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Abstract

Real-time imaging has potential to greatly increase the effectiveness of proton beam therapy
for cancer treatment. One promising method of real-time imaging is the use of a Compton
camera to detect prompt gamma rays, which are emitted along the path of the beam, in order
to reconstruct their origin. However, because of limitations in the Compton camera’s ability
to detect prompt gammas, the data are often ambiguous, making reconstructions based on
them unusable for practical purposes. Deep learning’s ability to detect subtleties in data that
traditional models do not use make it one possible candidate for the improvement of classification
of Compton camera data. We show that a suitably designed neural network can reduce false
detections and misorderings of interactions, thereby improving reconstruction quality.

Key words. Proton beam therapy, Prompt gamma imaging, Compton camera, Machine
learning, Deep learning.

1 Introduction

Proton beams’ primary advantage in cancer treatment as compared to other forms of radiation
therapy, such as x-rays, is their finite range. The radiation delivered by the beam reaches it
maximum, known as the Bragg peak, at the very end of the beam’s range. Little to no radiation is
delivered beyond this point. By exploiting the properties of the Bragg peak it is possible to only
irradiate cancerous tissues, avoiding any damage to the healthy surrounding tissues [9]. However,
without some way to image proton beams in real time limitations exist in our ability to take full
advantage of the dose delivery properties of the proton Bragg peak. This is due to uncertainties in
the beam’s position in the body relative to important organs that should not be irradiated.

The Compton camera is one method for real time imaging, which works by detecting prompt
gamma rays emitted along the path of the beam. By analyzing how prompt gamma rays scatter
through the camera, it is possible to reconstruct their origin. However, the raw data the Comp-
ton camera outputs does not explicitly record the sequential order of the interaction data which
represents scatterings of a single prompt gamma ray. In addition, it often records false events,
which mislabel scatterings of distinct prompt gamma rays as originating from a single ray. These
problems make reconstructions based on Compton camera data noisy and unusable for practical
purposes [9].

We approach this problem by constructing a neural network. Neural networks represent trans-
formations of data. The network is trained by passing data through it then updating it systemati-
cally so as to reduce the loss of its output compared with some desired output. Doing this properly
can create a model that exploits subtleties in the data which traditional models are unable to
use [4].
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In order to reduce the noise present in Compton camera data, we train a neural network to
process the data so as to reduce false events and correctly order interactions within events. We then
evaluate how this network affects the quality of prompt gamma-based proton beam reconstructions.
We first classify a single interaction in an event, rather than the entire entire event, and achieve
an accuracy nearing 90% after using an appropriate input data format and sufficient network
complexity. We then approach the task of classifying an entire event, and reach an accuracy of over
80%. This demonstrates the feasibility of using a neural network to accurately classify events.

Prompt gamma emission reconstruction is a problem that we have done previous work on,
which can be seen in [1, 3, 5, 6]. In all works we took the CCI reconstruction algorithm and a
collection of prompt gamma emission events and attempted to recreate the original proton beam
in 3D space. In [1] we focused specifically on improving the reconstruction speed for code which
was originally serial in nature. We took the serial code and implemented multi-threading to take
full advantage of a multi-core system. In [3,5,6] we took the multi-threaded code and implemented
an MPI system which allowed for use of a high performance computing environment. The main
focus of these works was about increasing the speed of reconstruction and enabling the algorithm
to see timing improvements in a high performance computing environment where we can use many
nodes with many cores available. It is important to note that these works did not address how the
gamma emissions were grouped or classified prior to reconstruction. We created a conic section
using all three interactions. If the conic section’s properties were beyond certain thresholds, the
event was assumed to be bad and was thrown out. In this technical report we specifically discuss
the classification of prompt gamma events via a neural network. The network which results from
this work would occur before the actual reconstruction process and deals with an entirely different
part of the Compton camera to reconstruction pipeline.

The remaining sections of this report are organized as follows: Section 2 introduces proton beam
therapy for cancer treatment and its current limitations. Section 3 discusses how Compton camera
imaging can be used to overcome the limitations of proton beam therapy and explains how the
presence of false events and misordered interactions in Compton camera data limits its practical
usage. Section 4 gives a brief overview of neural networks. Section 5 describes the training of a
series of networks to classify false events and order interactions. Section 6 presents our conclusions
on this work

2 Proton Beam Therapy

Proton beam therapy was first proposed as a cancer treatment by Robert Wilson in 1946 [10]. To a
first order approximation, the radiation dosage emitted by a proton beam is inversely proportional
to the kinetic energy of the particles within the beam. Because the beam’s particles lose kinetic
energy as they traverse the patient, the amount of radiation delivered by the beam is low at its
entry point, gradually rising until the beam nears the end of its range, at which point the delivered
dosage rapidly reaches its maximum. This point of maximum dosage is called the Bragg peak.
Little to no radiation is delivered beyond the Bragg peak. These characteristics of proton beam
therapy give it a distinct advantage over x-rays. Exploiting its finite range, medical practitioners
can confine the radiation of the beam to solely areas affected by cancerous tumors. Vital organs
beyond the tumor can be spared [1, 5, 9].

Figure 2.1 shows two horizontal cross-sections of the chest comparing how radiation is delivered
by x-ray therapy and by proton beam therapy. At the top of each image is the vertebral body,
which contains a tumor that should be irradiated. Since the heart, which is at the bottom center, is
still healthy, any radiation delivered to it should be avoided. In the case of x-ray therapy the heart
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lies directly in the path of the x-rays. For proton beam therapy, however, all radiation is confined
to just the vertebral body. The greater level of precision that proton beam therapy possesses allows
for higher dosages of radiation to be delivered to cancerous tissues with minimal damage to healthy
tissues. This can lead to better patient outcomes [9].

(a) (b)

Figure 2.1: (a) X-ray treatment as compared to (b) proton beam treatment.

While the characteristics of proton beam therapy explained above would in principle greatly
reduce the negative effects of radiation therapy, there are still practical limitations. In current
practice the patient’s body is imaged before undergoing treatment in order to map the position
of the tumor. Because proton beam therapy consists of multiple sessions over a period of one to
five weeks, the relative size and position of the tumor within the patient’s body may change as
surrounding tissues swell, shrink, and shift as a response to radiation. Therefore, whenever using
proton beams a margin of error must be added to the position of the Bragg peak in order to
fully irradiate the tumor. This rules out certain beam trajectories that would otherwise minimize
damage to healthy tissue [9].

Figure 2.2 compares two possible beam trajectories through a cross-section of the chest [9]. In
this case the heart, outlined in purple, is positioned at top-center of the figure and a tumor, outlined
in green is located next to it. The optimal trajectory, shown in the left image, uses a single beam,
which is represented as the space between the dashed white lines, to fully irradiate the tumor while
stopping before reaching the heart. However, due to uncertainty in the exact location that the

Figure 2.2: (a) Optimal proton beam trajectory. (b) Suboptimal trajectory necessary to protect
heart.
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Bragg peak occurs (and the beam stops), represented as an orange strip at the end of the beam
partially overlapping with the heart, to fully cover the tumor would mean possibly irradiating the
heart. Therefore, in practice the trajectory in the right image using two beams is used. Because this
trajectory passes through the lungs, delivering a small dose of radiation to them, it is considered
suboptimal [9].

3 Compton Camera Imaging

3.1 Introduction to the Compton camera

In order to exploit the full advantages of proton therapy, many researchers are investigating methods
to image the beam in real time as it passes through the patient’s body [9]. One proposed method
for real time imaging is by detecting prompt gamma rays that are emitted along the path of the
beam using a Compton camera.

As the proton beam enters the body, protons in the beam interact with atoms in the body,
emitting prompt gamma rays. These prompt gamma rays exit the body, some of which entering
the Compton camera. Modules within the Compton camera record interactions with energy levels
above some trigger-threshold. These modules have a non-zero time-resolution during which all
interactions are recorded as occurring simultaneously. For each interaction (that is, Compton
scatter) an (x, y, z) location and the energy deposited are recorded. The collection of all interaction
data that a camera module collects during a single readout cycle is referred to as an event. [8].

In principle it is possible to use the data that the Compton camera outputs (paired with a
suitable reconstruction algorithm) in order to image the proton beam, however this has been shown
to only be feasible at low energy levels. At the higher energy levels more typical of proton beam
therapy, reconstructions of the beam are far too noisy to be helpful. This is a result of two main
limitations in how the Compton camera records events [8]:

• Reconstruction methods typically require that all interactions in an event be chronologically
ordered by their occurrence. However, as noted above, due to the camera’s non-zero time-
resolutions, the camera records all interactions within an event as occurring simultaneously.
Therefore, the order of interactions that it outputs is arbitrary.

• Reconstruction methods also assume that all interactions in an event correspond to the same
prompt gamma ray. However, since the Compton camera classifies all scatters occurring in
the same module during the same readout cycle as belonging to the same event, should two
prompt gamma rays enter the same module of the Compton camera during the same readout
cycle, the camera would record the resulting interactions in a single event. This results in
events that do not correlate to any actual physical event, which are referred to as false events.

At the higher energy levels typically used in treatment, proton beams emit a larger number of
prompt gamma rays per unit time, increasing the likelihood of false events. Also, prompt gamma
rays are more likely to scatter at higher energy levels, leading to more multi-scatter events, which,
as explained above will be unordered. These two effects greatly diminish the accuracy of Compton
camera reconstructions at high energy levels, making them unusable [8].

3.2 The representation of events

Multiscatter events can be classified into five categories. A False Triple event consists of three
interactions which all originate from separate prompt gamma rays that happened to enter the
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Figure 3.1: An illustration of events.

same module of the camera at the same time. These should be removed from the data before
reconstruction. Similarly, False Double events contain two interactions originating from separate
prompt gamma rays. These too should be removed. A Double to Triple event contains two inter-
actions corresponding to the same prompt gamma ray, and one interaction from a different prompt
gamma ray. The non-corresponding interaction should be removed before reconstruction. The two
remaining categories of events are true double and true triple events, which, once properly ordered,
can be used for reconstruction.

Figure 3.1 shows a schematic of the Compton camera as it records events. The left side shows
events produced at low energy levels and the right shows higher energy levels. Each row represents
an independent module of the camera. The red arrows represent scatters, with those originating
from the same prompt gamma ray being connected by a dotted line. A single readout cycle within
a module of length TA is represented by a raised pulse. The value n is how many interactions occur
during the readout cycle. Looking at just the left side, the first two rows show a True Double and
True Triple event, respectively. The third row shows a False Double event consisting of two scatters
originating from different prompt gamma rays. The fourth and fifth rows show two True Single
events that consist of separate scatters by the same prompt gamma ray. The right side representing
higher energy levels shows a far greater proportion of false events.

The raw data output by the Compton camera contains the information shown in Figure 3.2(a).
The entire matrix represents an entire event, while each row represents a single interaction. There
are three rows because an event can contain up to three interactions. The variable ei represents the
energy level of the ith interaction, where i = 1, 2, 3, while (xi, yi, zi) represents the corresponding
position. Note that data representing double events still contains three rows even though double
events contain only two interactions. This is necessary, since the networks we introduce in Section 5
expect input data to be a consistent size. To account for the missing interaction the third row will
be zeroed out. Similarly, single events would have two rows zeroed out, however, single events have
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e1 x1 y1 z1
e2 x2 y2 z2
e3 x3 y3 z3

e1 x1 y1 z1 δe1,2 δr1,2
e2 x2 y2 z2 δe2,3 δr2,3
e3 x3 y3 z3 δe3,1 δr3,1

(a) (b)

Figure 3.2: (a) The initial input format representing a single event. (b) The appended input format
including distances and energy distances between each interaction.

only one possible ordering, so there is no need to classify them.
To improve the performance of our networks, we find it useful to use the appended data shown

in Figure 3.2(b). In this version we add the distances δri,j and the differences in energy levels
δei,j between the ith and jth interactions, where i, j = 1, 2, 3. Since these values have physical
significance with regards to the ordering of interactions, explicitly including them in the data
makes it easier for the networks to learn. For double events, the non-relevant δri,j and δei,j are set
to zero. We use the value zero rather than NaN because our networks require that all data consist
of real numbers.

4 Deep Learning

We propose to train a neural network to process the data output by the Compton camera by
removing false events and properly ordering the camera events within events.

The structure of a fully connected neural network is shown in Figure 4.1 [2]. The network
contains three main components: an input layer which accepts the data, hidden layers which each
perform some transformation on the data, and an output layer which returns the transformed
data in some prescribed format [4]. We would like to train the neural network to transform the
provided data in some useful way. In the case of the data output by the Compton camera, we would
like the neural network to transform each multi-scatter event so that it contains only interactions
originating from the same prompt gamma ray, and so that these interactions are in the correct
order.

→ →

DATA

LAYER LAYER LAYER LAYER

CORRECT ORDER
CE2, CE1, CE3

HIDDEN LAYERS

NETWORK

1  2  3  4

OUTPUT
1
0
1
1
0
1
0
1

Figure 4.1: The structure of a fully connected neural network.

Figure 4.2 shows the training and testing process for a neural network during what is called
supervised learning [2]. Supervised learning refers to training the neural network using labels for
the data which provide what the transformed data is supposed to look like. By feeding data into
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the network and comparing it with the corresponding labels using a suitable loss function, we can
calculate the current loss of the neural network. The neural network can then be updated using an
optimization function. After training the network, it is then tested on data it has not seen before.
If the network performs well on data it was not trained on, this indicates that the network’s model
generalizes well and can be used on real-life data.

PROVIDED
ANSWERS

OUTPUT
GUESSES

→

→ →

TRAINING
DATA

TEST
DATA

FULLY CONNECTED 
NEURAL 
NETWORK

FULLY CONNECTED 
NEURAL 
NETWORK

Figure 4.2: The training and testing process for a fully connected neural network.

To improve the network’s performance, it is typical to train the network on all available data
multiple times. One pass through all the training data is referred to as an epoch. Often, the
network will be trained for hundreds or thousands of epochs. It is standard practice to set aside
some data with which to evaluate the network after each epoch. These data are called the validation
data. By evaluating the network at the end of each epoch it is possible to plot how the network’s
performance improves over the training process, giving insight into whether or not the network
has been fully trained. After the network has finished training, a final data set separate from the
training data and validation data is used to test the network. This data set is referred to as the
testing data.

One of the primary difficulties in deep learning is training a network so that it properly fits
the data it is being applied to. When there is still information in the data that has not been
incorporated into the network’s model this is referred to as underfitting. This occurs because
the network has either not been trained enough, or because the network size is too small to fully
process the data. When the network performs very well on the data it has been trained on but
does not generalize to data that it has not been trained on, this is called overfitting. Overfitting
occurs because the network has begun directly mapping inputs to outputs, that is, “memorizing”
the data. Since large networks have a greater capacity to store information about the data, they
are more likely to overfit. Therefore, using a larger network does not necessarily lead to better
performance [4].

Figure 4.3 compares the accuracy curves of three networks which originating from a textbook
example as they are being trained [4]. In each plot the blue curve represents training accuracy, that
is, how well the network performs on training data at each epoch, while the orange curve represents
validation accuracy, which measures how well the network performs on a validation set composed
of data the network was not trained on. The left plot shows training and validation curves typical
of underfitting. Since the network still has not fully internalized distinguishing features in the
training data, it performs just as well on the validation data as it does on the training data. The

7



(a) underfitting

(b) suitable fitting

(c) overfitting

Figure 4.3: The training and validation accuracy curves representative of underfitting, a suitable
fitting, and overfitting.

plot on the right shows an overfitting curve. Here there is a large gap between training accuracy
and validation accuracy, indicating a lack of generalization. The plot in the center shows what the
training and validations curves of a suitable fitting look like. The training and validation curves are
just beginning to diverge, but are still very close. This occurs because the network has incorporated
as much information from the model as it can, so any additional training either has no effect on
the validation accuracy, or even lowers it.
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5 Results

We now train a series of fully connected neural networks to classify events and properly order the
interactions with an event. Subsection 5.1 presents networks that classify only a single interaction,
whereas the network in Subsection 5.2 classifies and reorders a complete event. All of these networks
use a large number of layers, as many as 24, so residual skips are used to support this network size.
Dropout layers are used as well.

The networks in this work were trained using the GPU portion of the taki cluster, maintained
by the UMBC High Performance Computing Facility, which has the following specifications:

• 1 GPU node from 2018 containing four NVIDIA Tesla V100 GPUs (16 GB onboard memory)
connected by NVLink and two 18-core Intel Skylake CPUs. The node has 384 GB of memory
(12 × 32 GB DDR4 at 2666 MT/s) and a 120 GB SSD disk.

• 18 hybrid CPU/GPU nodes from 2013, each containing two NVIDIA K20 GPUs (2496 com-
putational cores, 5 GB onboard memory) and two 8-core Intel E5–2650v2 Ivy Bridge CPUs
(2.6 GHz clock speed, 20 MB L3 cache, 4 memory channels). Each node has 64 GB of mem-
ory (8 × 8 GB DDR3) and 500 GB of local hard drive. The nodes are connected by a QDR
(quad-data rate) InfiniBand switch.

5.1 Classifying a Single Camera Event

We first train a series of networks which only classify the first interaction of an event. Initially they
use the data format shown in Figure 3.2(a) as their input. A softmax activation function is used
to output the probability of each possible place of the interaction in the sequence of all camera
events, that is, the probability that the interaction came first, second, third, or that it is actually
not a part of the event at all.

Figure 5.1(a) shows the training and validation accuracy of our initial version of the network
after being trained for 400 epochs on normalized data. This network is able to learn, capping out
at an accuracy around 70%, however the network underfits the data. This is indicated in the plot
by the fact the validation curve still lies on top of the training curve at the end of training.

(a) (b)

Figure 5.1: Training accuracy and validation accuracy of initial version of the network trained on
normalized data for (a) 400 epochs and (b) 2000 epochs.
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Figure 5.2: Training accuracy and validation accuracy of 16 layer network using a SeLU activation
function trained on normalized data for over 2000 epochs.

We take two actions to eliminate the underfitting. The first is to increase the number of epochs
the network is trained on to 2000. The results of this are seen in Figure 5.1(b). The network
achieves a higher accuracy, this time around 80%, but the training and validations curves still lie
on top of each other, indicating underfitting. Therefore we increase the network complexity by
using 16 hidden layers. This is shown in Figure 5.2. At this point our network begins to fit the
data, as seen by the small gap between the training and validation curve. Validation accuracy
comes to slightly more than 80% by the end of training. Note that the validation curve lies above
the training curve. This is explained by our usage of dropout layers.

The next improvement we make to the network’s performance comes by using the appended
input format shown in Figure 3.2(b). By making this change, as well as using five times as much
data as is used by the previous networks, the network is able to reach an accuracy of about 88%,
as seen in Figure 5.3. However, in this case the network is still underfitting after 1200 epochs.

Figure 5.3: Training accuracy and validation accuracy of 16 layer network using a SeLU activation
function trained on 5 times as much data, appended with Euclidean distances and energy differences,
for over 1200 epochs.

10



5.2 Classifying a Complete Event

In order to classify all the interactions in an event simultaneously, thereby classifying the event
itself, we train a new network which predicts the correct permutation of interactions. For example,
the output “314” indicates a Double to Triple event where the correct interactions are the first
and third interactions of input data, and the correct ordering of their occurrences places the third
interaction from the input as the first to actually occur, then the first interaction from the input
as the second to actually occur. The network continues to use a softmax activation function, so its
output is the probability of every possible permutation of interactions. Our input layer consists of
a dense 15 neuron layer, corresponding to the data structure show in Figure 3.2(b). The hidden
layers are 24 fully connected layers with a 4096 square dimension. Our output layer is a dense 24
neuron layer, corresponding to the 24 possible permutations. We use a residual skip every four
layers. We fix learning rate at 10−6 and batch size at 8192, and we train for over 1000 epochs.

Figure 5.4(a) shows the training and validation accuracy curves of this new network. The
network achieves a validation accuracy of about 82% after over 1000 epochs of training. This
accuracy is lower than what the network classifying only individual interactions achieves, however
this new network is performing a more complicated task.

Figure 5.4(b) shows the validation accuracy for each individual event type. This shows that
the network performs better on some event types than others. The network classifies Double to
Triple events with an accuracy of over 90%, False Doubles and False Triples are classified with an
accuracy of slightly more than 80%, while True Doubles and True Triples are correctly classified
less than 80% of the time. This is possibly due to an input class invariance, that is, the frequency
of occurrence differs across event types, so the network can incorporate more information into its
model about some input classes than it can about others.

(a) (b)

Figure 5.4: (a) Training accuracy and validation accuracy of network which classifies complete
events, trained for over 1000 epochs. (b) Validation accuracy separated by input category.

6 Conclusions

The series of networks trained in Section 5.1 demonstrated that it was possible for a fully con-
nected neural network to learn from the Compton camera data and classify single interactions at a
reasonable accuracy. It was also shown that augmenting the interactions with information about
distance and energy difference from other interactions in the event allows the network to learn more
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quickly and attain a higher accuracy, even if this information could be directly deduced from the
unaugmented data.

Using what we learned classifying single interactions, we showed in Section 5.2 that it is also
possible to order and classify entire events at only a slightly lower accuracy. We found that the
network classified some event types, such as double-to-triple events, at a much higher accuracy than
it classified other events, like true doubles and true triples. This is likely due to class imbalances
in the data.

To demonstrate the effect that classification has on proton beam reconstructions, Figure 6.1
shows three different simple back-projection reconstructions. Note that back-projection is one of
the simplest reconstruction methods, and more sophisticated methods will produce clearer recon-
structions [7]. Figure 6.1(a) was created using just the raw data output by the Compton camera.
The large amount of noise in it makes it very difficult to identify the location of the Bragg peak.
Figure 6.1(b) was created using Compton camera data that is classified at the same accuracy as
in Figure 5.4(b). It demonstrates what effect the neural network in Section 5.2 would have on
reconstructions. While there is still a great deal of noise, the shape of the beam is clearer and it is
possibly to pick out the approximate location of the Bragg peak with the naked eye. Figure 6.1(c)
uses perfectly classified Compton camera data to reconstruct the beam. It shows the limit of how
much a neural network such as the one trained in Section 5.2 can improve reconstruction quality.

To our knowledge, this work represents the first attempt to use a neural network to classify
and order Compton camera data. While the accuracy curves in Figure 5.4 and the reconstruction
in Figure 6.1(b) clearly show room for improvement, they demonstrate the feasibility of applying
neural networks to this problem. By exploring further network designs it may be possible to attain
higher accuracies and produce better reconstructions.

(a) (b) (c)

Figure 6.1: Reconstructions using (a) unclassified data, (b) data classified with the accuracies
shown in Figure 5.4(b), and (c) data classified with perfect accuracy.
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