted
than formal methods, object orientation has become an accepted approach within the
information systems community. We were interested in OO because object technology offers
a useful way of thinking about software based on abstractions that exist in the real world
(Henderson-Sellers and Edwards 1994; Shlaer and Mellor 1992). The key concepts
characterising object-orientation, including precision, abstraction, encapsulation, modularity,
relationship hierarchies, polymorphism and so on offer benefits in the modelling process.
Jacobson et al. (1995) argue that the concepts underlying object modelling alow object
models to be comprehensive, understandable, changeable, adaptable, and reusable:
- comprehensive - because it is possible to break down classes hierarchically, alowing an
understandable overall picture of the business being modelled
understandable - the business is described in terms of objects, which often have a direct
link to occurrences in the real world. This supposedly smaller semantic gap between OO
models and user perceptions of the real world is often put forward as one of the most
valuable benefits of OO (Henderson-Sellers and Edwards 1994; Booch 1994) athough
this does not necessarily equate to easier validation of OO models
changeable - changes usually relate to a single class, and can therefore be introduced
without affecting other parts of the model
adaptable - it is possible to specialise existing classes via inheritance, by inserting the
adaptation into classes that are specialisations of more abstract classes
reuseability - another widely promoted benefit. Classes can be built and handled as
components, like Lego™, ready for use in other systems.

The primary benefit of the object-oriented approach relevant to more effective specification of
systems, which was our goal, can be summarised as facilitating better communication, not
only between developers but also between developers/specifiers and clients (the idea of the
natural modelling paradigm). It offers a facility for partitioning and handling complexity in
system models, thereby improving the validation process by increasing understanding of the
systems model and hence increasing the likelihood of a quality product. This facility has been
borne out in the predominant use of OO modelling and languages in environments
characterised by some kind of distributed development (users, developers, platforms) such as
internet systems.

We chose to use an OO formal specification language because of the synergy between formal
methods and object orientation. Formal methods support object orientation by:
improving the theoretical foundation of object-oriented methods. The solutions to a
number of problems associated with object-oriented methods have been based on
heuristics, rather than on firm theoretical ground. An example is the interference of
inheritance with the class interface. Formal methods can inject a firmer foundation to the
object-oriented methods by validating the soundness of these heuristic solutions through
formal reasoning
developing better specifications for objects. The object-oriented approach involves
building system components which are connected by their interfaces. Formal
specifications offer unambiguous and precise definitions for these interfaces
proving the correctness of critica components. For components which are used
frequently, formal methods can be used to ensure correctness. Bugs or problems found in

frequently reused components can have serious repercussions. changes made may require
many programs to be recompiled and tested to ensure they still work correctly.

Object orientation, in turn, has benefits to offer to the further development of formal
techniques. Although formal methods have been proposed as a mechanism for steering
development towards a more engineering-like discipline, they lack support for software
engineering practices such as teamwork, maintenance and reuse. Object orientation offers
structuring concepts such as a library mechanism, modules and naming conventions to formal
methods, and can also promote the reuse of specifications (Lano and Haughton 1994).

Subjectivity in the Requirements Engineering Process

An important challenge in incorporating formal techniques into the IS domain is combining
the rigour of mathematical methods with more intuitive semi-formal notations, in order to
enhance software quality but also to appeal to users participating in the specification
development. The rationale and issues associated with using formal specification techniques
and object technology have already been presented. There is an area of concern within
reguirements engineering which they do not address, however. Possibly the area of greatest
difficulty in developing systems is overcoming the problems with communication: the
“specification problem” (both of elicitation and validation).

The effectiveness of the requirements elicitation and specification process directly affects the
chances that an intervention into the situation taken will be appropriate. Historically, most
system development methodologies have begun with a requirements analysis phase, carrying
the implicit assumption that the system to be built (and it is amost always assumed a
computerised system or artefact will need to be constructed) is well understood; that is, the
problem context is well understood. This is Checkland's (1981) “hard” systems approach,
with its underlying positivist, objectivist viewpoint. It has long been the traditional approach
of the computer science and software engineering communities. A single, objective statement
of the requirements of the system (for everyone) is assumed to exist, waiting to be uncovered.

Although the information systems community in the past has also often taken this approach
(what Winograd and Flores (1986) call the “rationalist tradition’) to a large extent
(Orlikowski and Baroudi 1991), increasingly attention has focused on an aternative “soft,” or
subjective approach to the problem. The literature has characterised the dichotomy in
approaches in several ways. “hard” and “soft” by Checkland (1981); functionalist vs
interpretivist by Burrell and Morgan (1979); rationalistic vs hermeneutic by Winograd and
Flores (1986). Soft approaches to IS development have emerged, focusing on understanding
the organisational context - on working out the nature of the problem to be addressed (which
may then involve the construction of a computerised system). This approach has gained
favour over recent years as the IS discipline seeks to understand more completely the domain
within which its practitioners work. Rather than accepting that an objective readlity exists
which can be modelled, the soft tradition in IS focuses instead on producing models which
correspond to the conceptual models of the system of the users involved. This tradition
considers “reality” to be a subjective notion; an organisation is comprised, then, not of
numerous people dealing with systems of objective data, but information systems which have
meanings corresponding to the various viewpoints of the people involved.

The strength of these socio-organisational or socio-technical approaches to development is
their focus on the system context, increasing the likelihood that the impact of intervention
within the organisational context will be understood, and thus that any intervention will be
appropriate. One of the best known examples of these “soft” methodologies is the Soft

Systems Methodology (SSM). Checkland (1995) summarises four key thoughts which have

dictated the emerging form of the approach:

- purposeful activity All problem situations have at least one thing in common: they all
contain people - people who, in the face of ambiguity and conflict, are trying to take
purposeful action. SSM takes a set of activities, linked in such a way as to constitute a
purposeful whole as a kind of system, known as a human activity system. Techniques for
modelling such systems (root definitions, CATWOE analysis, conceptual models) exist
In recognising the subjectivity of experience, every model of a notional purposeful whole
in SSM s built according to a declared worldview, or Weltanschauung
holons From its start in systems engineering, SSM has moved the concept of systemicity
from the view that “the world contains systems’ (hard systems thinking) to the view that
“learning about the world can be organised systemically” (soft systems thinking). Holons
are abstract notions of purposeful wholes which may or may not map onto reality, but are
considered relevant to debate about it. Models in SSM are only devices which enable the
coherent exploration of perceptions of the real world to take place
activity models and information systems A model of a purposeful system may be
examined to answer questions about data and/or information support for the activity, and
may therefore be linked to an associated set of data/information items required to enable
the activity to occur. As information/data support is a feature of any real-world problem
situation, information studies are common among uses of SSM.

The concepts and philosophical view of SSM form part of the theoretical basis for FOOM,
although the actua notations and process are not necessarily incorporated. It is, rather, the
ideas of Weltanschauung and the recognition of the need for conflict identification and
resolution which have been incorporated.

Characteristics of the Environment of Use

The individual strengths of formal specification techniques and object orientation makes an
approach combining these qualities particularly suited to an increasingly common systems
development environment where the developers, clients, and/or users may be geographically
distributed. The growth of inter-organisational systems or distributed systems is not new, but
has certainly been aided by the internet as a communication mechanism.

The objective in developing FOOM was to investigate the development of a method
applicable to commercial as opposed to scientific systems, but that remained too wide a focus.
The FOOM research programme was directed toward the elicitation and specification of
requirements in the more specific application domain of Inter-Organisational Systems (10S)
and Electronic Data Interchange (EDI).

There is now considerable interest in requirements engineering for global systems
development efforts, particularly in inter-organisational or distributed development supported
by the internet as a communication mechanism. In order for such development efforts to
succeed an appropriate contextual and requirements analysis must first be undertaken.

As the increasing demand for electronic commerce emphasises the need for developing
inter-organisational systems effectively, understanding the requirements of such systems is
crucial. Multi-organisational information systems possess a number of characteristics which
distinguish them from the “standard,” characteristics which have a significant influence over
the choice of IS development method employed:
because of their scale and the numbers (and often wide geographic distribution) of
interested parties, a prototypical approach to IS development is normally inappropriate for
development. An appropriate 1S development method for this context may focus on

requirements engineering as a discrete phase, and would benefit from tools and techniques
offering precise, accurate communication

in-house information systems development is, in general, not possible (if there is more
than one organisation involved, each part of the development must be outsourced by at
least one of them). Consequently, an appropriate requirements engineering method must
provide support for outsourced development and for modularity and precise contractual
arrangements

it is unreasonable to assume the existence of clear non-conflicting goals within a single
organisation - clearly this problem is exacerbated in the case of more organisations. An
appropriate requirements engineering method must take account of the subjectivity of
perception.

These characteristics introduce (or exacerbate) problems with systems development:
difficulties associated with establishing clear lines of authority and responsibility across
organisational boundaries; difficulties associated with establishing procedures which span
organisational boundaries; difficulties caused by time delays associated with both inter- and
intra- organisational communication.

FOOM addresses these problems, and provides several primary benefits with regard to the
complexities of inter-organisational systems development. A formal specification offers a
clear, unambiguous method of intra-organisational communication, for both users and
developers. FOOM also alows a holistic view to be taken of the system - improving the
inter-organisational communication between the various developers. In effect, it enables
asynchronous communication between developers situated across a wide geographical area.
Although FOOM was designed to be relevant to requirements engineering projects
undertaken in an inter-organisational systems (10S) domain, it is aso relevant to other
systems development projects where a prespecification based approach to requirements
engineering is possible.

WIDER PROCESS CONSIDERATIONS: THE BENEFITS OF OPEN

The scope of the FOOM process covers both the early and late stages of requirements
engineering, which are both often ignored in object-oriented methodologies, and seldom the
focus of software process improvement models. Sawyer et al. (1999), for instance, point out
that existing SPI models concentrate on downstream phases, with the CMM having poor
coverage, athough the newer Systems Engineering CMM has improved support (but the
perception of niche applicability only). As aresult, SPI programmes have traditionally helped
transform requirements into products, but not the development of requirements from
customers. FOOM is focused on both process stages, using formality for traditional strengths
in specification precision, but also in validation with users as a way of better capturing
requirements.

Originally an outline process model (Swatman 1992) which synthesised formal modelling,
object orientation and the socio-organisational view into an approach to systems development,
FOOM evolved over the course of a long action research study (Fowler 1996) aimed at
refining the process/method in its intended setting: the commercial 1S environment. Although
the focus of this refinement was the requirements engineering or analysis phase, FOOM was
designed to connect cleanly with any OO development methodology, or indeed any
methodology with a discrete requirements analysis phase - a primary benefit of developing a
formalised requirements specification document is that it provides a precise communication
mechanism for developers, clients and users, and offers a clear basis for acceptance testing -
qualities especially useful in outsourcing projects. Remaining within the OO paradigm,

however, allows for the benefits associated with reuse, as well as reducing the introduction of
error in trandating between modelling paradigms. In particular, FOOM was designed to be
compatible first with the MOSES methodology (Henderson-Sellers and Edwards 1994) and
now OPEN.

OPEN (Object-oriented Process, Environment and Notation) is a process focused, third
generation, full lifecycle method(ology) (Henderson-Sellers et al. 1998). Initially created from
the merger of the MOSES, SOMA and Firesmith methods, OPEN is essentially a framework
for “third generation” OO development methods which has also incorporated concepts from
BON, Martin/Odell, Discovery, UML and others. It provides a tailorable lifecycle, a
metamodel level process description, techniques and representations (a modelling language).
Individual methods conform to the OPEN methodological framework by adopting some or all
of the framework specification: lifecycle, tasks, techniques and modelling language.

An OPEN process instantiation is made up of activities, which interact with each other via
message passing. The “ methods’™ of an activity are its tasks, which are carried out by people
using techniques. A two dimensional matrix is used to cross link tasks with the techniques
used to achieve them. In this way atailored lifecycle process may be designed for a particular
organisation, or application domain. The lifecycle model in OPEN is contract-driven, with
activities (represented by objects) interacting only if the pre- and post- conditions of the
contract between any pair of activities is met.

The preferred modelling language used within OPEN is OML (OPEN Modelling Language),
which is a notation plus a metamodel, although other common modelling languages, such as
the UML, can be used. OML object notations are used within the FOOM specification
structure (the static OO diagrams used in tier three), and the various FOOM notations (event
chain and communication diagrams: (Fowler et al. 1995; Wafula and Swatman 1996) have
been designed to be visually consistent with first MOSES and now OML.

THE OPEN/FOOM REQUIREMENTS ENGINEERING PROCESS

The FOOM approach to requirements “engineering” is a cyclic one in which initially the
reguirements (the basis for intervention in the problem context) are undefined - indeed, the
problem context itself may be ill- or un-defined. In cycles of Information Analysis, Modelling
and Debate and Validation (see below) the situation and requirements of the required
intervention are established, agreed and documented.

In outline, contextual data relating to the problem situation are transformed into information
which is modelled and structured using a variety of complementary techniques which range
from informal to formal in nature. These models are validated both against the contextual data
and to ensure internal consistency. Debate ensues relating to:
the various stakeholders perception of the current and desired states of the problem
Situation
elegance and problem-solving value of the architecture of the abstract model(s). Typically,
the debate and validation activity provides material for further cycles of FOOM analysis.
In the final cycle, of course, the agreed specification of the problem and the requirements
for the “solution” form the output of the activity.

Activities Involved

The process begins with the “requirements” (the basis for intervention in the problem context)
undefined - at this stage the problem context itself is not well defined. “Contextua data”
about the problem situation are elicited and form the input to the requirements definition
process, which is comprised of three iterative activities:

information analysis In this activity, we establish perspectives on the problem context and
view the problem context from each of these perspectives. The information analyst's
role is that of facilitator. The purpose of this activity is to transform data regarding the
context (later the system) into meaningful information. Data are rendered meaningful to
a person through an individual act of interpretation. Each individual participating in the
process will have their own valid but inherently subjective view of redlity; in this way
the subjective perspectives on the “raw data’ elicited are recognised. Information
analysis is also concerned with the resolution of identified conflicts between the
different worldviews involved. Over time, this process will lead to the refinement of a
set of purposeful human activity systems, one of which will ultimately be formally
specified

modelling This is an essentially technically-led activity in which problem statements
regarding the problem situation are modelled. The system/contextual information
produced by the information analysis phase is modelled, producing problem statements
of the area of investigation. Informal, semi-formal and formal models of the problem
domain and intervention requirements may be constructed. It is important to note that
the different types of modelling, including the use of SSM techniques to define the
problem situation within which intervention is being considered, occur in parallel, rather
than sequentially. The various modelling processes each contribute to the understanding
of the situation, and are interdependent
the informal modelling techniques used are to a large extent discretionary, based upon
their suitability to the problem context. If the user acceptor is familiar with Data Flow
Diagrams, for instance, their use may be an effective way of validating requirements
with some users. The use of some type of behavioural modelling approach, however, is
a necessary additional requirement in this process. This type of model is needed to assist
validate the complete, formal specification with the user-acceptors who are ultimately
responsible for the sign-off of the specification, and who therefore need a more
thorough understanding of the requirements specification. Behavioural models allow for
“road maps’ to be drawn through the OO model, allowing validation to centre around
activites/process that the user is familiar with. Event chain diagrams (Fowler et al.
1995) were specifically designed for this purpose, but other diagrams may be used if
suitable. We have found that use cases, although they are popular with the OT
community as requirements models, are not suitable for this purpose. Use cases are not
object-oriented, and do not provide a way of presenting the behaviour of all parts of the
system (as opposed to only the interfaces with the actors in the system) for validation
(see Korson 1998; Firesmith 1995, for discussions on the limitations of use cases).
semi-formal modelling techniques include conventional static and dynamic OO
diagrammatic techniques, and the communications modelling notation developed by
Wafula (Wafula and Swatman 1996). As with behavioural modelling diagrams, these
form an integral part of the requirements specification
forma modelling in FOOM is undertaken in the specification language Object-Z. As
with the other types of modelling techniques, the general guideline is to model formally
where it seems appropriate. In the case of formal modelling, this is most often where
conflict is known or suspected to exist, either between or within problem statements in
particular. The power of forma modelling lies in the depth of understanding generated,
and its precision in identifying what may be subtle conflict between world views. Not
all requirements (in particular, “useability”) can be represented formally of course. The
expected path is to progress from the development of fragments of Object Z to the
gradual construction of a complete formal model of the requirements for a relevant
human activity system. We do not use OCL (Warmer and Kleppe, 1999) as it is not a

complete formal modelling language but rather a mechanism for expressing additional
(precise) statements regarding classes in a system.

The expected outcome of the information analysis and modelling activities is the
identification of ambiguities and imprecisions which, with the assistance of the
information analyst and the actors within the problem context, will be resolved.

debate and validation In this activity (as in information analysis), the primary participants
are the actors within the problem context. The role of the information analyst is to help
identify (but not normally to solve) conflict both between and within problem
statements generated (formal or otherwise) from the modelling activity. The formal
specifier's role within this process is to assist in evaluating the implications of formal
problem statements, and to facilitate decision making by the actors within the problem
context (the owners of the problem)

The techniques and notations associated with the conduct of these activities may be grouped
by the areas described previoudly: socio-organisational theory, object orientation, and formal
specification techniques.

In summary then, the techniques included within FOOM are:

- the formulation of root definitions to represent relevant human activity systems, from the
Soft Systems Methodology. These may or may not be expressed with rich pictures
the static modelling tools associated with MOSES or OPEN: association, aggregation,
inheritance, etc
dynamic modelling tools designed especialy for FOOM: the event chain notation and
object collaboration diagrams
the Object-Z specification language
textual and ad hoc diagrammatic modelling.

SUMMARY

The use of formal specification techniques in the information systems domain offers the
potential of improved relevance of software developed by offering:
the provision of a deeper insight into the system being specified - a formal specification
prevents the creation of inherent contradictions caused by redefining the “meaning” of
portions of the specification without corresponding changes to the specification itself
a mechanism allowing study and analysis of the specification, thus offering reliable
predictions of behaviour; and leading to a basis for system acceptance testing.

This paper has described a development methodology, OPEN/FOOM, which incorporates
formality into the requirements engineering process for commercia information systems
development. Specifically, it described the issues associated with incorporating formal
techniques into the requirements engineering process, and describes the benefits of supporting
this approach with the third generation object-oriented methodology known as OPEN.

REFERENCES
Boehm B.W. (1976) Software engineering, | EEE Transactions on Computers C-25(12): 1226-1241.

Booch G. (1994) Object-Oriented Analysis and Design with Applications, 2nd ed, Benjamin
Cummings, Redwood City, California.

Bowen J. and Hinchey M. (1995) 10 commandments of formal methods, |EEE Computer 28(4):56-63.

Bowen J. and Stavridou V. (1993) The industrial take-up of formal methods in safety-critical and other
areasin Woodcock and Larsen (eds), FME'93: Industrial-Srength Formal Methods, Springer-Verlag,
ppl83-195.

Brooks F. (1994) No silver bullet: Essence and accidents of software engineering, Computer, 10-18.

Burrell G. and Morgan G. (1979) Sociological paradigms and organisational analysis, Heineman,
London.

Checkland P.B. (1995) Soft systems methodology and its relevance to the development of information
systems, in Stowell (1995).

Checkland P.B. (1981) Systems Thinking, Systems Practice, Wiley, Chichester.
Checkland P.B. and Scholes J. (1990) Soft Systems Methodology in Practice, Wiley.

Craigen D., Gerhart S. L. and Ralston T.J. (1993) An international survey of industrial applications of
formal methods, Tech Rpt NIST GCR 93/626- V1 & 2, Atomic Energy Control Board of Canada, US
National Institute of Standards and Technology, and US Naval Research Laboratories.

Cunningham R.J., Finkelstein A., Goldsack S., Maibaum T. and Potts C. (1985) Formal requirements
specification - the Forest project, Proceedings of the International Workshop on Software
Soecification and Design, London, pp. 186-191.

Duke R., King P. and Smith G. (1991) Combining formal methods with object-oriented design: An
emerging trend in software engineering, Proc Australian Computer Conference-ACC'91.

Firesmith D.G. (1995) Use cases. the pros and cons, Report on Object Analysis and Design, 2(2),2-6.

Fowler D.C., Swatman P.A. and Wafula E. (1995) Formal methods in the IS domain: introducing a
notation for presenting Object-Z specifications, Object Oriented Systems, 2(2).

Fowler D.C. (1996) Formal Methodsin a Commercial Information Systems Setting: The FOOM
Method, PhD thesis, Centre for 1S Research, Swinburne University, Melbourne, Victoria.

Fraser M., Kumar K. and Vaishnavi V. (1994) Strategies for incorporating formal specificationsin
software development, Communications of the ACM 37(10): 74-86.

Gerhart S., Graigen D. and Ralston T. (1994) Experience with formal methods in critical systems,
|EEE Software 11(1): 21-28.

Gibbs W. (1994) Software's chronic crisis, Scientific American pp. 72-81.
Hall J.A. (1990) Seven myths of formal methods, |EEE Software 7(5): 11-19.
Henderson-Sellers B. (1997) A BOOK of Object Oriented Knowledge, 2nd ed, Prentice Hall, NJ.

Henderson-Sellers B. and Edwards J. M. (1994) BOOKTWO of Object-Oriented Knowiedge: The
Working Object, Prentice Hall, Sydney.

Henderson-Sellers B., Simons A. and Y ounessi H. (1998) The OPEN Toolbox of Techniques,
Addision-Wesley, New Y ork.

Hinchey M. and Bowen J. (eds) (1995) Applications of Formal Methods, International Seriesin
Computer Science, Prentice Hall.

Jacobson | ., Ericsson M. and Jacobson A. (1995) The Object Advantage: Business Process
Reengineering with Object Technology, Addison-Wesley, Wokingham, England.

Korson T. (1998) The misuse of use cases (managing requirements), Object Magazine, 8(3):18-20.

Lano K. and Haughton H. (1994) Object-Oriented Specification Case Studies, Prentice Hall,
Englewood Cliffs.

Lin M. and Henderson-Sellers B. (1998) Adapting the open methodology for web development,
Proceedings of the BCS Information Systems Methodolgy Specialist Group Conference, University of
Manchester, June (Springer Verlag, in press).

Mander K. C. and Polack F. (1995) Rigorous specification using structured systems analysis and Z,
Information and Software Technology 37(5-6): 285-291.

Orlikowski W. J. and Baroudi J. (1991) Studying information technology in organisations: research
approaches and assumptions., Information Systems Research 2(1): 1-28.

Polack F. and Mander K. C. (1994) Software quality assurance using the SAZ method, in J. P. Bowen
and J. A. Hall (eds), Z User Workshop, Cambridge, Workshops in Computing, Springer-Verlag, pp.
230-249.

Rumbaugh J. et a. (1991). Object-Oriented Modelling and Design, Prentice Hall, Englewood Cliffs.

Shlaer S. and Mellor S. (1992) Object Lifecycles. Modelling the World in States, Prentice Hall,
Englewood Cliffs, N.J.

Sawyer P., Sommervillel. And Viller S. (1999) Capturing the benefits of requirements engineering.
|IEEE Software, March/April, 78-85.

Spivey J.M. (1992) The Z Notation: A Reference Manual, 2nd ed, Prentice Hall, Hemel Hempsted,
England.

Stowell F.A. (ed) (1995) Information Systems Provision: the Contribution of Soft Systems
Methodol ogy, McGraw-Hill Book Company Europe, Berkshire, England.

Swatman P.A. (1996) Formal object-oriented method: Foom, in Kilov H.and Harvey W. (eds),
Specification of Behavioural Semantics in Object-Oriented Information Systems, Kluwer.

Swatman P. A. (1992) Increasing Formality in the Specification of High-Quality Information Systems
in a Commercia Context, PhD thesis, Curtin University of Technology, School of Computing, Perth,
Western Australia.

Swatman P.A., Fowler D.C. and Gan C.Y .M. (1992) Extending the useful application domain for
formal methods, in J. E. Nicholls (ed.), Z User Workshop: Y ork 1991, Workshops in Computing,
Springer Verlag, London.

Swatman P.A. and Swatman P.M.C. (1992) Formal specification: An analytic tool for (management)
information systems, Journal of Information Systems 2(2): 121-160.

Vessey |. and Glass R. (1998) Strong vs weak approaches to systems development, Communications
of the ACM 41(4): 99-102.

WafulaE.N. and Swatman P.A. (1996) FOOM: a diagrammatic illustration of Object-Z specifications,
Object Oriented Systems, 3(4), 215-242.

Winograd T. and Flores F. (1986) Understanding Computers and Cognition: A New Foundation for
Design, Ablex, Norwood, N.J.

Wirfs-Brock R., Wilkerson B. and Wiener L. (1990) Designing Object-Oriented Software, Prentice
Hall, Englewood Cliffs, N.J.

COPYRIGHT

Danielle Fowler, Brian Henderson-Sellers, Paul Swatman (c) 1999. The authors assign to
ACIS and educational and non-profit institutions a non-exclusive license to use this document
for personal use and in courses of instruction provided that the article is used in full and this
copyright statement is reproduced. The authors also grant a non-exclusive license to ACIS to
publish this document in full in the Conference Papers and Proceedings. Those documents
may be published on the World Wide Web, CD-ROM, in printed form and on mirror sites on
the World Wide Web. Any other use is prohibited without the express permission of the
authors,

