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Data Assimilation for the Navier--Stokes Equations Using Local Observables\ast 

Animikh Biswas\dagger , Zachary Bradshaw\ddagger , and Michael S. Jolly\S 

Abstract. We develop, analyze, and test an approximate, global data assimilation/synchronization algorithm
based on purely local observations for the two-dimensional Navier--Stokes equations on the torus. We
prove that, for any error threshold, if the reference flow is analytic with sufficiently large analyticity
radius, then it can be recovered within that threshold. Numerical computations are included to
demonstrate the effectiveness of this approach, as well as variants with data on moving subdomains.
In particular, we demonstrate numerically that machine precision synchronization is achieved for
mobile data collected from a small fraction of the domain.
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1. Introduction. For a given dynamical system, which is believed to accurately describe
some aspect(s) of an underlying physical reality, the problem of forecasting is often hindered
by inadequate knowledge of the initial state and/or model parameters describing the system.
However, in many cases, such as in weather prediction, this is compensated by the fact that
one has access to data from (frequently noisy) measurements of the system, collected either
continuously in time or at discrete time points, albeit on a much coarser spatial grid than the
desired resolution of the forecast. The objective of data assimilation and signal synchroniza-
tion in geophysics is to use low spatial resolution observational measurements to fine tune our
knowledge of the state and/or model to improve the accuracy of the forecasts [27, 51]. While
atmospheric science, geoscience, and meteorology have provided the initial impetus for the
subject, it has now found widespread application, including, but not limited to, environmen-
tal sciences, systems biology and medicine [54, 59], imaging science, traffic control and urban
planning, economics and finance, and oil exploration [4].

An extensive literature exists on data assimilation using the Bayesian and variational
framework (e.g., Kalman filters and 3DVar) [4, 16, 18, 20, 19, 45, 51, 52, 58, 70]. Despite this
large body of work, as noted in [46, 75, 76], the problems of stability, accuracy, and catastrophic
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filter divergence, particularly for infinite-dimensional chaotic dynamical systems governed by
PDEs, continue to pose serious challenges to rigorous analysis of these Bayesian/Kalman filter
based schemes, and are far from being resolved.

Another flexible data assimilation technique, which is analytically (and often computa-
tionally) much more tractable than variational methods (particularly 4DVar), is the so-called
nudging (or Newtonian relaxation). It consists of adding an extra feedback control term to the
model equation that drives the coarse mesh spatial scales of the solution toward the observed
ones. This approach was used earlier in the context of feedback control of ODEs [63, 65, 74].
Subsequently, starting with [47], it has been used extensively in meteorology and oceanogra-
phy as a data assimilation method; see, for instance, [15, 71, 77]. A nice survey of the use of
this method in geophysics can be found in [5]. It is useful to note that for noisy data [10],
nudging is a special case (with a scalar gain matrix) of the continuum level stochastic equa-
tions for 3DVar or ensemble Kalman filter [16, 52], and therefore, a thorough understanding
of this method will likely help in understanding other data assimilation methods. It can also
be viewed as a special case of methods used for coupling of chaotic dynamical systems in order
to achieve signal synchronization; see, for instance, [69] for a nice description and survey of
applications to finite-dimensional ODEs.

Though introduced earlier in geophysics and control of ODEs, to the best of our knowl-
edge, a rigorous analytical framework for this approach for dissipative nonlinear PDEs was
first developed in [6, 7]. In particular, it is shown there that due to the existence of finitely
many determining modes, nodes and volume elements for dissipative systems, [39, 40, 25],
the solution of the data assimilation system, i.e., the system with the added nudging term,
regardless of the initial data used to initialize it, converges exponentially to the solution
of the original system. Moreover, the analysis in [6, 7] provides explicit conditions on the
relaxation (nudging) parameter and the spatial resolution of the observations necessary to
guarantee exponential convergence to the reference solution of the model equation. This
initiated a lively field of research---see [1, 10, 11, 13, 22, 34, 38, 64] and the references
therein. More recently, it has been successfully implemented for efficient dynamical down-
scaling of a global circulation model [28], where the authors assert that ``overall results clearly
suggest that continuous data assimilation provides an efficient new approach for dynamical
downscaling by maintaining better balance between the global model and the downscaled
fields.""

Rigorous results following in the vein of [6], or, for instance, [16] for variational data
assimilation, are based on the earlier work on determining parameters [39, 40] and require
global knowledge, in the form of either the low modes (which necessitates global measurements
to determine) or information from a global array of uniformly distributed observables, usually
nodal values or volume elements [6]. When measuring data from real world systems, certain
considerations impact the placement of instruments. It is easier, for example, to measure fluid
velocity or temperature at shallow depths in the ocean than at extreme depths. Similarly, a
wide array of uniformly placed sensors are plainly infeasible when modeling the solar wind or
the ionosphere, thus necessitating data assimilation techniques based on local measurements
[3, 30, 31]. These examples illustrate the value of a global data assimilation algorithm that is
based on local measurements. The existing abstract approaches to data assimilation require a
global array of data points. In this paper, we introduce a data assimilation algorithm based onD
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2176 ANIMIKH BISWAS, ZACHARY BRADSHAW, AND MICHAEL S. JOLLY

local observables for the two-dimensional (2D) periodic Navier--Stokes equations that recovers
a sufficiently regular reference solution within a specified error. The key ingredient is a
spectral inequality due to Egidi and Veseli\'c [32, 33] which bounds the L2-norm over the full
domain in terms of that over a subdomain, enabling us to use the local data obtained from the
subdomain for global assimilation of the system. Moreover, we illustrate the efficacy of our
algorithm by extensive computational studies. Furthermore, we demonstrate numerically that
observation on a small fraction of the domain suffices for global assimilation provided the data
collection domain moves with time to cover the entire domain, which may in practice indeed
be the case for data collected by satellites, aircraft, or ships, which are mobile. The efficacy of
mobile data, i.e., moving point measurements for data assimilation was also computationally
observed recently by Larios and Victor [57] for a 1D model. Our numerical work shows that
the same holds true for data assimilation based on local observations for the Navier--Stokes
equations.

The main results are stated in section 2. After some preliminary material in section 3, we
establish existence of solutions to the nudged equation in section 4, followed by the proof of
synchronization in section 5. We provide in section 6 computational evidence to demonstrate
the effectiveness of local sampling for the synchronization of global spatial flow features. We
then test in section 7 variations of the algorithm in which the subdomain moves with time and
find the convergence to the reference solution is greatly enhanced. A brief summary is given
in section 8. It should be noted that while our local data assimilation results are established
in the context of the Navier--Stokes equations, it is not difficult to extend these results to
other dissipative fluid models such as the magnetohydrodynamic equations or the Boussinesq
equations.

2. Statement of main results. Let \Omega 0 be a C2 domain in \BbbR 2 or the periodic box [ - L/2,
L/2]2. The Navier--Stokes equations in functional form are

(2.1)
d

dt
u+ \nu Au+B(u,u) = f in \Omega 0 \times (0,\infty ); \nabla \cdot u = 0 in \Omega 0 \times (0,\infty ).

In (2.1), B(u,v) = \scrP (u \cdot \nabla v), where \scrP is the Leray projection operator, A is the Stokes
operator, f is a given divergence-free forcing, and the velocity field u is unknown. We further
impose zero Dirichlet boundary conditions if working on a C2 domain and periodic boundary
conditions if working on the torus. Additionally assume the flow evolves from an initial
datum u0 in an appropriate function space. We use standard notation for the function spaces
commonly used to analyze (2.1) [26, 73].

Throughout this paper we consider a domain \Omega 0 and a subdomain \Omega . We partition \Omega 
in the following way: Form a lattice of points in \Omega so that the distance between neighboring
points is h. This leads to a finite collection of m closed squares \{ Si\} mi=1 so that \Omega \subset \cup 1\leq i\leq mSi

and Si \cap \Omega \not = \emptyset for all 1 \leq i \leq m. Let xi denote the center of each square.
For our first result, let \Omega 0 = [ - L/2, L/2]2 and consider (2.1) with periodic boundary

conditions and analytic forcing f . Our goal is to obtain a global data assimilation result using
local observables. In particular, observations are limited to an open set \Omega compactly contained
in \Omega 0.D
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DATA ASSIMILATION USING LOCAL OBSERVABLES 2177

Two types of interpolant operators appear in the literature. Type 1 operators satisfy an
approximation inequality where the upper bound involves the H1-norm. A relevant example
of a Type 1 operator is the following based on averages over volume elements:

(Ihf)(x) =
m\sum 

i=1

\chi Si(x)(f)Si ,(2.2)

where (f)Si denotes the integral average of f over Si, i.e., (f)Si =
1

\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}(Si)

\int 
Si
f where meas(\cdot )

denotes the 2D Lebesgue measure. The approximation property given in [6] for this operator
is the following:

\| f  - Ihf\| 2L2(\Omega 0)
\leq c0h

2\| f\| 2H1(\Omega 0)
.(2.3)

In our analysis we use a local version of this operator with an additional feature, spectral
filtering to the first N modes. Our spectrally filtered operator is given by

(Ih,N,\Omega f)(x) = PN

m\sum 

i=1

\chi Si\cap \Omega (x)(f\chi \Omega )Si ,(2.4)

where PN is the projector onto the first N eigenvectors of A. Denoting

(Ih,\Omega f)(x) =

m\sum 

i=1

\chi Si\cap \Omega (x)(f\chi \Omega )Si ,(2.5)

we have (Ih,N,\Omega f)(x) = PN (Ih,\Omega f)(x). Note that supp Ih,\Omega f = \Omega . An identical (modulo
constants) approximation property to (2.3) will be proved in section 3 for this local operator.

Type 2 operators satisfy an approximation inequality where the upper bound involves the
H2-norm. A relevant example of a Type 2 operator is the following based on nodal values:

(\scrI hf)(x) =
m\sum 

i=1

\chi Si(x)f(xi).(2.6)

The corresponding approximation property from [6] is

\| f  - \scrI hf\| 2L2(\Omega 0)
\leq c20(h

2\| f\| 2\.H1(\Omega 0)
+ h4\| f\| 2\.H2(\Omega 0)

).(2.7)

Again, we will investigate a local version of this operator. In particular, we define

(\scrI h,N,\Omega f)(x) = PN

m\sum 

i=1

\chi Si\cap \Omega (x)(\chi \Omega f)(xi) = PN\scrI h(\chi \Omega f).(2.8)

Also let

(\scrI h,\Omega f)(x) =
m\sum 

i=1

\chi Si\cap \Omega (x)(\chi \Omega f)(xi).(2.9)
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2178 ANIMIKH BISWAS, ZACHARY BRADSHAW, AND MICHAEL S. JOLLY

An analogous inequality to (2.7) will be proven in section 3. Spectrally filtered operators using
global observables similar to these have been used for data assimilation in [23].

The interpolant operators are used to feed information about a solution u to (2.1) into
the data assimilation equation

d

dt
vN + \nu AvN + PNB(vN ,vN ) = PN f  - \mu (Jh,N,\Omega vN  - Jh,N,\Omega u),(2.10)

where Jh,N,\Omega \in \{ Ih,N,\Omega , \scrI h,N,\Omega \} . Note that the samples used to drive vN are confined to
the subdomain \Omega . Furthermore vN lives in span(\phi 1, . . . , \phi N ). Our main result says that,
within any given tolerance \epsilon , vN captures the long time properties of u provided N and \mu are
sufficiently large and h is sufficiently small, with quantities determined by \Omega , \nu , the Grashof
number G (defined in (3.1)), and \epsilon . It requires the solution u to be uniformly in a Gevrey

class, in particular, u \in L\infty ((0,\infty );D(A1/2e\sigma A
1/2

)), with \sigma sufficiently large as determined by
\Omega , \nu , G, and \epsilon .

The precise definition of D(A1/2e\sigma A
1/2

), i.e., analytic Gevrey classes, is given in sec-

tion 3.2. We presently note that the (Gevrey) class D(e\sigma A
1/2

) coincides with real ana-
lytic functions having analyticity radius greater than or equal to \sigma , and although we have
D(A1/2e\sigma A

1/2
) \subset D(e\sigma A

1/2
), the analyticity radius for functions belonging to either classes

is at least \sigma . Therefore, the classes D(As/2e\sigma A
1/2

) are all termed analytic Gevrey classes.
The use of Gevrey norms (and corresponding Gevrey classes) was pioneered by Foias and
Temam [40] for estimating the space analyticity radius for the Navier--Stokes equations and
was subsequently used by many authors (see, e.g., [8] and the references therein). The Gevrey
class approach enables one to avoid cumbersome recursive estimates of higher order deriva-
tives and yields optimal estimates of the analyticity radius [66]. It has recently been used to
obtain optimal decay rates for higher order Sobolev norms in [9, 8] for decaying turbulence.
The conventional theory of turbulence posits the existence of certain universal length scales
of paramount importance. For instance, according to Kolmogorov, there exists a dissipation
length scale, \lambda d, beyond which the viscous effects dominate the nonlinear coupling. This length
scale can be characterized by the exponential decay of the energy density. Consequently, one
expects the dissipation wave number, \kappa d = \lambda  - 1

d , to majorize the inertial range where energy
consumption is largely governed by the nonlinear effects and dissipation can be ignored. In
[12, 29] it is shown that as characterized by Gevrey norms, the (uniform) radius of spatial
analyticity \sigma provides an estimate of the dissipation length scale, i.e., \sigma \sim \lambda d.

Due to the seminal result in [40], it is well-known that, provided the forcing f is real analytic
(for instance, if f is a linear combination of finitely many Fourier modes), then the global
attractor (in fact a compact absorbing ball containing the global attractor) consists of real
analytic functions (i.e., they belong to an appropriate Gevrey class). The analyticity radius
on the attractor roughly coincides with Kolmogorov's dissipation length scale for turbulent
flows. We elaborate on this condition following the statement of the theorem.

Theorem 2.1 (approximate convergence for local observations). Let \Omega be an open set in \Omega 0 =
[ - L/2, L/2]2. Let u be the solution to (2.1) for some u0 \in V and f \in L\infty ((0,\infty );H)). Assume
additionally that for some \sigma > \sigma \ast > 0, where \sigma \ast = \sigma \ast (\Omega ) is an adequate constant depending
on the subdomain \Omega , we haveD
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DATA ASSIMILATION USING LOCAL OBSERVABLES 2179

(2.11) M := lim sup
t\rightarrow \infty 

\| u(t)\| 
D(A1/2e\sigma A1/2

)
= lim sup

t\rightarrow \infty 
\| A1/2e\sigma A

1/2
u\| L2(\Omega 0).

Let \epsilon > 0 be given. There exists a spectral index N\ast = N\ast (G, \nu , \epsilon ,M) \in \BbbN , so that, for any
N \geq N\ast , there exists a a small value h\ast = h\ast (\nu ,G,N) such that if h \in (0, h\ast ) and \mu \sim \nu 

h2 ,
then

lim sup
t\rightarrow \infty 

\| u(t) - vN (t)\| L2(\Omega 0) < \epsilon ,

where vN is the global smooth solution to (2.10) taken with either Jh,N,\Omega = Ih,N,\Omega or Jh,N,\Omega =
\scrI h,N,\Omega and zero initial data.

Comments on Theorem 2.1.
1. The assumptions are complicated so we elaborate on how they fit together:

(a) The needed analyticity radius \sigma is determined solely by the subdomain through
the constant \sigma \ast , which in turn is determined by a constant occurring in the
observation inequality relating the local L2-norm on the subdomain \Omega to the
global L2-norm on the entire domain \Omega 0. Therefore Theorem 2.1 can be
viewed as saying, For analytic flows with analyticity radius sufficiently large as
determined by the subdomain \Omega , we can approximately recover the solution.
In this sense Theorem 2.1 is a conditional result.

(b) The best known lower estimate of the analyticity radius on the attractor is
given in [55] and is of the order of G - 1/2, where G is the Grashof number. It
should be noted though that in practice, the analyticity radius of the solution
u(\cdot ) can be much larger. Importantly for our theorem, once \Omega 0 is fixed, if the
Grashof number is taken small enough in a fashion depending on \Omega 0 and the
solution u and an analytic forcing f (e.g., if f has finitely many Fourier modes)
are as in [55], then the analyticity radius \sigma of u can be made larger than the
length scale \sigma \ast .

(c) Next, N\ast is chosen large in a manner depending on \epsilon , M and a priori bounded
quantities associated with u. ForN \geq N\ast , we can execute the data assimilation
argument for sufficiently small h and \mu \sim \nu 

h2 .
(d) As will be apparent from the proof of Theorem 2.1 (and also Theorem 2.2), de-

pending on the value of h (i.e., granularity of the observed data), \mu can be cho-
sen within a specified range. Choosing \mu larger within this range theoretically
accelerates convergence. However, setting \mu too large makes the corresponding
data assimilation equation stiffer, necessitating shorter time steps. Since the
convergence happens at an exponential rate, in testing the capture of a known
reference solution, it is evident after only a short run when an effective choice
of \mu has been made.

2. The existence of vN is implicit in Theorem 2.1. The details are worked out in section 4.
3. If the solution u is replaced by a Galerkin approximation in span(\phi 1, . . . , \phi N ), then

the conclusion of Theorem 2.1 holds whenever f \in L\infty ((0,\infty );H). Alternatively, if a
condition is imposed on the forcing that results in the flow remaining spectrally local,
e.g., if the forcing and data are supported on finitely many Fourier modes, then the flow
can be recovered exactly as t \rightarrow \infty . This implies numerically simulated flows---whichD

ow
nl

oa
de

d 
10

/2
3/

23
 to

 1
30

.8
5.

19
3.

30
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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are spectrally localized---can be recovered up to machine precision and round-off error
using observations confined to a subdomain provided sufficiently many observations
are taken. The number of observations depends exponentially on N , although as
demonstrated numerically in section 6, a far smaller value of N is necessary. While
this is interesting from a numeric perspective, in practical applications the observed
data comes from nature and is not spectrally localized. When the flow is not spectrally
local we lose exactness and also require analyticity.

4. In Azouani--Olson--Titi data assimilation, the large parameter \mu is attached to a large
positive global quantity and is used to hide large contributions in the energy inequality
for the difference of the solution to (2.1) and the solution to the data assimilation
equation. In our localized setup, \mu is attached to a large positive local quantity while
the contributions in the energy inequality remain global. To bridge the gap between
global and local in this setting we use spectral inequalities developed to study control
problems. These are compiled in section 3. Note that, in comparison to [6], our
\mu is larger in the rigorous analysis. This can be viewed as the (analytical) cost of
localization, although in numerical computations, we observe that a much smaller
value of \mu suffices.

An exact convergence result follows as a corollary of Theorem 2.1 provided (2.11) holds
and one has full knowledge of u| \Omega as well as global knowledge on a set with zero space-time
Lebesgue measure.1 This means we solve

d

dt
vN + \nu AvN + PNB(vN ,vN ) = PN f  - \mu PN\chi \Omega (vN  - u).(2.12)

In particular, we can construct a vector field v that converges to u as t \rightarrow \infty in an appropriate
average sense by increasing the sample size in Theorem 2.1.

Corollary 2.1. Under the assumptions of Theorem 2.1, i.e., (2.11), there exists a vector
field v \in L\infty ((0,\infty );H) \cap L2((0, T );V ) for all T > 0 so that v is a limit (in an appropriate
sense) of a sequence of vector fields satisfying (2.12) and for every measurable set U we have

lim
t\rightarrow \infty 

\int 

U
(u - v)(x, t) dx = 0

at an exponential rate.

This asserts only that a vector field matching the long time behavior of u exists given
complete local knowledge of u. The fact that it is obtained as a limit of the solution to (2.12)
means it can be approximated numerically. However, this corollary does not say what system
governs v. This is an interesting direction for future research.

We also obtain an exact data assimilation scheme for non-Gevrey forcing provided the
subdomain is sufficiently large within the domain. For convenience we work with a bounded
domain \Omega 0 with smooth boundary and impose zero Dirichlet boundary conditions. We con-
sider a variant of the local data assimilation equation, namely,

d

dt
v + \nu Av +B(v,v) = f  - \mu Ih,\Omega (v  - u).(2.13)

1The latter can be eliminated---and hence a result given involving only data on the subdomain---but as
presently written leads to a cleaner statement of the corollary.D
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Note that the interpolant operators are localized but there is no spectral projection. We
manage this by requiring the subdomain occupy almost the full domain as this allows us to
use a helpful observability inequality [78].

Theorem 2.2 (exact convergence for large subdomains). Let \Omega \subset \Omega 0 be an open set with
smooth boundary. Let u be the solution to (2.1) for some u0 \in V and f \in L\infty ((0,\infty );H).
Then there exists a small value h\ast = h\ast (\nu ,\Omega , f) so that, if h \in (0, h\ast ) and \mu \sim \nu 

h2 , then

\| u(t) - v(t)\| L2(\Omega 0) \rightarrow 0, as t \rightarrow \infty ,

at an exponential rate provided dH(\partial \Omega , \partial \Omega 0) \sim (
\surd 
\lambda 1G) - 1, where v is the solution to (2.13)

taken with Jh,N,\Omega = Ih,N,\Omega and zero initial data, \lambda 1 is the first eigenvalue of the Stokes
operator, and dH denotes the Hausdorff distance between two compact sets.

As we will explain in Remark 5.3, this result allows one to avoid the collection of mea-
surements near the (possibly turbulent) boundary layer, which may be inherently error prone.
Due to Remark 5.3, dH(\partial \Omega , \partial \Omega 0) is comparable to the value h found in [6], meaning that
the volume elements adjacent to the boundary of \Omega 0 can be eliminated from the interpolant
operators in [6]. Although this may be a small number of volume elements, they are adjacent
to the boundary layer, which may be turbulent for flows with large Reynolds numbers and,
consequently, subject to large measurement error. It is interesting also from a mathematical
viewpoint as well, since it is an exact convergence result based on a local interpolant. As the
argument is similar to Theorem 2.1, we only sketch the details of a proof---see Remarks 4.1
and 5.3

We note that the localization problem for determining nodes in the sense of [50] has
been solved for analytic forcing [43, 42]. A general theme is that data assimilation implies
determining quantity type results but not the other away around. For the localization problem,
this appears to be the case. Indeed, the argument in [43, 42] is applied at the level of elements
of the attractor, and both solutions are analytic. In data assimilation, the solution to the
localized data assimilation equation does not a priori converge to the global attractor for f .
Furthermore, vN is not analytic because it is driven by a term with compact support. Hence
there are clear barriers to adapting the methods in [43, 42] to the data assimilation problem.

3. Preliminaries.

3.1. Strong solutions to the 2D Navier--Stokes. Recall that given u0 \in V and f \in 
L\infty ((0,\infty );H), (2.1) has a unique global solution u so that

u \in C([0, T ];V ) \cap L2((0, T );D(A)) and
du

dt
\in L2((0, T );H)

for every T > 0 [26]. Furthermore we have that there exists a time t0 = t0(u0) so that, for all
t \geq t0,

\| u(t)\| 2L2(\Omega 0)
\leq 2\nu 2G2 and

\int t+T

t
\| A1/2u(s)\| 2L2(\Omega 0)

ds \leq 2(1 + T\nu \lambda 1)\nu G
2,

where T > 0 is fixed and G denotes the Grashof number which is defined to be

G =
1

\nu 2\lambda 1
lim sup
t\rightarrow \infty 

\| f(t)\| L2(\Omega 0).(3.1)
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2182 ANIMIKH BISWAS, ZACHARY BRADSHAW, AND MICHAEL S. JOLLY

The above are true for both Dirichlet boundary conditions on a bounded domain with C2

boundary or for periodic boundary conditions. For the periodic case we have the following
improvement: There exists a time t0 = t0(u0) so that, for all t \geq t0,

\| A1/2u(t)\| 2L2(\Omega 0)
\leq 2\nu 2\lambda 1G

2 and

\int t+T

t
\| Au(s)\| 2L2(\Omega 0)

ds \leq 2(1 + T\nu \lambda 1)\nu \lambda 1G
2,(3.2)

where T > 0 is fixed.

3.2. \bfitL \bftwo Gevrey classes. Recall that if u \in L2(\Omega 0) is periodic and has zero mean and
\Omega 0 = [ - L/2, L/2]2, then

u(x) =
\sum 

\bfk \in \BbbZ 2\setminus \{ 0\} 
\^u\bfk e

2\pi i
L

\bfk \cdot \bfx ,

where

\^u\bfk =

\int 

\Omega 0

u(y)e - 
2\pi i
L

\bfk \cdot \bfy dy.

Working on the periodic box [ - L/2, L/2]2, we define the Gevrey spaces D(Are\sigma A
s
) to be

those elements of H satisfying

\| u\| 2D(Are\sigma As ) := L2
\sum 

k\in \BbbZ 2

\bigm| \bigm| \bigm| \bigm| 
k

L

\bigm| \bigm| \bigm| \bigm| 
4r

e2\sigma | 2\pi 
k
L
| 2s | \^u\bfk | 2 < \infty .

Analyticity corresponds to r = 0 and s = 1/2. We only use r = 0 and s = 1/2 or r = s = 1/2.
Note that for Gevrey class forcing, a solution u to (2.1) becomes and remains Gevrey regular
for positive times. Indeed, for large enough times we have the following uniform bound [37,
p. 74]:

| \^u\bfk | 2 \leq C\lambda 1\nu 
2| k|  - 2e - 4\pi \delta 0| \bfk | /L[1 +G2],

where \delta 0 is inversely related to G. For our applications, this is insufficient unless G is taken
to be small, so we impose an explicit assumption that the analyticity radius is large when G
is not small. In particular, we assume

lim sup
t\rightarrow \infty 

\| u(t)\| 
D(A1/2e\sigma A1/2

)
=: M < \infty ,

where \sigma is as in Theorem 2.1 and

\| u(t)\| 
D(A1/2e\sigma A1/2

)
= | A1/2e\sigma A

1/2
u| .

The preceding condition implies

lim sup
t\rightarrow \infty 

| \^u\bfk | 2(t) \leq M2| k|  - 2e - 4\pi \sigma | \bfk | /L.

Gevrey class and analytic solutions to (2.1) and other fluid models have been studied exten-
sively. A partial list is [14, 17, 21, 41, 44, 55].D
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3.3. The Stokes operator. We denote by \phi i the eigenvectors and \lambda i the eigenvalues of
the Stokes operator. PN denotes the projection operator from L2 onto span(\phi 1, . . . , \phi N ).

Recall from [26] that for periodic domains and restricting to functions with zero mean, the
Stokes operator A agrees with  - \Delta . Furthermore, abusing notation slightly, the eigenfunctions

\phi \bfk of A can be written explicitly in terms of \{ e2\pi i \bfk L \cdot \bfx \} \bfk \in \BbbZ 2 as

\phi \bfk = a\bfk L
 - 1e2\pi i

\bfk 
L
\cdot \bfx + \=a\bfk L

 - 1e - 2\pi i \bfk 
L
\cdot \bfx ,

where a\bfk \in \BbbC 2 satisfy a\bfk \cdot k = 0. For each k \in \BbbZ 2 \setminus \{ 0\} there are actually two eigenfunctions
of the above form but we suppress this. Note that \{ \phi \bfk \} is orthonormal and all elements have
mean zero. The eigenvalues of A are the values 4\pi 2L - 2| k| 2 for k \in \BbbZ 2 \setminus 0. The eigenfunctions
can be ordered as \{ \phi j\} j\in \BbbN so that the corresponding eigenvalues \lambda j are nondecreasing. By
symmetry, the multiplicity of the eigenvalue \lambda j is

\#\{ k \in \BbbZ 2 : | k| 2 = \lambda j\lambda 
 - 1
1 \} .

If we are given an eigenvalue \lambda j , then this corresponds to points k \in \BbbZ 2 \setminus \{ 0\} in the square
[ - K,K]2 where K2 \sim j. Furthermore, we have asymptotically that

\lambda j \lesssim j,

implying
K2 \lesssim j.

Plainly then, if u \in span(\phi 1, . . . , \phi N ), there existsK \sim 
\surd 
N so that \^u is supported in [ - K,K]2.

For other properties of the Stokes operator, as well as its eigenvectors and eigenvalues, see
[37, II.6] as well as [26, 73].

3.4. Approximation property of local interpolant operators. We prove analogues of (2.3)
and (2.7) for local interpolant operators. The local volume interpolant operator (2.5) satisfies
the approximation property

\| Ih,\Omega f  - f\| 2L2(\Omega ) \leq c0h
2\| f\| 2H1(\Omega 0)

.(3.3)

Structurally this is identical to (2.3) but the operator is local so we check details. By the
Poincar\'e inequality,

\| Ih,\Omega f  - f\| 2L2(\Omega ) \leq 
m\sum 

i=1

meas(Si \cap \Omega )CSi\cap \Omega \| \nabla (f\chi \Omega )\| 2L2(Si\cap \Omega ),

where CSi\cap \Omega is the Poincar\'e constant for Si \cap \Omega . These constants are uniformly bounded
because the sets CSi\cap \Omega all have bounded diameters. We thus obtain

\| Ih,\Omega f  - f\| 2L2(\Omega ) \leq c0h
2

m\sum 

i=1

\| \nabla f\| 2L2(Si\cap \Omega ) = c0h
2\| f\| 2H1(\Omega ) \leq c0h

2\| f\| 2H1(\Omega 0)
,

which is (3.3).D
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The local nodal interpolant operator (2.9) satisfies the approximation property

(3.4) \| \scrI h,\Omega f  - f\| 2L2(\Omega ) \leq c20(h
2\| f\| 2\.H1(\Omega 0)

+ h4\| f\| 2H2(\Omega 0)
).

Again, this follows essentially the original argument in [6] which is adapted from [50]. Recall
from [50, 6] that if Q is a square of side length h and x,y \in Q, then for f \in H2(Q),

| f(x) - f(y)| \leq 2

\biggl( 
4\| \nabla f\| 2L2(Q) + h2\| Af\| 2L2(Q)

\biggr) 1/2

.(3.5)

Then, following [6, p. 299],

\| f  - \scrI h,\Omega f\| 2L2(\Omega ) \leq 
m\sum 

i=1

\int 
| f(x) - f(xi)| 2\chi Si(x)dx

\leq 
m\sum 

i=1

4h2
\bigl( 
4\| f\| 2\.H1(Si)

+ h2\| f\| 2\.H2(Si)

\bigr) 

\leq c20(h
2\| f\| 2\.H1(\Omega 0)

+ h4\| f\| 2\.H2(\Omega 0)
).

(3.6)

3.5. Spectral inequalities. For our approximate data assimilation result, we use a spectral
inequality of Egidi and Veseli\'c for the torus [32, 33]. This extends earlier work on \BbbR d [53].
The spectral inequality applies to ``thick"" sets. A set S is thick in \BbbR 2 if there exists \gamma \in (0, 1]
and a = (a1, a2) where ai > 0 so that for every x \in \BbbR 2,

| (S + x) \cap ([0, a1]\times [0, a2])| \geq \gamma a1a2 .

It is easy to see that any open set in [ - L/2, L/2]2 which is periodically extended to \BbbR 2 is
thick. The spectral theorem on the torus is the following.

Theorem 3.1 (see [32]). Let f \in L2(\Omega 0) where \Omega 0 denotes the torus [0, L1] \times [0, L2].
Assume supp \^f \subset J where J is a rectangle in \BbbR 2 with sides parallel to coordinate axes and
of length b1 and b2. Let b = (b1, b2). Let S \subset \BbbR 2 be a (\gamma , a)-thick set with a = (a1, a2) so that
0 < aj < 2\pi Lj for j = 1, 2. Then

\| f\| L2(\Omega 0) \leq C\gamma  - ca\cdot b - 13
2 \| f\| L2(S\cap \Omega 0).

For simplicity we take L1 = L2 = L and S to be the periodic extension of a ball with
radius r < L/2 to all of \BbbR 2. It is not difficult to see that this set is thick with

ai = L - r and \gamma =
\pi r2

4(L - r)2
.

We can also take b1 = b2 = 2K where K \in \BbbN is fixed and J centered at the origin. Then, for
any open set \Omega contained in \Omega 0, we have as a consequence of Theorem 3.1 applied to a ball
of radius r contained in \Omega 0 that

\sum 

\bfk \in [ - K,K]2\cap \BbbZ 2

| \~f\bfk | 2 \leq C\gamma  - 2c(L - r)K - 13

\int 

\Omega 

\bigm| \bigm| \bigm| \bigm| 
\sum 

\bfk \in [ - K,K]2\cap \BbbZ 2

\~f\bfk e
2\pi i k

L
\cdot \bfx 
\bigm| \bigm| \bigm| \bigm| 
2

dx,(3.7)
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where \~f\bfk is the Fourier coefficient for k \in \BbbZ 2. We prefer to rewrite this inequality in the form

\| f\| 2L2(\Omega 0)
\leq C\Omega e

C\Omega K\| f\| 2L2(\Omega ),(3.8)

where C\Omega represents positive constants which are independent of K and range \^f \subset [ - K,K]2.
Based on the discussion in section 3.3, we can also formulate this result in terms of the Stokes
operator: If f \in span(\phi 1, . . . , \phi N ), then

\| f\| 2L2(\Omega 0)
\leq C\Omega e

C\Omega 

\surd 
N\| f\| 2L2(\Omega ).(3.9)

For bounded domains, there is a spectral inequality for the Stokes operator due to Chaves-
Silva and Lebeau [24].

Theorem 3.2 (see [24]). Let \Omega \subset \Omega 0 be a nonempty open set. There exist constants M > 0
and K > 0 so that for every sequence of complex numbers zj and every real \Lambda > 0 we have

\sum 

\lambda j\leq \Lambda 

| zj | 2 =
\int 

\Omega 0

\bigm| \bigm| \bigm| \bigm| 
\sum 

\lambda j\leq \Lambda 

zj\phi j

\bigm| \bigm| \bigm| \bigm| 
2

dx \leq MeK
\surd 
\Lambda 

\int 

\Omega 

\bigm| \bigm| \bigm| \bigm| 
\sum 

\lambda j\leq \Lambda 

zj\phi j(x)

\bigm| \bigm| \bigm| \bigm| 
2

dx,(3.10)

where \phi j are the eigenvectors and \lambda j are the eigenvalues of the Stokes operator.

Spectral inequalities of this form were established earlier for elliptic operators on a bounded
domain in [62, 60] using Carleman inequalities and a pointwise interpolation estimate from
[61]. Although in Theorem 2.1 we consider only the case of the periodic boundary conditions,
similar techniques can be employed for the bounded domain as well---see Remark 5.1.

3.6. An observation inequality. Theorem 2.2 is an exact convergence result when the
observation domain is almost the entire domain. Our main technical tool for this is the
following observation inequality due to Yu and Li [78].

Lemma 3.1 (see [78]). Let \Omega and \Omega 0 be bounded domains with smooth boundary so that
\Omega \subset \Omega 0. For any \epsilon > 0, there exists K(\epsilon ) > 0 so that for k > K, the following inequality
holds:

\int 

\Omega 0

| \nabla u| 2 + k\chi \Omega | u| 2 dx \geq (\lambda 1(\Omega ) - \epsilon )

\int 

\Omega 0

| u| 2 dx(3.11)

for u \in H1
0 (\Omega 0) and \lambda 1 the first eigenvalue of the Laplace operator on the domain \Omega 0 \setminus \Omega with

zero-Dirichlet boundary conditions. As | \Omega | \rightarrow | \Omega 0| , \lambda 1(\Omega ) increases without bound.

As a final comment let us note that an observation inequality for (2.1) is given in [49] for
the difference of two solutions. There are, however, major obstacles to applying the obser-
vation inequality of [49] to the difference of the reference solution and the data assimilation
solution. In particular, the observation inequality in [49] involves many parameters which, in
our application, must remain bounded as t \rightarrow \infty . In [49], these parameters are only required
to satisfy the referenced bounds on a short time interval. This is enough for the purposes
of [49], as their goal is to prove uniqueness, while they are insufficient here as our goal is to
obtain asymptotic convergence.D
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4. Solving the data assimilation equations. In this section we construct solutions to the
data assimilation equations introduced in section 1. Recall the data assimilation equation is

d

dt
vN + \nu AvN + PNB(vN ,vN ) = PN f  - \mu Jh,N,\Omega (vN  - u),(4.1)

where Jh,N,\Omega is either Ih,N,\Omega or \scrI h,N,\Omega . We focus on periodic boundary conditions and assume
f \in L\infty ((0,\infty );H). Notice that the data assimilation equation has the form

d

dt
vN + \nu AvN = FN (u,vN , f),

where FN \in span(\phi 1, . . . , \phi N ). Provided the data vN 0 is also in span(\phi 1, . . . , \phi N ), we may seek
a solution vN (t) \in span(\phi 1, . . . , \phi N ) for all t. Formally taking vN (t) \in span(\phi 1, . . . , \phi N ) for
all t results in a finite system of ODEs which possesses a local-in-time unique strong solution.
We take vN to be this solution and let T (vN 0) be the maximal existence time for vN for data
vN 0. Since the solution is strong, we have vN \in C([0, T (vN 0));H). Note that if T (vN 0) is
maximal and finite, then the L2-norm of vN must blow up at T (vN 0). Hence, a uniform in
time bound for the L2-norm implies T (vN 0) = \infty . The next lemma provides such a bound
and implies vN is a global solution provided h is sufficiently small.

Lemma 4.1. Let u0 \in V be given and let u be the solution to (2.1) for data u0 \in V and
f \in L\infty ((0,\infty );H). Fix N \in \BbbN , h > 0, and \mu > 0 and Jh,N,\Omega \in \{ Ih,N,\Omega , \scrI h,N,\Omega \} . Assume
vN 0 \in span(\phi 1, . . . , \phi N ) and let vN be the unique strong solution to (2.10) on [0, T (vN 0)) for
some h > 0. Then, provided h is sufficiently small, vN satisfies

vN \in L\infty ((0, T (vN 0));H) \cap L2((0, T \prime );V )(4.2)

for every 0 < T \prime < T (vN 0). The first inclusion implies T (vN 0) = \infty .

For type 1 interpolants, the requirement on h in [6] is 2\mu c0h
2 \leq \nu . This is better than

ours by a factor of 4.
Because vN is confined to span(\phi 1, . . . , \phi N ), we may deduce bounds on higher order de-

rivatives freely using properties of the eigenvectors of the Stokes operator. Hence we do not
need to prove such estimates as required in [6].

We do not require any Gevrey regularity of f at this point.

Proof. We first focus on Jh,N,\Omega = Ih,N,\Omega . Take the inner product of (2.10) with vN and
integrate in space to obtain

1

2

d

dt
\| vN\| 2L2(\Omega 0)

+ \nu \| A1/2vN\| 2L2(\Omega 0)
= (f + \mu Ih,N,\Omega u,vN ) - \mu (Ih,N,\Omega vN ,vN ),

where (\cdot , \cdot ) = (\cdot , \cdot )L2(\Omega 0). We estimate each term on the right-hand side. For the source terms
we have

| (f ,vN )| \leq 4

\nu \lambda 1
\| f\| 2L2(\Omega 0)

+
\nu 

4
\| A1/2vN\| 2L2(\Omega 0)

and

| (\mu Ih,N,\Omega u,vN )| \leq 4\mu 2

\nu \lambda 1
\| Ih,\Omega u\| 2L2(\Omega 0)

+
\nu 

4
\| A1/2vN\| 2L2(\Omega 0)

,
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where we used the fact that vN is projected onto the first N modes to eliminate PN in the
inner product. A direct computation confirms that

\| Ih,\Omega u\| 2L2(\Omega 0)
\leq \| u\| 2L2(\Omega 0)

,

where we used (2.3). Hence

| (\mu Ih,N,\Omega u,vN )| \leq 4\mu 2

\nu \lambda 1
\| u\| 2L2(\Omega 0)

+
\nu 

4
\| A1/2vN\| 2L2(\Omega 0)

.

For the remaining term we have

 - \mu (Ih,N,\Omega vN ,vN ) =  - \mu (Ih,\Omega vN ,vN ) =  - \mu (Ih,\Omega vN  - \chi \Omega vN ,vN ) - \mu 

\int 

\Omega 
| vN | 2 dx.(4.3)

The last term above has a good sign while, using (3.3), the second to last is bounded as

\mu | (Ih,\Omega vN  - \chi \Omega vN ,vN )| \leq \mu \| Ih,\Omega vN  - \chi \Omega vN\| L2(\Omega 0)\| A1/2vN\| L2(\Omega )

\leq 2\mu c0h
2\| A1/2vN\| 2L2(\Omega 0)

+
\mu 

2
\| vN\| 2L2(\Omega ).

(4.4)

We now require

(4.5) 2\mu c0h
2 \leq \nu 

4
.

Granting this and absorbing terms where possible we obtain

1

2

d

dt
\| vN\| 2L2(\Omega 0)

+
\nu 

4
\| A1/2vN\| 2L2(\Omega 0)

\leq 4

\nu \lambda 1
\| f\| 2L2(\Omega 0)

+
4\mu 2

\nu \lambda 1
\| u\| 2L2(\Omega 0)

 - \mu 

2
\| vN\| 2L2(\Omega ).(4.6)

Using the Poincar\'e inequality and dropping the term with a good sign we have

1

2

d

dt
\| vN\| 2L2(\Omega 0)

+
\nu \lambda 1

4
\| vN\| 2L2(\Omega 0)

\leq 4

\nu \lambda 1
\| f\| 2L2(\Omega 0)

+
4\mu 2

\nu \lambda 1
\| u\| 2L2(\Omega 0)

.(4.7)

Since the right-hand side is uniformly bounded in t, this leads to a uniform in time bound on
| vN | in the usual way [6]. Note that this bound is independent of N .

The proof is the same if we replace Ih,N,\Omega with \scrI h,N,\Omega with one modification: Instead of
(4.4) we have

\mu | (\chi \Omega vN  - \scrI h,\Omega vN ,vN )| \leq \mu \| \chi \Omega vN  - \scrI h,\Omega vN\| L2(\Omega 0)\| vN\| L2(\Omega 0)

\leq 2\mu c20h
2\| vN\| 2\.H1(\Omega 0)

+ 2\mu c20h
4\| vN\| 2\.H2(\Omega 0)

+
\mu 

2
\| vN\| 2L2(\Omega )

\leq 2\mu c20(h
2 + h4\lambda N )\| A1/2vN\| 2L2(\Omega 0)

+
\mu 

2
\| vN\| 2L2(\Omega ).

(4.8)

After fixing N and \mu we therefore take h small so that 2\mu c20(h
2 + h4\lambda N ) < \nu 

4 and proceed as
in the case of Ih,N,\Omega .D
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Remark 4.1. We discuss the existence problem for (2.13). Because the localization in
(2.13) does not involve a spectral projection, it is very similar to the usual existence result
[6], using the usual Galerkin approximation procedure. Therefore we include only the needed
a priori bound and direct the reader to [6] as well as [26, 73] for more details. For the a priori
bound, starting with (2.13) we have

1

2

d

dt
\| vN\| 2L2(\Omega 0)

+ \nu \| A1/2vN\| 2L2(\Omega 0)
= (f ,vN ) - \mu (Ih,\Omega vN ,vN ) + \mu (Ih,\Omega u,vN ).

As in the proof of Proposition 4.1, the source terms lead to time-independent quantities on
the right-hand side while

 - \mu (Ih,\Omega vN ,vN ) =  - \mu (Ih,\Omega vN  - \chi \Omega vN ,vN ) - \mu \| vN\| 2L2(\Omega ).

This is identical to (4.3) and we can conclude following the identical argument. In particular,
for \mu fixed and h chosen to satisfy 8\mu c0h

2 \leq \nu , we obtain a uniform bound on vN in terms of
\mu , u, and f . To rigorously construct a solution, we would now apply this a priori bound to a
Galerkin scheme and pass to the limit using the standard compactness argument.

This existence result does not require \Omega to occupy most of \Omega 0. This constraint will be
needed for data assimilation.

5. Local data assimilation.

Proof of Theorem 2.1. Let \epsilon > 0 be given. Let \=\epsilon = \epsilon \nu \lambda 1
8 . Let u and vN be as in the

statement of Theorem 2.1. Note that for any N \in \BbbN , PNu solves

d

dt
PNu+ \nu APNu+ PNB(PNu,u) = PN f  - PNB(QNu,u),(5.1)

where QN = I  - PN . We will eventually specify a value for N .
Let w = vN  - PNu. Then w is divergence free and satisfies

d

dt
w + \nu Aw + PNB(PNu,w) + PNB(w,w) + PNB(w, PNu)

=  - \mu Ih,N,\Omega w + \mu Ih,N,\Omega QNu+ PNB(QNu,u) + PNB(PNu, QNu).
(5.2)

Throughout this proof, unless otherwise noted, \| \cdot \| = \| \cdot \| L2(\Omega 0). We have

1

2

d

dt
\| w\| 2 + \nu \| A1/2w\| 2 + (B(w, PNu),w)

=  - \mu (Ih,N,\Omega w,w) + \mu (Ih,N,\Omega QNu,w) + (B(QNu,u) +B(PNu, QNu),w),
(5.3)

where we made some obvious simplifications. As in section 4 we have

 - \mu (Ih,N,\Omega w,w) = \mu (\chi \Omega w  - Ih,\Omega (w),w) - \mu 

\int 

\Omega 
| w| 2 dx(5.4)

and

| \mu (\chi \Omega w  - Ih,\Omega (w),w)| \leq C\mu c0h
2\| A1/2w\| 2L2(\Omega 0)

+
\mu 

4
\| w\| 2L2(\Omega ).(5.5)D
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The H\"older, Ladyzhenskaya, and Young inequalities lead to

| (B(w, PNu),w)| \leq C

\nu 
\| A1/2u\| 2\| w\| 2 + \nu 

4
\| A1/2w\| 2.(5.6)

Applying the spectral inequality (3.9) and using (3.2) we obtain

C

\nu 
\| A1/2u\| 2\| w\| 2 \leq C\nu \lambda 1G

2C\Omega e
C\Omega 

\surd 
N\| w\| 2L2(\Omega )

(5.7)

for sufficiently large times. Also by standard interpolation inequalities, we have

(B(QNu,u) +B(PNu, QNu),w)

\leq C(\| QNu\| 1/2\| A1/2QNu\| 1/2\| u\| 1/2\| A1/2u\| 1/2

+ \| PNu\| 1/2\| PNA1/2u\| 1/2\| QNu\| 1/2\| QNA1/2u\| 1/2)\| A1/2w\| 
\leq C\| QNu\| 1/2\| A1/2QNu\| 1/2\| u\| 1/2\| A1/2u\| 1/2\| A1/2w\| 

\leq C

\nu 2
\| QNu\| \| A1/2QNu\| \| u\| \| A1/2u\| + \nu 

4
\| A1/2w\| 2 .

Note that

C

\nu 2
\| QNu\| \| A1/2QNu\| \| u\| \| A1/2u\| \leq C

\nu 2\lambda 
1/2
N

\| A1/2u\| 3\| u\| 

\leq C

\nu 2\lambda 
1/2
N

(2\nu 2\lambda 1G
2)3/2(2\nu 2G2)1/2

\leq C

\lambda 
1/2
N

\nu 2\lambda 
3/2
1 G4,

(5.8)

which can be made small by taking N large. Finally we have

\mu | (Ih,N,\Omega QNu,w)| \leq \mu \| Ih,\Omega QNu\| \| \chi \Omega w\| 
\leq \mu \| \chi \Omega QNu\| \| w\chi \Omega \| \leq C\mu \| \chi \Omega QNu\| 2 + \mu 

4
\| w\| 2L2(\Omega ).

(5.9)

By our assumption on uniform Gevrey bounds for u we have

\mu \| \chi \Omega QNu\| 2 \leq C\mu 
\sum 

\surd 
N\lesssim | \bfk | 

| \^u\bfk | 2 \leq C\mu 
\sum 

\surd 
N\lesssim | \bfk | 

M2

\bigm| \bigm| \bigm| \bigm| 
L

k

\bigm| \bigm| \bigm| \bigm| 
2

e - 4\pi \sigma 
\bigm| \bigm| \bfk 
L

\bigm| \bigm| 
,

and this bound holds uniformly in time for sufficiently large times. We will return to this
term later after specifying a connection between \mu and N .

Collecting the above estimates and dropping terms where appropriate we obtain

1

2

d

dt
\| w\| 2 + \nu 

2
\| A1/2w\| 2 + \mu 

2

\int 

\Omega 
| w| 2 dx \leq C\nu \lambda 1G

2C\Omega e
C\Omega 

\surd 
N\| w\| 2L2(\Omega )

+ C\mu c0h
2\| A1/2w\| 2 + C\mu 

\sum 
\surd 
N\lesssim | \bfk | 

M2

\bigm| \bigm| \bigm| \bigm| 
L

k

\bigm| \bigm| \bigm| \bigm| 
2

e - 2\pi \sigma 
\bigm| \bigm| \bfk 
L

\bigm| \bigm| 
+

C

\lambda 
1/2
N

\nu 2\lambda 
3/2
1 G4.

(5.10)
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Provided N is sufficiently large we have

C

\lambda 
1/2
N

\nu 2\lambda 
3/2
1 G4 \leq \=\epsilon 

2
.(5.11)

Assuming this holds, let

\mu = 2C\nu \lambda 1G
2C\Omega e

C\Omega 

\surd 
N and h\ast =

\sqrt{} 
\nu 

4C\mu c0

and take h \leq h\ast . Then (5.10) simplifies to

1

2

d

dt
\| w\| 2 + \nu 

4
\| A1/2w\| 2 \leq C\mu 

\sum 
\surd 
N\lesssim | \bfk | 

M2

\bigm| \bigm| \bigm| \bigm| 
L

k

\bigm| \bigm| \bigm| \bigm| 
2

e - 2\pi \sigma 
\bigm| \bigm| \bfk 
L

\bigm| \bigm| 
+

\=\epsilon 

2
.(5.12)

Using the definition of \mu in terms of N we obtain

C\mu 
\sum 

\surd 
N\lesssim | \bfk | 

M2

\bigm| \bigm| \bigm| \bigm| 
L

k

\bigm| \bigm| \bigm| \bigm| 
2

e - 2\pi \sigma 
\bigm| \bigm| \bfk 
L

\bigm| \bigm| 
= C\nu \lambda 1G

2C\Omega 

\sum 
\surd 
N\lesssim | \bfk | 

M2

\bigm| \bigm| \bigm| \bigm| 
L

k

\bigm| \bigm| \bigm| \bigm| 
2

eC\Omega 

\surd 
N - 2\pi \sigma 

\bigm| \bigm| \bfk 
L

\bigm| \bigm| 

\leq C\nu \lambda 1G
2C\Omega M

2

N

\sum 
\surd 
N\lesssim | \bfk | 

eC\Omega 

\surd 
N - 2\pi \sigma 

\bigm| \bigm| \bfk 
L

\bigm| \bigm| 
,

(5.13)

where we have hidden some global parameters. Take \sigma large enough so that

\sum 
\surd 
N\lesssim | \bfk | 

eC\Omega 

\surd 
N - 2\pi \sigma 

\bigm| \bigm| \bfk 
L

\bigm| \bigm| \leq 1.

This is achieved if
C\Omega \lesssim \sigma .

In addition to (5.11), we require that

N \geq 2C\nu \lambda 1G
2C\Omega M

2

\=\epsilon 
.

This leads to

1

2

d

dt
\| w\| 2 + \nu 

4
\| A1/2w\| 2 \leq \=\epsilon .(5.14)

The Poincar\'e inequality implies

d

dt
\| w\| 2 + \nu 

2
\lambda 1\| w\| 2 \leq 2\=\epsilon .(5.15)

By the Gronwall inequality we obtain

\| w(t)\| 2 \leq \| u0\| 2e - \nu \lambda 1t/2 +
4\=\epsilon 

\nu \lambda 1
(1 - e - \nu \lambda 1t/2) \leq \| u0\| 2e - \nu \lambda 1t/2 +

\epsilon 

2
,
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where we used the definition of \=\epsilon from the beginning of the proof. To complete the proof note
that

\| u(t) - vN (t)\| 2 \leq \| w(t)\| 2 + \| QNu(t)\| 2 \leq C\| u0\| 2e - \nu \lambda 1t/2 +
3

4
\epsilon ,

provided we take N large enough so that

\| QNu\| 2 \leq \epsilon 

4
.

This plainly implies
\| u(t) - vN (t)\| < \epsilon 

for t sufficiently large.
The proof for \scrI h,N,\Omega is similar but we need to modify our treatment of (5.5) as we did at

the end of the proof of Lemma 4.1.

Remark 5.1. Essentially the same proof goes through for bounded domains if we use (3.10)
and assume that u \cdot \phi N decay sufficiently fast in N . The other modifications are standard [6].

Proof of Corollary 2.1. Let vN be as in Theorem 2.1. Inspecting the proof of Theorem
2.1 we see that

\| vN\| \leq \| vN  - PNu\| + \| PNu\| < \| u0\| 2e - \nu \lambda 1t/4 + \epsilon + \| u\| .

This is an upper bound for vN that is time-global and independent of \mu and N . For the same
reason we get control of

\int T
0

\int 
\Omega 0

| vN | 2 dx dt for finite T . In contrast, the corresponding upper
bounds obtained in Lemma 4.1 depended on \mu and N . This implies that for any 0 < \epsilon \ll 1
we can construct a solution vN\epsilon for parameters N\epsilon , \mu \epsilon , and h\epsilon to (2.10) with the usual energy
class bounds holding independently of N\epsilon and \mu \epsilon , provided we have knowledge of u at all
points in \Omega . As \epsilon \rightarrow 0, we have N\epsilon , \mu \epsilon \rightarrow \infty while h\epsilon \rightarrow 0. By Banach--Alaoglu, we have that
there exists v so that vN\epsilon \rightarrow v in the weak-star topology on L\infty ([0, T ];L2) for every T > 0
as well as the weak topology on L2([0, T ];H1).

Fix a measurable set U . Let \Delta > 0 be a given time scale. Then for any t,

\int t+\Delta 

t

\int 

U
(u - v) dx ds =

\int t+\Delta 

t

\int 

U
(u - vN\epsilon ) dx ds+

\int t+\Delta 

t

\int 

U
(vN\epsilon  - v) dx ds.

We have by Theorem 2.1 that

\int t+\Delta 

t

\int 

U
(u - vN\epsilon ) dx ds \leq | U | 1/2

\biggl( 
sup

s\in [t,t+\Delta ]
| u - vN\epsilon | 2(s)

\biggr) 1/2

\leq | U | 1/2
\biggl( 

sup
s\in [t,t+\Delta ]

| u0| 2e - \nu \lambda 1t/4 +
3

4
\epsilon 

\biggr) 1/2

.

(5.16)

Additionally we know that

\bigm| \bigm| \bigm| \bigm| 
\int t+\Delta 

t

\int 

U
(vN\epsilon  - v)(x, t) dx ds

\bigm| \bigm| \bigm| \bigm| \rightarrow 0
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by \ast -weak convergence in L\infty L2. Hence we may choose \epsilon so that \epsilon < e - t and the above
quantity is smaller than e - t.

By the Lebesgue differentiation theorem, for almost every t we have

lim
\Delta t\rightarrow 0

1

\Delta t

\int t+\Delta t

t

\int 

U
(u - v)(x, t) dx ds =

\int 

U
(u - v)(x, t) dx,

where \Delta t is a time scale that depends on t. Let S denote the set of times for which this holds.
Then meas(Sc) = 0 where now meas(\cdot ) denotes Lebesgue measure on the line. Fix t > 0.
Then for \Delta t sufficiently small we have

\int 

U
(u - v)(x, t) dx

\leq 1

\Delta t

\int t+\Delta t

t

\int 

U
(u - v)(x, t) dx ds+ e - t

\leq 1

\Delta t

\int t+\Delta t

t

\int 

U
(u - vN\epsilon )(x, t) dx ds+

1

\Delta t

\int t+\Delta t

t

\int 

U
(vN\epsilon  - v)(x, t) dx ds+ e - t.

(5.17)

We have already explained how the first two terms can be made exponentially small. Since
this holds for all t \in S we see that

\chi S(t)

\int 

U
(u - v)(x, t) dx \rightarrow 0(5.18)

at an exponential rate. Redefining v to equal u on Sc completes the proof.2

Remark 5.2. The precise dynamics of v are unclear because we have not obtained a gov-
erning system for v via the limiting process. The challenge to doing so is that, as \mu \epsilon \rightarrow \infty ,
so does \mu \epsilon Ih\epsilon ,N\epsilon ,\gamma (u). To make sense of the equations after taking limits would require
\mu \epsilon PN\epsilon Ih\epsilon (u  - vN

\epsilon ) is bounded in some sense. Because vN
\epsilon \rightarrow v, we would need u = v

for such a bound. In this case, v recovers the flow exactly for all times, not just as t \rightarrow \infty .
Even granting this, the rate of convergence of vN

\epsilon \rightarrow v would need to be rapid enough to
compensate for the exponential growth of \mu \epsilon .

Remark 5.3. We now sketch the proof of Theorem 2.2. Granted existence, the proof
follows the argument of Azouani, Olson, and Titi in [6] except we do not have a positive
global term originating from the interpolant. Instead we have

\mu 

\int 

\Omega 
| w| 2 dx.(5.19)

This and diffusion are used to hide
1

2\nu 
\| u\| 2| w| 2.

2Note that we have only used global information about u on the times in Sc, which are of measure zero.
If we only want to use local data, then the conclusion in the statement of Corollary 2.1 can be replaced with
(5.18).D
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Indeed, by the spectral inequality (3.11) from [78] we have

1

2\nu 
\| u\| 2| w| 2 \leq c\nu \lambda 1G

2

\biggl( 
k

\lambda 1(\Omega 0 \setminus \Omega )
\| w\| 2L2(\Omega ) +

1

\lambda 1(\Omega 0 \setminus \Omega )
\| w\| 2

\biggr) 
,

where \lambda 1(\Omega 0 \setminus \Omega ) is the Poincar\'e constant for the domain \Omega 0 \setminus \Omega and k appears in (3.11). We
require \Omega 0 \setminus \Omega to be thin enough that

c\lambda 1G
2

\lambda 1(\Omega 0 \setminus \Omega )
\sim 1,(5.20)

as this will allow us to hide the H1 term in the diffusion. We then choose \mu large so that the
local quantity is absorbed by (5.19). Plainly this will allow us to execute the remainder of the
argument from [6].

We now analyze our choice of parameters. Let h0 be the thickness of \Omega 0 \setminus \Omega . Then h0 is
roughly \lambda 1(\Omega 0 \setminus \Omega ) - 1/2. Putting this in (5.20) gives

h0 \sim 
1\surd 
\lambda 1G

.

This is on the order of the length scale of the global grid in [6]. Hence, Theorem 2.2 says that
it is possible to ignore roughly the outer band of observables in the volume-elements global
data assimilation algorithm and still exactly recover the solution.

6. Computational results. Our computations were done on the Navier--Stokes equation
in vorticity form with a fully dealiased pseudospectral code corresponding to N \times N nodal
values in the physical space \Omega 0 = [0, 2\pi ]2. The force f , specified in Fourier space, was the
same as that used in [67, 68], time independent and concentrated on the annulus with wave
numbers 10 \leq | k| \leq 12. The reference solution was evolved from a zero initial value for 25,000
time units at which point the energy, enstrophy, and palinstrophy have all settled into time
series for a chaotic solution (see Figure 1) with steady statistics. The viscosity was set to

20 ANIMIKH BISWAS, ZACHARY BRADSHAW, AND MICHAEL S. JOLLY

We now analyze our choice of parameters. Let h0 be the thickness of Ω0 \Ω. Then
h0 is roughly λ1(Ω0 \ Ω)−1/2. Putting this in (5.20) gives

h0 ∼
1√
λ1G

.

This is on the order of the length scale of the global grid in [6]. Hence, Theorem 2.2
says that it is possible to ignore roughly the outer band of observables in the volume-
elements global data assimilation algorithm and still exactly recover the solution.

6. Computational results

Our computations were done on the NSE in vorticity form with a fully dealiased
pseudospectral code corresponding to N ×N nodal values in the physical space Ω0 =
[0, 2π]2. The force f , specified in Fourier space, was the same as that used in [67, 68],
time independent and concentrated on the annulus with wave numbers 10 ≤ |k| ≤ 12.
The reference solution was evolved from a zero initial value for 25,000 time units at
which point the energy, enstrophy and palinstrophy have all settled into time series
for a chaotic solution (see Figure 1) with steady statistics. The viscosity was set to
ν = 10−4, and a scalar multiple on the force is chosen so that the Grashof number
G = 106. Both the vorticity of the reference solution ωN = ∇ × uN and that of
the synchronizing solution ω̃N = ∇ × vN were solved using the third-order Adams-
Bashforth method in [67, 68] in which the linear term is handled exactly through an
integrating factor. The step size was ∆t = 0.01 with N = 512, consistent with [68]
at this Grashof number. We took data on square subdomains Ω = Ωj, j = 1, 2, 3, 4,
Ωj ⊂ Ωj−1, each centered in Ω0 and with relative size

|Ω1| = 0.7656|Ω0| , |Ω2| = 0.6602|Ω0| , |Ω3| = 0.5265|Ω0| , |Ω4| = 0.2500|Ω0| .
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Figure 1. Time series of enstrophy, ‖ωN‖2L2(Ω0)
, indicating chaos.

An interpolating operator J was computed by first applying an FFT−1 to the
Fourier coefficients of ω̃N−ωN . In order to use coarse data, the resulting difference was
used at only every 2p-th node in each direction, with results compared for p = 1, 2, 3, 4,
so that h = π/128, π/64, π/32 and π/16, respectively. Before transforming back via

Figure 1. Time series of enstrophy, \| \omega N\| 2L2(\Omega 0)
, indicating chaos.
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DATA ASSIMILATION USING LOCAL OBSERVABLES 21

an FFT, the field within the subdomain Ω was smoothened by the recursive averaging
operator Kp depicted in Figure 2 and set to zero on Ω0 \ Ω so that

J(ω̃N − ωN) = FFT ◦ χΩ ◦ Kp ◦ FFT−1(ω̃N − ωN) .

Note that the final transformation by the FFT serves to filter, just as PN did in our
analysis sections, though N is no longer the number of Fourier modes. After some
experimentation we found that taking the relaxation parameter µ = 50 to be near
optimal under these conditions.

a

b c

d

a+b
2

b+c
2

c+d
2

a+d
2

a+b+c+d
4

Figure 2. First recursive step of Kp. Values of ω̃N − ωN are a, b, c, d
at the corners.

We begin by testing the effect of the size of the subdomain. The relative L2 and L∞

norms are compared in Figure 3 with the resolution of data fixed h = π/32 (p = 3).
To be clear, these errors are measured as

‖ω̃N − ωN‖L2(Ω0)

‖ωN‖L2(Ω0)

,
max0≤j,k≤N−1 |(ω̃N − ωN)(xj, yk)|

max0≤m,n≤N−1 |ωN(xm, yn)|
,

respectively. In Figure 3 (as well as in Figures 4, 6 and 11) the key is arranged in the
same order, top to bottom, as the error over (most of) the time interval. Machine
precision is reached for data collected over Ω1 in 1000 time units. By then, in the
case of Ω2, the error is near 10−6, while for Ω3, it has barely budged from unity.
We next vary the resolution of the observed data for two subdomains, Ω2 and Ω3

in Figure 4. Over both subdomains there is little difference between the relative L2

errors for p = 1, 2, 3. The resolution associated with p = 4 (h = π/16) appears
to be too coarse for nudging over Ω2, when measured in this sense. Likewise, finer
resolution in the case of Ω3 does not indicate convergence to the reference solution,
at least by 1000 time units. While the relative L2 error for p = 4 suggests little
resemblance between ω̃N and ωN , particularly in the case of Ω3, we see from the
vorticity field plots in Figure 5 that the main spatial features over the full domain Ω0

are nevertheless captured.
Since the L2 errors over Ω0 did not decay for data restricted to Ω3, we cannot

expect them to do so when restricting to Ω4. We consider then relative L2 errors
that are measured also over subdomains. We found that even using data at every

Figure 2. First recursive step of \scrK p. Values of \~\omega N  - \omega N are a, b, c, d at the corners.

\nu = 10 - 4, and a scalar multiple on the force was chosen so that the Grashof number G = 106.
Both the vorticity of the reference solution \omega N = \nabla \times uN and that of the synchronizing
solution \~\omega N = \nabla \times vN were solved using the third-order Adams--Bashforth method in [67, 68]
in which the linear term is handled exactly through an integrating factor. The step size was
\Delta t = 0.01 with N = 512, consistent with [68] at this Grashof number. We took data on
square subdomains \Omega = \Omega j , j = 1, 2, 3, 4, \Omega j \subset \Omega j - 1, each centered in \Omega 0 and with relative
size

| \Omega 1| = 0.7656| \Omega 0| , | \Omega 2| = 0.6602| \Omega 0| , | \Omega 3| = 0.5265| \Omega 0| , | \Omega 4| = 0.2500| \Omega 0| .

An interpolating operator J was computed by first applying an FFT - 1 to the Fourier
coefficients of \~\omega N  - \omega N . In order to use coarse data, the resulting difference was used at
only every 2pth node in each direction, with results compared for p = 1, 2, 3, 4, so that h =
\pi /128, \pi /64, \pi /32, and \pi /16, respectively. Before transforming back via an FFT, the field
within the subdomain \Omega was smoothened by the recursive averaging operator \scrK p depicted in
Figure 2 and set to zero on \Omega 0 \setminus \Omega so that

J(\~\omega N  - \omega N ) = FFT \circ \chi \Omega \circ \scrK p \circ FFT - 1(\~\omega N  - \omega N ) .

Note that the final transformation by the FFT serves to filter, just as PN did in our analysis
sections, though N is no longer the number of Fourier modes. After some experimentation
we found taking the relaxation parameter \mu = 50 to be near optimal under these conditions.

We begin by testing the effect of the size of the subdomain. The relative L2- and L\infty -
norms are compared in Figure 3 with the resolution of data fixed h = \pi /32 (p = 3). To be
clear, these errors are measured as

\| \~\omega N  - \omega N\| L2(\Omega 0)

\| \omega N\| L2(\Omega 0)
,

max0\leq j,k\leq N - 1 | (\~\omega N  - \omega N )(xj , yk)| 
max0\leq m,n\leq N - 1 | \omega N (xm, yn)| 

,

respectively. In Figure 3 (as well as in Figures 4, 6, and 11) the key is arranged in the same
order, top to bottom, as the error over (most of) the time interval. Machine precision isD

ow
nl

oa
de

d 
10

/2
3/

23
 to

 1
30

.8
5.

19
3.

30
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DATA ASSIMILATION USING LOCAL OBSERVABLES 2195
22 ANIMIKH BISWAS, ZACHARY BRADSHAW, AND MICHAEL S. JOLLY

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0  100  200  300  400  500  600  700  800  900  1000

t

Ω3

Ω2

Ω1

L
2
re
l.

er
ro
r

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0  100  200  300  400  500  600  700  800  900  1000

t

Ω3

Ω2

Ω1

L
∞

re
l.

er
ro
r

Figure 3. Relative L2 and L∞ error for Ω = Ω1,Ω2,Ω3, p = 3 (h = π/32).
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Figure 4. Relative L2 error for p = 1, 2, 3, 4. Left: Ω = Ω2, right: Ω = Ω3.

other node, the relative L2 error over Ω0 is nearly unity, after nudging all the way to
t = 10000. In Figure 6, the plots labeled L2(Ωj), j = 1, 3, 4 are for relative errors

‖ω̃N − ωN‖L2(Ωj)

‖ωN‖L2(Ωj)

.

The relative L2 error over Ω3 is nearly the same as that over Ω0.
From Figure 7 we see that despite the size of these errors, again the main features of

the vorticity field emerge already at t = 1000, but only to roughly the same extent at
t = 10000, consistent with the L2 error. We also note that while the relative L2 error
over Ω4, where the data is taken, is roughly 0.1, the plot of the difference ω̃N − ωN

within Ω4 is uniformly small.

7. Mobile data

Our emphasis to this point has been on how well nudging over a fixed subdomain
can recover the reference solution over the entire computational domain. The field
plot of the difference in Figure 5 (7) show that even with the coarsest data (smallest

Figure 3. Relative L2 and L\infty error for \Omega = \Omega 1,\Omega 2,\Omega 3, p = 3 (h = \pi /32).
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other node, the relative L2 error over Ω0 is nearly unity, after nudging all the way to
t = 10000. In Figure 6, the plots labeled L2(Ωj), j = 1, 3, 4 are for relative errors

‖ω̃N − ωN‖L2(Ωj)

‖ωN‖L2(Ωj)

.

The relative L2 error over Ω3 is nearly the same as that over Ω0.
From Figure 7 we see that despite the size of these errors, again the main features of

the vorticity field emerge already at t = 1000, but only to roughly the same extent at
t = 10000, consistent with the L2 error. We also note that while the relative L2 error
over Ω4, where the data is taken, is roughly 0.1, the plot of the difference ω̃N − ωN

within Ω4 is uniformly small.

7. Mobile data

Our emphasis to this point has been on how well nudging over a fixed subdomain
can recover the reference solution over the entire computational domain. The field
plot of the difference in Figure 5 (7) show that even with the coarsest data (smallest

Figure 4. Relative L2 error for p = 1, 2, 3, 4. Left: \Omega = \Omega 2; right: \Omega = \Omega 3.

reached for data collected over \Omega 1 in 1000 time units. By then, in the case of \Omega 2, the error is
near 10 - 6, while for \Omega 3 it has barely budged from unity.

We next vary the resolution of the observed data for two subdomains, \Omega 2 and \Omega 3 in Figure
4. Over both subdomains there is little difference between the relative L2 errors for p = 1, 2, 3.
The resolution associated with p = 4 (h = \pi /16) appears to be too coarse for nudging over
\Omega 2 when measured in this sense. Likewise, finer resolution in the case of \Omega 3 does not indicate
convergence to the reference solution, at least by 1000 time units. While the relative L2 error
for p = 4 suggests little resemblance between \~\omega N and \omega N , particularly in the case of \Omega 3, we
see from the vorticity field plots in Figure 5 that the main spatial features over the full domain
\Omega 0 are nevertheless captured.

Since the L2 errors over \Omega 0 did not decay for data restricted to \Omega 3, we cannot expect them
to do so when restricting to \Omega 4. We consider then relative L2 errors that are measured also
over subdomains. We found that even using data at every other node, the relative L2 error
over \Omega 0 is nearly unity, after nudging all the way to t = 10000. In Figure 6, the plots labeled
L2(\Omega j), j = 1, 3, 4, are for relative errors
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Figure 5. Snapshots of ω̃N , ωN and difference, for Ω3, p = 4. Top:
t = 100, bottom: t = 1000.
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Figure 6. Relative L2 error over various domains, data in Ω4, h = π/128.

subdomain), the reference solution within the subdomain is captured well, despite the
problem being global over Ω0.

Figure 5. Snapshots of \~\omega N , \omega N and difference, for \Omega 3, p = 4. Top: t = 100; bottom: t = 1000.
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Figure 5. Snapshots of ω̃N , ωN and difference, for Ω3, p = 4. Top:
t = 100, bottom: t = 1000.
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Figure 6. Relative L2 error over various domains, data in Ω4, h = π/128.

subdomain), the reference solution within the subdomain is captured well, despite the
problem being global over Ω0.

Figure 6. Relative L2 error over various domains, data in \Omega 4, h = \pi /128.

\| \~\omega N  - \omega N\| L2(\Omega j)

\| \omega N\| L2(\Omega j)
.

The relative L2 error over \Omega 3 is nearly the same as that over \Omega 0.D
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Figure 7. Snapshots of ω̃N , ωN and difference, for data in Ω4, p = 1.
Top: t = 1000, bottom: t = 10000.

This leads us to consider moving the subdomain where the data is collected as
the solution evolves. We start with Ω4(t), a subdomain with 1/4-th the area of the
computational domain, specified by the location of its lower left corner (nx, ny) on
the N × N discrete grid. The movement of the subdomain is determined by the
periodic extension of the functions shown in Figure 8. The subdomain thus moves
counterclockwise, covering the entire computational domain in one time unit. We
fix the local interpolating operator at our most coarse setting h = π/16 (p = 4).
The results over the initial cycle in Figure 9 shows that synchronization is already
well underway in just one time unit. The relative errors are plotted in Figure 11.
Convergence to near machine precision is reached in one-tenth the time needed using
finer data on the largest stationary subdomain, Ω1 (compare to Figure 3).
A similar route can be taken by a subdomain Ω5(t), where |Ω5(t)| = 1/16|Ω0|, such

as that shown in Figure 10. Note that in this case the periodic extension of ny(t) is
discontinuous. Though a bit slower than with Ω4(t), synchronization is still achieved
with this smallest small subdomain (see Figure 11).

Figure 7. Snapshots of \~\omega N , \omega N and difference, for data in \Omega 4, p = 1. Top: t = 1000; bottom: t = 10000.

From Figure 7 we see that despite the size of these errors, again the main features of the
vorticity field emerge already at t = 1000, but only to roughly the same extent as at t = 10000,
consistent with the L2 error. We also note that while the relative L2 error over \Omega 4, where the
data is taken, is roughly 0.1, the plot of the difference \~\omega N  - \omega N within \Omega 4 is uniformly small.

7. Mobile data. Our emphasis to this point has been on how well nudging over a fixed
subdomain can recover the reference solution over the entire computational domain. The field
plot of the difference in Figure 5 (Figure 7) shows that even with the coarsest data (smallest
subdomain), the reference solution within the subdomain is captured well, despite the problem
being global over \Omega 0.

This leads us to consider moving the subdomain where the data is collected as the solution
evolves. We start with \Omega 4(t), a subdomain with 1/4th the area of the computational domain,
specified by the location of its lower left corner (nx, ny) on the N \times N discrete grid. The
movement of the subdomain is determined by the periodic extension of the functions shown
in Figure 8. The subdomain thus moves counterclockwise, covering the entire computational
domain in one time unit. We fix the local interpolating operator at our most coarse setting
h = \pi /16 (p = 4). The results over the initial cycle in Figure 9 show that synchronization
is already well underway in just one time unit. The relative errors are plotted in Figure 11.
Convergence to near machine precision is reached in one-tenth the time needed using finer
data on the largest stationary subdomain, \Omega 1 (compare to Figure 3).D
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Figure 8. Movement of lower left corner of subdomain Ω4(t).
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Figure 9. Initial cycle of nudging with Ω4(t), h = π/16, starting at
t = .25. Reference solution and difference at t = 1 are on the right.

8. Summary

Previous rigorous results on data assimilation in the direction of [6] rely on uni-
formly distributed observations of the reference solution over the full domain Ω0. We
have rigorously shown that, modulo an arbitrarily small error, the uniformly spaced
observations can be confined to a sub-domain provided the solution is sufficiently
regular and sufficiently many local samples are used.

Figure 8. Movement of lower left corner of subdomain \Omega 4(t).
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Figure 9. Initial cycle of nudging with Ω4(t), h = π/16, starting at
t = .25. Reference solution and difference at t = 1 are on the right.

8. Summary

Previous rigorous results on data assimilation in the direction of [6] rely on uni-
formly distributed observations of the reference solution over the full domain Ω0. We
have rigorously shown that, modulo an arbitrarily small error, the uniformly spaced
observations can be confined to a sub-domain provided the solution is sufficiently
regular and sufficiently many local samples are used.

Figure 9. Initial cycle of nudging with \Omega 4(t), h = \pi /16, starting at t = .25. Reference solution and
difference at t = 1 are on the right.

A similar route can be taken by a subdomain \Omega 5(t), where | \Omega 5(t)| = 1/16| \Omega 0| , such as that
shown in Figure 10. Note that in this case the periodic extension of ny(t) is discontinuous.
Though a bit slower than with \Omega 4(t), synchronization is still achieved with this smallest small
subdomain (see Figure 11).

8. Summary. Previous rigorous results on data assimilation in the direction of [6] rely on
uniformly distributed observations of the reference solution over the full domain \Omega 0. We have
rigorously shown that, modulo an arbitrarily small error, the uniformly spaced observationsD
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Analysis guarantees what should work in practice (up to numerical error). Con-
versely, when an algorithm works in practice, it suggests there might be some analysis
to support it. Computational work has demonstrated that nudging over the entire
computational domain works much better than required in the rigorous estimates
[2, 67, 35, 48, 56, 57]. The conditions in Theorem 2.1 are essentially

µ & νG2e
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µ
∼ 1

G
e
√
N/2.

In our pseudospectral implementation, we have h = 2π/N , so strictly speaking The-

orem 2.1 would require N ∼ G exp(
√
N/2), which is far from obtainable.

Yet our computational results are promising. We have synchronized with a chaotic
reference solution to near machine double precision in relative L2 error using data on
every 8th grid point (in each direction) on a fixed subdomain that is roughly 3/4×
the area of the computational domain Ω0. The rate of exponential decay in the error
slows somewhat when data is restricted to a subdomain that is roughly 2/3× the
area of Ω0. The L2 error does not appreciatively decay at all if data is taken on a
subdomain of roughly 1/4× the area. Still, the main features of the vorticity field
are captured if data is taken on even just a quarter of the area. Overall then, this
constitutes another case of an algorithm working better than analysis suggests.

Figure 10. Movement of lower left corner of subdomain \Omega 5(t).
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to support it. Computational work has demonstrated that nudging over the entire
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the area of the computational domain Ω0. The rate of exponential decay in the error
slows somewhat when data is restricted to a subdomain that is roughly 2/3× the
area of Ω0. The L2 error does not appreciatively decay at all if data is taken on a
subdomain of roughly 1/4× the area. Still, the main features of the vorticity field
are captured if data is taken on even just a quarter of the area. Overall then, this
constitutes another case of an algorithm working better than analysis suggests.

Figure 11. Relative errors for \Omega 4(t), \Omega 5(t), both with h = \pi /16.

can be confined to a subdomain provided the solution is sufficiently regular and sufficiently
many local samples are used.

Analysis guarantees what should work in practice (up to numerical error). Conversely,
when an algorithm works in practice, it suggests there might be some analysis to support it.
Computational work has demonstrated that nudging over the entire computational domain
works much better than required in the rigorous estimates [2, 67, 35, 48, 56, 57]. The conditions
in Theorem 2.1 are essentially
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\mu 
\sim 1

G
e
\surd 
N/2.

In our pseudospectral implementation, we have h = 2\pi /N , so strictly speaking Theorem 2.1
would require N \sim G exp(

\surd 
N/2), which is far from obtainable.

Yet our computational results are promising. We have synchronized with a chaotic refer-
ence solution to near machine double precision in relative L2 error using data on every eighth
grid point (in each direction) on a fixed subdomain that is roughly 3/4\times the area of the
computational domain \Omega 0. The rate of exponential decay in the error slows somewhat when
data is restricted to a subdomain that is roughly 2/3\times the area of \Omega 0. The L2 error does not
appreciatively decay at all if data is taken on a subdomain of roughly 1/4\times the area. Still,D
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the main features of the vorticity field are captured if data is taken on even just a quarter
of the area. Overall then, this constitutes another case of an algorithm working better than
analysis suggests.

Preliminary tests of nudging on moving subdomains are even more encouraging. Sliding
subdomains of 1/4\times and even 1/16\times the area of \Omega 0 to cover \Omega 0 achieves synchronization in
one-tenth the time needed for a larger fixed domain, and does so with coarser data. This
suggests analysis of mobile local data assimilation is merited, a matter we will explore in a
future work.
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