
Parallel Performance Studies for a Parabolic Test Problem on the
Cluster tara

Michael Muscedere, Andrew M. Raim, and Matthias K. Gobbert (gobbert@umbc.edu)

Department of Mathematics and Statistics, University of Maryland, Baltimore County

Technical Report HPCF–2010–4, www.umbc.edu/hpcf > Publications

Abstract

The performance of parallel computer code depends on the intricate interplay of processors, the architecture of
the computer nodes, their interconnect network, the numerical algorithm, and its implementation. The solution
of large, sparse, highly structured of equations of linear equations by an iterative linear solver that requires
communication between the parallel processes at every iteration is an instructive test of this interplay. This
note considers a parabolic test problem given by a time-dependent, scalar, linear reaction-diffusion equation
in three dimensions, whose time-stepping requires the solution of such a system of linear equations at every
timestep. The results presented here show excellent performance on the cluster tara with up to 512 parallel
processes when using 64 compute nodes. The results support the scheduling policy implemented, since they
confirm that it is beneficial to use all eight cores of the two quad-core processors on each node simultaneously,
giving us in-effect a computer that can run jobs efficiently with up to 656 parallel processes when using all
82 compute nodes. The cluster tara is an IBM server x iDataPlex purchased in 2009 by the UMBC High
Performance Computing Facility (www.umbc.edu/hpcf). It is an 86-node distributed-memory cluster comprised
of 82 compute, 2 develop, 1 user and 1 management nodes. Each node features two quad-core Intel Nehalem
X5550 processors (2.66 GHz, 8 MB cache), 24 GB memory, and a 120 GB local hard drive. All nodes and the
160 TB central storage are connected by an InfiniBand (QDR) interconnect network.

1 Introduction

The spatial discretization of a test problem comprised of partial differential equations given by a time-dependent
linear reaction-diffusion equation in three space dimensions results in a large system of ordinary differential equations
(ODEs). This ODE system is solved by the family of numerical differentiation formulas [9]. Since these ODE solvers
are implicit, a system of linear equations needs to be solved at every time step. The system matrices of these systems
are large, sparse, highly structured, and symmetric positive definite, and we use a matrix-free implementation of
the conjugate gradient (CG) method to solve them, as in [8]. The present report generalizes these studies for an
elliptic test problem in [8] to a parabolic test problem, although also the spatial dimensions of the test problems
(three vs. two) are different and there are important differences in the behavior of the algorithms: The CG method
for the elliptic test problem requires very large numbers of iterations, by contrast, the number of CG iterations
in each time step of a time-dependent problem is very limited due to the good initial solution guess available
from the previous timestep. This is significant, because the key challenge for the parallel interconnect stems from
the CG iterations and not from the time stepping. Section 2 details the test problem and describes its parallel
implementation including a discussion covering the convergence of the numerical approximation over successively
finer mesh sizes.

This report repeats the studies of [6] which examined the parallel performance of the same parabolic test problem
for the cluster hpc, which contained two dual-core processors capable of four processes on each node, on the new
cluster tara, which contains two quad-core processor capable of eight processes on each node. In detail, tara is
an 86-node distributed-memory cluster purchased in 2009 by the UMBC High Performance Computing Facility
(www.umbc.edu/hpcf) comprised of 82 compute, 2 develop, 1 user, and 1 management nodes. Each node features
two quad-core Intel Nehalem processors (2.66 GHz, 8 MB cache), 24 GB memory, and a 120 GB hard drive, thus
up to 8 parallel processes can run simultaneously per node. All nodes and the 160 TB central storage are connected
by an InfiniBand (QDR = quad-data rate) interconnect network. The cluster is an IBM System x iDataPlex.1 An
iDataPlex rack uses the same floor space as a conventional 42 U high rack but holds up to 84 nodes, which saves
floor space. More importantly, two nodes share a power supply which reduces the power requirements of the rack
and makes it potentially run cooler and more environmentally friendly than the standard racks.2 For tara, the
iDataPlex rack houses the 84 compute and develop nodes and includes all other components associated with the
nodes such as power distribution and Ethernet switches. The user and management nodes with their larger form
factor are contained second, standard rack along with the InfiniBand switch. The PGI 9.0 C compiler has been
used to create the executable which were used in this report.

1Vendor page www-03.ibm.com/systems/x/hardware/idataplex/
2Press coverage for instance www.theregister.co.uk/2008/04/23/ibm idataplex/

1

www.umbc.edu/hpcf
www.umbc.edu/hpcf
www.umbc.edu/hpcf
www-03.ibm.com/systems/x/hardware/idataplex/
www.theregister.co.uk/2008/04/23/ibm_idataplex/


Section 3 describes the parallel performance studies in detail and provides the underlying data for the following
summary results. Table 1.1 summarizes the key results of the present study by giving the observed wall clock time
(total time to execute the code) in HH:MM:SS (hours:minutes:seconds) format. We consider the test problem on
six progressively finer meshes, resulting in progressively larger systems of linear equations with system dimensions
ranging from about 140,000 to over 4.3 billion equations. The parallel implementation of the numerical method
is run on increasing numbers of nodes from 1 to 64 while varying the number of processes per node from 1 to 8.
The upper-left entry of each sub-table in Table 1.1 (i.e., 1 process per node on 1 node) represents the serial run
of the code. The lower-right entry of each sub-table lists the time using all cores of both quad-core processors
in all 64 nodes, for a total of 512 parallel processes working together to solve the problem. Specifically for the
128×128×512 spatial mesh that results in a system of about 8.5 million equations to be solved, the serial run takes
over 46 minutes, while the run using all cores on all 64 nodes takes about 12 seconds. Even more strikingly, one
realizes the advantage of parallel computing for the larger 256× 256× 1024 mesh with over 67.7 million equations:
The serial run of about 11 hours can be reduced to about 2 minutes using 512 parallel processes. Refining the
mesh to 512× 512× 2048 yields a problem with over 500 million equations. Due to memory limitations, this mesh
size can only be solved by using the total memory of 8 or more nodes. This brings out one of the key advantages
of parallel computing: pooling the memory from several nodes allows the solution of larger problems than could
be solved on any single node, no matter the time needed to solve the problem. Furthermore, refining the mesh to
1024 × 1024 × 4096 yields a problem with over 4.3 billion equations. Due to memory limitations, this mesh size
can only be solved by using all 64 nodes. Table 1.1 shows that our largest sized problem is solved in a respectable
time of about 5 hours using all cores on the 64 nodes.

The summary results in Table 1.1 are arranged to study two key questions: (i) whether the code scales linearly
to 64 nodes, which ascertains the quality of the InfiniBand interconnect network, and (ii) whether it is worthwhile
to use multiple processors and cores on each node, which analyzes the quality of the architecture of the nodes and
in turn guides the scheduling policy (whether it should be the default to use all cores on a node or not).

(i) Reading along each row of Table 1.1, speedup in proportion to the number of nodes is observed. This
is discussed in detail in Section 3 in terms of the number of parallel processes. The results show some
experimental variability with better-than-expected results when using in the finer mesh sizes 256×256×1024
and 1024×1024×4096 in the MVAPICH2 code implementation. Interestingly, when reading along the rows of
Table 1.2 these better-than-expected results are more frequent in the OpenMPI implementation of the code.
But more remarkably, there is a nearly halving of the execution time for the finer meshes 128 × 128 × 512 ,
256 × 256 × 1024, and 512 × 512 × 2048 in all columns out to final column using 64 nodes. These excellent
results successfully demonstrate the scalability of the algorithm and its implementation up to very large
number of nodes, as well as highlight the quality of the new quad-data rate InfiniBand interconnect.

(ii) To analyze the effect of running 1, 2, 4, or 8 parallel processes per node, we compare the results column-wise
in each sub-table. It is apparent that the execution time of each problem is in fact roughly halved with
doubling the numbers of processes within each node used. These result confirm that it is not just effective
to use both processors on each node, but also to use all cores of each quad-core processor simultaneously.
Roughly, this shows that the architecture of the IBM nodes purchased in 2009 has sufficient capacity in all
vital components to avoid creating any bottlenecks in accessing the memory of the node that is shared by
the processes. These results thus justify the purchase of compute nodes with two processors (as opposed to
one processor) and of multi-core processors (as opposed to single-core processors). Moreover, these results
will guide the scheduling policy implemented on the cluster. On the one hand, it is not disadvantageous to
run several serial jobs simultaneously on one node, and on the other hand, for jobs using several nodes, it is
advantageous to make use of all cores on the nodes reserved by the scheduler.

The entries of Table 1.1 used the MVAPICH2 implementation of MPI. They may be compared with the results
in Table 1.2, where OpenMPI has been used. From the raw timings it is difficult to declare a clear winner between
the two implementations, but a careful comparison highlights a few patterns. Fixing our attention to the largest
problem size with a complete set of data for all p values (Nx ×Ny ×Nz = 256× 256× 1024), we notice that when
more nodes are in use (16, 32, and 64) the MVAPICH2 timings seem to reduce more quickly than the OpenMPI
timings as processes-per-node increase. When the number of nodes used is less than 16, the pattern does not seem
to be clear. Sometimes, OpenMPI achieves a better time, and sometimes it does not. However, we notice in a few
cases that the difference is large. For example, consider the case of 2 nodes and 1 process per node; in this case,
MVAPICH2 achieves a time of 04:54:49, and OpenMPI trails behind at 05:21:03. But with 1 node and 1 process
per node, the MVAPICH2 time of 10:58:00 is far worse than than the OpenMPI time of 09:49:05. For coarser
meshes, the differences in absolute times are usually small. In Section 4, we see that the efficiency of OpenMPI

2



Table 1.1: Wall clock time in HH:MM:SS on tara using MVAPICH2 for the solution of the parabolic test problem
on Nx ×Ny ×Nz meshes using 1, 2, 4, 8, 16, 32, and 64 compute nodes with 1, 2, 4, and 8 processes per node.

(a) Mesh resolution Nx ×Ny ×Nz = 32× 32× 128, DOF = 140,481
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:35 00:00:17 00:00:09 00:00:06 00:00:04 00:00:03 00:00:02
2 processes per node 00:00:18 00:00:09 00:00:06 00:00:05 00:00:04 00:00:03 00:00:02
4 processes per node 00:00:11 00:00:06 00:00:05 00:00:04 00:00:04 00:00:02 N/A
8 processes per node 00:00:08 00:00:06 00:00:05 00:00:04 00:00:03 N/A N/A

(b) Mesh resolution Nx ×Ny ×Nz = 64× 64× 256, DOF = 1,085,825
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:04:33 00:02:35 00:01:10 00:00:40 00:00:21 00:00:12 00:00:07
2 processes per node 00:02:19 00:01:09 00:00:40 00:00:22 00:00:12 00:00:07 00:00:05
4 processes per node 00:01:14 00:00:38 00:00:23 00:00:12 00:00:07 00:00:05 00:00:04
8 processes per node 00:00:42 00:00:21 00:00:12 00:00:07 00:00:04 00:00:04 N/A

(c) Mesh resolution Nx ×Ny ×Nz = 128× 128× 512, DOF = 8,536,833
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:46:14 00:23:44 00:12:09 00:06:37 00:03:23 00:01:45 00:00:52
2 processes per node 00:23:38 00:11:52 00:06:40 00:03:25 00:01:49 00:00:58 00:00:30
4 processes per node 00:12:54 00:06:20 00:03:47 00:02:02 00:00:59 00:00:33 00:00:18
8 processes per node 00:07:07 00:03:53 00:02:00 00:00:59 00:00:32 00:00:20 00:00:12

(d) Mesh resolution Nx ×Ny ×Nz = 256× 256× 1024, DOF = 67,700,225
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 10:58:00 04:54:49 02:45:21 01:22:05 00:41:33 00:20:56 00:10:36
2 processes per node 04:48:32 02:26:29 01:24:19 00:40:52 00:21:10 00:10:53 00:05:40
4 processes per node 03:04:01 01:22:23 00:44:27 00:23:53 00:12:33 00:06:17 00:03:04
8 processes per node 01:27:12 00:43:35 00:22:03 00:11:52 00:06:04 00:03:33 00:01:57

(e) Mesh resolution Nx ×Ny ×Nz = 512× 512× 2048, DOF = 539,233,281
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node N/A N/A N/A 18:58:45 09:36:22 05:01:33 02:27:50
2 processes per node N/A N/A N/A 09:26:10 04:46:39 02:24:10 01:12:10
4 processes per node N/A N/A N/A 05:25:31 02:49:06 01:23:08 00:43:20
8 processes per node N/A N/A N/A 02:43:45 01:21:29 00:40:56 00:22:11

(f) Mesh resolution Nx ×Ny ×Nz = 1024× 1024× 4096, DOF = 4,304,410,625
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node N/A N/A N/A N/A N/A N/A N/A
2 processes per node N/A N/A N/A N/A N/A N/A N/A
4 processes per node N/A N/A N/A N/A N/A N/A N/A
8 processes per node N/A N/A N/A N/A N/A N/A 04:50:18

tends to be worse than MVAPICH2 when the mesh resolutions are large, as the number of process scale up. Some
of the differences observed here may be due to experimental variability, and more studies (also with other codes)
will be useful. Nevertheless, due to its potential to perform better for large problems (for code with large memory
requirements) for large number of nodes and, importantly, with all cores on the nodes in use, MVAPICH2 was
chosen as the default MPI implementation for tara. This choice potentially allows for the most effective use of the
cluster in production, because it optimizes the throughput of jobs using all available computational nodes.

The results of Table 1.1 can also be compared to corresponding entries obtained on the cluster hpc in 2008 as
reported in [6, Table 1]. For the resolutions that hpc could fit into memory of one node, that is, for mesh resolutions
of 32× 32× 128, 64× 64× 256, 128× 128× 512, and 256× 256× 1024, the serial runs on tara are about twice as
fast as the hpc results. This shows the core-by-core performance improvement of an Intel Nehalem processor from
2009 compared to an AMD Opteron from 2008. A similar factor of speed improvement can be observed for other
directly comparable cases of 2 and 4 processes per node on 2, 4, 8, 16, and 32 nodes used. It is even more striking
to compare the performance on a nodal basis, that is using all available cores per node, which is 8 on tara and 4 on
hpc. In this comparison, tara running the maximum possible 8 processes per node is often from 3 to 4 times faster
than hpc running the maximum possible 4 processes per node, albeit with a significant amount of experimental
variability.

3



Table 1.2: Wall clock time in HH:MM:SS on tara using OpenMPI for the solution of the parabolic test problem on
Nx ×Ny ×Nz meshes using 1, 2, 4, 8, 16, 32, and 64 compute nodes with 1, 2, 4, and 8 processes per node.

(a) Mesh resolution Nx ×Ny ×Nz = 32× 32× 128, DOF = 140,481
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:00:34 00:00:18 00:00:10 00:00:07 00:00:05 00:00:03 00:00:03
2 processes per node 00:00:19 00:00:10 00:00:06 00:00:05 00:00:04 00:00:02 00:00:02
4 processes per node 00:00:11 00:00:06 00:00:05 00:00:04 00:00:04 00:00:02 N/A
8 processes per node 00:00:07 00:00:04 00:00:04 00:00:03 00:00:02 N/A N/A

(b) Mesh resolution Nx ×Ny ×Nz = 64× 64× 256, DOF = 1,085,825
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:05:01 00:02:20 00:01:11 00:00:43 00:00:22 00:00:13 00:00:08
2 processes per node 00:02:33 00:01:11 00:00:36 00:00:21 00:00:12 00:00:08 00:00:05
4 processes per node 00:01:21 00:00:37 00:00:20 00:00:12 00:00:07 00:00:05 00:00:04
8 processes per node 00:00:46 00:00:21 00:00:13 00:00:07 00:00:05 00:00:04 N/A

(c) Mesh resolution Nx ×Ny ×Nz = 128× 128× 512, DOF = 8,536,833
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 00:51:21 00:24:19 00:11:43 00:06:50 00:03:34 00:01:45 00:00:56
2 processes per node 00:27:13 00:12:26 00:06:13 00:03:23 00:01:46 00:00:57 00:00:31
4 processes per node 00:14:06 00:06:16 00:03:29 00:01:51 00:00:57 00:00:34 00:00:19
8 processes per node 00:07:44 00:03:44 00:01:51 00:00:58 00:00:31 00:00:20 00:00:12

(d) Mesh resolution Nx ×Ny ×Nz = 256× 256× 1024, DOF = 67,700,225
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node 09:49:05 05:21:03 02:40:52 01:20:50 00:41:22 00:21:19 00:11:22
2 processes per node 04:57:34 02:50:05 01:25:12 00:44:03 00:22:02 00:11:42 00:05:45
4 processes per node 02:42:38 01:22:08 00:47:14 00:24:26 00:11:37 00:06:20 00:03:10
8 processes per node 01:32:17 00:48:40 00:23:27 00:12:13 00:06:20 00:03:34 00:02:03

(e) Mesh resolution Nx ×Ny ×Nz = 512× 512× 2048, DOF = 539,233,281
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node N/A N/A N/A 17:51:23 08:56:18 04:31:41 02:20:59
2 processes per node N/A N/A N/A 09:33:58 04:44:58 02:27:05 01:16:10
4 processes per node N/A N/A N/A 05:03:21 02:38:32 01:20:36 00:40:58
8 processes per node N/A N/A N/A 02:49:08 01:25:27 00:45:35 00:23:42

(f) Mesh resolution Nx ×Ny ×Nz = 1024× 1024× 4096, DOF = 4,304,410,625
1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

1 process per node N/A N/A N/A N/A N/A N/A N/A
2 processes per node N/A N/A N/A N/A N/A N/A N/A
4 processes per node N/A N/A N/A N/A N/A N/A N/A
8 processes per node N/A N/A N/A N/A N/A N/A 05:30:00

4



2 The Parabolic Test Problem

We consider the following time-dependent, scalar, linear reaction-diffusion equation in three space dimensions that
is a simplification of a multi-species model of calcium flow in heart cells [4, 5]: Find the concentration of the single
species u(x, y, z, t) for all (x, y, z) ∈ Ω and 0 ≤ t ≤ T such that

∂u
∂t −∇ · (D∇u) = 0 in Ω for 0 < t ≤ T,

n · (D∇u) = 0 on ∂Ω for 0 < t ≤ T,
u = uini(x, y, z) in Ω at t = 0,

(2.1)

with the domain Ω = (−X, X)× (−Y, Y )× (−Z,Z) ⊂ R3 with X = Y = 6.4 and Z = 32.0 in units of micrometers.
We set the final time as T = 100 ms in the simulation. Here, n = n(x, y, z) denotes the unit outward normal vector
at the surface point (x, y, z) of the domain boundary ∂Ω. The diagonal matrix D = diag(Dx, Dy, Dz) consists
of the diffusion coefficients in the three coordinate directions. To model realistic diffusion behavior we choose
Dx = Dy = 0.15 and Dz = 0.30 in micrometers squared per milliseconds. The initial distribution is chosen to be

uini(x, y, z) = cos2
(

λxx

2

)
cos2

(
λyy

2

)
cos2

(
λzz

2

)
, (2.2)

where λx = π/X, λy = π/Y and λz = π/Z. To get an intuitive feel for the solution behavior over time, we observe
that the partial differential equation (PDE) in (2.1) has no source term and that no-flow boundary conditions
are prescribed over the entire boundary. Hence, the molecules present initially at t = 0 will diffuse through the
domain without escaping. Since the system conserves mass, the system will approach a steady state with a constant
concentration throughout the domain as t →∞. This problem has been used as a test problem before in [3, 4] and
its the true solution can in fact be computed using separation of variables and Fourier analysis to be

u(x, y, x, t) =
1 + cos (λxx)e−Dxλ2

xt

2
1 + cos (λyy)e−Dyλ2

yt

2
1 + cos (λzz)e−Dzλ2

zt

2
. (2.3)

The true solution confirms that the system evolves from the non-uniform initial distribution uini(x, y, z) to the
constant steady state solution uSS ≡ 1/8; we do not reach this steady state with our final simulation time of
T = 100 ms.

A method of lines discretization of (2.1) using finite elements with tri-linear nodal basis functions results in
a stiff, large system of ordinary differential equations (ODEs) referred to as the so-called semi-discrete problem
corresponding to (2.1) [5]. This ODE system is solved by the family of numerical differentiation formulas (NDFk,
1 ≤ k ≤ 5) [9], which are generalizations of the well-known backward differentiation formulas (BDFk) (see, e.g.,
[2]). Since these ODE solvers are implicit, a system of linear equations needs to be solved at every time step.
These systems are large, sparse, highly structured, and symmetric positive definite, and we use the conjugate
gradient (CG) method to solve them. In a careful implementation, the conjugate gradient method requires in each
iteration exactly two inner products between vectors, three vector updates, and one matrix-vector product involving
the system matrix A. In fact, this matrix-vector product is the only time in which A enters into the algorithm.
We avoid the storage cost of A by using a so-called matrix-free implementation of the CG method, in which no
matrix is created or stored, but rather the needed matrix-vector products are computed directly by a user-supplied
function [1]. The parallel implementation of the CG algorithm uses the MPI function MPI_Allreduce for the inner
products and the technique of interleaving calculations and communications by non-blocking MPI communications
commands MPI_Isend and MPI_Irecv in the matrix-free matrix-vector products.

Table 2.1 summarizes several key parameters of the numerical method and its implementation. The first two
columns show the spatial mesh resolutions Nx ×Ny ×Nz considered in the studies and their associated numbers
of unknowns that need to be computed at every time step, commonly referred to as degrees of freedom (DOF).
The column nsteps lists the number of time steps taken by the ODE solver. Due to the linearity of the problem
(2.1), this number turns out to be independent of the mesh resolution, even though the ODE solver uses automatic
time step and method order selection. The observed wall clock time for a serial run of the code is listed in
hours:minutes:seconds (HH:MM:SS) and in seconds, indicating the rapid increase for finer meshes. The final two
columns list the memory usage in MB, both predicted by counting variables in the algorithm and by observation
using the Linux command top on the compute node being used.

The error in the finite element solution uh(·, t) of the semi-discrete problem resulting from discretizing (2.1) is
measured in the L2(Ω)-norm. Under standard assumptions [7, 10], the finite element error has the form

‖uh(·, t)− u(·, t)‖
L2(Ω)

≤ C hq as h → 0 (2.4)

5



Table 2.1: Sizing study (using MVAPICH2) listing the mesh resolution Nx × Ny × Nz, the number of degrees of
freedom (DOF), the number of ODE steps to final time, the time in HH:MM:SS and in seconds, and the predicted
and observed memory usage in MB for a one-processor run.

Nx ×Ny ×Nz DOF nsteps wall clock time memory usage (MB)
HH:MM:SS seconds predicted observed

32× 32× 128 140,481 208 00:00:35 34.76 23 33
64× 64× 256 1,085,825 208 00:04:33 273.34 174 177

128× 128× 512 8,536,833 208 00:46:14 2773.53 1,368 1,379
256× 256× 1024 67,700,225 208 10:58:00 39479.70 10,846 10,859

a512× 512× 2048 539,233,281 208 N/A N/A 86,394 86,544
b1024× 1024× 4096 4,304,410,625 208 N/A N/A 689,640 707,080
a A serial run was not possible due to memory limitations. This result uses 8 nodes with one

process per node. The timing is not shown here, since it should not be compared to the serial
runs.

b This result uses 64 nodes with eight processes per node.

Table 2.2: Convergence study (using MVAPICH2) listing the L2(Ω)-norm of the finite element error from (2.4) and
estimated convergence order q(est) from (2.5) in parentheses at the times t = 30, t = 40, and t = 50 ms.

Nx ×Ny ×Nz t = 30 t = 40 t = 50
32× 32× 128 2.6954e–02 2.1525e–02 1.7019e–02
64× 64× 256 6.7459e–03 (1.9984) 5.3837e–03 (1.9994) 4.2556e–03 (1.9997)

128× 128× 512 1.6843e–03 (2.0019) 1.3451e–03 (2.0009) 1.0636e–03 (2.0004)
256× 256× 1024 4.1852e–04 (2.0088) 3.3541e–04 (2.0037) 2.6569e–04 (2.0012)
512× 512× 2048 1.0213e–04 (2.0349) 8.3029e–05 (2.0143) 6.6226e–05 (2.0043)

1024× 1024× 4096 2.3358e–05 (2.1284) 2.0048e–05 (2.0501) 1.6401e–05 (2.0136)

at any point in time 0 ≤ t ≤ T , where q > 0 for convergence and C denotes a generic constant of moderate
size independent of the maximum mesh spacing h := max{∆x,∆y, ∆z}. Our problem with tri-linear nodal basis
functions satisfies (2.4) with q = 2 at every point in time t. Therefore, we expect the L2(Ω)-norm of the numerical
solution against the true solution to decrease by a factor 4, whenever each of the mesh spacings ∆x, ∆y, ∆z is
halved. To formally estimate the convergence order q in (2.4) from numerically observed errors, one can use the
estimation formula

q(est) = log2

(
‖u2h(·, t)− u(·, t)‖

L2(Ω)

‖uh(·, t)− u(·, t)‖
L2(Ω)

)
. (2.5)

At three representative points in time, Table 2.2 shows the L2(Ω)-norm of the error uh(·, t)−u(·, t) and in parentheses
the results of this formula for q(est). In all cases, the norms of the finite element errors decrease by a factor of
about 4 each time the mesh is refined by a factor of 2 and q(est) approaches 2, both showing that the finite element
method is second order convergent as predicted by the numerical theory. The fact that second order convergence
is attained for the spatial discretization also confirms that both the tolerance of the iterative linear solver is tight
enough to ensure a sufficiently accurate solution of the linear system and the tolerance on ODE error is small
enough to ensure that the time error does not dominate.

3 Performance Studies on tara with MVAPICH2

The run times for the finer meshes observed for serial runs in Table 2.2 bring out one key motivation for parallel
computing: The run times for a problem of a given, fixed size can be potentially dramatically reduced by spreading
the work across a group of parallel processes. More precisely, the ideal behavior of code for a fixed problem size
using p parallel processes is that it be p times as fast. If Tp(N) denotes the wall clock time for a problem of a
fixed size parametrized by N using p processes, then the quantity Sp = T1(N)/Tp(N) measures the speedup of the
code from 1 to p processes, whose optimal value is Sp = p; for the finest resolutions, where data are only available
starting with, for instance, p = 8, this definition is extended by the formula Sp = 8T8(N)/Tp(N), or analogously
if the starting point is p = 16, 32, or 64. The efficiency Ep = Sp/p characterizes in relative terms how close a run

6



with p parallel processes is to this optimal value, for which Ep = 1. The behavior described here for speedup for a
fixed problem size is known as strong scalability of parallel code.

The results given in this section are based on the MVAPICH2 implementation of MPI. Table 3.1 lists the results
of a performance study for strong scalability. Each row lists the results for one problem size, parametrized by the
mesh resolution in the z-direction as Nz. Each column corresponds to the number of parallel processes p used in
the run. The runs for Table 3.1 distribute these processes as widely as possible over the available nodes, that is,
each process is run on a different node up to a maximum number of 64 nodes. In other words, up to p = 64, seven
of the eight cores available on each node are idling, and only one core performs calculations. For p = 128, p = 256,
and p = 512, this cannot be accommodated on 64 nodes, thus 2 processes are run on each node for p = 128,
4 processes per node for p = 256, and 8 processes per node for p = 512. Comparing adjacent columns in the raw
timing data in Table 3.1 (a) indicates that using twice as many processes speeds up the code by a factor of two
approximately, at least up to p = 32. To quantify this point more clearly, the speedup is computed in Table 3.1 (b)
showing near-optimal speedup Sp ≈ p for all cases except Nz = 128 up to p = 64, which is expressed in terms
of efficiency Ep ≈ 1 in Table 3.1 (c). The customary representation of speedup and efficiency are presented in
Figure 3.1 (a) and (b), respectively. Figure 3.1 (a) shows very clearly the excellent speedup up to p = 32 parallel
processes for all mesh sizes which is maintained up to p = 128 for mesh size Nz = 1024. The efficiency plotted in
Figure 3.1 (b) is directly derived from the speedup, but the plot is still useful because it details interesting features
for small values of p that are hard to discern in the speedup plot. Here, we notice the variability of the results for
small p is visible. In fact, we notice here, as in the table, that a number of results show apparently better than
optimal behavior, with efficiency greater than 1.0. This can happen due to experimental variability of the runs,
for instance, if the single-process timing T1(N) used in computation of Sp = T1(N)/Tp(N) happens to be slowed
down is some way. Another reason for excellent performance can also be that runs on many processes result in
local problem sizes that entirely fit or nearly fit into the cache of the individual processors, leading to fewer cache
misses and thus potentially dramatic improvement in run times, beyond those expected by merely distributing the
calculations to more processes. It is customary in results of fixed problem size that the speedup is better for larger
problems. Examining column p = 64 in Table 3.1 (b) across all problem sizes Nz we see this is in fact the case. The
conclusions discussed so far apply to up to p = 64 parallel processes. In each case, only 1 parallel process is run on
each node, with the other seven cores available to handle all other operating system or other duties. For p = 128,
p = 256, and p = 512, 2, 4, or 8 processes share each node necessarily, as 64 nodes are available, thus one expects
slightly degraded performance as we go from p = 64 to p = 128, p = 256, and p = 512. This is born out by all data
in Table 3.1 as well as clearly visible in Figures 3.1 (a) and (b) for p > 64. However, the times in Table 3.1 (a) for
all finer meshes Nz = 512 and Nz = 1024 clearly demonstrate an improvement by using more cores, just not at the
optimal rate of halving the wall clock time as p doubles.

To analyze the impact of using more than one core per node, we study the speedup for 2, 4, and 8 processes per
node. We run 2 processes per node in Table 3.2 and Figure 3.2, 4 processes per node in Table 3.3 and Figure 3.3,
and, 8 processes per node in Table 3.4 and Figure 3.4, wherever possible. That is, when studying 2 processes per
node in Table 3.2, 4 and 8 processes per node are required for the p = 256 and p = 512 cases respectively since
64 nodes are available. When 4 processes per node are studied in Table 3.3, p = 2 is computed using a two-process
job running on a single node while 8 processes per node are still required for p = 512. Lastly, when 8 processes
per node are studied with Table 3.4, p = 2 is again computed using a two-process job running on a single node,
while p = 4 is computed using a four-process job running on a single node. Note that the p = 1 serial case which
is computed on a dedicated node (i.e., running the entire job on a single process on a single node) is also recorded
in each of the tables. The results in the efficiency plots of Tables 3.2 (b), 3.3 (b), and 3.4 (b) show generally
good efficiency for the larger problems sizes Nz ≥ 512. However, it is curious that when we compare across tables
we see a decrease in efficiency for Nz = 1024. Specifically, concentrating on p = 64 and Nz = 1024 across all the
of tables, we see that the efficiency values in Tables 3.1 and 3.2 are excellent and compare very closely (0.9707
and 0.9443). However, Tables 3.3 and 3.4 in comparison have degraded efficiency of (0.8188 and 0.8670). This
drop in efficiency for large problem sizes when more of the p = 64 processes are executed locally within a node
suggests that it is beneficial to spread the processes over all the allocated nodes to increase efficiency. Keeping our
attention on Nz = 1024, we see in each table that the efficiency decreases as the number of processes p increases,
but focusing on the raw timings in Table 3.1 (a), 3.2 (a), 3.3 (a), and 3.4 (a), we see that increasing the number
of parallel processes is very effective for reducing the required wall time to solve the problem. We have shown the
performance of solving a very fine mesh Nz = 2048 as well. We see in Table 3.1 (c) that the efficiency is excellent
but the optimal halving of run times as p increases is not occurring, for example, when increasing from p = 128 to
p = 256 the time only decreases from 72 minutes to 43 minutes. However, this result would likely have taken over
6 days if it could have been run in serial. To make this estimate we assumed an ideal speedup from p = 1 to p = 8
for Nz = 2048 in Table 3.1 (a), which yields 8× 19 hours = 152 hours.

7



Table 3.1: MVAPICH2 performance on tara by number of processes used with 1 process per node, except for
p = 128 which uses 2 processes per node, p = 256 which uses 4 processes per node, and p = 512 which uses
8 processes per node.

(a) Wall clock time in HH:MM:SS
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 00:00:35 00:00:17 00:00:09 00:00:06 00:00:04 00:00:03 00:00:02 00:00:02 N/A N/A
256 00:04:33 00:02:35 00:01:10 00:00:40 00:00:21 00:00:12 00:00:07 00:00:05 00:00:04 N/A
512 00:46:14 00:23:44 00:12:09 00:06:37 00:03:23 00:01:45 00:00:52 00:00:30 00:00:18 00:00:12

1024 10:57:60 04:54:49 02:45:21 01:22:05 00:41:33 00:20:56 00:10:36 00:05:40 00:03:04 00:01:57
2048 N/A N/A N/A 18:58:45 09:36:22 05:01:33 02:27:50 01:12:10 00:43:20 00:22:11
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 04:50:18

(b) Observed speedup Sp

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 2.0852 3.6979 5.6890 7.9361 11.3595 14.9185 14.2459 N/A N/A
256 1.0000 1.7654 3.9307 6.8523 12.7372 22.8736 40.9805 52.4645 72.8907 N/A
512 1.0000 1.9476 3.8050 6.9919 13.6742 26.3368 53.6882 91.6566 152.1410 236.0451

1024 1.0000 2.2319 3.9794 8.0166 15.8360 31.4249 62.1219 116.2672 214.3423 336.5990
2048 N/A N/A N/A 8.0000 15.8060 30.2098 61.6209 126.2299 210.2193 410.5573
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 512.0000

(c) Observed efficiency Ep

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 1.0426 0.9245 0.7111 0.4960 0.3550 0.2331 0.1113 N/A N/A
256 1.0000 0.8827 0.9827 0.8565 0.7961 0.7148 0.6403 0.4099 0.2847 N/A
512 1.0000 0.9738 0.9512 0.8740 0.8546 0.8230 0.8389 0.7161 0.5943 0.4610

1024 1.0000 1.1159 0.9949 1.0021 0.9897 0.9820 0.9707 0.9083 0.8373 0.6574
2048 N/A N/A N/A 1.0000 0.9879 0.9441 0.9628 0.9862 0.8212 0.8019
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.0000

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 3.1: MVAPICH2 performance on tara by number of processes used with 1 process per node, except for
p = 128 which uses 2 processes per node p = 256 which uses 4 processes per node, and p = 512 which uses
8 processes per node.

8



Table 3.2: MVAPICH2 performance on tara by number of processes used with 2 processes per node, except for
p = 1 which uses 1 process per node, p = 256 which uses 4 processes per node, and p = 512 which uses 8 processes
per node.

(a) Wall clock time in HH:MM:SS
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 00:00:35 00:00:18 00:00:09 00:00:06 00:00:05 00:00:04 00:00:03 00:00:02 N/A N/A
256 00:04:33 00:02:19 00:01:09 00:00:40 00:00:22 00:00:12 00:00:07 00:00:05 00:00:04 N/A
512 00:46:14 00:23:38 00:11:52 00:06:40 00:03:25 00:01:49 00:00:58 00:00:30 00:00:18 00:00:12

1024 10:57:60 04:48:32 02:26:29 01:24:19 00:40:52 00:21:10 00:10:53 00:05:40 00:03:04 00:01:57
2048 N/A N/A N/A N/A 09:26:10 04:46:39 02:24:10 01:12:10 00:43:20 00:22:11
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 04:50:18

(b) Observed speedup Sp

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 1.8840 3.6705 5.5350 7.4433 9.1715 13.3180 14.2459 N/A N/A
256 1.0000 1.9672 3.9597 6.8029 12.4359 23.6249 37.6501 52.4645 72.8907 N/A
512 1.0000 1.9566 3.8952 6.9314 13.5261 25.3591 48.1181 91.6566 152.1410 236.0451

1024 1.0000 2.2805 4.4922 7.8040 16.1042 31.0935 60.4358 116.2672 214.3423 336.5990
2048 N/A N/A N/A N/A 16.0000 31.6010 62.8340 125.5174 209.0327 408.2400
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 512.0000

(c) Observed efficiency Ep

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 0.9420 0.9176 0.6919 0.4652 0.2866 0.2081 0.1113 N/A N/A
256 1.0000 0.9836 0.9899 0.8504 0.7772 0.7383 0.5883 0.4099 0.2847 N/A
512 1.0000 0.9783 0.9738 0.8664 0.8454 0.7925 0.7518 0.7161 0.5943 0.4610

1024 1.0000 1.1403 1.1230 0.9755 1.0065 0.9717 0.9443 0.9083 0.8373 0.6574
2048 N/A N/A N/A N/A 1.0000 0.9875 0.9818 0.9806 0.8165 0.7973
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.0000

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 3.2: MVAPICH2 performance on tara by number of processes used with 2 processes per node, except for
p = 1 which uses 1 process per node, p = 256 which uses 4 processes per node, and p = 512 which uses 8 processes
per node.

9



Table 3.3: MVAPICH2 performance on tara by number of processes used with 4 processes per node, except for
p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, p = 512 which uses 8 processes per
node.

(a) Wall clock time in HH:MM:SS
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 00:00:35 00:00:18 00:00:11 00:00:06 00:00:05 00:00:04 00:00:04 00:00:02 N/A N/A
256 00:04:33 00:02:19 00:01:14 00:00:38 00:00:23 00:00:12 00:00:07 00:00:05 00:00:04 N/A
512 00:46:14 00:23:38 00:12:54 00:06:20 00:03:47 00:02:02 00:00:59 00:00:33 00:00:18 00:00:12

1024 10:57:60 04:48:32 03:04:01 01:22:23 00:44:27 00:23:53 00:12:33 00:06:17 00:03:04 00:01:57
2048 N/A N/A N/A N/A N/A 05:25:31 02:49:06 01:23:08 00:43:20 00:22:11
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 04:50:18

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 1.8840 3.2126 5.9828 7.4433 9.4201 9.6022 17.1232 N/A N/A
256 1.0000 1.9672 3.7103 7.2716 12.1323 22.7594 39.6720 59.0367 72.8907 N/A
512 1.0000 1.9566 3.5850 7.3026 12.2112 22.8049 47.1849 85.1821 152.1410 236.0451

1024 1.0000 2.2805 3.5758 7.9871 14.8051 27.5563 52.4048 104.6152 214.3423 336.5990
2048 N/A N/A N/A N/A N/A 32.0000 61.6012 125.2904 240.3674 469.4364
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 512.0000

(c) Observed efficiency Ep

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 0.9420 0.8031 0.7478 0.4652 0.2944 0.1500 0.1338 N/A N/A
256 1.0000 0.9836 0.9276 0.9090 0.7583 0.7112 0.6199 0.4612 0.2847 N/A
512 1.0000 0.9783 0.8963 0.9128 0.7632 0.7127 0.7373 0.6655 0.5943 0.4610

1024 1.0000 1.1403 0.8940 0.9984 0.9253 0.8611 0.8188 0.8173 0.8373 0.6574
2048 N/A N/A N/A N/A N/A 1.0000 0.9625 0.9788 0.9389 0.9169
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.0000

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 3.3: MVAPICH2 performance on tara by number of processes used with 4 processes per node, except for
p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 512 which uses 8 processes
per node.

10



Table 3.4: MVAPICH2 performance on tara by number of processes used with 8 processes per node, except for
p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which uses 4 processes per
node.

(a) Wall clock time in HH:MM:SS
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 00:00:35 00:00:18 00:00:11 00:00:08 00:00:06 00:00:05 00:00:04 00:00:03 N/A N/A
256 00:04:33 00:02:19 00:01:14 00:00:42 00:00:21 00:00:12 00:00:07 00:00:04 00:00:04 N/A
512 00:46:14 00:23:38 00:12:54 00:07:07 00:03:53 00:01:60 00:00:59 00:00:32 00:00:20 00:00:12

1024 10:57:60 04:48:32 03:04:01 01:27:12 00:43:35 00:22:03 00:11:52 00:06:04 00:03:33 00:01:57
2048 N/A N/A N/A N/A N/A N/A 02:43:45 01:21:29 00:40:56 00:22:11
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 04:50:18

(b) Observed speedup Sp

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 1.8840 3.2126 4.5737 6.3200 7.4914 9.1234 10.2235 N/A N/A
256 1.0000 1.9672 3.7103 6.4942 12.8812 22.8736 38.7716 61.2870 76.9972 N/A
512 1.0000 1.9566 3.5850 6.4960 11.8954 23.1939 46.6453 87.9090 136.9644 236.0451

1024 1.0000 2.2805 3.5758 7.5459 15.0986 29.8361 55.4849 108.3387 185.3420 336.5990
2048 N/A N/A N/A N/A N/A N/A 64.0000 128.6165 256.0646 472.3221
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 512.0000

(c) Observed efficiency Ep

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 0.9420 0.8031 0.5717 0.3950 0.2341 0.1426 0.0799 N/A N/A
256 1.0000 0.9836 0.9276 0.8118 0.8051 0.7148 0.6058 0.4788 0.3008 N/A
512 1.0000 0.9783 0.8963 0.8120 0.7435 0.7248 0.7288 0.6868 0.5350 0.4610

1024 1.0000 1.1403 0.8940 0.9432 0.9437 0.9324 0.8670 0.8464 0.7240 0.6574
2048 N/A N/A N/A N/A N/A N/A 1.0000 1.0048 1.0003 0.9225
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.0000

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 3.4: MVAPICH2 performance on tara by number of processes used with 8 processes per node, except for
p = 1 which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which uses 4 processes per
node.

11



4 Performance Studies on tara with OpenMPI

This section summarizes the results of analogous studies to the previous section, this time using the OpenMPI
implementation of the MPI standard. Otherwise, the same cluster and compiler have been used. The goal of
this study is to answer the question of whether MVAPICH2 or OpenMPI should be used as the default MPI
implementation on the cluster tara.

Analogous studies for the sizing and convergence studies of the method as reported in Tables 2.1 and 2.2, re-
spectively, were performed using OpenMPI. Identical numerical results were observed, confirming the correctness of
the studies. Table 1.2 in the Introduction summarizes the raw timing results for our OpenMPI studies, analogously
to Table 1.1 in the Introduction. Reading the data row-wise (varying number of nodes) or column-wise (varying
process per node), we again observe excellent scalability. Tables 4.1, 4.2, 4.3, and 4.4, with Figures 4.1, 4.2, 4.3,
and 4.4 show detailed performance results including speedup and efficiency. These results at first glance appear
very similar to the 1, 2, 4, and 8 process per node results from Section 3. However, comparing the two sets of data
carefully reveals major differences. Considering Table 4.4, we notice the lower efficiency values using OpenMPI for
Nz = 1024 as p increases compared to corresponding MVAPICH2 efficiency values shown in Table 3.4. Two results
that are impacting the efficiency calculation. First, The execution time for the OpenMPI serial case finishes much
faster than the MVAPICH2 serial case (9:49:05 vs. 10:57:50). Secondly, for p = 8, MVAPICH2 has an execution
time about 5 minutes faster than OpenMPI. Moreover, comparing execution times for p > 8, MVAPICH2 is always
faster, albeit the difference favors MVAPICH2 by only 5 seconds for p = 512 on all nodes. The results for 1,
2, and 4 processes per node also show that for larger values of p, the MVAPICH2 implementation nearly always
exhibits faster execution times. So, we conclude that for multiple processes on the allocated nodes, defaulting to
MVAPICH2 as the parallel coding implementation is preferred. For problems requiring less than 8 processes, an
OpenMPI implementation may results in the shortest run time.

12



Table 4.1: OpenMPI performance on tara by number of processes used with 1 process per node, except for p = 128
which uses 2 processes per node, p = 256 which uses 4 processes per node, and p = 512 which uses 8 processes per
node.

(a) Wall clock time in HH:MM:SS
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 00:00:34 00:00:18 00:00:10 00:00:07 00:00:05 00:00:03 00:00:03 00:00:02 N/A N/A
256 00:05:01 00:02:20 00:01:11 00:00:43 00:00:22 00:00:13 00:00:08 00:00:05 00:00:04 N/A
512 00:51:21 00:24:19 00:11:43 00:06:50 00:03:34 00:01:45 00:00:56 00:00:31 00:00:19 00:00:12

1024 09:49:05 05:21:03 02:40:52 01:20:50 00:41:22 00:21:19 00:11:22 00:05:45 00:03:10 00:02:03
2048 N/A N/A N/A 17:51:23 08:56:18 04:31:41 02:20:59 01:16:10 00:40:58 00:23:42
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 05:29:60

(b) Observed speedup Sp

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 1.8893 3.4323 5.2934 7.3632 10.5706 11.7211 14.6638 N/A N/A
256 1.0000 2.1570 4.2552 7.0720 13.7161 23.9460 39.3064 60.4168 83.7444 N/A
512 1.0000 2.1113 4.3820 7.5085 14.4287 29.3971 54.8135 99.3075 164.9984 248.8304

1024 1.0000 1.8349 3.6618 7.2870 14.2426 27.6261 51.8036 102.5788 186.4853 287.9394
2048 N/A N/A N/A 8.0000 15.9821 31.5485 60.7930 112.5363 209.2239 361.5913
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 512.0000

(c) Observed efficiency Ep

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 0.9446 0.8581 0.6617 0.4602 0.3303 0.1831 0.1146 N/A N/A
256 1.0000 1.0785 1.0638 0.8840 0.8573 0.7483 0.6142 0.4720 0.3271 N/A
512 1.0000 1.0557 1.0955 0.9386 0.9018 0.9187 0.8565 0.7758 0.6445 0.4860

1024 1.0000 0.9174 0.9154 0.9109 0.8902 0.8633 0.8094 0.8014 0.7285 0.5624
2048 N/A N/A N/A 1.0000 0.9989 0.9859 0.9499 0.8792 0.8173 0.7062
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.0000

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4.1: OpenMPI performance on tara by number of processes used with 1 process per node, except for p = 128
which uses 2 processes per node p = 256 which uses 4 processes per node, and p = 512 which uses 8 processes per
node.

13



Table 4.2: OpenMPI performance on tara by number of processes used with 2 processes per node, except for p = 1
which uses 1 process per node, p = 256 which uses 4 processes per node, and p = 512 which uses 8 processes per
node.

(a) Wall clock time in HH:MM:SS
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 00:00:34 00:00:19 00:00:10 00:00:06 00:00:05 00:00:04 00:00:02 00:00:02 N/A N/A
256 00:05:01 00:02:33 00:01:11 00:00:36 00:00:21 00:00:12 00:00:08 00:00:05 00:00:04 N/A
512 00:51:21 00:27:13 00:12:26 00:06:13 00:03:23 00:01:46 00:00:57 00:00:31 00:00:19 00:00:12

1024 09:49:05 04:57:34 02:50:05 01:25:12 00:44:03 00:22:02 00:11:42 00:05:45 00:03:10 00:02:03
2048 N/A N/A N/A N/A 09:33:58 04:44:58 02:27:05 01:16:10 00:40:58 00:23:42
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 05:29:60

(b) Observed speedup Sp

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 1.7681 3.5636 5.3426 7.3319 9.3388 14.2397 14.6638 N/A N/A
256 1.0000 1.9765 4.2444 8.4236 14.2275 25.1233 39.4092 60.4168 83.7444 N/A
512 1.0000 1.8863 4.1312 8.2672 15.2072 29.1882 53.8364 99.3075 164.9984 248.8304

1024 1.0000 1.9797 3.4634 6.9134 13.3727 26.7296 50.3792 102.5788 186.4853 287.9394
2048 N/A N/A N/A N/A 16.0000 32.2255 62.4400 120.5762 224.1714 387.4244
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 512.0000

(c) Observed efficiency Ep

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 0.8840 0.8909 0.6678 0.4582 0.2918 0.2225 0.1146 N/A N/A
256 1.0000 0.9883 1.0611 1.0529 0.8892 0.7851 0.6158 0.4720 0.3271 N/A
512 1.0000 0.9432 1.0328 1.0334 0.9504 0.9121 0.8412 0.7758 0.6445 0.4860

1024 1.0000 0.9898 0.8659 0.8642 0.8358 0.8353 0.7872 0.8014 0.7285 0.5624
2048 N/A N/A N/A N/A 1.0000 1.0070 0.9756 0.9420 0.8757 0.7567
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.0000

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4.2: OpenMPI performance on tara by number of processes used with 2 processes per node, except for p = 1
which uses 1 process per node, p = 256 which uses 4 processes per node, and p = 512 which uses 8 processes per
node.

14



Table 4.3: OpenMPI performance on tara by number of processes used with 4 processes per node, except for p = 1
which uses 1 process per node, p = 2 which uses 2 processes per node, p = 512 which uses 8 processes per node.

(a) Wall clock time in HH:MM:SS
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 00:00:34 00:00:19 00:00:11 00:00:06 00:00:05 00:00:04 00:00:04 00:00:02 N/A N/A
256 00:05:01 00:02:33 00:01:21 00:00:37 00:00:20 00:00:12 00:00:07 00:00:05 00:00:04 N/A
512 00:51:21 00:27:13 00:14:06 00:06:16 00:03:29 00:01:51 00:00:57 00:00:34 00:00:19 00:00:12

1024 09:49:05 04:57:34 02:42:38 01:22:08 00:47:14 00:24:26 00:11:37 00:06:20 00:03:10 00:02:03
2048 N/A N/A N/A N/A N/A 05:03:21 02:38:32 01:20:36 00:40:58 00:23:42
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 05:29:60

(b) Observed speedup Sp

N p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 1.7681 3.2357 5.6307 7.5736 8.7684 9.5989 17.4040 N/A N/A
256 1.0000 1.9765 3.7257 8.1813 15.2340 25.4628 43.6928 62.2893 83.7444 N/A
512 1.0000 1.8863 3.6412 8.1831 14.7584 27.6702 53.6116 89.7065 164.9984 248.8304

1024 1.0000 1.9797 3.6222 7.1725 12.4707 24.1168 50.7103 93.0193 186.4853 287.9394
2048 N/A N/A N/A N/A N/A 32.0000 61.2332 120.4349 236.9574 409.5218
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 512.0000

(c) Observed efficiency Ep

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 0.8840 0.8089 0.7038 0.4734 0.2740 0.1500 0.1360 N/A N/A
256 1.0000 0.9883 0.9314 1.0227 0.9521 0.7957 0.6827 0.4866 0.3271 N/A
512 1.0000 0.9432 0.9103 1.0229 0.9224 0.8647 0.8377 0.7008 0.6445 0.4860

1024 1.0000 0.9898 0.9055 0.8966 0.7794 0.7536 0.7923 0.7267 0.7285 0.5624
2048 N/A N/A N/A N/A N/A 1.0000 0.9568 0.9409 0.9256 0.7998
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.0000

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4.3: OpenMPI performance on tara by number of processes used with 4 processes per node, except for p = 1
which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 512 which uses 8 processes per
node.

15



Table 4.4: OpenMPI performance on tara by number of processes used with 8 processes per node, except for p = 1
which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which uses 4 processes per node.

(a) Wall clock time in HH:MM:SS
Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 00:00:34 00:00:19 00:00:11 00:00:07 00:00:04 00:00:04 00:00:03 00:00:02 N/A N/A
256 00:05:01 00:02:33 00:01:21 00:00:46 00:00:21 00:00:13 00:00:07 00:00:05 00:00:04 N/A
512 00:51:21 00:27:13 00:14:06 00:07:44 00:03:44 00:01:51 00:00:58 00:00:31 00:00:20 00:00:12

1024 09:49:05 04:57:34 02:42:38 01:32:17 00:48:40 00:23:27 00:12:13 00:06:20 00:03:34 00:02:03
2048 N/A N/A N/A N/A N/A N/A 02:49:08 01:25:27 00:45:35 00:23:42
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 05:29:60

(b) Observed speedup Sp

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 1.7681 3.2357 5.0826 8.5935 9.8177 11.4106 19.5795 N/A N/A
256 1.0000 1.9765 3.7257 6.5582 14.2275 23.0666 43.2539 61.5265 82.3716 N/A
512 1.0000 1.8863 3.6412 6.6406 13.7542 27.6404 52.7035 98.7979 151.4513 248.8304

1024 1.0000 1.9797 3.6222 6.3837 12.1060 25.1244 48.2138 92.9044 165.2387 287.9394
2048 N/A N/A N/A N/A N/A N/A 64.0000 126.6684 237.4226 456.6458
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 512.0000

(c) Observed efficiency Ep

Nz p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128 p = 256 p = 512

128 1.0000 0.8840 0.8089 0.6353 0.5371 0.3068 0.1783 0.1530 N/A N/A
256 1.0000 0.9883 0.9314 0.8198 0.8892 0.7208 0.6758 0.4807 0.3218 N/A
512 1.0000 0.9432 0.9103 0.8301 0.8596 0.8638 0.8235 0.7719 0.5916 0.4860

1024 1.0000 0.9898 0.9055 0.7980 0.7566 0.7851 0.7533 0.7258 0.6455 0.5624
2048 N/A N/A N/A N/A N/A N/A 1.0000 0.9896 0.9274 0.8919
4096 N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.0000

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4.4: OpenMPI performance on tara by number of processes used with 8 processes per node, except for p = 1
which uses 1 process per node, p = 2 which uses 2 processes per node, and p = 4 which uses 4 processes per node.

16



5 Conclusions

The results presented still support the traditional observation that the best performance improvements, in the
sense of halving the time when doubling the number of processes, are achieved by only running one parallel process
on each node. But for production runs, we are not interested in this improvement being optimal. Rather, we are
interested in the run time being the smallest on a given number of nodes. Thus, given a fixed number of nodes,
the question is if one should run 1, 2, 4, or 8 processes per node. This is answered by the data organized in the
form of Table 1.1 in the Introduction. It is these results, which are the same raw timing data as in Tables 3.1,
3.2, 3.3, and 3.1, that make it clear that using 8 processes per node is the best way to use the cluster tara. In
fact, the improvement of timings for large problems is nearly optimal by doubling the number of processes per
node, as well. This is an excellent result leading us to select a scheduling policy that uses all eight cores of the
two quad-core processors on all assigned node simultaneously. These results use the MVAPICH2 implementation
of the MPI standard. As discussed in Section 4, the OpenMPI implementation of MPI performs in the same way,
but some MVAPICH2 runs are faster than corresponding OpenMPI runs, supporting the choice of MVAPICH2 as
the default MPI implementation on tara.

Acknowledgments

The hardware used in the computational studies is part of the UMBC High Performance Computing Facility
(HPCF). The facility is supported by the U.S. National Science Foundation through the MRI program (grant
no. CNS–0821258) and the SCREMS program (grant no. DMS–0821311), with additional substantial support from
the University of Maryland, Baltimore County (UMBC). See www.umbc.edu/hpcf for more information on HPCF
and the projects using its resources. Andrew Raim additionally acknowledges financial support as HPCF RA.

References

[1] Kevin P. Allen and Matthias K. Gobbert. Coarse-grained parallel matrix-free solution of a three-dimensional
elliptic prototype problem. In Vipin Kumar, Marina L. Gavrilova, Chih Jeng Kenneth Tan, and Pierre
L’Ecuyer, editors, Computational Science and Its Applications—ICCSA 2003, vol. 2668 of Lecture Notes in
Computer Science, pp. 290–299. Springer-Verlag, 2003.

[2] Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary Differential Equations and Differential-
Algebraic Equations. SIAM, 1998.

[3] Matthias K. Gobbert. Configuration and performance of a Beowulf cluster for large-scale scientific simulations.
Comput. Sci. Eng., vol. 7, pp. 14–26, March/April 2005.

[4] Matthias K. Gobbert. Long-time simulations on high resolution meshes to model calcium waves in a heart
cell. SIAM J. Sci. Comput., vol. 30, no. 6, pp. 2922–2947, 2008.

[5] Alexander L. Hanhart, Matthias K. Gobbert, and Leighton T. Izu. A memory-efficient finite element method
for systems of reaction-diffusion equations with non-smooth forcing. J. Comput. Appl. Math., vol. 169, no. 2,
pp. 431–458, 2004.

[6] Michael Muscedere and Matthias K. Gobbert. Parallel performance studies for a parabolic test problem. Tech-
nical Report HPCF–2008–2, UMBC High Performance Computing Facility, University of Maryland, Baltimore
County, 2008.

[7] Alfio Quarteroni and Alberto Valli. Numerical Approximation of Partial Differential Equations, vol. 23 of
Springer Series in Computational Mathematics. Springer-Verlag, 1994.

[8] Andrew M. Raim and Matthias K. Gobbert. Parallel performance studies for an elliptic test problem on the
cluster tara. Technical Report HPCF–2010–2, UMBC High Performance Computing Facility, University of
Maryland, Baltimore County, 2010.

[9] Lawrence F. Shampine and Mark W. Reichelt. The MATLAB ODE suite. SIAM J. Sci. Comput., vol. 18,
no. 1, pp. 1–22, 1997.

[10] Vidar Thomée. Galerkin Finite Element Methods for Parabolic Problems, vol. 25 of Springer Series in Com-
putational Mathematics. Springer-Verlag, second edition, 2006.

17


	Introduction
	The Parabolic Test Problem
	Performance Studies on tara with MVAPICH2
	Performance Studies on tara with OpenMPI
	Conclusions

