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A large atomic chlorine source inferred from
mid-continental reactive nitrogen chemistry
Joel A. Thornton1, James P. Kercher1{, Theran P. Riedel1,2, Nicholas L. Wagner3, Julie Cozic3,4, John S. Holloway3,4,
William P. Dubé3,4, Glenn M. Wolfe1,2, Patricia K. Quinn5, Ann M. Middlebrook3, Becky Alexander1

& Steven S. Brown3

Halogen atoms and oxides are highly reactive and can profoundly
affect atmospheric composition. Chlorine atoms can decrease the
lifetimes of gaseous elemental mercury1 and hydrocarbons such as
the greenhouse gas methane2. Chlorine atoms also influence cycles
that catalytically destroy or produce tropospheric ozone3, a green-
house gas potentially toxic to plant and animal life. Conversion of
inorganic chloride into gaseous chlorine atom precursors within
the troposphere is generally considered a coastal ormarine air phe-
nomenon4. Here we report mid-continental observations of the
chlorine atom precursor nitryl chloride at a distance of 1,400 km
from the nearest coastline. We observe persistent and significant
nitryl chloride production relative to the consumption of its nitro-
gen oxide precursors. Comparison of these findings to model pre-
dictions based on aerosol and precipitation composition data from
long-termmonitoringnetworks suggestsnitryl chlorideproduction
in the contiguous USA alone is at a level similar to previous global
estimates for coastal and marine regions5. We also suggest that a
significant fraction of tropospheric chlorine atoms6 may arise
directly from anthropogenic pollutants.

Night-time reactions of nitrogen oxides are known to convert
inorganic chloride into chlorine atom (Cl.) precursors7 (for example,
Fig. 1). N2O5, a nocturnal NOx reservoir (NOx5NO1NO2), can
react on airborne particles to produce only HNO3 (reaction (1a)), or
both nitryl chloride (ClNO2) and nitrate (NO3

2) (reaction (1b)).

N2O5(g)1H2O(aq)R 2HNO3(aq) (1a)

N2O5(g)1Cl2(aq)RClNO2(g)1NO3
2
(aq) (1b)

The ClNO2 yield depends on water and chloride concentrations
within particles8. The latter is often sufficient for efficient ClNO2

production5. However, the moles of particulate chloride per volume
of air (pCl2) is typically small, and would limit reaction (1b) except
that gaseous HCl can almost always provide a larger reservoir
through equilibrium repartitioning to particles9. Depending on the
environment, soluble chloride or NOx availability and reactivity may
limit ClNO2 production. The few prior observations of ClNO2within
polluted marine air have shown it is produced in high yields during
spring and summer, and exceeds previously predicted values by
factors of 2–30 (refs 5, 10, 11).

ClNO2 production has an impact on NOx and Cl budgets, both of
which affect the troposphere’s oxidizing capacity12. Current atmo-
spheric chemistry models predict reaction (1a) accounts for 30–50%
of total NOx removal in polluted regions13, but they typically neglect

reaction (1b). Owing to efficient deposition of HNO3, reaction (1a)
represents a terminal NOx sink in the lower troposphere, whereas
reaction (1b) recycles NOx through ClNO2 photolysis (reaction (2))
within a few hours after sunrise14.

ClNO21 hnRCl.1NO2 (2)

Models incorporating reactions (1b) and (2) differ in their predicted
impacts, but generally show summer ozone concentrations in coastal
urban areas to be enhanced by faster cycling of oxidants produced
from Cl. attacking hydrocarbons3,5.

These previous studies have been restricted to coastal or marine
regions. However, our observations made near Boulder, Colorado,
an urban location in the middle of North America, demonstrate that
this chemistry extends well inland, and are consistent with calcula-
tions based on network observations of aerosol and precipitation
composition.

We made in situ measurements on 11–25 February 2009 at the
National Oceanic and Atmospheric Administration’s Kohler Mesa
facility, just west and 150m above Boulder, Colorado. The site, subject
to large variability in pollutant levels, receives either the urban plume
from nearby cities, or much cleaner air from the Rocky Mountain
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Figure 1 | Schematic of chlorine activation by night-time NOx chemistry.
The emphasis here is on inlandClNO2 production, although production also
occurs in coastal and marine regions. Globally, sea spray is the dominant
source of tropospheric inorganic chloride9, which can be transported as fine-
mode sea spray particles or gaseous HCl following acid displacement by
HNO3 or H2SO4. Locally, other sources of chloride from industrial
activities9, biomass burning9, or transport of wind-blown soil dust15 may be
important. Reactions of N2O5 on chloride-containing particles produce
ClNO2, which photochemically converts to chlorine atoms and NO2 in the
morning. The chlorine atoms react with hydrocarbons, returning to HCl or
forming an organo-chlorine compound.
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region. Typically residing above the urban nocturnal boundary layer,
the site is oftenminimally affected by direct, local night-time emissions.
It therefore allows overnight observation of the chemical evolution of
air masses characteristic of this region. More information on the site
andmeasurementmethods is provided in Supplementary Information.

There are three salient features of the February 2009 time series
(Fig. 2). First, ClNO2 production was routinely observed in a region
ofNorth America far removed from sea spray, but possibly affected by
chloride transport from coastal areas9 or inland salt beds15, and by
anthropogenic sources including combustion and transportation9.
Second, ClNO2 mixing ratios consistently reached 100–450 parts per
trillion by volume (p.p.t.v.) whenever the urban plume was sampled.
These levels are unexpectedly large, reaching a third to a half of the
maximum values observed in polluted coastal areas5,10. Third, consis-
tent with the above mechanism, ClNO2 was observed only at night or
in the early morning, and often correlated with N2O5 (Fig. 2, top).
However, their relationship was variable, probably due to changes in:
(1) the N2O5 heterogeneous loss rate, which depends on humidity,
particle composition and phase16, and surface area density (Sa); (2) air
mass age and non-aerosol losses of N2O5 (Supplementary Informa-
tion); and (3) chloride availability.We observed similar levels ofN2O5

and ClNO2 in February 2008 at a nearby location, suggesting year-to-
year consistency (Supplementary Information).

As expected, the 2009 observations also indicate total available
chloride for ClNO2 production is greater than pCl2 alone5 (Fig. 3a).
The inferred minimum abundance of total available chloride
(100–500 p.p.t.v.) is consistent with admittedly uncertain HCl obser-
vations in other urban areas9, and with the pCl2«HClg equilibrium
predicted using thermodynamic models constrained by ourmeasure-
ments17 (Supplementary Information).

We performed time-dependent chemical box modelling to develop
a quantitative relationship between measured pCl2 and the ClNO2

yield from reaction (1) (wClNO2
) needed to explain the observations.

The boxmodel integrates explicitN2O5, ClNO2 andpCl
2mass balance

equations initializedwith observations ofNO2,O3, Sa, pCl
2. TheN2O5

reaction probability and wClNO2
are adjusted between 0.005–0.03 and

0.07–0.36, respectively, so the model matches the observed NO2, O3,
N2O5 and ClNO2 at a specific time. Model details and additional out-
put are given in Supplementary Information.

The night of 15–16 February illustrates the time evolution of
ClNO2 under low wind, providing a model-to-measurement com-
parison least affected by air mass variations due to transport. A con-
stant model wClNO2

of 0.14 adequately reproduces the observed
ClNO2 and pCl2 evolution (Fig. 3b), as well as NO2, O3 and N2O5

at specific times after sunset. These species are more sensitive to fresh
emissions or land-surface interactions caused by slight changes in
transport, and therefore exhibit larger deviations from the model
curve (Supplementary Information). This night did not show
evidence of a chloride limitation, and had the highest 24-h average
pCl2 and ClNO2 of the campaign. Most other nights did not allow
comparison to the box model with a single set of initial conditions
mainly because of transport effects (Supplementary Information).

The box-model-derived wClNO2
are generally lower than calculated

from laboratory parameterizations8,18 using measured pCl2 and
estimated particle water17 (Supplementary Information). Several
possible reasons for the apparent discrepancy exist. First, although
sufficient total chloride mass may exist, it probably partitions to
a fraction of the particle surface area19, reducing the population
average efficiency of reaction (1b) which our model-derived wClNO2

values represent. A more accurate calculation would require size-
resolved particle composition and pHmeasurements, which are chal-
lenging20. Additionally, the wClNO2

required in the model is different
for different nights, and even decreases within some nights, suggest-
ing significant variability in the factors controlling ClNO2 produc-
tion as well as a possible limitation by available chloride.

The existence of a mid-continental ClNO2 source was unknown
before the observations we report here. Yet, the ingredients for
this source, NOx and particulate chloride, are known from various
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Figure 2 | Time series of key quantities
observed in Boulder, Colorado, from 11 to 25
February 2009. Main panels: from top to
bottom, ClNO2, N2O5, pCl

2 shown in mixing
ratio units (p.p.t.v.) for comparison with gases,
and relative humidity (RH). Insets (top) are
point-to-point comparisons of ClNO2 to N2O5

on 13–14 February (left), 15–16 February
(centre) and 21–22 February (right). These nights
are characterized by high (85%),moderate (50%)
and low (35%) RH; and high, moderate and low
ratios of ClNO2:N2O5, respectively. The
ClNO2:N2O5 ratio is not solely a function of RH.
For example, on 14 Februarywe sampled air from
the urban surface layer containing fresh NOx

emissions which can titrate N2O5. See
Supplementary Information for additional
details.
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long-term databases to be ubiquitous across the North American
continent (and elsewhere). With these data sets, we now estimate
the magnitude of this halogen source across wider scales and com-
pare these estimates to multi-location observations of ClNO2.

Assuming lower tropospheric NOx is in steady-state, we calculate a
total annual ClNO2 production rate as a sum over seasonal averages
(s) via the following equation:

PClNO2
~

X

s

Ps
ClNO2

~
X

s

X

r

Es
NOx

(r)f sN2O5
(r)wsClNO2

(r) ð3Þ

where r denotes a 13 1u grid cell in the contiguous US or its coastal
regions, Es

NOx
(r) is the anthropogenic NOx emission rate from the

EDGAR database21, f sN2O5
rð Þ is the fraction of NOx removed by N2O5

heterogeneous chemistry predicted by the GEOS-Chem global
model13 and wsClNO2

rð Þ is the ClNO2 yield. We constrained

wsClNO2
rð Þ with a combination of precipitation and aerosol composi-

tion measurements from the National Atmospheric Deposition
Program (NADP)22 and the Interagency Monitoring of Protected
Visual Environments (IMPROVE) network23, respectively. This
approach provides wClNO2

consistent with all existing ClNO2 obser-

vations in Boulder and coastal regions5,10, while reproducing the
likely spatial distribution in total available chloride.

Figure 4 shows the annual average fields of ENOx
(Fig. 4a), fN2O5

(Fig. 4b), wClNO2
(Fig. 4c), and the resulting PClNO2

(Fig. 4d). Based on
the seasonal values of these components, the variability in the Boulder
and network data, and alternative approaches to equation (3), all of
which are presented in the Supplementary Information, we estimate
that PClNO2

for the contiguous US lies in the range 3.2–8.2 Tg yr21,
providing a photolytic Cl. source of 1.4–3.6 TgCl yr21. This US
ClNO2 source is far larger than the first global estimate of
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Figure 3 | Observed and modelled relationships of ClNO2 and particulate
chloride. a, 3-h averages of coincident ClNO2 and 43 pCl2 versus time of
day. Shading indicates the standard error of means; each bin contains more
than 15 points. b, Observed andmodelled evolution of ClNO2 and pCl

2 over
the 12-h period from sunset on 15 February. Symbols as in a, stars denote

pCl2 below the detection threshold, and solid lines represent model
predictions. The model reasonably reproduces the night-time evolution of
ClNO2with a constant ClNO2 yield of 0.14, andmatches the ozone, NO2 and
N2O5 observations 12 h after sunset. See Supplementary Information for a
more complete description of the model.
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0.06 TgCl yr21 (ref. 24), and is similar to the recent 3.2TgCl yr21

estimated for global coastal and marine regions5. More than half of
the predicted ClNO2 production occurs over land, and 40% occurs
during winter (December–February). It also suggests that, in the US,
an amount ofNOx equivalent to 8–22%of that emitted cycles through
ClNO2, potentially forming a non-negligible fraction of reactive nitro-
gen at night’s end, primarily during winter above the nocturnal sur-
face layer (see Supplementary Information).

If the global distribution of pCl2 and NOx sources are similar to
those in the US, as independent measurements suggest25, we estimate
the global Cl. source from ClNO2 to be 8–22 TgCl

. yr21, which is of
the same order as that inferred from methane isotopes in remote
regions (25–35 TgCl. yr21)2,6. ClNO2 production will mostly occur
in polluted regions; as such, Cl. from ClNO2 will react with other
hydrocarbons as well as methane. Thus, the Cl. source from ClNO2

may be in addition to that inferred from methane isotopes2,6.
Some fraction of the Cl. from ClNO2 may also convert to temporary
reservoirs, such as HOCl and ClONO2, possibly enhancing Cl

. pro-
duction not captured by our estimates11.

Although likely to be the most rigorous observationally con-
strained estimate of continental-scale ClNO2 production to date,
the accuracy of the above approach (and probably any other) is
limited by significant uncertainty in fN2O5

and wClNO2
that arise from

an incomplete understanding of N2O5 reactivity
26,27 and of chloride

partitioning across the particle distribution19. More studies of the
NOx–ClNO2–pCl

2–HCl system around the globe are critical to
refine these predictions.

Our results imply that a significant fraction of the tropospheric Cl.

source is anthropogenic, distributed over a relatively small area of the
Earth’s surface—polluted continental and coastal regions—and con-
centrated in a fraction of each day (morning). Long-range transport
of NOx reservoirs, such as peroxy nitrates28, or NOx emissions from
irradiated snow packs29, may also affect halogen activation far from
anthropogenic emissions, albeit on a smaller concentration scale.
Therefore, past and future trends in continental NOx emissions
may represent an important global influence on tropospheric
halogen sources that has largely gone unrecognized.

NOx influences climate by directly and indirectly regulating oxid-
ant budgets that determine the methane lifetime and affect aerosol
formation30. Nocturnal processing of NOx is typically considered a
reduction in the troposphere’s oxidizing capacity due to the conver-
sion of NOx and ozone into soluble, largely non-reactive species (for
example, HNO3). Widespread ClNO2 production instead renders
nocturnal NOx chemistry a potential source of oxidants and ozone
in polluted regions, and may have as yet unrecognized influences in
remote regions. Thus, anthropogenic NOx may have an even larger
effect on the oxidizing power of the lower troposphere than current
models estimate.
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