
Enforcing Security in Semantics Driven Policy
Based Networks

Palanivel Kodeswaran, Sethuram Balaji Kodeswaran, AnupamJoshi, Tim Finin

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

{palanik1,kodeswar,joshi,finin}@cs.umbc.edu

Abstract— Security is emerging as an important requirement
for a number of distributed applications such as online banking,
social networking etc. due to the private nature of the data being
involved. Further more, the wide spread use of portable devices
such as laptops, PDAs etc. allows users to make meaningful
ad hoc collaborations. Traditional security solutions are not
feasible for these scenarioes due to the varying nature of the
collaborations in terms of entities involved and their roles,
available resources etc. Under these circumstances, we need
generic solutions that take into account the semantics of the
collaborations in determining the set of allowable operations.
In this paper, we propose an extensible framework that uses
semantics driven policies for enforcing security. Our policies
are rooted in semantic web languages which makes amenable
to interoperability, and also enables high level reasoningfor
conflict resolution and policy adaptation. We describe our policy
based network that uses packet content semantics to best handle
different streams, and show how our framework can be used to
secure enterprise networks and the BGP routing process.

I. I NTRODUCTION

Security is emerging as an important requirement for a num-
ber of distributed applications such as online banking, social
networking etc. due to the private nature of the data being
involved. Further more, the wide spread use of portable devices
such as laptops, PDAs etc. allows users to make meaningful
ad hoc collaborations. Traditional security solutions arenot
feasible for these scenarioes due to the varying nature of the
collaborations in terms of entities involved and their roles,
available resources etc. Under these circumstances, we need
generic solutions that take into account the semantics of the
collaborations in determining the set of allowable operations.
In this paper, we propose an extensible framework that uses
semantics driven policies for enforcing security. We describe
our policy based network that uses packet content semantics
to best handle different streams, and show how our framework
can be used to secure enterprise networks and the BGP routing
process.

In our system, we use policies for enforcing security as
policies provide a generic and flexible framework which can
later be easily modified based on changing requirements.
Given the dynamicity of emerging computing environments,
we want to be able to specify our policies at a high level such
that we can focus on the abstract conditions and constraints
that need to be maintained in the system. Also, given the
heterogeneity of available devices, we expect that policy

specifications should be as device independent as possible.In
these cases, to enforce policies, an adaptation layer wouldbe
used to translate high level policy specifications into low level
device specific primitives. Allowing automated reconfiguration
of devices on the fly would require that the system be able
to reason about policies and adapt them based on the new
requirements.

We propose that policies specified in semantic web lan-
guages can satisfy the above requirements. In our system,
policies are specified using a combination of OWL and SWRL.
In particular, we choose OWL DL as it is complete and
decidable, and therefore all conclusions are guaranteed to
be computed in a finite amount of time. The combination
of OWL and SWRL can be used to define ontologies using
which one can declaratively define facts, policies and rulesin
terms of what needs to be true or false for a policy to hold.
In our system, policy specifications are in terms of SWRL
rules which use high level concepts defined in appropriate on-
tologies, thus making the policy specifications generic, device
independent and extensible. We can also specify meta policies
for guiding the interaction among policies. For example, we
can use meta policies to prioritize policies when multiple
policies are applicable in a context. Further, we envisage that
different organizations would have different policies at differ-
ent granularities for the same device. By specifying policies in
semantic web languages, devices would be able to reason over
the policies and arrive at a configuration that meets the overall
combined requirements. Also, rooting policies in semanticweb
languages makes dynamic reconfiguration automatic and easy,
as new facts can be inferred from the policies.

The rest of this paper is organized as follows. Section
2 describes our content based tagging scheme. In Section
3, we present our semantics driven policy based network.
Section 4 describes the rationale behind using semantic web
languages for policy specification. Section 5 describes how
security policies can be enforced in our framework. In section
6, we present related work and finally we conclude in section
7.

II. CONTENT BASED SEMANTIC TAGGING

This section presents our packet level semantic tagging
framework that enables intermediary routers to reason over
the tags to determine how to best handle the data streams

flowing through them. Our approach is to provide the network
routers visibility into the semantic content of data streams
passing through them. This content level information can then
be used by the routers to make more intelligent routing and
data handling decisions. Our approach differs from active
networks in that the data streams merely provide additional
meta data while the network has complete control on how to
use this metadata. Thus network operators still retain complete
over their network operations. In our framework, we use RDF
for labelling the semantic content. We choose RDF as it is
very flexible, generic and its growing acceptance as the de-
facto standard for meta-data markup. By utilizing RDF as the
mechanism to markup flows/packets, intermediary intelligent
routing entities can use this metadata to reason over their
knowledge base to determine how best to handle a given flow.
Also, inferences can be made to generalize or specialize a
given flow to best meet its demands.

Now we present our system architecture. We break it down
into two components; at a node level and at a system level
that spans the network.

Fig. 1. CoCoNet Node Framework

At the node level, the architecture we propose introduces
our Node Framework as an additional layer called the Co-
CoNet layer between the application and the transport layer.
This layer is responsible for intercepting socket calls made
by applications to the transport layer. The API is enhanced
to allow the application to provide semantic level information
for messages transmitted over this interface. A Local Policy
Decision Point (LPDP) is used to determine what policies
to enforce based on the content. In our framework, each
Policy Enforcement Point (PEP) is at every layer in the
networking stack while [1] treats the PEP at a node level.
Placement of the PEP at every level of the stack allows us to
implement coordinated cross layer interactions initiatedand
controlled by our framework. The PEP exposes the interlayer
optimization points that any particular layer supports. The
framework utilizes the policies stored in the LPDP to drive
the settings to be applied to each of the PEPs in the stack.

Essentially, we are proposing to expose a network stack as a
collection of switches and dials and allow an external policy
to determine the exact settings of each of these dials (based
on content and context). We want to expose functionality,
not necessarily the mechanism of how it is achieved (this
falls under intra-layer optimization). For example, a MAC can
advertise two different data rates and their associated packet
error probabilities without exposing the FEC scheme used
to achieve these rates. The policies can be specified as pro-
duction rules (if (condition) then (action)) or event-condition-
action rules (on event if (condition) then (action)). In essence,
the Node Framework provides a rich, extensible option for
realizing policy controlled cross-layer interactions within a
node’s network stack. By parameterizing the possible set of
interactions that are permissible, the cross layer interactions
are kept tractable without making the implementation overly
convoluted [2].

Fig. 2. Overlay Network

At the network level, we envision that there will be an over-
lay network comprised of routers that run the CoCoNet Router
Framework. Client machines running our Node Framework
communicate over this overlay. The overlay comprises of two
components;

• A control plane component that involves interactions
between the CoCoNet Router Layers at the routing el-
ements.

• A data plane component through which the data packets
are flowing.

Over the CoCoNet Router control plane, routers can ex-
change traditional management information such as link states,
buffer lengths etc. In addition, information such as content
types currently being handled, adaptations currently available
can be advertised. An additional key piece of information
exchanged is the local policies that are currently being applied
to a data stream that is being routed. Local PEP settings for
a given stream or flow have global implications. For example,
unless every hop is reliable, a data packet cannot be reliably
routed through a network. The data plane can be implemented

as either:

• A UDP connection between two routers.
• A TCP connection between two routers.
• An IP-in-IP tunnel between two routers.
• A layer 2 LSP.
• A DiffServ aware network.
• An IntServ aware network.

A CoCoNet Router Framework will perform the necessary
mapping based on policy, content and context. For instance,
suppose a packet arrives at a router indicating that it requires
reliable transfer semantics. The data plane chosen to the next
hop, in this case, could be over a TCP connection. Likewise,
a data packet indicating that it is sensitive information (telnet
logins for example) but currently not encrypted can be routed
to the next hop over an IPSEC tunnel or dropped if none
is available (if that is the policy). Where a CoCoNet Router
Framework runs is very implementation dependent. For exam-
ple, in case of a wireless adhoc network, every host is a router
and hence can potentially run a (albeit simplified) CoCoNet
Router Framework. Likewise, in an enterprise setting, the
host machines within the enterprise will likely run only the
Coconet Node Framework with only the exterior gateway
routers running the Coconet Router Framework. A network
service provider will most likely have only edge routers run
the Coconet Router Framework leaving the core optimized
for fast data flow handling. The role of the Global Policy
Distribution Point (GPDP) is to disseminate any network wide
policies that need to be enforced. This can include items such
as preferential treatment that needs to be given to content
originating from a particular domain, preferential treatment
for a particular type of content, any content based adaptation
techniques that need to be employed in the network etc. It is
envisioned that the GPDP is controlled by the ISP to set forth
global rules while the LPDP hosted at an enterprise location
is possibly shared between the ISP and the enterprise. This
can further be extended to say that the LDPD is under local
user control (based on user policies and preferences) and can
additionally, host user preferences.

The information conveyed in the metadata is really left up
to the application. For example, an MP3 stream may have
the following description which can be used to differentiate
between official and entertainment video streams.

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf=
"http://www.w3.org/1999/

02/22-rdf-syntax-ns#"
xmlns:mmschema=
"http://www.mySchema.org/mms#">

<rdf:Description
rdf:about=
"http://www.myContent.com/

SalesReport.mp3">
<rdf:type rdf:resource=
"http://www.mySchema.org/mms#audio"/>

<mms:LengthInMin>5</mms:LengthInMin>
<mms:LengthInMB>4</<mms:LenghtInMB>
<mms:technicalType>
http://www.mySchema.org/mms#MP3
</mms:technicalType>
<mms:semanticType>
http://www.mySchema.org/mms#Lecture
</mms:semanticType>

</rdf:Description>

Furthermore, providing content information so that a router
can differentiate between, for example, video streaming from
a surveillance camera and a streaming movie allows the
network to make smart decisions on routing data streams
across links with different reliability characteristics.Also, for
our architecture, we are using RDF which provides a generic
mechanism to convey metadata which can be reasoned over.

III. SEMANTICS DRIVEN POLICY BASED NETWORK

In this section, we present our policy based network built
on top of the semantic tagging architecture.

Policy based networks employ mechanisms that allow net-
work operators to specify at a high level, rules defining how
packet flows are handled within a network, how network
resources are allocated, define access control restrictions and
levels of service. The policies are enforced by configuring
the network devices with the requisite primitives so that the
desired actions are performed on the data streams. One of
the main challenges frequently faced is ensuring that network
configuration settings are applied consistently throughout the
network so that the correct actions are taken by the network
devices; however, this is often error-prone and difficult to
manage especially when there is a heterogeneity of network
devices and management protocols. Additionally, policiesthat
are commonly in use today are limited in their expressibility.
Rules such as“allow traffic from A higher priority over B”
and “permit user A” are easy to enforce but are limited in
their expressibility. For networks to offer highly specialized
services, administrators need to be able to specify more com-
plex handling rules such as“allow security surveillance video
streams higher priority than webcasts”(within an enterprise)
or “downsample any video to user A so as not to exceed
128 kbps” (due to different levels of service or capabilities
of the device associated with the user). For such policies,
enforcement cannot be performed by packet header inspection
alone as all the requisite details may not be directly accessible
from the data packets as they are today.

To solve this issue, we define an alternate model to
achieving policy based networks that provides fine grained
services for network traffic, automates network configuration
and eases network management. The model relies on two
key components; namely a tagging mechanism as described
in the previous section, that allows packets and/or streamsto
convey higher level semantic information that can be used
in conjunction with the lower level information garnered from
packet header inspection and a framework for specifying rules

in an easy to use, formal model that can be checked for
consistency. The process of converting the rules to the lower
level primitives understood by the network devices is also
handled by the framework allowing the network administrators
to focus just on defining the administrative policies. In our
model, applications encode data packets with descriptions
conveying content semantics using the W3C Web Ontology
Language (OWL)[3] as explained in the previous section.
Ideally, the ontology used for this is provided by the network
service provider. This description is encoded as a special
header that is embedded into the data stream. Our motivation
for using OWL (specifically, OWL-DL) is capability of the
language to express formal semantics, defining class hierar-
chies and their relationships, associated properties, cardinality
restrictions while still retaining decidability and computational
completeness. Using OWL for ontology specification makes
the framework generic, flexible and more scalable than using
proprietary labeling schemes that raise interoperabilityissues.

Utilizing the framework, interim routers that handle the
data packets, run a reasoning engine that can reason over the
OWL description and invoke rules depending on the correct
set of actions that need to be enforced. Our framework utilizes
the W3C Semantic Web Rule Language (SWRL)[4] as the
rule language which provides an easy to use mechanism
for specifying event-condition-action rules which is the ma-
jority of rules envisioned for a typical network. Using this
framework, content providers now provide metadata to the
network that can then be used by the network providers to
determine how best to handle a given packet or flow that
best suites that content. While our framework allows the
deployment of specialized handling routines into the network,
a key differentiator between our approach and that of active
networking[5], [6] with respect to packet handling is that
unlike active networks, the metadata is not a contract on how
the data should be handled but rather what the data is. The
network provider retains complete control of how the packets
are handled within the network and can fine tune policies to
offer the best service for that type of content.

A policy based network for a typical enterprise can be built
using our proposed framework and additional components for
storing policies, conflict resolution and adaptation as described
in [7].

IV. D ESIGN OF POLICIES ROOTED IN SEMANTIC WEB

LANGUAGES

There are several reasons motivating us to root our pol-
icy specification and enforcement mechanisms in semantic
technologies. Specific to the domain of networking, for any
successful policy language, it must be universally interoperable
considering the number of various organizations (enterprises,
ISPs, networking vendors etc) that must interact to power
a large scale network. In addition, if the system needs to
be capable of automatically processing, reasoning over and
responding as appropriate, the language must be machine-
interpretable with understandable syntax and semantics for
expressing data, rules and constraints on networks, networking

devices, hardware components, software protocols, user appli-
cations and end users. In addition, complexity of the policy
specification mechanism is key to the ease of its acceptance.In
this regards, a declarative policy language that enables each
authority to draft abstract policies in a high-level language
capturing policies and logic used for guiding activities of
networking enterprise is a good candidate. Each authority can
define only those objectives and constraints that are relevant to
its needs. The policies represent rules and constraints that are
necessary for a target network infrastructure to be valid. This
information contained in the policies is defined in a manner
that is as hardware, software, and protocol independent as
possible. Therefore, the authorities do not focus on writing
procedures for configuring a specific infrastructure; instead
they focus on describing a generic infrastructure and its
features without needing to master and understand each of
the various device/protocol/system specific mechanisms. The
policy software components embedded or in the vicinity of
each of the networked devices can convert the specified policy
into device specific settings and configurations.

We believe that the combination of the W3C Web Ontology
Language (OWL) and W3C Semantic Web Rule Language
(SWRL) standards is applicable for policy control as it is
machine understandable, sound, complete, extensible through
additional ontologies, and supports heterogeneous application
domains. OWL has axiomatic and model-theoretic semantics,
which allows for verification of knowledge expressed in OWL
constructs. In our work, we have chosen to use a subset of
OWL, namely OWL DL as it is complete and decidable.
This is an important feature in order to guarantee that all
conclusions are computable and that all computations finishin
finite time. OWL + SWRL can be used to define ontologies,
using which one can declaratively define facts, policies, and
rules in terms of what needs to be true or false for a policy
to hold. SWRL specifies OWL-based abstract syntax and
vocabulary for representing Horn-like rules. SWRL defines
a rule as an implication from a set of antecedent atoms to
a set of consequent atoms. In our work, the policy language
uses the antecedent atoms for representing policy constraints.
The language uses the consequent atoms for defining directive
actions that apply whenever the constraints are satisfied by
evaluating information stored in a local knowledge base and
by executing relevant attached procedures. The ontologies
can be extended for declaratively capturing any concept or
predicate without changes to the underlying system capable
of processing OWL and SWRL. The language can be further
extended by defining functions as procedural attachments and
mapping them to predicates in OWL ontologies. This allows
for the policy enforcement mechanisms to process functions
while enabling the system to depend on low-level, optimized
implementations which is particularly important in the do-
main of networking. Extending on our current framework,
in order to support multiple policies, we can also define
a vocabulary for creating meta-policies. Meta-policies are
used for guiding the interaction among policies. The meta-
level vocabulary defines constructs for resolving conflicting,

overlapping policies. For example, the meta-level vocabulary
can be used to create a default conflict resolution rule such
that a prohibitive policy overrides permissive policy. At the
same time, the meta-level vocabulary allows one to define
absolute and relative prioritization of policies, thus overriding
the default rule. The meta-policies define an automatic conflict
resolution diagnosis in order to respond to situations when
policies presented to a network impose conflicting conditions
on the overall infrastructure or on one specific component.
Additionally, the policy software components embedded or
in the vicinity of each networked device can use this meta-
information to automatically merge policies from multiple
authorities and generate a target configuration that meets the
combined requirements. The components follow the semantics
defined by the policy language. Consequently, their steps in
merging policies can be formally verified using a theorem-
proving model. In order to combine multiple policies, the
language depends on closed-world assumption reasoning. In
this case, the system assumes that all rules are to be evaluated
only by the knowledge contained within a knowledge base.
This allows a reasoning engine to yield a solution in a finite
time.

By utilizing semantic technologies to drive our framework,
we can now realize dynamic reconfiguration of knowledge
as new facts can be inferred through the policies specified.
Current relational technologies and those based on static
schema are dependent on pre-existent knowledge and do not
offer this flexibility. There are a plethora of tools available to
drive the ontology specification, verification, reasoning engine,
etc. that can be incorporated to build such a system that can
be deployed on a large scale.

V. ENFORCING SECURITY POLICIES IN THE PROPOSED

FRAMEWORK

A. Securing Enterprise Networks

The use case we consider in this paper is that of a secure
enterprise that wants to enforce prioritization on types of
content that can flow across the links comprising its network.
The enterprise has profiled its network and assessed security
credentials to all the links and routers. As an example, a link
that is fully within the premises of the enterprise (physically
secure) is assessed as a “safe” link, one that is a VPN
running over an external service providers network may be
assessed as “potentially unsafe” while a wireless RF hop
may be assessed as “unsafe”. The enterprise applications are
“smart” and can encode content level tags into the data packets
that carry semantic information about the content as well
as the application/user/device. For this example, as we are
interested in the security semantics, applications additionally
provide information about the sensitivity of the content (such
as secret, top secret or normal), type of content and the security
credentials of the context within which they run. For such an
enterprise, the following policies would be appropriate:

• Only “Safe” links can be used to carry “TopSecret” data
• All data over “Open” links need to be encrypted

• Restrict multimedia flows in the network to max of 75%
link capacity

• Allow admin traffic preferential service over network
backups

• Allow user access to data only if user clearance is high
enough

Simulation Toolkit: We used NS2 to simulate such an
enterprise. The network topology considered was a random
network with links classified with a “security” tag that de-
fined their safety levels. We assume the nodes belong to a
single Autonomous Domain (AD) and run a link state routing
protocol. We modified the standard FTP/CBR applications to
allow for the specification of semantic descriptions into the
packet streams. For the network ontology, we used Protege as
the editor for specifying our ontology. Jess was used as the
reasoning engine. The choice of Jess was mainly motivated
by its easy integration with Protege. Other reasoning engines
can be used as a replacement if desired.

To begin, we defined an ontology to represent our enterprise.
The ontology is available online at [8]. In our implementa-
tion, our ontology also contains special instances of classes
representing the various actions that a PEP should take such
as dropping data, encrypting data etc. These special instances
also contain the low level primitive commands that need to
be invoked to realize the necessary behavior. In our case,
these commands are expressed as a snippet of Tcl code that
can be evaluated by NS2. For example, a policy such as
All unencrypted secret data over “open” links need to be
encryptedcan be expressed logically in SWRL as:
DataTraffic(?d) ∧

datasensitivity(?d,?sensitivity) ∧

Secret(?sensitivity) ∧

encryptionstatus(?d,?encryptstatus) ∧

UnEncrypted(?encryptstatus) ∧

nextHop(?d,?nexthop) ∧

securityLevel(?nexthop,?securitylevel) ∧

Open(?securitylevel) ∧

EncryptData(?action)
→ inferredAction(?d,?action)

The EncryptData instance has the following Tcl command
encoded in it indicating the device understandable actionsthat
need to be taken.

set clsfr [get-classifier $interimRouterId]
$ns at [$ns now] ‘‘$clsfr install-interceptor

encryptdata $flowid $srcId $sport
$destId $dport $qdelay $overhead’’

Using this methodology, we can now define the various
actions that a Policy Enforcement Point (PEP) could take and
assign to each of these actions, the corresponding primitive
commands (Tcl snippets). The Policy Decision Point (PDP)
was implemented as a Java process that received OWL streams
from a client PEP (a network router within NS2), invoke the
reasoner and send back the Tcl commands depending on the
actions that needed to be invoked. The PEP (NS2) would then
execute the commands received from the PDP.

B. Secure Routing

In this section, we show how security can be incorporated
into the BGP routing process using our framework.

BGP Extensions:Border Gateway Protocol (BGP) was
originally designed as a simple path vector protocol to share
routing information between autonomous systems (AS) which
has today, become the de-facto inter-domain routing protocol
enabling the Internet. Autonomous systems (ISPs, enterprises
etc) use policies to define how the routes are to be shared and
among which peers. These policies can be driven by various
factors such as commercial peering agreements, security con-
siderations, load balancing requirements etc. These policies
are then implemented in the network routers as configuration
parameters to control the protocol behavior. One of the main
challenges frequently faced is ensuring that network configura-
tion settings are applied consistently throughout the network so
that the correct actions are taken by the network devices both
within an autonomous system and across boundaries. However,
this is often error-prone and difficult to manage.

To apply our framework to provide BGP route dissemination
that takes into account the security credentials and external
relationships, we needed to make two modifications to the pro-
tocol. The first modification is aimed at establishing identity
of the BGP peers in a secure and verifiable manner. For this
purpose, we assume the BGP session establishment process
is extended to include the sharing of signed credentials to
validate the identity of the BGP peers and their affiliations.
Prior work such as S-BGP [9] have shown that this is feasible
using a public key infrastructure and signed certificates. This
modification is necessary as it is important for a BGP router
to establish the identity of its peer so that the routes learned
from and advertised to this peer can be handled correctly. The
second modification is to include with the route advertisement
in the BGP update messages, an additional optional and
transitive attribute that conveys semantic meta-data about that
NLRI. The intent here is for the originating AS to provide
this information to allow other nodes to handle this route
appropriately. The interim routers are allowed to add to this
description as necessary (keeping the original intact) in a
manner that is secure and cannot be repudiated. In this work,
we are concerned about the import/export policies in use
in the BGP decision process. The modifications allow our
framework to, for each route that is being advertised to or
learned from, contact a PDP, the PDP will reason over the
semantic information provided for that route and the policies
that need to be enforced, and will communicate to the BGP
node whether or not, that route can be shared or accepted.

Use Case:The use case we consider in this paper is that
of a secure version of BGP where there are constrains on
route exchanges between BGP peers. As with the real Internet,
BGP nodes are owned by different agencies that have different
affiliations. During the initial session establishment, nodes
exchange their identity information to indicate the agencies
to which they belong. These agencies or organizations have
external socio-economic, political or financial relationships

that will influence the BGP nodes in their exchanges. Routes
advertised by each AS is tagged with additional semantic
information to describe aspects such as its confidentiality,
sharing restrictions etc. For such a use case, the following
policies would be appropriate:

• Routes marked as “ShareWithFriendly” can only be ex-
changed between routers that belong to organizations that
have a collaborative relationship

• Routes marked as “Restricted” can only be shared be-
tween nodes that belong to the same parent organization
(even if they are different divisions of that organization)

• Routes marked to be used only for data backup traffic are
installed only during non-peak hours

• Allow a route to be used only for data traffic that has a
specified or higher clearance level.

Simulation Toolkit: We used the ns-BGP [10] extension
to NS2 to implement our framework. The network topology
considered is a linear network with nodes grouped into various
ASes. Each node is initialized with credentials that specify
what organization the node belongs to. We modified the BGP
session establishment process to allow the exchange of these
credentials so that the BGP nodes can establish the identity
and affiliation of the peers that they are interacting with.
We added an additional optional transitive attribute to the
BGP update protocol messages intended to convey additional
semantic information about the route.

To begin, we defined an ontology to use for our BGP
example. The ontology is available online at [8]. We modeled
the various BGP protocol messages and constructs. Since we
are dealing with import/export policies, we modeled special
instances of classes representing the various actions thata BGP
router (PEP) should take such as whether a route should be
advertised or not, whether a route should be accepted or not
etc. These special instances contain the low level primitive
commands that need to be invoked to realize the necessary
behavior. In our case, we implemented handlers in the NS2
implementation to handle the response coming back from the
reasoner to determine whether a route should be included in
an advertisement or whether a route that was received, should
be accepted (these commands are expressed as snippets of Tcl
code that are evaluated by NS2). For example, a policy such
asAll routes are shareable with a peer as long as the peer and
the originating router are owned by the same organizationcan
be expressed in SWRL as:
BGP_Update(?adv) ∧

interimRouter(?adv, ?routeradvertising) ∧

dest(?adv, ?peer) ∧

owner(?routeradvertising, ?org) ∧

owner(?peer, ?org) ∧

AllowRouteAdvertisement(?allow)
→ inferredAction(?adv, ?allow)

The AllowRouteAdvertisementinstance has the following Tcl
command encoded in it indicating the device understandable
actions that need to be taken.

set Response "OK"

In this case, if the reasoner asserts this rule, the corresponding
Tcl command will be sent back as the reasoner’s response.
Using this methodology, we can now define any arbitrary
action that a PEP could take and assign to each of these
actions, the corresponding primitive commands (Tcl snippets)
to be executed. The PDP (reasoner) was implemented as a
Java process that received RDF streams from a client PEP (a
BGP agent within NS2), invoke the reasoner and send back
the Tcl commands depending on the actions that needed to be
invoked. The Protege IDE served the role of a Policy Editor.
Using this framework, we implemented our typical use case
scenario focusing on the import/export policies for BGP. For
our example, we consider a network of four autonomous
domains with five BGP routers. The Autonomous Domain
AS0 belongs to UK forces. The Autonomous Domains AS1
and AS2 belong to two organizations within the US military.
Finally, the last Autonomous Domain AS3 belongs to Russian
military. During the initial BGP session establishment, the
identity of each of the peers is established. This indicatesthe
organization that the router belongs (USMilcom, UKMilcom,
RussianMilcom etc) which is tracked in the“owner” property
of the network devices. Some of these organizations have
external relationships (such as NATO to which USMilcom and
UKMilcom belong). Such external relationships are modeled
through OWL restrictions on properties. For example, a device
that is part of NATO is modeled as a one where there is
a necessary and sufficient constraint that the owner is either
an instance of USMilcom, UKMilcom or FranceMilcom. Each
router that originates a route includes a description that at the
least, indicates the sharing restrictions for that route. In the
current version, we have values such as None (which is similar
to the “internet” community attribute in BGP), Restricted and
ShareWithFriendly as examples. The intention here is that a
route marked as“ShareWithFriendly” can only be shared with
a peer who can be considered friendly. For example, if we
considered forces within NATO to be friendly’s, a SWRL
policy to permit the routes marked as“ShareWithFriendly” to
be exchanged could be written as:
BGP_Update(?adv) ∧

interimRouter(?adv, ?routeradvertising) ∧

dest(?adv, ?peer) ∧

NATO_Forces(?routeradvertising) ∧

NATO_Forces(?peer) ∧

routeRestriction(?adv, ?restriction) ∧

ShareWithFriendly(?restriction) ∧

AllowRouteAdvertisement(?allow)
→ inferredAction(?adv, ?allow)

Once the simulation starts, each router advertises its routes
with its peers in order to compute its routing table. The
simulation proceeds until all routes are computed and the
routers settle on their tables. Note that when two routers
belonging to UKMilcom and USMilcom (AS0 and AS1) are in
a BGP session and while none of the routers have explicitly
been identified as belonging to NATO, the reasoner can deduce
this relationship and allow route exchanges between them.
Similarly the reasoner can deduce that the route exchange

cannot be allowed between AS2 and AS3 as they do not have
an explicit relationship that permits this.

Fig. 3. Topology

In this manner, we can now setup arbitrary relationships
between routers and can specify policies through higher level
rule based mechanisms to implement fine grained control over
the protocol. This example can be easily extended to scenarios
where the relationships are short lived and arbitrary such as
in emergency response scenarios (where organizations may
temporarily want to share information for providing quick
response), application need driven (such as for supportinglive
event feeds) etc. by extending on the ontology and defining
the desired policies.

VI. RELATED WORK

Policy based networks and approaches have been the focus
of extensive research in recent years. Quality of service
oriented initiatives such as Intserv [11] and Diffserv [12]
rely on policies to drive flow classification, admission control,
resource reservations etc. However, the policies used are lim-
ited in their expressibility and restricted to traffic forwarding
semantics with little support for features such as content
adaptation, specialized routing etc. In this respect, the Active
Networks [5], [6] took the approach of allowing a more generic
per packet handling semantic with the packets determining
what the router should do with them, which differs from our
approach in which the router (using its specified policies)
controls how the packet is handled and not the other way.

There has been significant research on securing BGP. SBGP
[9] proposes a comprehensive architecture for securing BGP
using public key certificates. SBGP uses a pair of PKIs, one
for address authentication and the other for route validation.
SoBGP [13] provides more flexibility compared to SBGP. In
addition to the above PKIs, a third type of certificate is used
which provides routing policy and local topology. When a
route is received, it is compared for consistency with the
topology database and dropped if found to be inconsistent.The
architecture is more flexible as there are no fixed structures
of authority and ASes can decide on their own for accepting
routing announcements and policies. RPSL [14] is an object
oriented language for specifying routing policies from which
router configurations can be automatically generated. RPSL
generated router configurations can aid in preventing internet
router misconfigurations but it does not support inference and
is limited in expressibility.

There have been recent efforts in using the semantic web
for security applications. The authors in [15] propose using
a combination of conventional security mechanisms and the
ability to reason about security at a semantic level for enforc-
ing security in autonomous systems. Also, they describe a set

of requirements that need to be supported for implementing
a semantic firewall. [16] proposes using context as the first
prinicipal for policy specifications governing access control in
pervasive environments. Their approach stems from the fact
that traditional subject/role based policies wouldn’t work in
pervasive environments due to the ad hoc mode of collabora-
tions, where the roles and identities of the entities involved is
not known ahead of the actual collaboration. They also propose
using semantic languages for policy specification to aid in
policy reasoning, conflict resolution and policy adaptation.

VII. C ONCLUSION

In this paper, we have described an extensible security
framework that is based on policies. Our policies are specified
in semantic web languages which makes them amenable to in-
teroperability, conflict resolution and reasoning. We described
our policy based network built on top of semantically tagged
packets. In our framework, applications semantically tag pack-
ets with meta-data describing the contents being carried. We
then showed how our framework can be used for securing
enterprise networks and BGP routing.

REFERENCES

[1] R. Yavatkar, D. Pendarakis, and R. Guerin, “RFC 2753: A Framework
for Policy-based Admission Control,” Jan. 2000. [Online].Available:
http://www.faqs.org/rfcs/rfc2753.html

[2] P. Kawadia, V.; Kumar, “A cautionary perspective on cross-layer design,”
Wireless Communications, IEEE [see also IEEE Personal Communica-
tions], vol. 12, no. 1, pp. 3–11, Feb. 2005.

[3] D. L. McGuinness and F. van Harmelen, “Owl web ontology language
overview,” W3C Recommendation 10 February 2004, Tech. Rep., 2004.
[Online]. Available: http://www.w3.org/TR/owl-features/

[4] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, “Swrl: A semantic web rule language combining owl and
ruleml,” W3C Member submission 21 may 2004, Tech. Rep., 2004.
[Online]. Available: http://www.w3.org/Submission/SWRL/

[5] D. Wetherall, J. Guttag, and D. Tennenhouse, “Ants: A toolkit for
building and dynamically deploying network protocols,” 1998. [Online].
Available: citeseer.ist.psu.edu/wetherall98ants.html

[6] D. S. Alexander, W. A. Arbaugh, M. Hicks, P. Kakkar,
A. Keromytis, J. T. Moore, C. A. Gunter, S. M. Nettles, and
J. M. Smith, “The SwitchWare active network architecture,”IEEE
Network Magazine, vol. 12, no. 3, pp. 29–36, 1998, Special
issue on Active and Controllable Networks. [Online]. Available:
http://www.cis.upenn.edu/ switchware/papers/switchware.ps

[7] S.Kodeswaran, O.Ratsimor, A.Joshi, and F.Perich, “Using semantic tags
for policy based networking,” inGlobecom ’07: Proceedings of the IEEE
Global Communications Conference, Washington, DC, USA, 2007.

[8] “http://www.cs.umbc.edu/ kodeswar/ontologies/NetworkOnto.owl.” [On-
line]. Available: http://www.cs.umbc.edu/ kodeswar/ontologies/NetworkOnto.owl

[9] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol(s-bgp),”
IEEE Journal on Selected Areas in Communication, vol. 18, pp. 582–
592, 2000.

[10] T. Feng, R. Ballantyne, and L. Trajkovic, “Implementation of bgp in a
network simulator,” inProc. Applied Telecommunications Symposium,
ATS’04, April 2004, pp. 149–154.

[11] R. Braden, D. Clark, and S. Shenker, “RFC 1633: Integrated Services
in the Internet Architecture: an Overview,” June 1994. [Online].
Available: http://www.faqs.org/rfcs/rfc1633.html

[12] S. Blake, D. L. Black, M. A. Carlson, E. Davies, Z. Wang, and W. Weiss,
“An Architecture for Differentiated Services,” December 1998, status:
INFORMATIONAL.

[13] “Secure Origin BGP (SoBGP) Certificates. Internet Research Task Force,
June 2003. (draft-weis-sobgp-certificates-00.txt).”

[14] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens,D. Meyer,
T. Bates, D. Karrenberg, and M. Terpstra, “Routing Policy Specification
Language (RPSL),” Internet Engineering Task Force: RFC 2622, June
1999.

[15] R. Ashri, T. Payne, D. Marvin, M. Surridge, and S. Taylor, “Towards a
semantic web security infrastructure,” inSemantic Web Services 2004
Spring Symposium Series, [”lib/utils:month_9040” not defined] 2004.
[Online]. Available: http://eprints.ecs.soton.ac.uk/9040/

[16] A. Toninelli, R. Montanari, L. Kagal, and O. Lassila, “Asemantic
context-aware access control framework for secure colloborations in
pervasive computing environments,” inISWC’05 : Proceedings of the
5th International Semantic Web Conference, 2005.

