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different constrained engineering
design optimization problems

Hao Zhu1,2 , Yumei Hu3 and Weidong Zhu4

Abstract
A dynamic adaptive particle swarm optimization and genetic algorithm is presented to solve constrained engineering
optimization problems. A dynamic adaptive inertia factor is introduced in the basic particle swarm optimization algo-
rithm to balance the convergence rate and global optima search ability by adaptively adjusting searching velocity during
search process. Genetic algorithm–related operators including a selection operator with time-varying selection probabil-
ity, crossover operator, and n-point random mutation operator are incorporated in the particle swarm optimization
algorithm to further exploit optimal solutions generated by the particle swarm optimization algorithm. These operators
are used to diversify the swarm and prevent premature convergence. Tests on nine constrained mechanical engineering
design optimization problems with different kinds of objective functions, constraints, and design variables in nature
demonstrate the superiority of the dynamic adaptive particle swarm optimization and genetic algorithm against several
other meta-heuristic algorithms in terms of solution quality, robustness, and convergence rate in most cases.
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Introduction

A great number of optimization algorithms have been
proposed to solve different engineering design optimi-
zation problems which are usually nonlinearly con-
strained ones. The optimization algorithms can be
roughly divided into two categories: a stochastic algo-
rithm and deterministic one. The traditional determi-
nistic optimization methods, such as the steepest
descend method, quasi-Newton method, and interior-
reflective Newton method, are usually gradient-based
algorithms and differentiable conditions of objective
functions are required to meet. These methods are inef-
ficient and inaccurate for complex optimization prob-
lems with strong nonlinearity and high dimensions

especially when the objective functions and constraints
are discontinuous and not smooth.1 Numerous

1Department of Mechanics and Engineering Science, Sichuan University,

Chengdu, China
2Key Laboratory of Deep Underground Science and Engineering

(Ministry of Education), School of Architecture and Environment,

Sichuan University, Chengdu, China
3State Key Laboratory of Mechanical Transmissions, Chongqing

University, Chongqing, China
4Department of Mechanical Engineering, University of Maryland,

Baltimore County, Baltimore, MD, USA

Corresponding author:

Hao Zhu, Department of Mechanics and Engineering Science, Sichuan

University, Chengdu 610065, China.

Email: haozhu@scu.edu.cn

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://doi.org/10.1177/1687814018824930
https://journals.sagepub.com/home/ade
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1687814018824930&domain=pdf&date_stamp=2019-03-27


stochastic optimization algorithms, such as the particle
swarm optimization (PSO) algorithm,2 genetic algo-
rithm (GA),3–5 firefly algorithm,6 ant colony optimiza-
tion,7 artificial bee colony (ABC),8 mine blast
algorithm (MBA),9 simulated annealing (SA) algo-
rithm,10 biogeography-based optimization (BBO) algo-
rithm11, have been proposed to overcome these
drawbacks. These stochastic optimization algorithms
are usually meta-heuristic and inspired by physical and
natural phenomena.

Among all these stochastic optimization algorithms,
the PSO algorithm is widely applied to solve different
engineering optimization problems as it is efficient in
computation, easy for implementation, and reliable in
searching for global optima.12–16 The PSO algorithm
first proposed by Kennedy and Eberhart2 is based on
social sharing of information between individuals in a
group and is originated from mimicking the flocking
behavior of a swarm of fish and imitating the schooling
behavior of birds. The PSO algorithm is made up of a
population of particles which are randomly moving
within the parameter space. The position of each indi-
vidual particle in the parameter space denotes a candi-
date solution of the design optimization problem. By
changing searching velocities and positions of particles,
the optimal solution is found. The ability of searching
optima of the PSO algorithm mainly relies on mutual
interaction (social learning) and influence of individual
particles (cognitive learning). Particles move toward the
currently global best position of the swarm in each
iteration. A particle can escape from a local optimum
with the help of neighboring particles. But if most of its
neighboring particles are limited to a local extreme
point, it is attracted to the trap of the local optimum,
and as a result, premature convergence of the algorithm
and the stagnation phenomenon17 occur. To overcome
these drawbacks of the basic PSO algorithms, different
improvements have been proposed. A descending
dynamic inertia factor or accelerating factor is widely
adopted to balance the convergence rate and space
searching ability of the PSO algorithm during search
process.16,18,19 Eberhart and Shi20 applied a random
inertia weight factor to deal with dynamic systems.
Clerc21 presented a constriction factor K to control the
convergence velocity. Apart from using time-varying
inertia weights (TVIW), time-varying accelerating coef-
ficients (TVAC) were also proposed and used to con-
trol the convergence rate and solution quality.22,23 A
co-evolutionary particle swarm optimization (CPSO)
was presented by He and Wang24 to solve constrained
engineering optimization problems. They used a
multiple-swarm technique to evolve decision solutions
and adapt penalty factors. Later, Krohling and
Coelho25 improved the CPSO by dynamically adjusting
the accelerated coefficients which satisfy Gaussian
probability distribution. Worasucheep26 presented a

constrained PSO algorithm with the stagnation detec-
tion and dispersion mechanism to tackle real word non-
linear and constrained engineering optimization
problems. Yang and colleagues27,28 proposed an accel-
erated particle swarm optimization (APSO) algorithm
based on the basic PSO algorithm, in which the velocity
vector is removed and particle best positions are
replaced by randomness. This algorithm greatly
improves calculation efficiency and implementation
convenience. However, this algorithm is easily trapped
in premature convergence particularly for the problems
with high nonlinearity due to the deficiency of diver-
sity.1 This disadvantage was improved by Guedria1 by
incorporating memories of individual particles into
APSO forming a new algorithm called improved adap-
tive particle swarm optimization (IAPSO).

To improve the swarm diversity and increase conver-
gence rate, many hybrid optimization algorithms with
some operators or other algorithms incorporated into
PSO have been proposed.29–34 Novitasari et al.29 pro-
posed a hybrid algorithm that combines the SA with
PSO algorithm to deal with constrained optimization
problems. He and Wang30 proposed a similar hybrid
algorithm to optimize a support vector machine. Wang
and Yin31 introduced a ranking selection scheme into
the basic PSO to automatically control search perfor-
mance of the swarm, which results in a new algorithm
called ranking selection–based particle swarm optimiza-
tion (RSPSO). The crossover operators or mutation
operators used in GAs were largely adopted by
researchers and combined with PSO to generate new
algorithms, such as the modified particle swarm optimi-
zation (MPSO),32 quantum-behaved PSO using muta-
tion operator with Gaussian distribution (G-QPSO),33

straightforward particle swarm optimization (SPSO)
with a logistic chaotic mutation operator,34 self-
organizing hierarchical particle swarm optimizer with
time-varying acceleration coefficients (HPSO-TVAC),22

and so on. These operators increase swarm diversity
and prevent premature convergence and stagnation of
the PSO algorithms. The hybrid optimization algo-
rithms talked above have been used to solve different
specific engineering optimization problems.

In this work, a dynamic adaptive particle swarm
optimization and genetic algorithm (DAPSO-GA) pre-
viously proposed by us in Zhu et al.35 is used to solve
constrained engineering design optimization problems
with different kinds of design variables. A dynamic
adaptive inertia factor is used in the PSO algorithm to
adjust its convergence rate and control the balance of
global and local optima exploration. GA-related opera-
tors including a selection operator with time-varying
selection probability, crossover operator, and n-point
random mutation operator are incorporated into the
PSO to further exploit the optimal solutions generated
by the PSO-related algorithm. These operators are used
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to diversify the swarm and prevent premature conver-
gence. The remainder of this work is organized as bel-
lows. The DAPSO-GA for both continuous and
discrete optimization problems with constraints is spe-
cifically introduced in section ‘‘Introduction of the
DAPSO-GA.’’ In section ‘‘Constrained engineering
optimization problems,’’ four benchmark constrained
engineering optimization problems with continuous
design variables and five ones with discrete or mixed
design variables are used to evaluate performance of
the DAPSO-GA on real word engineering optimization
problems. Conclusions are drawn in section
‘‘Conclusion.’’

Introduction of the DAPSO-GA

The DAPSO-GA is a hybrid algorithm that combines
the GA and PSO algorithm. Specifically, the GA-
related operators including selection, crossover, and
n-point random mutation operators are incorporated
into the PSO algorithm with craft. These GA-related
operators are used to diversify the swarm and further
explore the possible optima based on the feasible solu-
tion provided by the PSO algorithm.

PSO-related algorithm

Basic PSO algorithm. The basic PSO algorithm is made
up of a population of particles that are randomly
spread within the parameter space. The position of
each individual particle in the parameter space denotes
a candidate solution of the design optimization prob-
lem. Each particle has a velocity and moves in the para-
meter space. The position and velocity of the particle i
are adjusted in each iteration

vi l+ 1ð Þ=v vi lð Þ+ c1r1 Pi lð Þ � xi lð Þð Þ
+ c2r2 Pg lð Þ � xi lð Þ

� � ð1Þ

xi l+ 1ð Þ= xi lð Þ+ vi lð Þ ð2Þ

where xi(l) and vi(l) are the position and velocity of
the particle at time step l, respectively; Pi(l) is the his-
torical best position of the particle i so far and Pg(l) is
the global best position of the whole swarm up to a time
step l; r1 and r2 are random numbers within a range
from 0 to 1; v is an inertia factor; and c1 and c2 are two
accelerating factors used to scale influence of the best
positions of the particle i and global best position of the
swarm, respectively. To ensure convergence of the PSO
algorithm, the two accelerating factors are constrained
by13,16

0\ c1 + c2ð Þ\4

c1 + c2ð Þ=2� 1\v\1

�
ð3Þ

The procedure of the basic PSO algorithm begins
with population initialization of particles with random
positions and velocities. The positions and velocities of
each particle are then updated by equations (1) and (2).
After that, the corresponding fitness of each particle is
evaluated and ranked, and Pi(l) and Pg(l) are updated.
The above procedure is repeated until an ending criter-
ion is met. The ending criterion is usually the maximum
number of iterations or a sufficiently low error bound.

PSO-related algorithm in the DAPSO-GA. A dynamic adap-
tive inertia factor vi (l) is introduced into the basic
PSO to adaptively adjust its searching velocity during
iterations

vi l+ 1ð Þ=vi lð Þ � vi lð Þ+ c1r1 Pi lð Þ � xi lð Þð Þ
+ c2r2 Pg lð Þ � xi lð Þ

� � ð4Þ

where

vi lð Þ=vmin+ vmax�vminð Þ sin bi lð Þp
2

� �
2 vmin, vmax½ �

ð5Þ

in which

bi lð Þ= fi lð Þ � fg lð Þ
fw lð Þ � fg lð Þ 2 0, 1½ �, i= 1, 2, . . . , N ð6Þ

with fi(l) being the fitness value of the ith particle in the
lth iteration, and fg(l) and fw(l) being the best and
worst fitness values of the swarm in the lth iteration,
respectively; and they satisfy fg(l)ł fi(l)ł fw(l) and
thus bi(l) 2 ½0, 1�. Particles with the best fitness value
and worst fitness value are called the best particle and
worst particle in the swarm, respectively. From equa-
tions (5) and (6), the inertia factor is adaptively adjusted
in the range ½vmin, vmax� during iteration. The better fit-
ness value a particle has, the smaller the inertia factor
is. Large inertia factor represents a large searching velo-
city and thus, more solution spaces will be explored. In
contrast, small inertia factor can help the PSO algo-
rithm further exploit the solution space around the best
particle. Hence, this dynamic adjustment of the inertia
factor can adaptively balance the convergence rate and
global optima search ability of the PSO algorithm.

Each particle position xi is limited in the range
½xmin, xmax�. If xi locates outside this range, it will be
replaced by

xk
i =

xk
max, if xk

i .xk
max

xk
min, if xk

i \xk
min

�
, k = 1, 2, . . . , D ð7Þ

in which D is the particle dimension and xk
i is the posi-

tion of the ith particle in the kth dimension. Each parti-
cle velocity vi(l) is limited in ½vmin, vmax�, in which
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vmin = � (xmax � xmin)=2 and vmax= (xmax � xmin)=2.
If the particle velocity violates this limit, it will be
replaced by

vk
i =

vk
max, if vk

i .vk
max

vk
min, if vk

i \vk
min

�
, k = 1, 2, . . . , D ð8Þ

in which vk
i is the velocity of the ith particle in the kth

dimension.

GA-related algorithm

In the DAPSO-GA, GA-related operators, that is, the
selection operator with time-varying selection probabil-
ity, crossover operator, and n-point random mutation
operator are introduced to further exploit the optimal
solutions generated by the adaptive PSO algorithm.
GA uses a population which consists of individuals or
chromosomes and each individual stands for a poten-
tial solution. In the GA-related algorithm, each particle
in the swarm is regarded as an individual or chromo-
some and the swarm constitutes a population. Each
individual is represented by applying decimal coding
(the real value).

Adaptive dynamic selection operator. A particle that meets
the GA-selection criterion below is selected to update
its position via the following crossover and mutation
operators in iteration

0\
fi lð Þ � fg lð Þ

fg lð Þ

����
����\h ð9Þ

where fi(l) is the current fitness value of the ith particle
at the lth iteration, fg(l) is the best fitness value of the
swarm that corresponds to its global best position, and
h=hmax � l(hmax � hmin)=ltot is the time-varying
selection probability which descends from hmax to hmin

during iteration process.

Crossover and mutation operator. When the GA-selection
criterion is met, the following two GA-related operators
are used to update the particle position: randomly gen-
erate a number a 2 ½0, 1�, and then a crossover opera-
tor is applied if a ł Pc, where Pc is predefined crossover
probability; otherwise, an n-point random mutation
operator is applied and 1� Pc is corresponding muta-
tion probability.

Crossover operator. A random crossover operator is
adopted here to generate a new individual (particle).
The flowchart of the crossover operator is illustrated in
Figure 1. First, two particles should be selected as par-
ents (pa and ma) for breeding. Suppose the ith particle
is already selected as pa according to the GA-selection
criterion, and then another jth particle is randomly
selected as ma from the swarm, where j 2 ½1, M � and
j 6¼ i. Second, two cutting points (CPs), that is, e1 and
e2, are randomly generated and then two sub-vectors

Figure 1. Flowchart of the crossover operator of the GA-related algorithm in the DAPSO-GA.
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(s1 and s2) are picked out from the position vectors of
the parents, where 0\e1 ł e2 ł D. Components of the
selected two sub-vectors are inter-changed and then a
new particle (offspring) is generated.

Mutation operator. An n-point random mutation
operator is used, where n is the mutation dimension
(i.e. the number of components or genes of the selected
particle or chromosome for mutation) which is a ran-
dom integer in ½1, D�. It means that there are in total n
points (genes) in the selected particle (chromosome) to
be changed via mutation. Procedure of the n-point ran-
dom mutation operator is shown in Figure 2. First, the
mutation dimension n of the selected particle is identi-
fied by n= round(rand 3 D), in which rand is a random
number in ½0, 1� and round is an operator to round off
the product of rand and D. Second, n different integers
(i.e. m1, m2, . . . , mn), which are limited in the range
½1, D�, are randomly generated. These integers repre-
sent the mutation positions in the position vector of the
selected particle. Next, values of the components of the
selected particle position vector are randomly changed
via the following equation

�xk
i = xk

min + sin rand 3
p

2

� 	
3 xk

max � xk
min

� �
, k =m1,

m2, . . . , mn

ð10Þ

Implementation procedure of the DAPSO-GA
algorithm

Flowchart of the DAPSO-GA is shown in Figure 3 and
it is briefly described as follows:

Step 1: Set initial values of the optimization para-
meters including the population size M, maximum

number of generations (iterations) S, maximum and
minimum inertia factors vmax and vmin, respectively,
accelerating factors c1 and c2, maximum and mini-
mum selection probability hmax and hmin, respec-
tively, crossover probability pc, upper and lower
limits of the position of each particle xu

i and xl
i,

respectively. In this work, vmax= 0:7, vmin = 0:4,
hmax= 0:7, hmin = 0:15, c1 = c2 = 2, and pc = 0:5
are used.
Step 2: Initialize the swarm: randomly generate a
swarm with a size of M and the initial position of
each particle is given by

xi 0ð Þ= xl
i + rand xu

i � xl
i

� �
, i= 1, 2, . . . , M ð11Þ

Step 3: Evaluate the fitness value of each initially
generated particle and rank their positions. The ini-
tial best particle position Pi(0) and initial global best
and worst positions Pg(0) and Pw(0) of the swarm,
respectively, are then identified.
Step 4: Update the current position xi(l) and velo-
city vi(l) of the ith particle according to equations
(2) and (4)–(6).
Step 5: Evaluate the current fitness value of each par-
ticle, and update the best particle position Pi(l) and
global best and worst positions of the swarm Pg(l)
and Pw(l), respectively.
Step 6: Generate new particles (offspring) according
to the GA-related algorithm to diversify the swarm.
If the GA-selection criterion in equation (9) is met,
the crossover operator and n-point random muta-
tion operator are applied to update the position of a
selected particle to generate a new particle xi(l) as
presented in section ‘‘Crossover and mutation
operator.’’
Step 7: Evaluate the fitness value of the new particle
�fi(l) and compare it with the best and worst fitness
values of the swarm fg(l) and fw(l), respectively. If

Figure 2. Procedures of the n-point mutation operator.
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�fi(l)\fg(l), replace the best particle by it; otherwise,
replace the worst particle by it if �fi(l)\fw(l). Update
the best particle position Pi(l) and global best and
worst positions of the swarm Pg(l) and Pw(l) if
necessary.
Step 8: Repeat the above steps 4–7 until the termina-
tion criterion, which is a predefined number of itera-
tion, is met and then output the optimal results.

Strategies of the DAPSO-GA for discrete optimization
problems

The DAPSO-GA talked above is suitable for a continu-
ous optimization problem, but cannot handle the

optimization problems with discrete variables. For the
discrete optimization problems, the DAPSO-GA can
be modified using the rounding off approach. In this
approach, either the continuous or discrete variables
are treated as continuous variables during optimization
processes. Only at the end of the optimization proce-
dure, the discrete variables will be rounded off to evalu-
ate the fitness value of each particle as shown below

fi xi, lð Þ= fi round xið Þ, lð Þ ð12Þ

Values of the discrete variables are in fact not chan-
ged as seen in equation (12) and keep unchanged until
at the end of each generation of iteration. For conve-
nient description, the DAPSO-GA using the rounding

Figure 3. Flowchart of the DAPSO-GA.
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off approach is called a discrete DAPSO-GA and is
used to solve the discrete optimization problems later.

Constraints handling

For constrained optimization problems, a feasible solu-
tion should satisfy all boundary constraints in the form
of the equalities and/or inequalities. Two strategies are
used in this work to handle the constraints on design
variables and problem-specific constraints. In the
DAPSO-GA, each particle position will be reset to the
maximum or minimum boundary value once the limits
on design variables are violated. Global optima usually
occur on or near the boundary of the solution (design)
space for the majority of design optimization prob-
lems.9 Hence, this strategy can increase the probability
for finding global optimal solutions. Penalty function
strategies such as the penalty factor method1,35–38 and
the concept of parameter free penalty function39,40 are
widely used to solve different constrained optimization
problems. The penalty factor method is adopted in this
work to handle the problem-specific constraints. The
constrained optimization problem using the penalty
function strategy can be described as bellow

Minimize fp xð Þ= f xð Þ+b
XN

j= 1

mj gj xð Þ
�� ��+ XL

m= 1

hm xð Þj j
 !

ð13Þ

where f (x) and fp(x) are original and penalized objective
functions, respectively; N and L are the total number of
inequality constraints and equality constraints, respec-
tively; gj(x) and hm(x) are the jth inequality constraint
and mth equality constraint, respectively, and

mj = 1, if the constraint gj xð Þ is violated

mj = 0, else

�
ð14Þ

b is the penalty factor which is a large positive con-
stant that satisfies b� f (x) and b= 1020 is adopted in
later application in this work. By introducing the pen-
alty term, the constrained optimization problem
becomes an unconstrained one as seen in equation (13).

Constrained engineering optimization
problems

In this section, nine famous constrained benchmark
mechanical engineering optimization problems which
have different objective functions, design variables and
constraints in nature are adopted to test the perfor-
mance of the proposed DAPSO-GA in terms of solu-
tion quality and stability as well as convergence rate.
These 10 constrained engineering optimization prob-
lems are divided into continuous and discrete optimiza-
tion problems according to the categories of their
variables, and the rounding off strategy talked in sec-
tion ‘‘Strategies of the DAPSO-GA for discrete optimi-
zation problems’’ is used in the DAPSO-GA to deal
with the discrete optimization problems. Statistical
results and best solutions of all algorithms for these
engineering optimization problems are obtained over
30 independent runs.

Constrained engineering optimization problems with
continuous variables

Tension/compression spring design problem. Figure 4 shows
a schematic of a tension/compression spring.41 The
design aim of the tension/compression problem (i.e. the
objective function f (x)) is to minimize its weight with
constraints on minimum deformation, shear stress,
surge frequency, and maximum outside diameter.
These constraints constitute four nonlinear inequality
equations as detailed in Appendix 1 (section ‘‘Tension/
compression spring design problem’’). The design prob-
lem has three design variables including the wire dia-
meter d, mean coil diameter D, and number of active
coils P, which are denoted by x1, x2, and x3 in the
objective function and constraint functions, respec-
tively. The DAPSO-GA proposed is used to solve this
optimization problem. The swarm size and maximum
iteration number are 10 and 200, respectively. Figure 5
presents the convergence history of GA, standard PSO,
and the proposed DAPSO-GA for the tension/compres-
sion spring problem. It is seen that the standard PSO
and DAPSO-GA convergence faster than GA, while the

Figure 4. Schematic of the tension/compression spring.
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DAPSO-GA has better global optimum searching abil-
ity. The DAPSO-GA is also compared with several other
meta-heuristic optimization algorithms including the
APSO,27 IAPSO,1 MBA,9 ABC2,40 GA1,41 GA2,42 water
cycle algorithm (WCA),43 differential evolution (DE),44

differential evolution with level comparison (DELC),45

Nelder-Mead and Particle Swarm Optimization (NM-
PSO),46 hybrid evolutionary algorithm and adaptive con-
straint handling technique (HEAA),47 differential evolu-
tion with dynamic stochastic selection (DEDS),36

quantum-behaved particle swarm optimization
(QPSO),48 G-QPSO,48 society and civilization (SC),49 lea-
gue championship algorithm (LCA),50 cultural algo-
rithms with evolutionary programming (CAEP),9 unified
particle swarm optimization (UPSO),51(m+ l)� ES,52

and PSO-DE.53 The optimal solutions obtained by the
proposed DAPSO-GA and above optimization algo-
rithms are listed in Table 1. It is apparently seen that the
proposed DAPSO-GA finds the best solution with the
objective function value 0.009872 that was not found by

previously proposed algorithms. Statistical optimization
results of all algorithms are listed in Table 2. As seen
from Table 2, the DAPSO-GA provides the best solution
with least NFEs 2000. HEAA has the best robustness in
terms of providing optimal solutions with standard
deviation (SD) value of only 1.4E–9 for the tension/com-
pression spring design problem. The PSO algorithm pro-
vides the worst solution (0.012857) with the largest SD
value and GA1 requires the highest NFEs (900,000).

Figure 6 shows the inertia weight versus number of
iterations of the DAPSO-GA on the tension/compression
spring design problem. From Figure 6, the inertia weight-
ing factor varies between 0.7 and 0.4. A large inertia
weighting factor is used when the fitness value of a parti-
cle is far away from the global best fitness value; other-
wise, a small one is used. The dynamic inertia weighting
factor adaptively adjusts the search velocity so that the
exploitation and exploration are well balanced.

Symmetric three-bar truss design problem. Figure 7 presents
the schematic diagram of a symmetric three-bar truss
structure. The symmetric three-bar truss structure is
made up of steel and is subjected to two constant load-
ings P1 =P2 =P. The optimization design problem of
the three-bar truss structure, which was described by
Ray and Liew,49 is to minimize the volume subject to
stress constraints as detailed in Appendix 1 (section
‘‘Symmetric three-bar truss design problem’’). The
design variables are cross-sectional areas of the three
bars: x1, x2, and x3. The DAPSO-GA with a swarm
size of 20 and maximum number of iterations of 5000 is
used to solve this optimization problem. The optimal
solution obtained by this algorithm is compared with
those obtained by other optimization algorithms such
as Hernendez,54 dynamic stochastic selection for multi-
member differential evolution (DSS-MDE),36 SC,49

Figure 5. Convergence history of GA, standard PSO, and the
proposed DAPSO-GA for the tension/compression spring
design problem.

Table 1. Comparison of optimal solutions obtained from different optimization algorithms for tension/compression spring design
problem.

DV x1 x2 x3 g1(x) g2(x) g3(x) g4(x) f (x)

IAPSO 0.051685 0.356629 11.294175 21.97E–10 24.64E–10 24.05361 21.091686 0.01266523
APSO 0.052588 0.378343 10.138862 21.549E–4 28.328E–4 24.089171 21.069069 0.0127
MBA 0.051656 0.35594 11.344665 20.0009 20.1344 24.052248 20.728268 0.012665
GA1 0.051480 0.351661 11.632201 22.08E–3 21.10E–4 24.026318 24.026318 0.0127047834
WCA 0.051680 0.356522 11.30041 21.65E–13 27.9E–14 24.053399 20.727864 0.012665
DELC 0.051689 0.356717 11.288965 23.4E–9 2.44E–9 24.053785 20.727728 0.012665
NM-PSO 0.051620 0.355498 11.333272 1.01E–3 9.94E–4 24.061859 20.728588 0.012630
HEAA 0.051689 0.356729 11.288293 3.96E–10 23.59E–10 24.053808 20.72772 0.012665
DEDS 0.051689 0.356717 11.288965 1.45E–9 21.19E–9 24.053785 20.727728 0.012665
G-QPSO 0.051515 0.352529 11.538862 24.83E–5 23.57E–5 24.0455 20.73064 0.012665
ABC2 0.051689 0.356720 11.288832 22.53E–13 25.76E–13 24.05378 20.7277 0.012665
DAPSO-GA 0.050 0.3744328 8.54657332 21.2581E–8 21.4491E–7 24.860733 20.717045 0.0098724562

IAPSO: improved adaptive particle swarm optimization; APSO: accelerated particle swarm optimization; DV: design variable; G-QPSO: quantum-

behaved PSO using mutation operator with Gaussian distribution; MBA: mine blast algorithm; DAPSO-GA: dynamic adaptive particle swarm

optimization and genetic algorithm.

Note: The boldfaced data in each table mean the best one among all the results provided by different algorithms.
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swarm with an intelligent information sharing (SIIS),55

and PSO-TVAC22 as seen in Table 3.Table 4 presents
the comparison of statistical results obtained from these
optimization algorithms for the three-bar truss design
problem in terms of the worst, mean, and best solutions
as well as the SD values and NFEs. As seen from

Tables 3 and 4, almost all optimization algorithms pro-
vide similar optimal solutions. The proposed DAPSO-
GA provides the best solution with the minimum SD
value. DAPSO-GA and PSO-TVAC convergence to the
best solution with similar NFEs which is less than those

Table 2. Comparison of statistical results obtained from different optimization algorithms for tension/compression spring design
problem.

Algorithms Worst Mean Best SD NFEs

IAPSO 0.01782864 0.013676527 0.01266523 1.57E–3 2000
APSO 0.014937 0.013297 0.012700 6.85E–4 120,000
MBA 0.012900 0.012713 0.012665 6.3E–5 7650
LCA 0.01266667 0.01266541 0.01266523 3.88E–7 15,000
WCA 0.012952 0.012746 0.012665 8.06E–5 11,750
SC 0.016717 0.012922 0.012669 5.9E–4 25,167
PSO-DE 0.012665 0.012665 0.012665 1.2E–8 24,950
HEAA 0.012665 0.012665 0.012665 1.4E–9 24,000
DEDS 0.012738 0.012669 0.012665 1.3E–5 24,000
DELC 0.012665 0.012665 0.012665 1.3E–7 20,000
DE 0.012790 0.012703 0.012670 2.7E–5 204,800
PSO 0.071802 0.019555 0.012857 1.1662E–2 2000
QPSO 0.018127 0.013854 0.012669 1.341E–3 2000
G-QPSO 0.017759 0.013524 0.012669 1.268E–3 2000
NM-PSO 0.012633 0.012631 0.012630 8.47E–7 80,000
HPSO 0.012719 0.012707 0.012665 1.58E–5 81,000
CPSO 0.012924 0.012730 0.012674 5.2E–4 240,000
CAEP 0.015116 0.013568 0.012721 8.42E–4 50,020
GA1 0.012822 0.012769 0.012704 3.94E–5 900,000
GA2 0.012973 0.012742 0.012681 5.9E–5 80,000
UPSO – 0.02294 0.01312 7.20E–03 100,000
(m+l)� ES – 0.013165 0.012689 3.9E–04 30,000
ABC2 0.012710407 0.01266897 0.01266523 9.43E–06 –
DAPSO-GA 0.015354687 0.0107 0.0098724562 1.591E–3 2000

SD: standard deviation; IAPSO: improved adaptive particle swarm optimization; APSO: accelerated particle swarm optimization; MBA: mine blast

algorithm; DAPSO-GA: dynamic adaptive particle swarm optimization and genetic algorithm; PSO: particle swarm optimization; CPSO: co-

evolutionary particle swarm optimization; NFE: number of function evaluation; G-QPSO: quantum-behaved PSO using mutation operator with

Gaussian distribution; HPSO: hybrid particle optimization algorithm; PSO-DE: Particle swarm optimization with differential optimization.

Note: The boldfaced data mean optimal results provided by the DAPSO-GA algorithm.

Figure 6. Inertia weight versus number of iterations.
Figure 7. Schematic diagram of the three-bar truss.
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of other optimization algorithms. DSS-MDE provides
the best solution with the largest NFEs (15,000). Thus,
the superiority of the proposed DAPSO-GA for the
three-bar truss structure design problem in solution
quality and convergence rate is justified. Figure 8
shows the convergence history of GA, standard PSO,
and the proposed DAPSO-GA for the three-bar truss
structure design problem. It is seen that the DAPSO-
GA converges faster to the near optimal solution at
early iterations and then gradually improves the solu-
tion accuracy due to the technique of the proposed
algorithm in adaptively balancing the exploration and
exploitation during searching process.

Welded beam design. The welded beam design problem
is a famous constrained optimization problem which is
widely used as a benchmark problem to evaluate per-
formance of newly proposed optimization algorithms.9

Figure 9 shows the schematic diagram of a welded
beam structure which consists of a beam and weld. The
optimization target is the minimum fabrication cost of
the beam subject to constraints on bending and shear
stress (s and t) on the bar, bucking load (Pb), and its
end deflections (d). The design variables for this design
problem are the weld thickness h, weld length l, beam
width t, and beam thickness b, which are respectively
denoted by x1, x2, x3, and x4 in the objective function
and constraint equations as presented in Appendix 1

Table 4. Comparison of statistical results obtained from different optimization algorithms for the three-bar truss design problem.

Algorithms M S Worst Mean Best SD NFEs

DSS-MDE 10 300 263.8958498 263.8958436 263.8958434 9.72E–7 15,000
SC 20 1000 263.96975 263.9033 263.8958466 1.26E–2 17,610
PSO-TVAC 20 300 263.948096212 263.903085482 263.895848599 1.27E–02 6000
DAPSO-GA 20 300 263.947633138 263.902926027 263.895843684 8.30E–03 7131

SD: standard deviation; DAPSO-GA: dynamic adaptive particle swarm optimization and genetic algorithm; NFE: number of function evaluation.

Note: The boldfaced data mean optimal results provided by the DAPSO-GA algorithm.

Table 3. Comparison of optimal solutions obtained from different optimization algorithms for the three-bar truss design problem.

DV Hernendez DSS-MDE SC SIIS PSO-TVAC DAPSO-GA

x1 0.788 0.7886751359 0.788621037 0.795 0.7887058767 0.7886769887
x2 0.408 0.4082482868 0.408401334 0.395 0.4081613457 0.4082430493
g1(x) 1.637E–3 22.104E–11 28.275E–9 23.376E–3 24.448E–13 22.3114E–09
g2(x) 21.4636 21.4641 21.4639 21.4809 21.4642 21.4641075
g3(x) 20.5348 20.5359 20.5361 20.5225 20.5358 20.535892
f (x) 263.9 263.8958434 263.8958466 264.3 263.895844071 263.895843684

DAPSO-GA: dynamic adaptive particle swarm optimization and genetic algorithm; DV: design variable; PSO-TVAC: Particle swarm optimization with

time-varying accelerating coefficients.

Note: The boldfaced data in each table mean the best one among all the results provided by different algorithms.

Figure 8. Convergence history of GA, standard PSO, and the
proposed DAPSO-GA for the three-bar truss design problem.

Figure 9. Schematic diagram of the welded beam.

10 Advances in Mechanical Engineering



(section ‘‘Welded beam design’’). The DAPSO-GA with
a swarm size of 50 and maximum number of iterations
of 5000 is used to solve this optimization problem.

The optimization algorithms previously used to
solve this design optimization problem include GA3,56

GA4,35 APSO, IAPSO, MBA, LCA, WCA, DE, SC,
NM-PSO, PSO-DE, HPSO,29 CPSO,24 CAEP, GA1,
hybrid PSO-GA (HPSO),39 ABC2,40 and GA2. Table 5
presents the comparison of optimal solutions provided
by the previously reported algorithms and proposed
DAPSO-GA. From Table 5, a new optimal solution,
which is better than those provided by previously pro-
posed algorithms, is found by the proposed DAPSO-
GA with the objective function value of 1.6600473.
Note that the optimal solution provided by CAEP is
infeasible as the constraints g1(x) and g2(x) are vio-
lated. Table 6 presents the comparison of statistical
results provided by all previously reported algorithms
and proposed DAPSO-GA for the welded beam design
optimization problem in terms of the worst, mean, and
best solutions as well as the SD and NFEs. As seen
from Table 6, DAPSO-GA provides better solutions
than the newly proposed optimization algorithm WCA,
MBA, and IAPSO as well as other optimization

algorithms. The proposed algorithm can stably find the
best solution with almost the fewest NFEs (13,356)
which is only larger than that of the IAPSO (12,500).
In terms of SD, the proposed algorithm has better
robustness in detecting the best solution than other
reported optimization algorithms apart from the
IAPSO, MBA, LCA, hybrid particle swarm optimiza-
tion and genetic algorithm (HPSO-GA), ABC2, and
PSO-DE. Figure 10 shows the convergence history of
GA, standard PSO, and the proposed DAPSO-GA for
the welded beam design problem. It is seen that the
standard PSO and DAPSO-GA convergence faster
than GA, while the DAPSO-GA has better global opti-
mum searching ability.

Belleville disc spring design problem. As shown in Figure 11,
Belleville disc spring is made up of several conical discs
with uniform rectangular cross-sections. The design
objective of the Belleville disc spring is to minimize its
total weight subject to geometric constraints concerns the
outer and inner diameter, slope and height to maximum
height, and kinematic and strength constraints concerns
the compression deformation and stress and height to
deformation. There are four design variables for this

Table 5. Comparison of optimal solutions obtained from different optimization algorithms for the welded beam design optimization
problem.

DV GA3 IAPSO APSO MBA WCA NM-PSO CAEP

x1 0.2489 0.2057296 0.202701 0.205729 0.205728 0.205830 0.205700
x2 0.1730 3.47048866 3.574272 3.470493 3.470522 3.468338 3.470500
x3 8.1789 9.03662391 9.040209 9.036626 9.036620 9.036624 9.036600
x4 0.2533 0.20572964 0.2059215 0.205729 0.205729 0.20573 0.205700
g1(x) 25758.604 21.05E–10 2117.46706 20.001614 20.034128 20.02525 1.988676
g2(x) 2255.5769 26.91E–10 251.712981 20.016911 23.49E–05 20.053122 4.481548
g3(x) 20.004400 27.66E–15 20.003221 22.10E–7 21.19E–06 0.000100 0
g4(x) 22.982866 23.4329838 23.421741 23.432982 23.432980 23.433169 23.433213
g5(x) 20.123900 20.0807296 20.077701 20.080729 20.080728 20.080830 20.080700
g6(x) 20.234160 20.23554032 20.235571 20.235540 20.235540 20.235540 20.235538
g7(x) 244.65.271 25.80E–10 218.367012 20.001464 20.013503 20.031555 2.603347
f (x) 2.433116 1.7248523 1.736193 1.724853 1.724856 1.724717 1.724852

DV CPSO GA1 GA2 HPSO-GA ABC2 DAPSO-GA

x1 0.202369 0.2088 0.205986 0.2057296 0.2057245 0.205728318
x2 3.544214 3.4205 3.471328 3.25312 3.25325369 2.994714573
x3 9.048210 8.9975 9.020224 9.0366239 9.03664438 9.036612639
x4 0.205723 0.2100 0.206480 0.2057296 0.20572999 0.205730191
g1(x) 213.655547 20.337812 20.103049 – 20.17975428 20.0732
g2(x) 278.814077 2353.9026 20.231747 – 20.18697948 20.0057
g3(x) 23.35E–03 20.0012 25.0E–04 – 20.00000549 21.873E–6
g4(x) 23.424572 23.411865 23.430044 – 23.45240767 23.4755
g5(x) 20.077369 20.0838 20.080986 – 20.08072450 20.0807
g6(x) 20.235595 20.235649 20.235514 – 20.22831066 20.2355
g7(x) 24.472858 2363.2324 258.64688 – 20.03957707 20.0434
f (x) 1.728024 1.7483094 1.78226 1.6952471 1.69526388 1.6600473

IAPSO: improved adaptive particle swarm optimization; APSO: accelerated particle swarm optimization; MBA: mine blast algorithm; CPSO:

co-evolutionary particle swarm optimization; DAPSO-GA: dynamic adaptive particle swarm optimization and genetic algorithm; DV: design variables.

Note: The boldfaced data in each table mean the best one among all the results provided by different algorithms.
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design problem including the spring external and internal
diameters (De and Di), spring thickness (t), and spring
height (h), which are denoted by x1, x2, x3, and x4, respec-
tively. The DAPSO-GA with a swarm size of 50 and
maximum number of iterations of 1000 is used to solve
this optimization problem.

The optimization algorithms previously used to solve
this design optimization algorithm include MBA, ABC,
teaching-learning-based optimization (TLBO),57 treat-
ing constrains as objectives (TCO),58 Siddall,59 Gene
AS1,60 and Gene AS2.60 Table 7 presents the compari-
son of optimal solutions provided by the previously

reported algorithms and proposed DAPSO-GA. Note
that the optimal solutions provided by the Gene AS1
and Siddall are infeasible as the first and second con-
straints are violated by them, respectively. Hence, they
are not used for comparison. From Table 7, the pro-
posed algorithm and MBA provide better solutions
against other optimization algorithms with the objective
function value of 1.9796747. Table 8 presents the com-
parison of statistical results provided by the previously
reported algorithms and proposed DAPSO-GA for the
Belleville disc spring design optimization problem in
terms of the worst, mean, and best solutions as well as
the SD values and NFEs. As seen from Table 8, the
proposed DAPSO-GA, ABC, TLBO, and MBA almost
provide the same best solutions, but the proposed algo-
rithm requires the fewest NFEs 9000 and ABC and
TLBO requires the most NFEs 150,000. In terms of
SD, MBA has better robustness in detecting the best
solution than other optimization algorithms. Figure 12

Table 6. Comparison of statistical results obtained from different optimization algorithms for the welded beam design optimization
problem.

Algorithm Worst Mean Best SD NFEs

GA3 2.64583 2.39203 (median) 2.38119 – 320,080
GA4 2.64583 2.39289 (median) 2.38119 – 40,080
APSO 1.993999 1.877851 1.736193 7.6118E–02 50,000
IAPSO 1.7248624 1.7248528 1.7248523 2.02E–06 12,500
MBA 1.724853 1.724853 1.724853 6.94E–19 47,340
LCA 1.7248523 1.7248523 1.7248523 7.11E–15 15,000
WCA 1.744697 1.726427 1.724856 4.29E–03 46,450
DE 1.824105 1.768158 1.733461 2.21E–02 204,800
SC 6.399678 3.002588 2.385434 9.60E–01 33,095
NM-PSO 1.733393 1.726373 1.724717 3.50E–03 80,000
PSO-DE 1.724852 1.724852 1.724852 6.70E–16 66,600
HPSO 1.814295 1.749040 1.724852 4.01E–02 81,000
CPSO 1.782143 1.748831 1.728024 1.29E–02 240,000
CAEP 3.179709 1.971809 1.724852 4.43E–01 50,020
GA1 1.785835 1.771973 1.748309 1.12E–02 900,000
GA2 1.993408 1.792654 1.728226 7.74E–02 80,000
HPSO-GA 1.6952741 1.6952741 1.6952741 2.192E–09 –
ABC2 1.6953706 1.6953084 1.69526388 2.84E–05 –
DAPSO-GA 1.66876995 1.66043211083 1.66004730498 1.608237E–03 13,356

SD: standard deviation; APSO: accelerated particle swarm optimization; IAPSO: improved adaptive particle swarm optimization; MBA: mine blast

algorithm; CPSO: co-evolutionary particle swarm optimization; DAPSO-GA: dynamic adaptive particle swarm optimization and genetic algorithm.

Note: The boldfaced data mean optimal results provided by the DAPSO-GA algorithm.

Figure 10. Convergence history of GA, standard PSO, and the
proposed DAPSO-GA for the welded beam design problem.

Figure 11. Schematic diagram of the Belleville disc spring.
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shows the convergence history of GA, standard PSO,
and the proposed DAPSO-GA for the Belleville disc
design problem. It is seen that the standard PSO and

DAPSO-GA convergence faster than GA, while the
DAPSO-GA has better global optimum searching
ability.

Constrained engineering optimization problems
with discrete variables

Speed reducer design problem. Figure 13 shows a sche-
matic diagram of a speed reducer. The design optimiza-
tion scheme of the speed reducer is to minimize its
weight subject to strength constraints concerning gear
teeth bending stress and surface stress, stresses in and
transverse deflections of shafts.1 The design variables
of this design problem include the face width (b), teeth
module (m), number of teeth in the pinion (z), length of
the first and second shafts between their bearings (l1
and l2), diameter of the first shaft (d1), and diameter of
the second shaft (d2). These design variables are
denoted by x1, x2, x3, x4, x5, x6, and x7, respectively, in
the objective function and constraint equations as pre-
sented in Appendix 2 (section ‘‘Speed reducer design
problem’’). The design variable x3 (i.e. number of teeth
in the pinion) is a discrete (integer) design variable and

Table 7. Comparison of optimal solutions obtained from different optimization algorithms for the Belleville disc spring design
optimization problem.

DV Coello Gene AS1 Gene AS2 Siddall TLBO MBA DAPSO-GA

x1 0.208 0.205 0.210 0.204 0.204143 0.204143 0.20414335
x2 0.2 0.201 0.204 0.200 0.20 0.20 0.2
x3 8.751 9.534 9.268 10.03 10.03047 10.0304732 10.03047329
x4 11.067 11.627 11.499 12.01 12.01 12.01 12.01
g1(x) 2145.4109 210.3396 2127.2624 134.0816 1.77E–06 4.58E–04 2.9296E–06
g2(x) 39.75018 2.8062 194.222554 212.5328 7.46E–08 3.04E–07 26.7998E–08
g3(x) 0 0.0010 0.0040 0 5.80E–11 9.24E–10 0.7797037
g4(x) 1.592 1.5940 1.5860 1.596 1.595857 1.595856 1.59585664
g5(x) 0.943 0.3830 0.5110 0 2.35E–09 0 0
g6(x) 2.316 2.0930 2.2310 1.98 1.979527 1.979526 1.97952679
g7(x) 0.21364 0.20397 0.20856 0.19899 0.198966 0.198965 0.1989657
f (x) 2.121964 2.01807 2.16256 1.978715 1.979675 1.9796747 1.979674757

MBA: mine blast algorithm; DAPSO-GA: dynamic adaptive particle swarm optimization and genetic algorithm.

Note: The boldfaced data in each table mean the best one among all the results provided by different algorithms.

Table 8. Comparison of statistical results obtained from different optimization algorithms for the Belleville disc spring design
optimization problem.

Algorithm Worst Mean Best SD NFEs

ABC 2.104297 1.995475 1.979675 0.07 150,000
TLBO 1.979757 1.979687 1.979675 0.45 150,000
MBA 2.005431 1.984698 1.9796747 7.78e–03 10,600
DAPSO-GA 2.558209 2.132861 1.9796747 0.2358 9000

SD: standard deviation; ABC: artificial bee colony; MBA: mine blast algorithm; DAPSO-GA: dynamic adaptive particle swarm optimization and genetic

algorithm.

Note: The boldfaced data mean optimal results provided by the DAPSO-GA algorithm.

Figure 12. Convergence history of GA, standard PSO, and the
proposed DAPSO-GA for the Belleville disc spring design
problem.
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the remainder variables are continuous. The discrete
DAPSO-GA with a swarm size of 30 and maximum
number of iterations of 200 is used to solve this optimi-
zation problem. Figure 14 shows the convergence his-
tory of the proposed DAPSO-GA for the speed reducer
design problem. The objective function value reduces
fast to the near minimum at early iterations (less than
50 iterations), which presents the high convergence rate
of this algorithm for this constrained discrete design
problem.

This design optimization algorithm was previously
solved by researchers using different optimization algo-
rithms such as DEDS, DELC,45 HEAA, MDE,61 PSO-
DE,54 WCA, MBA, LCA, APSO, IAPSO, TLBO, (m
+ l)-ES, SC, and ABC. Table 9 presents the compari-
son of optimal solutions provided by the previously
reported algorithms and proposed DAPSO-GA. As
seen from Table 9, the proposed algorithm and most of

the reported algorithms including DEDS, DELC,
HEAA, WCA, LCA, and IAPSO provide similar best
solutions (x=(3:5, 0:7, 17, 7:3, 7:715319, 3:350214,
5:286654)) with the objective function value of
2994.4711. Table 10 presents the comparison of statisti-
cal results provided by the previously reported algo-
rithms and proposed DAPSO-GA for the speed
reducer design optimization problem in terms of the
worst, mean, and best solutions as well as the SD val-
ues and NFEs. As seen from Table 10, DAPSO-GA
and IAPSO can stably find the same best solutions with
fewer number of iterations and medium SD value at
the same time compared with other algorithms.
Although DELC, differential evolution with dynamic
stochastic selection (DEDS), and LCA can locate the
best solution with the lowest level of SD (10212) among
all algorithms, they need much more NFEs (30,000,
30,000, and 24,000, respectively) than DAPSO-GA
(7320) and IAPSO (6000).

Gear train design problem. Figure 15 shows a schematic
diagram of a gear train which consists of four gears.
The scheme of the gear train design optimization prob-
lem is to minimize the error between the obtained gear
ratio and the required gear ratio of 1/6.3962 subject to
constraints only on the allowable ranges of design vari-
ables (side constraints), which are the number of teeth
of the four gears. It is a discrete optimization problem
as all design variables are integers. Numbers of teeth of
gears A, B, D, and F (i.e. design variables) in Figure 15
are respectively denoted by x1, x2, x3, and x4 in the objec-
tive function as presented in Appendix 2 (section ‘‘Gear
train design problem’’). The discrete DAPSO-GA with a
swarm size of 30 and maximum number of iterations of
100 is used to solve this optimization problem.

This design problem was solved before by many
researchers using different optimization algorithms

Figure 13. Schematic diagram of speed reducer.

Figure 14. Convergence history of the proposed DAPSO-GA
for the speed reducer design problem.
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such as Gene AS1, Gene AS2, SC, ABC, MBA, aug-
mented Lagrangian (AL) method,62 branch and bound
(BB) method,63 APSO, IAPSO, and UPSO.Table 11
presents the comparison of optimal solutions provided
by the previously reported algorithms and proposed
DAPSO-GA. According to the research of H Barbosa
(September 1996, personal communication, San
Francisco, CA) who computes all possible gear teeth
combinations (494 or about 5.76million), it can be vali-
dated that the optimal solutions provided by Gene
AS1, ABC, and the proposed DAPSO-GA are globally
best solutions. Whereas SC, MBA, APSO, and IAPSO
find a different best solution as shown in Table 11.

Statistical results provided by the previously reported
algorithms and proposed DAPSO-GA for this design
optimization problem are compared in terms of the
worst, mean, and best solutions as well as the SD val-
ues and NFEs, as shown in Table 12. It is demon-
strated that the proposed DAPSO-GA, MBA, and
IAPSO are superior to other algorithms in terms of
both SD and NFEs. The mean, best, and worst solu-
tions provided by these three algorithms are at a same
level, and they stably convergence to the best solution
with similar computing efforts and SD values. Figure
16 shows the convergence history of the proposed
DAPSO-GA for the gear train design problem.

Table 9. Comparison of optimal solutions obtained from different optimization algorithms for the speed reducer design
optimization problem.

DV DEDS DELC HEAA MDE PSO-DE WCA

x1 3.5 3.5 3.500022 3.50001 3.5 3.5
x2 0.7 0.7 0.7 0.7 0.7 0.7
x3 17 17 17.000012 17 17 17
x4 7.3 7.3 7.300427 7.300156 7.3 7.3
x5 7.715319 7.715319 7.715377 7.800027 7.8 7.715319
x6 3.350214 3.350214 3.350230 3.350221 3.350214 3.350214
x7 5.286654 5.286654 5.286663 5.286685 5.2866832 5.286654
g1 xð Þ 20.0739153 20.0739153 20.0739218 20.0739179 20.0739153 20.0739153
g2 xð Þ 20.197999 20.197999 20.198005 20.198001 20.197999 20.197999
g3 xð Þ 20.499172 20.499172 20.499094 20.499144 20.499172 20.499172
g4 xð Þ 20.904644 20.904644 20.904642 20.901471 20.901472 20.904644
g5 xð Þ 5.9647E-07 5.9647E-07 21.3025E-05 25.4109E-06 5.9647E-07 5.9647E-07
g6 xð Þ 2.6369E-07 2.6369E-07 24.8334E-06 2.2119E-08 1.6887E-08 2.6369E-07
g7 xð Þ 20.7025 20.7025 20.7025 20.7025 20.7025 20.7025
g8 xð Þ 0 0 26.2857E-06 2.8571E-06 0 0
g9 xð Þ 20.583333 20.583333 20.583331 20.583332 20.583333 20.583333
g10 xð Þ 20.0513259 20.0513259 20.0513781 20.0513447 20.051326 20.0513259
g11 xð Þ 5.1845E-08 5.1845E-08 26.1825E-06 20.0108558 20.0108524 5.1845E-08
f xð Þ 2994.4711 2994.4711 2994.49911 2996.35669 2996.34817 2994.47107

DV MBA LCA APSO IAPSO DAPSO-GA

x1 3.5 3.5 3.501313 3.5 3.5
x2 0.7 0.7 0.7 0.7 0.7
x3 17 17 18 17 17
x4 7.300033 7.3 8.127814 7.3 7.3
x5 7.715772 7.8 8.042121 7.71532 7.71531911
x6 3.350218 3.350215 3.352446 3.3502147 3.35021467
x7 5.286654 5.286683 5.287076 5.286654 5.28665447
g1 xð Þ 20.0739153 20.073915 20.125692 20.073915 20.073915
g2 xð Þ 20.197999 20.197999 20.284903 20.197999 20.198
g3 xð Þ 20.499167 20.499172 20.34888 20.499172 20.499172
g4 xð Þ 20.904627 20.901472 20.898038 20.904644 20.904644
g5 xð Þ 22.9302E-06 4.0079E-13 21.3515E-03 4.0079E-13 21.4093E-10
g6 xð Þ 3.5053E-07 24.785E-14 22.6199E-04 2.6680E-11 23.9881E-11
g7 xð Þ 20.7025 20.7025 20.685 20.7025 20.7025
g8 xð Þ 0 0 23.75E-04 22.744E-11 22.744E-11
g9 xð Þ 20.583333 20.583333 20.583177 20.583333 20.583333
g10 xð Þ 20.0513294 20.051326 20.147536 20.051326 20.0513258
g11 xð Þ 25.8659E-06 20.010852 20.0405785 1.5542E-09 25.04E-12
f xð Þ 2994.48245 2994.4711 3187.63049 2994.4711 2994.47107

MBA: mine blast algorithm; APSO: accelerated particle swarm optimization; IAPSO: improved adaptive particle swarm optimization; DAPSO-GA:

dynamic adaptive particle swarm optimization and genetic algorithm; MDE: modified differential evolution.
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Multiple disc clutch brake design problem. Figure 17 shows
a schematic diagram of a multiple disc clutch brake.
The design problem of the multiple disc clutch brake is

a minimum problem which aims to minimize its total
mass subject to geometrical constraints and constraints
concerning shear stress, temperature, relative speed of

Table 10. Comparison of statistical results obtained from different optimization algorithms for the speed reducer design
optimization problem.

Algorithm Worst Mean Best SD NFEs

SC 300.964736 3001.758264 2994.744241 4.0 54,456
PSO-DE 2996.348204 2996.348174 2996.348167 6.4E–06 54,350
DELC 2994.471066 2994.471066 2994.471066 1.9E–12 30,000
DEDS 2994.471066 2994.471066 2994.471066 3.6E–12 30,000
HEAA 2994.752311 2994.613368 2994.499107 7.0E–02 40,000
MDE – 2996.367220 2996.356689 8.2E–03 24,000
(m + l)-ES – 2996.348000 2996.348000 0 30,000
ABC – 2997.05800 2997.05800 0 30,000
TLBO – 2996.34817 2996.34817 0 10,000
WCA 2994.505578 2994.474392 2994.471066 7.4E–03 15,150
LCA 2994.47106614683 2994.47106614682 2994.47106614682 2.66E–12 24,000
MBA 2999.652444 2996.769019 2994.482453 1.56 6300
APSO 4443.017639 3822.640624 3187.630486 366.146 30,000
IAPSO 2994.47106615489 2994.47106614777 2994.47106614598 2.65E–09 6000
DAPSO-GA 2994.4713663 2994.4710726 2994.47106616 1.61415E–05 7320

SD: standard deviation; ABC: artificial bee colony; MBA: mine blast algorithm; APSO: accelerated particle swarm optimization; IAPSO: improved

adaptive particle swarm optimization; DAPSO-GA: dynamic adaptive particle swarm optimization and genetic algorithm.

Note: The boldfaced data mean optimal results provided by the DAPSO-GA algorithm.

Figure 15. Schematic diagram of gear train.

Table 11. Comparison of optimal solutions obtained from different optimization algorithms for the gear train design optimization
problem.

DV Gene AS1 Gene AS2 SC ABC MBA AL BB APSO IAPSO DAPSO-GA

x1 49 33 43 49 43 33 45 43 43 49
x2 16 14 16 16 16 15 22 16 16 16
x3 19 17 19 19 19 13 18 19 19 19
x4 43 50 49 43 49 41 60 49 49 43
f (x) 2.7 E–12 1.4E–09 2.7E–12 2.7E–12 2.7E–12 2.1E–08 5.7E–06 2.7E–12 2.7E–12 2.7E–12

ABC: artificial bee colony; MBA: mine blast algorithm; AL: augmented Lagrangian; BB: branch and bound; APSO: accelerated particle swarm

optimization; IAPSO: improved adaptive particle swarm optimization; DAPSO-GA: dynamic adaptive particle swarm optimization and genetic

algorithm.

Note: The boldfaced data in each table mean the best one among all the results provided by different algorithms.
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the slip–stick, and stopping time.64 The design variables
for this design problem are inner and outer radius (ri

and r0), disc thickness (A), actuating force (F), and
number of contact surfaces (Z), which are denoted by
x1, x2, x3, x4, and x5, respectively. The objective variable
x4 only contains in the constraint equations (a side con-
straint). All design variables are discrete and should be
selected from x1 = 60, 61, . . . , 80; x2 = 90, 91, . . . ,
110; x3 = 1, 1:5, . . . , 3; x4 = 600, 610, . . . , 1000;
x5 = 2, 3, . . . , 9. The discrete DAPSO-GA with a
swarm size of 40 and maximum number of iterations of
100 is used to solve this optimization problem. All
design variables are regarded as continuous variables
and rounded off until at the end of the iterations.
Besides, novel techniques are applied on the discrete
variables x3 and x4 in this algorithm: x3 is regarded as a
continuous variable limited to the range ½2, 6� and
divided by two after being rounded to an integer; x4 is
regarded as a continuous variable limited to the range
½60, 100� and multiplied by 10 after being rounded to
an integer.

This design optimization problem was previously
studied by many researchers using different optimiza-
tion algorithms such as non-dominated sorting genetic
algorithm (NSGA-II),65 TLBO, WCA, ABC, APSO,
and IAPSO. Table 13 presents the comparison of opti-
mal solutions provided by the earlier reported algo-
rithms and proposed DAPSO-GA. It is shown that the
DAPSO-GA, IAPSO, WCA, and TLBO have the same
objective function value of 0.31365661, although the
values of the variable x4 in the optimal solutions pro-
vided by these four algorithms are different. This is
because x4 only needs to satisfy the constraint condi-
tions and is independent of the objective function.
Statistical results provided by the previously reported
algorithms and DAPSO-GA for this design optimiza-
tion problem are compared as shown in Table 14. The
statistical results demonstrate the superiority of the
proposed DAPSO-GA against all proposed optimiza-
tion algorithms in both NFEs and SD value. APSO
performs the worst among all algorithms in terms of
solution quality (mean and best solutions), SD value

Table 12. Comparison of statistical results obtained from different optimization algorithms for the gear train design optimization
problem.

Algorithm Worst Mean Best SD NFEs

UPSO – 3.80562E-08 2.700857E–12 1.09E–07 100,000
MBA 2.062904E–08 2.471635E–09 2.700857E–12 3.94E–09 1120
SC 2.3576E–09 1.9841E–09 2.7009E–12 3.5546E–09 5000
APSO 7.072678E–06 4.781676E–07 2.700857E–12 1.44E–06 8000
IAPSO 1.82738E–08 5.492477E–09 2.700857E–12 6.36E–09 800
DAPSO-GA 2.7264505E–8 5.7898764E–09 2.70085714E–12 8.0549E–09 1438

SD: standard deviation; MBA: mine blast algorithm; APSO: accelerated particle swarm optimization; IAPSO: improved adaptive particle swarm

optimization; DAPSO-GA: dynamic adaptive particle swarm optimization and genetic algorithm.

Note: The boldfaced data in each table mean the best one among all the results provided by different algorithms.

Figure 16. Convergence history of the proposed DAPSO-GA
for the gear train design problem.

Figure 17. Schematic diagram of the multiple disc clutch brake.
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and NFEs, and IAPSO and WCA ranks the second
and third in terms of both SD value and NFEs,
respectively.Figure 18 shows the convergence history of
the proposed DAPSO-GA for the multiple disc clutch
brake design problem. It quickly convergences to the
best solution with less than 10 iterations due to the well
balance between exploration and exploitation in
searching process.

Pressure vessel design problem. Figure 19 presents a sche-
matic diagram of a pressure vessel. Two hemispherical
heads are capped at the two ends of the cylindrical ves-
sel. The pressure vessel design problem is first presented
by Kannan and Kramer62 and the design objective is to
minimize its total fabricating cost including materials,
forming, and welding costs. The design variables
include the shell thickness Ts, head thickness Th, inner
radius R, and cylindrical section length of the vessel L,

Table 13. Comparison of optimal solutions obtained from different optimization algorithms for the multiple disc clutch brake design
optimization problem.

DV NSGA-II TLBO WCA APSO IAPSO DAPSO-GA

x1 70 70 70 76 70 70
x2 90 90 90 96 90 90
x3 1.5 1.0 1.0 1.0 1.0 1.0
x4 1000 810 910 840 900 1000
x5 3 3 3 3 3 3
g1(x) 0 0 0 0 0 0
g2(x) 22.00 24.00 24.00 24.00 24.00 24.00
g3(x) 0.90052816 0.91942781 0.90948063 0.92227317 0.91047534 0.90052816
g4(x) 9790.5816 9830.3711 9809.4293 9824.2113 9811.5234 9790.5816
g5(x) 7894.6966 7894.6966 7894.6966 7738.378 7894.6966 7894.6966
g6(x) 60,625.0 37,706.25 49,768.75 48,848.372 48,562.5 60,625.0
g7(x) 11,647.293 14,297.987 12,768.578 12,873.649 12,906.636 11,647.293
g8(x) 3352.7067 702.0132 2231.4215 2126.3515 2093.3635 3352.7067
f (x) 0.4704 0.313656 0.313656 0.337181 0.31365661 0.31365661

APSO: accelerated particle swarm optimization; IAPSO: improved adaptive particle swarm optimization; DAPSO-GA: dynamic adaptive particle

swarm optimization and genetic algorithm.

Note: The boldfaced data in each table mean the best one among all the results provided by different algorithms.

Table 14. Comparison of statistical results obtained from different optimization algorithms for the multiple disc clutch brake design
optimization problem.

Algorithm Worst Mean Best SD NFEs

ABC 0.352864 0.324751 0.313657 – .900
TLBO 0.392071 0.327166 0.313657 – .900
WCA 0.313656 0.313656 0.313656 1.69E–16 500
APSO 0.716313 0.506829 0.337181 9.767E–02 2000
IAPSO 0.313656 0.313656 0.313656 1.13E–16 400
DAPSO-GA 0.313656 0.313656 0.313656 1.129E–16 216

SD: standard deviation; ABC: artificial bee colony; APSO: accelerated particle swarm optimization; IAPSO: improved adaptive particle swarm

optimization; DAPSO-GA: dynamic adaptive particle swarm optimization and genetic algorithm.

Note: The boldfaced data mean optimal results provided by the DAPSO-GA algorithm.

Figure 18. Convergence history of the proposed DAPSO-GA
for the multiple disc clutch brake design problem.
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in which Ts and Th are discrete variables and are integer
multiples of 0.0625 while R and L are continuous vari-
ables. These four design variables are respectively
denoted by x1, x2, x3, and x4 in the objective function
and constraint equations as presented in Appendix 2
(section ‘‘Pressure vessel design problem’’). The pro-
posed discrete DAPSO-GA with a swarm size of 25
and maximum number of iterations of 500 is used to
solve this optimization problem. The discrete variables
x1 and x2 are always kept as continuous variables lim-
ited in the range ½0:5, 99:5�. Until at the end of the
optimization process, x1 and x2 are not rounded to be
integers and multiplied by 0.0625.

The pressure vessel design problem was previously
studied by many researchers using different optimiza-
tion algorithms including GA1, GA2, Cultural
Differential Evolution (CDE),66 PSO, CPSO, APSO,
IAPSO, MBA, NM-PSO, G-QPSO, HPSO, WCA,
HPSO-GA, ABC2, and LCA. The optimal solution
obtained from the proposed algorithm is compared
with those provided by the earlier reported algorithms
as listed in Table 15. Table 16 presents the comparison
of statistical results provided by the previously reported
algorithms and proposed DAPSO-GA for the pressure

vessel design optimization problem in terms of the
worst, mean, and best solutions as well as the SD val-
ues and NFEs. It must be pointed out that the optimal
results provided by NM-PSO, WCA MBA, HPSO-GA,
and ABC are infeasible as the values of x1 and x2 are
not integer multiples of 0.0625. Hence, only the remain-
der of the earlier algorithms listed in Tables 15 and 16
are compared with the proposed algorithm. From
Tables 15 and 16, the proposed algorithm and IAPSO
provide better solutions compared with other algo-
rithms. Both of these two methods find the best solu-
tion with similar computation efforts (NFEs) which are
fewer than those of other optimization algorithms, but
IAPSO is more robust as its SD value is smaller. Figure
20 shows the convergence history of the proposed
DAPSO-GA for the pressure vessel design problem.

Rolling element bearing design problem. The schematic dia-
gram of a rolling element bearing is shown in Figure
21. The aim of the rolling element bearing design opti-
mization is to maximize its dynamic loading bearing
capacity subject to the geometric and kinematic con-
straints as well as the limit on the number of balls.67

The design variables of this design optimization prob-
lem have five geometric parameters including the pitch
diameter (Dm), ball diameter (Db), number of balls (Z),
inner and outer raceway curvature coefficients (fi and
f0), and five other parameters only contain in the con-
straint equations (KDmin, KDmax, e, e, and j). All
design variables are continuous variables apart from
the number of balls (Z). These 10 design variables are
respectively denoted by x1, x2, x3, x4, x5, x6, x7, x8, x9,
and x10, respectively. The proposed discrete DAPSO-
GA and PSO-TVAC with a swarm size of 50 and maxi-
mum number of iterations of 200 are used to solve this
optimization problem.

Figure 19. Schematic diagram of the pressure vessel.

Table 15. Comparison of optimal solutions obtained from different optimization algorithms for the pressure vessel design
optimization problem.

DV x1 x2 x3 x4 g1(x) g2(x) g3(x) g4(x) f (x)

GA1 0.8125 0.4375 42.0974 176.6540 22.01E–03 23.58E–02 224.7593 263.3460 6059.9463
GA2 0.8125 0.4375 42.0974 176.6540 20.2E–05 23.589E–02 227.8861 263.3460 6059.9463
CDE 0.8125 0.4375 42.0974 176.6376 26.67E–07 23.58E–02 23.71051 263.3623 6059.734
APSO 0.8125 0.4375 42.0974 176.6374 29.54E–07 23.59E–02 263.3626 20.9111 6059.7242
IAPSO 0.8125 0.4375 42.0974 176.6366 24.09E–13 23.58E–02 21.39E–07 263.3634 6059.7143
CPSO 0.8125 0.4375 42.0913 176.7465 21.37E–06 23.59E–04 2118.7687 263.2535 6061.0777
MBA 0.7802 0.3856 40.4292 198.4694 0 0 286.3645 241.5035 5889.3216
NM-PSO 0.8036 0.3972 41.6392 182.412 3.65E–05 3.79E–05 21.5914 257.5879 5930.3137
G-QPSO 0.8125 0.4375 42.0984 176.6372 28.79E–07 23.58E–02 20.2179 263.3628 6059.7208
WCA 0.7781 0.3846 40.3196 200.0000 22.95E–11 27.15E–11 21.35E–6 240.00 5885.3327
HPSO-GA 0.7782 0.3846 40.3196 200.0000 0 0 24.656E–10 240 5885.3328
ABC2 0.7782 0.3847 0.3211 199.9802 21.40E–06 22.84E–06 21.1418 240.0197 5885.4033
DAPSO-GA 0.8125 0.4375 42.0984 176.6366 24.09E–13 23.58E–02 21.39E–07 263.3634 6059.7143

APSO: accelerated particle swarm optimization; IAPSO: improved adaptive particle swarm optimization; CPSO: co-evolutionary particle swarm

optimization; MBA: mine blast algorithm; DAPSO-GA: dynamic adaptive particle swarm optimization and genetic algorithm.

Note: The boldfaced data in each table mean the best one among all the results provided by different algorithms.
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This design optimization problem was previously
solved by many researchers using different optimiza-
tion algorithms such as GA5,67 ABC, TLBO, and
MBA. Optimal solutions given by these reported
algorithms and PSO-TVAC are compared with those
provided by the proposed DAPSO-GA in terms of
the values of design variables, objective function
value, and constraint accuracy, as detailed in Table
17. It must be emphasized that there are some errors
for the optimal solutions of GA5, TLBO, and MBA
given by Sadollah et al.9 in terms of the objective
function value, number of constraints, and constraint
accuracy, which are revised in this work as shown in
Table 17. Note that the optimal solutions provided by
GA5 and TLBO are infeasible as the fourth con-
straint g4(x) is violated. Hence, their optimal solu-
tions are not used for later comparison. Table 18
presents the comparison of statistical results provided
by the previously reported algorithms and proposed
DAPSO-GA for the rolling element bearing design
optimization problem in terms of the worst, mean,
and best solutions as well as the SD values and
NFEs. As seen from Table 18, the proposed algo-
rithm finds the best solution (81,859.80912) with the
fewest NFEs (3650). ABC stably provides the similar
best solution (81,859.7416) with the smallest SD value
but much more NFEs than the proposed algorithm.
PSO-TVAC convergences to the similar best solution
(81,859.7415974) with similar NFEs (3750) but much
larger SD value compared with the proposed algo-
rithm. Figure 22 shows the convergence history of the

proposed DAPSO-GA for the rolling element bearing
design problem. Note that the proposed DAPSO-GA
convergences fast to the best solution with less than
50 iterations thanks to the global optima searching
technique.

Conclusion

In this work, a DAPSO-GA is presented to solve con-
strained engineering design optimization problems with

Table 16. Comparison of statistical results obtained from different optimization algorithms for the pressure vessel design
optimization problem.

Algorithm Worst Mean Best SD NFEs

PSO 14,076.324 8756.6803 6693.7212 1492.5670 8000
APSO 7544.49272 6470.71568 6059.7242 326.9688 200,000
IAPSO 6090.5314 6068.7539 6059.7143 14.0057 7500
MBA 6392.5062 6200.64765 5889.3216 160.34 70,650
LCA 6090.6114 6070.5884 6059.8553 11.37534 24,000
WCA 6590.2129 6198.6172 5885.3327 213.0490 27,500
CDE 6371.0455 6085.2303 6059.7340 43.0130 204,800
GA1 6308.4970 6293.8432 6288.7445 7.4133 900,000
GA2 6469.3220 6177.2533 6059.9463 130.9297 80,000
QPSO 8017.2816 6440.3786 6059.7209 479.2671 8000
G-QPSO 7544.4925 6440.3786 6059.7208 448.4711 8000
NM-PSO 5960.0557 5946.7901 5930.3137 9.1610 80,000
HPSO 6288.6770 6099.9323 6059.7143 86.2000 81,000
CPSO 6363.8041 6147.1332 6061.0777 86.4500 240,000
HPSO-GA 5885.4864 5885.3821 5885.3328 0.049
ABC2 5895.1268 5887.5570 5885.4032 2.7453 –
DAPSO-GA 7319.0007 6267.1671 6059.7143 380.9406 9000

SD: standard deviation; PSO: particle swarm optimization; APSO: accelerated particle swarm optimization; IAPSO: improved adaptive particle swarm

optimization; MBA: mine blast algorithm; CPSO: co-evolutionary particle swarm optimization; DAPSO-GA: dynamic adaptive particle swarm

optimization and genetic algorithm.

Note: The boldfaced data mean optimal results provided by the DAPSO-GA algorithm.

Figure 20. Convergence history of the proposed DAPSO-GA
for the pressure vessel design problem.
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different kinds of objective functions, design variables,
and constraints in nature. The presented algorithm uses
a dynamic adaptive inertia weighting factor, which
adaptively adjusts the search velocity in optimum
searching process, to balance the exploitation (local
search) and exploration (global search). In the pro-
posed algorithm, GA-related operators are incorpo-
rated into PSO and used to refine the optimal solution
provided by the PSO. Few particles in the swarm that

meet the GA-selection criterion with time-varying selec-
tion probability are adaptively selected to update their
positions via a crossover and n-point mutation operator
in each iteration process. Global best and worst posi-
tions of the PSO are updated according to the refined
particle position generated by GA. With the three GA-
related operators, the particle swarm is greatly diversi-
fied and as a result, premature convergence is effectively
prevented. The promising prospect of the proposed

Figure 21. Schematic diagram of rolling element bearing.

Table 17. Comparison of optimal solutions obtained from different optimization algorithms for the rolling element bearing design
optimization problem.

DV GA5 TLBO MBA PSO-TVAC DAPSO-GA

x1 125.7171 125.7191 125.7153 125.7191 125.7191
x2 21.423 21.4259 21.4233 21.4256 21.4256
x3 11 11 11 11 11
x4 0.515 0.515 0.515 0.5150 0.515
x5 0.515 0.515 0.515 0.5150 0.515
x6 0.4159 0.424266 0.488805 0.4169 0.4000
x7 0.651 0.633948 0.627829 0.7000 0.7000
x8 0.300043 0.3 0.300149 0.3000 0.3000
x9 0.0223 0.068858 0.097305 0.1000 0.0474
x10 0.751 0.799498 0.64095 0.6001 0.6000
g1(x) 8.22E–04 21.2235E–07 5.6382E–04 3.0198E–014 21.2235E–07
g2(x) 13.732999 13.15257 8.63025 14.8511804817 14.8512
g3(x) 2.724000 1.52518 1.10143 3.64614410764 6.1488
g4(x) 1.107 2.559363 22.04045 23.42559024083 23.4256
g5(x) 0.717100 4.7191 0.7153 0.719055614672 0.7191
g6(x) 4.857899 16.49544 23.61095 24.2809443853 11.1309
g7(x) 0.0021288 22.999E–05 5.179283E–04 1.4797E–012 22.999E–05
g8(x) 0 0 0 0 0
g9(x) 0 0 0 0 0
f (x) 81,841.5108 81,859.74 81,843.68625 81,859.74159741332 81,859.80912

MBA: mine blast algorithm; DAPSO-GA: dynamic adaptive particle swarm optimization and genetic algorithm.

Note: The boldfaced data in each table mean the best one among all the results provided by different algorithms.
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DAPSO-GA for engineering constrained optimization
problems is evaluated by solving nine different bench-
mark mechanical engineering design optimization prob-
lems with continuous, discrete, or mixed design
variables. For most of the considered mechanical engi-
neering design optimization problems, statistical results
show that the proposed DAPSO-GA convergences to
the best or similar solution with the smallest SD values
and lowest computation efforts (NFEs) against other
meta-heuristic algorithms.
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Appendix 1

Tension/compression spring design problem

Minimize f xð Þ=(x3 + 2)x2x2
1

Subject to

g1 xð Þ= 1� x3
2x3

71785x4
1

ł 0

g2 xð Þ= 4x2
2 � x1x2

12566 x2x3
1 � x4

1

� � + 1

5108x2
1

� 1 ł 0

g3 xð Þ= 1� 140:45x1

x2
2x3

ł 0

g4 xð Þ= x1 + x2

1:5
� 1 ł 0

where 0:05 ł x1 ł 20, 0:25 ł x2 ł 1:3, and
2:00 ł x3 ł 15:00.
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Symmetric three-bar truss design problem

Minimize f (x)= (2
ffiffiffi
2
p

x1 + x2)l

Subject to

g1 xð Þ=
ffiffiffi
2
p

x1 + x2ffiffiffi
2
p

x2
1 + 2x1x2

P� s ł 0, g2 xð Þ= x2ffiffiffi
2
p

x2
1 + 2x1x2

P� s ł 0, g3 xð Þ=
ffiffiffi
2
pffiffiffi

2
p

x1 + 2x2

P� s ł 0

where 0 ł x1 ł 1, 0 ł x2 ł 1, l = 100 cm, P= 2KN=cm2, and s= 2KN=cm2.

Welded beam design

Minimize f xð Þ= 1:10471x2
1x2 + 0:04811x3x4(14+ x2)

Subject to

g1 xð Þ= t xð Þ � tmax ł 0, g2 xð Þ=s xð Þ � smax ł 0, g3 xð Þ= x1 � x4 ł 0

g4 xð Þ= 0:10471x2
1 + 0:04811x3x4 14+ x2ð Þ � 5 ł 0, g5 xð Þ= 0:125� x1 ł 0

g6 xð Þ= d xð Þ � 0:25 ł 0, g7 xð Þ=P� Pc xð Þł 0

where 0:1 ł x1, x4 ł 2 and 0:1 ł x2, x3 ł 10.

Belleville spring design problem

Minimize f xð Þ= 0:07075p D2
e � D2

i

� �
t

Subject to

g1 xð Þ= S � 4Edmax

1� m2ð ÞaD2
e

b h� dmax=2ð Þ+ gt½ �ø 0

g2 xð Þ= 4Edmax

1� m2ð ÞaD2
e

h� dmax=2ð Þ h� dmaxð Þt + t3
� �

� Pmax ø 0

g3 xð Þ= dl � dmax ø 0, g4 xð Þ=H � h� t ø 0, g5 xð Þ=Dmax � De ø 0

g6 xð Þ=De � Di ø 0, g7 xð Þ= 0:3� h

De � Di

ø 0

where

a=
6

p ln K

K � 1

K

� �2

b=
6

p ln K

K � 1

ln K
� 1

� �

g =
6

p ln K

K � 1

2

� �

Pmax= 5400 lb, dmax= 0:2 in, S = 200 kpsi, E= 30E06 psi, m= 0:3, H = 2 in, Dmax= 12:01 in, K =De=Di,
dl = f (a)a, a= h=t.

Values of vary as detailed in Table 19.

Table 19. Variation of f (a) with a.

a <1:4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 ø 2:8

f (a) 1 0.85 0.77 0.71 0.66 0.63 0.60 0.58 0.56 0.55 0.53 0.52 0.51 0.51 0.50
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Appendix 2

Speed reducer design problem

Minimize f xð Þ= 0:7854x1x2
2 3:3333x2

3 + 14:9334x3 � 43:0934
� �

� 1:508x1 x2
6 + x2

7

� �
+ 7:4777 x3

6 + x3
7

� �
+ 0:7854 x4x2

6 + x5x2
7

� �
Subject to

g1 xð Þ= 27

x1x2
2x3

� 1 ł 0, g2 xð Þ= 397:5

x1x2
2x2

3

� 1 ł 0, g3 xð Þ= 1:93x3
4

x2x4
6x3

� 1 ł 0, g4 xð Þ= 1:93x3
5

x2x4
7x3

� 1 ł 0

g5 xð Þ=
745x4=x2x3ð Þ2 + 16:9 3 106

h i0:5

110x3
6

� 1 ł 0, g6 xð Þ=
745x5=x2x3ð Þ2 + 157:5 3 106

h i0:5

85x3
7

� 1 ł 0

g7 xð Þ= x2x3=40� 1 ł 0, g8 xð Þ= 5x2

x1

� 1 ł 0, g9 xð Þ= x1

12x2

� 1 ł 0

g10 xð Þ= 1:5x6 + 1:9

x4

� 1 ł 0, g11 xð Þ= 1:1x7 + 1:9

x5

� 1 ł 0

where 2:6 ł x1 ł 3:6; 0:7 ł x2 ł 0:8; 17 ł x3 ł 28; 7:3 ł x4 ł 8:3; 7:3 ł x5 ł 8:3 2:9 ł x6 ł 3:9; 5:0 ł x7 ł 5:5.

Gear train design problem

Minimize f xð Þ= 1

6:931
� x2x3

x1x4

� �2

Subject to

12 ł xi ł 60, i= 1, 2, 3, 4

Multiple disc clutch brake design problem

Minimize f xð Þ=p r2
0 � r2

i

� �
Z + 1ð Þrt

Subject to

g1 xð Þ= r0 � ri � Dr ø 0, g2 xð Þ= lmax � Z + 1ð Þ t+ dð Þø 0, g3 xð Þ=Pmax � Prz ø 0

g4 xð Þ=Pmaxvsrmax � Przvsr ø 0, g5 xð Þ= vsrmax � vsr ø 0, g6 xð Þ= Tmax � T ø 0

g7 xð Þ=Mh � sMs ø 0, g8 xð Þ= T ø 0

where

Mh =
2

3
mFZ

r3
0 � r3

i

r2
0 � r2

i

Prz =
2

3

F

p r2
0 � r2

i

� �
vrz =

2pn r3
0 � r3

i

� �
90 r2

0 � r2
i

� �
T =

Izpn

30 Mh �Mf

� �
Dr = 20 mm, Iz = 55kgm2, Pmax = 1 MPa, Fmax= 1000 N, Tmax= 15 s, m= 0:5, s= 1:5, Ms = 40 Nm,
Mf = 3 Nm, n= 250 r=min, vsrmax= 10 m=s, lmax= 30 mm, 60 mmł ri ł 80 mm, 90 mmł r0 ł 110 mm,
1:5 mmł t ł 3 mm, 600 Nł F ł 1000 N, 2 ł Z ł 9.
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Pressure vessel design problem

Minimize f xð Þ= 0:6224x1x3x4 + 1:7781x2x2
3 + 3:166x2

1x4 + 19:84x2
1x3

Subject to

g1 xð Þ= � x1 + 0:0193x3 ł 0

g2 xð Þ= � x2 + 0:00954x3 ł 0

g3 xð Þ= � px2
3x4 �

4

3
px3

3 + 1296000 ł 0

g4 xð Þ= x4 � 240 ł 0

where 1 3 0:0625 ł x1, x2 ł 99 3 0:0625 and 10 ł x3, x4 ł 200.

Rolling element bearing design problem

Maximize f xð Þ=Cd =
fcZ2=3D1:8

b , if Db ł 25:4 mm

3:647fcZ2=3D1:4
b , else

(

Subject to

g1 xð Þ= f0

2sin�1 Db=Dmð Þ
� Z + 1 ø 0

g2 xð Þ= 2Db � KDmin D� dð Þø 0

g3 xð Þ=KDmin D� dð Þ � 2Db ø 0

g4 xð Þ= jBw � Db ø 0

g5 xð Þ=Dm � 0:5 D+ dð Þø 0

g6 xð Þ= 0:5+ eð Þ D+ dð Þ � Dm ø 0

g7 xð Þ= 0:5 D� Dm � Dbð Þ � eDb ø 0

g8 xð Þ= fi � 0:515 ø 0

g9 xð Þ= f0 � 0:515 ø 0

where

fc = 37:91 1+ 1:04
1� g

1+ g

� �1:72
fi 2f0 � 1ð Þ
f0 2fi � 1ð Þ

� �0:41
" #10=3

8<
:

9=
;
�0:3

g0:3 1� gð Þ1:39

1+lð Þ1=3

" #
2fi

2fi � 1

� �0:41

f0 = 2p � 2 cos�1 D� dð Þ=2� 3T=4½ �2 + D=2� T=4� Dbð Þ2 � d=2+ T=4ð Þ2

2 D� dð Þ=2� 3T=4½ � D=2� T=4� Dbð Þ

 !

g =Db=Dm, fi = ri=Db, f0 = r0=Db, T =D� d � 2Db, D= 160, d = 90, Bw = 30, 0:4 ł KDmin ł 0:5,
0:6 ł KDmax ł 0:7, 0:3 ł e ł 0:4, 0:02 ł e ł 0:1, 0:6 ł j ł 0:85, 0:5(D+ d)ł Dm ł 0:6(D+ d),
0:15(D� d)ł Db ł 0:45(D� d).
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