
A GPU Memory System Comparison for an Elliptic Test
Problem

Yu Wang
UMBC

wang.yu@umbc.edu

Marc Olano
UMBC

olano@umbc.edu
Matthias K. Gobbert

UMBC
gobbert@umbc.edu

Wesley Griffin
UMBC

griffin5@cs.umbc.edu

ABSTRACT
This paper presents GPU-based solutions to the Poisson
equation with homogeneous Dirichlet boundary conditions
in two spatial dimensions. This problem has well-understood
behavior, but similar computation to many more complex
real-world problems. We analyze the GPU performance us-
ing three types of memory access in the CUDA memory
model (direct access to global memory, texture access, and
shared memory). Based on data locality, different CUDA
algorithms are designed to accommodate the different de-
vice memory performance behaviors. We present a perfor-
mance study on the speedup of our GPU-based solutions on
an NVIDIA Tesla C2070 over serial code. By relating the
data access pattern and its spatial locality, our results show
that an algorithm using global memory with coalesced reads
outperforms the other memory systems and allows effective
solvers using single precision floating points.

1. INTRODUCTION
The Poisson equation with homogeneous Dirichlet bound-
ary conditions on a unit square domain in two dimensions
can be numerically approximated with the finite difference
method, but also has a well known analytical solution, al-
lowing direct computation of the convergence and accuracy
of iterative algorithms. The finite difference form of this el-
liptic differential equation test problem has a sparse, highly
structured system of linear equations. For high resolution
meshes, storing the resulting linear systems can be challeng-
ing. Matrix-free methods use the assumed structure of the
problem to avoid explicitly storing the system matrix. The
conjugate gradient method invoked in our solver is itera-
tive yet matrix-free, and is representative of memory-bound
Krylov subspace methods. In this paper, we present three
single-GPU versions of the algorithm, with kernels tuned to
three alternate strategies for GPU memory access.

2. RELATED WORK
Even most already parallel algorithms need some adaptation
to run effectively on parallel GPU architectures. Some re-
search optimizes common parallel programming primitives
on the GPU. Blelloch introduced the scan primitives for
parallel array operations [3, 4]. Sengupta et al. [22] imple-
mented the segmented scan primitives proposed by Iverson
[12] on the GPU using CUDA. He et al. [9] improved the
bandwidth of both gather and scatter operations by improv-
ing memory locality in data access.

The Basic Linear Algebra Subprogram (BLAS) library pro-
vides a wide range of highly optimized implementation for
linear algebra operations between vectors (BLAS1), between
matrix and vector (BLAS2) and between matrices (BLAS3).
It has a CUDA accelerated implementation, cuBLAS library
[19], and most of the BLAS functionalities are available on
CUDA-enabled GPUs. Besides BLAS and cuBLAS libraries,
other linear algebra libraries include MAGMA [23], which is
a high performance dense linear algebra library similar to
the LAPACK [2], but handles heterogeneous and hybrid ar-
chitectures. Improvements have been made to many of the
GPU linear algebra algorithms, especially the BLAS2 and
BLAS3 functions [17, 24, 16].

Although CUDA provides the programmers with access to
GPGPU instruction set, some researchers have been working
on creating high-level languages on top of CUDA or building
new libraries of GPU data structures to reduce the complex-
ity for coding parallel GPU code. Lefohn et al. [15] proposed
a library that hides the complexity of designing the data
structures from GPU programmers. Larson et al. [14] pro-
posed an applicative array language, Barracuda, for GPUs,
which is embedded in Haskell [11]. Barracuda is a high-level
programming language with optimization for CUDA code
while hiding the complexity of hand-writing generic CUDA
code. The new language has similar performance to the
cuBLAS library in the cases of dot product and linear op-
eration between vectors, but Barracuda is currently limited
to optimization of array operations, with more effort need
to be made to make it a practical new language.

We use the Conjugate Gradient method for solving a sym-
metric positive definite linear system with a large, sparse,
and structured system matrix as example in this paper. The
linear system arises from a finite difference discretization of
the Poisson equation, as shown in detail in the next sec-

Figure 1: CUDA Memory Model

tion. Bolz et al. [5] showed that important numerical simu-
lations in computer graphics research, such as sparse matrix
conjugate gradient solvers and regular-grid multigrid solvers
can be performed efficiently on the GPU. There have been
previous works using FEM [7, 8]. Knittel [13] presents a
matrix-free GPU Poisson solver using the FDM Conjugate
Gradient method, though their work is in the context of a
mini cluster with a custom FPGA interconnect. Ament et
al. [1] presented a preconditioned conjugate gradient solver
for the Poisson problem on a multi-GPU platform with over-
lapping memory transfers, thus increasing concurrency and
scalability.

3. BACKGROUND
3.1 CUDA Memory Model
CUDA was introduced in 2007 by NVIDIA to enable pro-
gramming general purpose computation on parallel GPU ar-
chitectures [18]. Figure 1 shows different types of memory
available: global memory, texture memory, and shared mem-
ory.

Global memory is device memory visible to every thread in
the same compute grid with large size; Shared memory is vis-
ible to threads in the same compute block, and is very fast
to access, but much smaller capacity than global memory.
In addition, memory can be accessed using texture opera-
tions designed for the graphics pipeline. Texture memory
shares space with the global memory, including caching in
2D blocks and the option to use specialized linear blending
hardware. Some algorithms benefit from texture memory
over global memory, if threads have sufficient spatial local-
ity to benefit from the caching of the texture memory [6].

3.2 Poisson Equation
Let Ω = (0, 1)× (0, 1) ⊂ R2 be the open unit square in two
dimensions. The notation ∂Ω denotes the boundary of Ω
and Ω̄ the closure of Ω, that is, Ω̄ = [0, 1]× [0, 1] ⊂ R2. The
Poisson equation with Dirichlet boundary condition is then

−∆u = f in Ω,

u = 0 on ∂Ω.
(1)

The Laplace operator is defined as

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

(2)

Figure 2: Structure of matrix A, yellow blocks are
T and pink blocks are S

To solve this problem using finite differences, the unit square
is represented by N + 2 mesh points in each dimension,
so there are N × N interior unknown mesh points. We
construct the mesh with uniform mesh spacing h, where
h = 1/(N +1); each mesh point is defined by (xk1 , xk2) ∈ Ω̄,
where xki = h ki, ki = 0, 1, . . . , N, N + 1 in every dimen-
sion. The approximation of each mesh point is uk1,k2 ≈
u(xk1 , xk2); then the approximation of second-order deriva-
tive in the Laplace operator (equation 2) at N2 interior mesh
points is:

∂2u(xk1 , xk2)

∂x2
1

+
∂2u(xk1 , xk2)

∂x2
2

≈ uk1,k2−1 + uk1−1,k2 − 4uk1,k2 + uk1+1,k2 + uk1,k2+1

h2

(3)

Collect the approximation of the N ×N interior mesh points

and store them in a vector u ∈ RN2
. This vector can be

considered as the N2 unknowns of a linear equation system

Au = b (4)

From equation (3), we know the matrix A ∈ RN2×N2
, has

a structure as shown in Figure 2. The yellow matrices
are negative identity matrices, where T = −I ∈ RN×N

and the pink matrices are the tri-diagonal matrices S =
tridiag(−1, 4,−1) ∈ RN×N .

In this paper, we will be using an evaluation function for the

right-hand side vector b ∈ RN2
defined in equation (5), and

the solution to this test problem is as described in equa-
tion (6). This is the classical elliptic test problem of the
Poisson equation with homogeneous Dirichlet boundary con-
ditions.

f(x) = −2π2`
cos(2πx1) sin2(πx2)+

sin2(πx1) cos(2πx2)
´ (5)

u(x1, x2) = sin2(πx1) sin2(πx2) (6)

Based on our knowledge of matrix A, the 2nd-order deriva-
tive partial differential equation can be transformed into a
problem of solving a system of linear equations, we will dis-
cuss the algorithms we designed for solving the linear system
in the following section.

3.3 The Conjugate Gradient Method
The conjugate gradient method is an iterative method used
to solve a system of linear equations with a symmetric pos-
itive definite system matrix, such as equation (4). Its pseu-
docode is presented in Algorithm 1, we refer readers to
work by Hestenes and Stiefel [10] for a detailed descrip-
tion. In this algorithm, there are two instructions that re-
quire matrix-vector multiplications (line 6 and line 19, high-
lighted), one of which is in the while-loop (line 19), and is
executed in every iteration. Since a larger matrix takes more
iterations to converge, the impact of the performance of the
matrix-vector multiplication operation is non-trivial.

Algorithm 1 Conjugate Gradient Method to solve Ax = b

Require: AT = A, xT Ax > 0 (0 6= x ∈ Rn)
1: Input right-hand side b, initial guess x, tolerance tol,

and maximum number of iterations maxit
2: if ||b||2 = 0 then
3: set x = 0 and stop
4: end if
5: tolb = tol||b||2
6: Compute r = b−Ax
7: if ||r||2 ≤ tolb then
8: the initial guess x is within the tolerance and stop
9: end if

10: Initialize ρ = rT r and k = 0
11: while ||r||2 > tolb and k < maxit do
12: Increment k ← k + 1
13: if k = 1 then
14: Set p = r
15: else
16: β = ρ / ρ(old)

17: Update p ← r + βp
18: end if
19: Compute q = Ap

20: α = ρ / pT q
21: x ← x + αp
22: r ← r − αq
23: ρ(old) = ρ
24: ρ = rT r
25: end while
26: if k = maxit then
27: issue warning and return last iterate x
28: end if

According to equation (3), the data accesses of the Conju-
gate Gradient method follow a certain pattern, as shown in
Figure 3(a). We designed parallel algorithms utilizing di-
rect access to global memory, texture memory, and explicit
paging into shared memory of the GPUs to investigate the
performance differences of these memory access strategies.

3.4 BLAS and cuBLAS Functions
In Algorithm 1, line 2, 7, 14, 17, 20, 21, 22 and line 24
involve algebraic operations between vectors, and we applied
the CUDA accelerated level 1 BLAS functions to them. We
use cuBLAS where we can, but cannot use existing level 2
BLAS functions or their counterparts in the cuBLAS library
for any operations involving the structured matrix A, since
it is not stored anywhere in the application.

4. CUDA ALGORITHMS

Figure 3: (a) Data Access Pattern for Matrix-free
Matrix-vector Multiplication; (b) Coalesced Read
From Global Memory; (c) Memory layout for a vec-
tor in texture memory: threads are accessing neigh-
boring data (spatial locality)

Lines 6 and 19 in Algorithm 1 contain multiplications be-
tween the structured matrix A and a right-hand side vector.
In the case of a matrix-free solution, we can solve the system
using only the elements in the vector. Even so, we still have
to store the right-hand side vector in the memory and fetch
elements as needed. Higher-resolution meshes have large
vectors, the overhead of fetching the data in each iteration
is a performance bottleneck.

We have designed three algorithms to solve this linear sys-
tem on the GPU. All three store the large vector data in
global memory, but they differ in how the data is accessed
each iteration. The first version, which we will call the di-
rect global memory solution, uses coalesced data reads, with
repeated reads for each access to the same data. The sec-
ond version, which we will call the texture memory solution,
organizes the vector data to enable access using texture op-
erations to take advantage of texture caching. The final
version, which we will call the shared memory solution, or-
ganizes the data to allow sharing data between threads in
shared memory.

4.1 Direct Global Memory
The global memory is a large DRAM store with long access
latency (hundreds of cycles) and limited access bandwidth.
In order to achieve better global memory access efficiency,
parallel threads in a warp should read data from consecutive
memory addresses to form a coalesced read (as shown in
Figure 4). When threads 0, 1, through n fetch data M∗,0,
M∗,1, ..., and M∗,n, the reading operations are grouped into
one consolidated read.

Unknown interior mesh points are stored in a vector u⊂RN×N ,
which is a 1D array, and memory is allocated in the same
way in the global memory, as shown in Figure 3(b). For
instance, in order to calculate the matrix-vector multiplica-
tion concerning the element uk1,k2 , we need its value and
its four neighbors in the original matrix: uk1−1,k2 , uk1,k2−1,

Figure 4: Coalesced Read From Global Memory

uk1,k2+1 and uk1+1,k2 . Thread tid is responsible for up-
dating one element in the resulting vector by reading five
elements in the global memory. Thread launches can be
organized so that threads in a half-warp access contiguous
global memory addresses, thus achieving higher bandwidth
than non-coalesced read operations.

The CUDA kernel for this algorithm is presented in Al-
gorithm 2. Using the global memory, every data element
is read an average of five times throughout the calculation
(dev v[tid] in Line 3, dev v[tid-size] in Line 5, dev v[tid-1] in
Line 7, dev v[tid+1] in Line 11 and dev v[tid+size] in Line
14). With the caching mechnism of the global memory in the
Fermi GPUs, data elements dev v[tid] and its two neighbors,
dev v[tid-1] and dev v[tid+1] are located relatively close to
each other, thus two cache hits, whereas dev v[tid-size] and
dev v[tid+size] are size elements away from the element in
the center, which are likely to cause cache misses. However,
in our algorithm, in each block, threads are grouped into co-
alesced read operations, which hides the latency of fetching
data from the global memory.

Algorithm 2 CUDA code: global memory

1: global model mv global(float* result, float* dev v,
int size)

2: tid = threadIdx.x + blockIdx.x * blockDim.x
3: result[tid] = 4 * dev v[tid]
4: if tid >= size then
5: result[tid] = result[tid] - dev v[tid-size]
6: end if
7: if tid % size != 0.0 then
8: result[tid] = result[tid] - dev v[tid-1]
9: end if

10: if (tid+1) % size != 0.0 then
11: result[tid] = result[tid] - dev v[tid+1]
12: end if
13: if tid < size * size - size then
14: result[tid] = result[tid] - dev v[tid+size]
15: end if

4.2 Texture Memory
We present two algorithms using CUDA texture access func-
tions, one using 1D texture and one using 2D texture. Both
can only use single precision due to the limits of GPU texture

hardware. Algorithm 3 uses 1D texture fetch operations in
an attempt to utilize texture caching. Figure 3(c) presents
the layout of data array after it has been bound to a 1D
texture with a texture reference tex t. Thread 0 through
Thread 4 read from memory addresses close to each other.

Algorithm 3 Kernel: texture memory (1D)

1: global void model mv texture(float* result, int size)
2: x = threadIdx.x + blockIdx.x * blockDim.x
3: y = threadIdx.y + blockIdx.y * blockDim.y
4: int offset = x + y * blockDim.x * gridDim.x
5: result[offset] = 4 * tex1Dfetch(tex p, offset)
6: if offset>=size then
7: result[offset] -= tex1Dfetch(tex p, offset - size)
8: end if
9: if offset % size != 0 then

10: result[offset] -= tex1Dfetch(tex p, offset -1)
11: end if
12: if (offset + 1) % size != 0.0 then
13: result[offset] -= tex1Dfetch(tex p, offset +1)
14: end if
15: if offset < size * size then
16: result[offset] -= tex1Dfetch(tex p, offset + size)
17: end if

Since 1D textures can only bind to a relatively small array,
and texture caching is optimized for 2D textures, we also
present Algorithm 4 using 2D textures. This algorithm is
also able to take advantage of texture hardware boundary
support, which eliminates the logic checking for boundary
conditions; in addition, 2D texture memory caches data ele-
ments in blocks (2x2, 4x4, etc) depending on the implemen-
tation of the GPU.

Algorithm 4 Kernel: texture memory (2D)

1: global void model mv texture(float* result, int size)
2: int x = threadIdx.x + blockIdx.x * blockDim.x
3: int y = threadIdx.y + blockIdx.y * blockDim.y
4: int offset = x + y * blockDim.x * gridDim.x
5: float t = tex2D(tex 2, x-1, y)
6: float l = tex2D(tex 2, x, y-1)
7: float c = tex2D(tex 2, x, y)
8: float r = tex2D(tex 2, x, y+1)
9: float d = tex2D(tex 2, x+1, y)

10: result[offset] = 4*c - t - l - r - d

4.3 Shared Memory
Like the L1 cache on the CPU, shared memory is located
close to the processors for each thread block, with similar
performance to registers. Due to capacity limits, data blocks
must be paged on and off the shared memory in a coalesced
manner. According to NVIDIA’s CUDA occupancy table
[20], there are three factors affecting the maximum number
of warps per multiprocessor: threads launched per block,
registers used by each thread and the shared memory used
in each thread block. For example, when 256 threads are
launching the same kernel using 8 registers and 2048 bytes of
shared memory in each thread block, a GPU processor with
2.0 compute capability can have up to 6 warps/block per
multiprocessor which is the limiting factor of active threads
in each thread block. The size of shared memory also differs
between different GPU models.

Figure 5: Data copied from global memory to shared
memory in each block: the green blocks are the top,
bottom, left and right ghost regions of the square
block in the global memory

Shared memory is only visible to threads within the same
block; threads in one thread block cannot access the shared
memory in a different block. This characteristic guarantees
the independence of kernel execution and memory update
in each individual thread block. Communication between
threads in different blocks must use global memory (Fig-
ure 1), and any synchronization is a blocking operation.
To avoid inter-block communication, we duplicate data in
a “ghost region” around each block.

For any problem of considerable size, the right-hand vector
in line 19 of Algorithm 1 must be divided among thread
blocks. Since we are doing a cross-pattern update on each
element (as shown in Figure 3(a)), the larger problem we
have, the more ghost regions we will have to handle. The
shared memory code is implemented in several kernels, so
we will not present it in the same detail as Algorithms 2-
4. This code 1) copies square data blocks from the global
memory to the shared memory in separate thread blocks.
Ghost regions, i.e. the data adjacent to the boundaries of
the square data block, are copied by separate threads. This
data is copied from the global memory into four arrays lo-
cated in the shared memory of each thread block (Figure 5);
2) perform cross-pattern calculation on the elements and
get partial results, using elements from the ghost regions as
needed (Figure 6); 3) copy the square data blocks from the
shared memory back to global memory (Figure 7).

This method maximizes the independence of kernel execu-
tion in each data block and the data can be read from (Fig-
ure 5) and be written back to the global memory in a coa-
lesced manner (Figure 7).

5. RESULTS
In this section, we present the results and performance anal-
ysis of our GPU algorithms, and compare them with serial
implementation of previous work by Raim et al. [21].

5.1 Ground Truth

Figure 6: Calculate partial results in each block: cal-
culating one element in the resulting vector requires
four values, center element, and its four neighbors
(top, bottom, left and right). Ui,j uses four adjacent
elements within the square block (indicated by dark
red arrows); Ui−1,j−1 uses two adjacent elements in
the square block (dark red) and two from the “ghost
region” (pink)

Figure 7: Data copied from shared memory/block
back to global memory: only the elements in the
square are copied back from the shared memory af-
ter calculation

Figure 8: Numerical result uh, N = 64

Figure 9: Error: |u− uh|

In order to verify the results are numerically correct, we
compare to the exact solution to the elliptic test problem
as described in Section 3.2. The numerical result shown in
Figure 8 is the numerical result uh from solving the test
problem with 64×64 unknowns, and Figure 9 is the error,
|u− uh|, where u is the true result. The maximum error is
7.7811 × 10−4.

Since we are merely changing the time complexity of the
matrix-vector multiplication in the un-preconditioned con-
jugate gradient method, the numerical results of the various
algorithms we have discussed in the paper should converge
at the same rate with the same numerical results. Our exper-
iments verified this to be true. The results from our CUDA
kernels using double precision floating points are identical
to our test MPI runs.

5.2 Performance Analysis
Figure 10 is a log plot of execution time of a serial imple-
mentation and our CUDA code. The serial code ran on one
compute node of a cluster with one process running. The
compute node has two quad core Intel Nehalem X5550 pro-
cessors (2.66 GHz, 8192 KB cache), 24 GB of memory, and
a 120 GB local hard drive. Our CUDA algorithms are exe-
cuted on an NVIDIA Fermi C2070 GPU with 6G memory.
In order to prove the scalability of our solution, Table 1
presents execution time of the algorithm with direct access
to global memory using double precision floating point num-

Figure 10: Execution Time for our CUDA algo-
rithms

Figure 11: Average Iteration Time

bers.

Given we are performing experiments using floating point
numbers with both single and double precision, the number
of iterations in each CUDA algorithm differs given the same
tolerance, i.e. 10−6 is used in our paper. We also calcu-
lated the average execution time of one iteration for each
algorithm. (We timed the execution time for the kernel and
divide this number by the number of iterations when the
solution converges.) The average iteration time is presented
in Figure 11.

From the experimental results, all CUDA kernels variants
delivered approximately a 10× speedup over the serial code.
The direct global memory/coalesced read algorithm with
single precision floating point delivered best performance.

N DOF Linf #iter Execution Time
32 1024 3.0128E-003 48 0.19
64 4096 7.7811E-004 96 0.21

128 16384 1.9765E-004 192 0.24
256 65536 4.9797E-005 387 0.33
512 262144 1.2494E-005 783 0.74

1024 1048576 3.1266E-006 1581 3.52
2048 4194304 7.8019E-007 3192 24.2
4096 16777216 1.9366E-007 6452 192
8192 67108864 4.7402E-008 13033 1770

Table 1: Execution Time Using Global Memory Double Precision Floating Point Numbers

Although the data are located in global memory, by grouping
threads that perform read and write operations on consec-
utive memory addresses, the read and write operations are
coalesced for optimal speed; by launching a large amount
of parallel threads at the same time, data fetching latency
from the global memory is hidden.

The texture memory is located in the global memory as one
chunk of cached data. Data must be bound as a texture for
use, and unbound to access as regular global memory. When
we bind the data to the texture memory, parallel threads’
read and write operation can benefit from the data spatial
locality. The binding operation happens at the beginning of
every iteration, which can be expensive for larger problems.
Graphics hardware is optimized for 2D texture accesses, and
this is supported by our data, where the 2D texture kernel
performs better than the 1D texture kernel.

Although shared memory is located on-chip, data must be
fetched to it before the calculations can benefit from its
register-speed memory performance. As shown in Figure 5, 6
and 7, data block and “ghost region” copy operations need
additional condition checking, because every element on the
data block boundary requires a different set of data elements
from the global memory to be in its ghost region. This added
complexity is one factor in the relatively poor performance
of the shared memory algorithm.

In addition, shared memory induces a limit on total thread
count. The size of shared memory available in each thread
block is limited. Current GPUs with compute capability of
2.0 and above have up to 48KB shared memory per multipro-
cessor, split between the thread blocks sharing that multi-
processor. In our shared memory CUDA kernel, two vectors
with size of P 2 are allocated to store the data block, and
the vector of partial results; another four vectors of size P
to store the ghost regions. With just one thread block per
multiprocessor, we have

(2P 2 + 4P) ∗ sizeof(float) ≤ 48KB (7)

This gives P ≤ 77 (effectively P = 64) for single precision
or P ≤ 54 (effectively P = 32) for double precision.

6. CONCLUSION
In this paper, we present a GPU-based solution to the clas-
sical elliptic test problem of a Poisson equation with Dirich-
let boundary conditions in two spatial dimensions. Using a
matrix-free implementation of the iterative Conjugate Gra-
dient method relieves some memory concern, which is the
major bottle neck of modern graphics processing units for

GPGPU. We performed a performance study on three op-
tions for GPU memory access. From this study, we have
shown that coalesced direct access to global memory, even
with repetitive accesses to the same global memory loca-
tions, performs best on this type of problem. Next best is
using 2D texture memory access, though this limits the com-
putation to single precision. Somewhat surprisingly, shared
memory performed the worst in this problem space.

7. ACKNOWLEDGMENTS
The first author acknowledges partial financial support from
the University of Maryland, Baltimore County (UMBC) High
Performance Computing Facility (HPCF) and Maryland In-
dustrial Partnerships / Sensics. NVIDIA hardware was pro-
vided by NVIDIA Research through the NVIDIA CUDA
Teaching Center program. The high performance cluster
used in the computational studies (serial MPI code) is part
of the HPCF. The facility is supported by the U.S. Na-
tional Science Foundation through the MRI program (grant
no. CNS-0821258) and the SCREMS program (grant no.
DMS-0821311), with additional substantial support from the
UMBC.

8. REFERENCES
[1] M. Ament, G. Knittel, D. Weiskopf, and W. Strasser.

A Parallel Preconditioned Conjugate Gradient Solver
for the Poisson Problem on a Multi-GPU Platform. In
Proceedings of the 2010 18th Euromicro Conference on
Parallel, Distributed and Network-based Processing,
PDP ’10, pages 583–592, Washington, DC, USA, 2010.
IEEE Computer Society.

[2] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum,
A. McKenney, J. Du Croz, S. Hammerling,
J. Demmel, C. Bischof, and D. Sorensen. LAPACK: a
portable linear algebra library for high-performance
computers. In Proceedings of the 1990 ACM/IEEE
conference on Supercomputing, Supercomputing ’90,
pages 2–11, Los Alamitos, CA, USA, 1990. IEEE
Computer Society Press.

[3] G. E. Blelloch. Scans as primitive parallel operations.
IEEE Trans. Comput., 38:1526–1538, November 1989.

[4] G. E. Blelloch. Programming parallel algorithms.
Commun. ACM, 39:85–97, March 1996.

[5] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder.
Sparse Matrix Solvers on the GPU: Conjugate
Gradients and Multigrid. ACM TRANSACTIONS ON
GRAPHICS, 22:917–924, 2003.

[6] L. Brandon, C. Boyd, and N. Govindaraju. Fast
Computation of General Fourier Transforms on
GPUs. In Multimedia and Expo, 2008 IEEE

International Conference on, pages 5 –8, June 23
2008-April 26 2008 2008.

[7] A. Camargos, R. Batalha, C. Martins, E. Silva, and
G. Soares. Superlinear Speedup in a 3-D Parallel
Conjugate Gradient Solver. Magnetics, IEEE
Transactions on, 45(3):1602 –1605, March 2009.

[8] R. Carvalho, C. Martins, R. Batalha, and
A. Camargos. 3D Parallel Conjugate Gradient Solver
Optimized for GPUs. In Electromagnetic Field
Computation (CEFC), 2010 14th Biennial IEEE
Conference on, page 1, May 2010.

[9] B. He, N. K. Govindaraju, Q. Luo, and B. Smith.
Efficient gather and scatter operations on graphics
processors. In Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, SC ’07, pages
46:1–46:12, New York, NY, USA, 2007. ACM.

[10] M. Hestenes and E. Stiefel. Methods of Conjugate
Gradients for Solving Linear Systems. Journal of
Research of the National Bureau of Standards, 49:6,
December 1952.

[11] P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A
history of Haskell: Being lazy with class. In In
Proceedings of the 3rd ACM SIGPLAN Conference on
History of Programming Languages (HOPL-III), pages
1–55. ACM Press, 2007.

[12] K. E. Iverson. A programming language. John Wiley &
Sons, Inc., New York, NY, USA, 1962.

[13] G. Knittel. A CG-based Poisson solver on a
GPU-cluster. In High Performance Computing
(HiPC), 2010 International Conference on, pages 1
–10, Dec. 2010.

[14] B. Larsen. Simple optimizations for an applicative
array language for graphics processors. In Proceedings
of the sixth workshop on Declarative aspects of
multicore programming, DAMP ’11, pages 25–34, New
York, NY, USA, 2011. ACM.

[15] A. E. Lefohn, S. Sengupta, J. Kniss, R. Strzodka, and
J. D. Owens. Glift: Generic, efficient, random-access
GPU data structures. ACM Trans. Graph., 25:60–99,
January 2006.

[16] Y. Li, J. Dongarra, and S. Tomov. A note on
auto-tuning GEMM for GPUs. In Proceedings of the
9th International Conference on Computational
Science: Part I, ICCS ’09, pages 884–892, Berlin,
Heidelberg, 2009. Springer-Verlag.

[17] R. Nath, S. Tomov, T. T. Dong, and J. Dongarra.
Optimizing symmetric dense matrix-vector
multiplication on GPUs. In Proceedings of 2011
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11,
pages 6:1–6:10, New York, NY, USA, 2011. ACM.

[18] NVIDIA. NVIDIA CUDA Compute Unified Device
Architecture Programming Guide Version 1.0, June
2007.

[19] NVIDIA. NVIDIA cuBLAS Library, 4.0 edition, 2011.

[20] NVIDIA. NVIDIA CUDA Occupancy Table. NVIDIA,
Dec 2011.

[21] A. M. Raim and M. K. Gobbert. Parallel Performance
Studies for an Elliptic Test Problem on the Cluster
Tara. Technical Report HPCF–2010–2, UMBC High
Performance Computing Facility, University of
Maryland, Baltimore County, 2010.

[22] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens.
Scan Primitives for GPU computing. In GRAPHICS
HARDWARE 2007, pages 97–106. Association for
Computing Machinery, 2007.

[23] B. J. Smith. R package magma: Matrix Algebra on
GPU and Multicore Architectures, version 0.2.2,
August 27, 2010. [On-line]
http://cran.r-project.org/package=magma.

[24] V. Volkov and J. W. Demmel. Benchmarking GPUs to
tune dense linear algebra. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08,
pages 31:1–31:11, Piscataway, NJ, USA, 2008. IEEE
Press.

