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ABSTRACT

In this paper, we describe an effort to build a new deep edge detection method designed to detect weather-related
phenomena such as clouds and planetary boundary layer heights present in backscatter profile imagery. This
method builds on the existing deep model called Holistically-Defined Edge Detection (HED), which was shown to
perform better than other information theory and convolutional network techniques for edge detection. Though
HED outperforms techniques such as Canny Edge detection, HED’s performance is based on it being trained
on natural images with very little noise. Weather-related backscatter profiles, such as those generated from
LIDAR-based ceilometers, often contain noise. In addition, there is often less of a difference in the pixel density
between edges and non-edges, and due to atmospheric dynamics, continuous edges are not always detected in
the images. Under these conditions when using HED, subtle but useful edges are lost from side outputs during
the fusing process while the network is being trained. Canny Edge detection also does not perform well under
these conditions, as it determines edges based on the differences in pixel density. We describe a new edge
detection deep network developed specifically for overcoming these issues by applying physics-aware attention
mechanisms to the side outputs of the HED learning process. We show how this method is able to learn the
subtle edges as opposed to HED or Canny, when used to identify planetary boundary layer heights which involves
distinguishing the mixing layer, residual layer, and nocturnal layer in addition to the cloud heights for ceilometer-
based backscatter. Though the intent of this network is to learn planetary boundary layer heights and cloud
heights, this method could be applied to other weather-related phenomena and applied to backscatter imagery
generated from other sources such as satellites.

1. INTRODUCTION

The planetary boundary layer (PBL), which is the lowest portion of the atmosphere, is vital for air quality
assessments, where characterizing the vertical extent of boundary layer mixing is obtained by measuring the
height.1 The Weather Research and Forecasting models online coupled with a Chemistry package (WRF-Chem)2

is one such model which is used to calculate PBLH. Though at current model resolution, calculating PBLH
is not prohibitive, as model resolution increases, methods which support a reduction in computation will be
advantageous. In addition, data assimilation models, such as WRF-Chem, under certain conditions will not
accurately calculate PBLH.3,4 For these reasons, there has been an exploration in using other methods for
calculating PBLH. One such effort includes using ground-based LIDAR to augment data assimilated PBLH
forecasts.5 More recently, there have been efforts in using machine learning to identify6 and forecast7,8 PBLH
both from ceilometers and from historical model data.

Our previous work6 applied a pretrained edge detection network to LIDAR backscatter profiles to automati-
cally estimate the PBLH for the mixing layer. Training the edge detection network specifically on the backscatter
profiles is not possible as there is limited labeled data for training, and deep learning methods requires large
training data sets in order to generalize well.9 However, transfer learning10 can be used under these conditions,
using a model that is trained on a large dataset from a different origin and transferring the knowledge to a
specific problem with a smaller dataset. In the case of edge detection, this is a reasonable approach. Though the
work showed promise it was evident from the edge detected imagery that certain areas of the PBL that are more
subtle, such as the residual layer, were harder to detect, as can be seen in Figure 1, where we show an example
of a 24-hour backscatter profile, the result of applying edges detection using HED, and a super-resolved image
highlighting the PBL. As can be seen from the super-resolved image, many of the details of the PBL layering
are lost in the edge detection.
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Figure 1. Lufft-CHM15K - Catonsville, MD - 24 Hour LIDAR Backscatter Profile, Edge Detected, and Super-Resolved -
12/13/2016.

In this work we describe a method supplemental to HED11 edge detection that enables more ”physic-aware”
learning by first identifying the area of the backscatter which is estimated to be the region of the PBL and using
that knowledge during training to enhance the part of the image for edge detection where the PBL is located.
We train the HED11 network to give attention to the details of this region of the imagery, enabling a more
fine-grained edges to identify the subtle layering of the PBL.

2. BACKGROUND

The planetary boundary layer is the bottom layer of the atmosphere that is influenced by the Earth’s surface.12

It is an important component of climate and weather, and is used for air quality and pollution assessments as it
is an important factor in understanding how pollutants are mixing near the surface.13,14 As suggested by Stull et
al.,12 the PBL can be complex in nature and has variability. Accurate height calculation is of great importance,
along with accurate simulation of the atmospheric properties contained within the PBL.1

3. RELATED WORK

Caicedo et al.5 estimated PBLH using a Haar wavelet method applied to ceilometer backscatter profiles. Though
their method was not machine learning based it did show a way to automatically process the gradient changes
in the backscatter. Sleeman et al.6 used a deep learning edge detection method to estimate PBLH. We build
on this work to further improve deep edge detection. Work by Maroufidis et al.15 built a segmentation model
on MATLAB platform. They detected the aerosol layer and clouds using multiple thresholding with splitting.
By partitioning the backscatter profiles they classify the layers using the intensity. With proven functionality
of their work, their algorithm can only be implemented on MATLAB. Approaching the PBL detection with
edge detection alone, tends to lose the finer details of aerosol layer. The segmentation is incorporated in PBL
detection is to direct the HED11 model to focus at the area with high probability of containing PBL in it. The
collobaration of segmentation and HED11 manages to excel both the tasks separately.16
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4. PROPOSED APPROACH

HED11 has five convolutional side output layers that represent different levels of abstraction. A loss function
is used with each side output layer as depicted in Figure 2. These output layers are then fused together. The
fusion is then combined with the convolutional network layer output of the normal path of the neural network
to improve the edge detection. Each convolutional output layer represents a different perspective of the image
and after fused produce a final output.

Figure 2. HED Network Architecture.

Details that are apparent in the early convolutional layers can get lost during the fusion because each output
layer is treated equally during the fusion. We show an example of this problem in Figure 3. Problems begin to
occur at different transition periods throughout the day and when there is layering among the PBL for a given
time period. The processing of these edges lose significance in the downstream conversion of edges in pixel space
to points in coordinate space.

To overcome this issue our approach is two-fold. First we encourage the network to focus on the part of the
imagery where the PBL is present during training. Second we given more weight to layer 2 which contains much

Figure 3. TensorFlow Trained HED Network Using the Berkley Dataset - A View of the Output Layers.
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Figure 4. Lufft-CHM15K - Catonsville, MD - 24 Hour LIDAR Backscatter Profile Segmented 12/13/2016.

Figure 5. Lufft-CHM15K - Catonsville, MD - 24 Hour LIDAR Backscatter Profile Labeled for Training a Segmentation
12/13/2016.

of the detail present in the backscatter imagery. One method that we are currently exploring to approximate
the location of the PBL is a segmentation network. The segmentation network takes as input the backscatter
profiles to segment the image into approximate areas. An example of this output is shown in Figure 4.

The results shared in this paper are based on using the pretrained segmentation network, due to the lack
of backscatter training data. However, we are currently developing a labeled dataset that can be used to train
the segmentation network. This dataset is labeled used Labelbox (https://labelbox.com/). An example of the
labeled data in shown in Figure 5.

Our future work will use the segmentation network trained using our labeled backscatter data. This dataset
will also be useful for other tasks such as classification.

We use this estimation to direct the HED11 learning process, by having the image information from masks
extracted from the segmentation network, we use the recognized PBL max height as a threshold to be reduced
any area above the threshold to black for one of the output layers, acting as an attention mechanism. In addition,
we weight the second output layer higher than the other layers since this is where most of the detail is found
with respect to the subtle PBL edges. With these two methods we are able to maintain the finer edges of the
backscatter imagery.

After the edge detection method detects the boundaries in the imagery, the custom algorithm described in6

is used to converts lines into points in pixel space and maps points in pixel space to points in coordinate space.
This gives us the ability to convert edge detected boundaries into numeric values as derived heights at given
points in time.

Proc. of SPIE Vol. 11859  1185908-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 18 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 6. Linear Regression of the new physics-aware edge detections compared to the non-physics aware edge detection
trained using Tensorflow for Lufft-CHM15K - Catonsville, MD - 24 Hour LIDAR Backscatter Profiles for December 2016.

5. EARLY RESULTS

Early experiments exploring the use of ceilometers for PBLH estimation include work by Caicedo et al.5 and
the deep learning efforts by Sleeman et al.6 that was described as an augmentation to the wavelet method. As
an extension to this work we perform an experimental comparison using the same campaign consisting of the
LIDAR backscatter profiles from the Lufft CHM15k ceilometer located at the University of Maryland Baltimore
County (UMBC) in Catonsville, Maryland (39.2544, -76.7095) between December 1, 2016 and December 15, 2016.
However we focus on evaluating the residual layer and its associated radiosonde points from this campaign.

The experimental setup consisted of our new physics-aware deep edge detection network directed by our
segmentation effort. We trained the network with BSD data and with 62 images we collected from 3 different
ceilometers (all of which are Lufft-CHM15K) with locations in (Catonsville, MD, Bristol, PA, and Blackburg
VA). The training data used from ceilometers was based on data collected from September 2020. We used the
December 2016 data as our held-out set and generated edges from the backscatter images from December 1st -
December 14th. We also trained an unmodified HED11 network using the same Tensorflow framework and the
BSD training data. We evaluated these methods by using the radiosonde points as ground truth and compared
the edge-detected values with that of the radiosondes specifically for the residual layer. For this campaign, there
were 11 timestamps where the residual layer was present with recorded radiosondes of which 7 of the backscatter
profiles were available for edge generation. We show a linear regression of these results in Figure 6 where we
compare the trained HED network11 unmodified with our physics-aware HED network.

We also compared our method with the original Caffe HED11 network, however, many of the residual layer
timestamps referenced by the radiosondes had no edge detected. We conclude from this that our method made
improvements over both the Caffe HED11 network and the HED11 network that was not physics-aware. For
comparison we also trained the HED11 network that was not physics-aware with ceilometer backscatter data in
addition to the BSD data, however the results were poor.

In comparison with the side outputs of the HED11 network that was not physics-aware shown in Figure 3,
we show the outputs of the physics-aware HED network in Figure 7.

We also show an example of our edge detection obtained from the trained physics-aware HED11 in comparison
with output obtained from the pretraiend Caffe HED edge detection for December 13, 2016 in Figure 8. Clearly
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Figure 7. Physics-Aware TensorFlow Trained HED Network - A View of the Output Layers.

Figure 8. Comparing the original edge detections (left) with the new physics-aware edge detections (right) for Lufft-
CHM15K - Catonsville, MD - 24 Hour LIDAR Backscatter Profile Segmented 12/13/2016.

more of the subtle edges are defined by the physics-aware HED network, when compared with the original HED
network trained on BSD images.

6. CONCLUSIONS

This work describes the early effort to improve edge detection for automatic PBLH estimation. Though identi-
fying edges using a pretrained HED network enables PBLH estimation, by directing the learning of the network
to parts of the backscatter and giving that part of the backscatter attention, we can train the edge detector to
also capture the more subtle edges that are typically present with residual and nocturnal layers of the PBL. The
dataset that will results from this work will provide a basis for training future segmentation networks that could
be used for segmentation and for classification.
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