




ABSTRACT

Title of Thesis: CT-scan image denoising with
Generative Adversarial Networks

Binit Gajera, Master of Science, 2020

Thesis directed by: Dr. David Chapman
Department of Computer Science
and Electrical Engineering

We propose a Generative Adversarial Network (GAN) optimized for noise reduc-

tion in CT-scans. The objective of CT scan denoising is to obtain higher quality

imagery using a lower radiation exposure to the patient. Recent work in computer

vision has shown that the use of Charbonnier distance as a term in the perceptual

loss of a GAN can improve the performance of image reconstruction and video su-

per resolution. However, the use of a Charbonnier perceptual distance term has

not yet been applied or evaluated for the purpose of CT scan denoising. Our pro-

posed GAN makes use of the Wasserstein distance as an adversarial loss function

and our perceptual loss combines Charbonnier distance with pre-trained VGG-

19. We evaluate our approach using both simulated Poisson noise, as well as real

low-dose CT imagery. Our evaluation on real Low-Dose CT (LDCT) imagery ap-

plies published methods for estimating the noise through a uniform medium of Air

and/or Soft tissue. We evaluate our CT-denoising GAN by measuring the noise

reduction over simulated as well as real Low-Dose CT imagery. Our findings show



that the incorporation of the Charbonnier Loss with the VGG-19 network im-

proves the performance of the denoising as measured with Peak Signal-to-noise

ratio (PSNR), Structural Similarity Index (SSIM), as well as Air and Soft Tissue

noise metrics.
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Chapter 1: Introduction

1.1 Computed Tomography Scan

Computed Tomography (CT) is an x-ray imaging procedure where a narrow beam

of x-rays enters the patient’s body from all directions at some point during the

scan, this creates cross-sectional images or “slices” of the body. Then these slices

are in turn used for diagnosis purposes. The scans capture detailed images of in-

ternal organs, bones, soft tissue and blood vessels. CT has an advantage of the

x-ray modality in that the 3D volume can allow the radiologist to look around

bones and other anatomical structures that might disrupt view of important re-

gions thereby hindering diagnosis. However, a disadvantage of CT scanning is that

the requirement of taking slices from so many different angles increases the overall

amount of radiation exposure. As such, techniques to improve the quality of the

CT scan while simultaneously decreasing the radiation exposure of the patient are

an important area of research.

The process of performing a CT-scan exposes the patient’s body to radiation be-

cause of the x-rays entering the body from multiple directions. Here, the dose of

radiation can be controlled but that in turn reflects on the quality of the scan as

well. The strength of a CT is its ability of visualizing structures of low contrast in
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a subject, but that is again dependent on the level of radiation dose used on the

subject. It has been noted that, higher the dose contributing to the scan, the less

image-noise is present which in turn makes it easy to perceive the low-contrast

structures [1]. CT dosimetry is an approach of measuring the amount of radia-

tion dose used for scanning the subject and the dose levels can be controlled by

the operator before starting the process of CT-scan. While performing a CT-scan,

each slice of tissue receives radiation not only when that slice is scanned but also

when the adjacent slices are scanned and thus the patient is exposed to the radia-

tion from all sides and even to the depth of the structure which is being scanned,

therefore right amount of radiation dose is important so that the patient does not

suffer from any side effects from the scan in the nearby future.

1.2 Radiation Dose

CT dose index (CTDI) is the most commonly used dose descriptor, which repre-

sents the dose to a location in a scanned volume. There are various versions of the

descriptor such as CTDI100 which takes a linear measure of dose distribution over

a pencil ionization chamber and hence does not take into account the topographi-

cal variation of a human body, CTDIw is a weighted dose index for periphery and

center this makes it more relatable to the human body structure and is used is

CT-scan instruments, also CTDIvol is a type of dose index which performs similar

to the weighted version but divides CTDIw by a pitch factor. Any form of CTDI

is just an estimate of average radiation dose, there still exists risk from ionizing
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radiation which is more closely related to the total amount of the radiation dose

deposited in the patient. A more close estimate of the dose index would be sug-

gested Dose-length product (DLP):

DLP = L× CTDIvol (1.1)

Here L is the total z-direction length of the examination which gives it the rela-

tion with the level of depth as well. Some CT scanners also display DLP alongside

the CTDI for operators.

1.3 Visualizing CT-scans

Fundamentally, image quality in CT-scans depends on 4 basic factors as applied

to all medical imaging, image contrast, spatial resolution, image noise and arti-

facts. We here would be discussing image noise, as our model and data correlates

with that information. As per [1], the graininess in a Low-Dose CT-scan is of the

same nature as radiographic quantum mottle which is caused due to the use of a

limited number of photons to form the image. The distribution that we obtain

from the quantum mottle is fundamentally similar to the Poisson Distribution

which we are adding to our dataset while preparing the data for the model. Now,

the main task for a CT-scan is to visualize low-contrast structure which in turn

is primarily dependent on image noise in such manner that if the noise is more in

the image the structures would not be visible properly to the viewer of the scan

and hence less amount of noise is preferred to get the correct representation and
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state of the low-contrast structure.

Visualizing low-contrast structures with high quality in turn means exposing the

patient high amounts of radiation because a Low-Dose CT-scan (LDCT) would

contain noise grains in the slices and thus that makes it difficult to perceive the

structures. Our task here is to achieve a better visualization of the low-contrast

structures in a LDCT scan by decreasing the amount of noise present in those

slices, the LDCT scan should in turn be at least visually similar to the NDCT

scan so that patients can avoid getting exposed to high radiation dose and med-

ical doctors can also diagnose, without any trouble and extra analysis, using the

LDCT scan.

1.4 Using GANs

Therefore, to reduce the amount of radiation a patient would be facing while per-

forming their regular CT-scans, we propose a CT denoising network that can

denoise scans from LDCT so that they are more perceptive and more close to

NDCT scans. This would help the radiologists as well because many at time they

have to perform LDCT scans on patients due to number of reasons, and in doing

so it would help and be much better if the scans had lower amount of grains in

them so that the low-contrast structures, the soft tissues and the artifacts can be

visually perceived without any constraints or more analysis. Also, the CT denois-

ing would be considered as a postprocessing algorithm after the actual scan has

been performed, this is because once the scan is extracted from lower radiation
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dose it would have some amount of grains/noise in it which our goal is to reduce,

hence after the scan and before the radiologist takes the scan we would have to

perform a post processing step of decreasing the number of grains and decreasing

the level of noise from the slices, where our denoising network would be used.

Generative Adversarial Networks are used for many applications such as Art cre-

ation [2], Image super-resolution [3], and Image transformation [4]. Our end goal

here is to generate an image with a lower amount of noise then before, and hence

we decided that we can incorporate the network of GAN and use it to achieve our

functional goal. WGAN is preferred here over GAN because most of the task with

GAN does not require the generated images to be in the same distribution as the

training dataset while for us and other tasks such as Image super-resolution it is

imperative that the generated image be in the same distribution as the training

dataset and hence we decided to use WGAN. Also, there are issues with training

a normal GAN such as vanishing gradient because of which the generator of the

GAN does not converge and takes more amount of time to train the model, this

disadvantage of GAN is removed from WGAN by using a different loss function

whose backpropagation is possible at all unit of time during training, this function

is the Earth-mover or Wasserstein distance. We would be discussing more about

the GANs and the Problems with GANs in the following sections.
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1.5 Loss functions and its integration with WGAN

To maintain the feature space between the generated distribution and the train-

ing set distribution we have incorporated the use of Perceptual Loss [3] into our

WGAN. The loss function which we would also discuss in the following sections

contains a summation function of the perceptual loss and the Wasserstein distance

function. The main usage behind the perceptual loss is to maintain the human

perceptive features in the images. Several times just using GANs loss function can

add artifacts or blurring which most of the times have been added because of the

MSE loss function required by those tasks [3, 5], since our task relates to medical

imaging where it is very crucial to maintain the features we use perceptual loss

instead of the MSE loss. The perceptual loss in turn does require extracted fea-

tures from the slices, for which we are also using a pre-trained VGG 19 model as a

feature extractor. The VGG-19 [6] is a convolutional neural network with 19 deep

layers which is trained on ImageNet that contains 14 million images, given the size

of the dataset it would not be physically possible to train the model again on the

same dataset and generate the weights here for our usage instead it is more bene-

ficial to use the pre-trained model provided by the authors, this model would have

the same weights and would be able to extract necessary features from the CT

slices because it is trained on a real world dataset of ImageNet [7].

Over the past few years, many researchers have been working on the Iterative Al-

gorithms (IR) for LDCT image reconstruction. It has been shown that LDCT im-

age reconstruction in turn helps in decreasing the amount of noise as well [8] but
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they still may lose some details. Apart from that the bottleneck for these appli-

cations to be used practically is that they have a high amount of computational

cost and thus necessary resources to perform and execute the given algorithms are

needed. Wolterink et. al [9] were the first to apply GANs for the purpose of CT-

scan denoising and it did show promising results about which we will discuss more

in the Related Work section of this paper.

1.6 Evaluation of the CT-scans

To evaluate the model we make use of the PSNR ratio between the generated

and the NDCT slices during training which is compared with the PSNR ratio be-

tween the same NDCT slice and its corresponding LDCT slice. After the training

is completed and testing slices are generated we also compare the MSE Loss be-

tween those slices to see improvement and decrement of noise levels. Apart from

these standard metrics, we also make use of published evaluation method [10] for

CT-scans which makes use of Standard Deviation and Variance to find the noise

levels in the region of soft tissues and air pixels after the pixel values have been

converted to Hounsfield units in the preprocessing step. Also, the method uses

Sobel filter to detect the region of interest (ROI) in the slices and further modifi-

cation have been done to find the ROIs for our data distribution. More about the

published approach and the results obtained would be discussed in the later part

of the paper.
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1.7 Thesis Statement

A Generative Adversarial Network that incorporates Charbonnier distance along

with the perceptual loss and adversarial loss can improve the quality of CT scans

without increasing the radiation exposure to the patient.

1.8 Contributions

• We introduce the Charbonnier distance term as part of the perceptual loss

of a CT denoising GAN. Although the Charbonnier loss term has been re-

cently demonstrated for related video-superresolution, to the best of our

knowledge we are the first to evaluate this approach for CT-scan denoising.

• We compare the results of our CT-scan denoising algorithm against two

state-of-the-art CT-denoising GANs from literature, and demonstrate that

the proposed CL-WGAN outperforms these techniques in terms of PSNR

and SSIM.

• We evaluate the performance of the CL-WGAN using published soft-tissue

and smooth region noise metrics from Radiology literature in addition to

PSNR and SSIM.

1.9 Organization of Thesis

The rest of the thesis is organized as follows. We discuss some related works around

denoising CT-scan with different approaches and how complex networks have been
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used in Chapter 2. Following that we would be discussing more in depth about

the components used in building the network and some drawbacks of the Genera-

tive Adversarial Networks in Chapter 3. After that we take a look at how the task

of denoising is achieved with specific methodology and the datasets used in Chap-

ter 4. We discuss few results visually and in terms of quantitative metrics as well

along with a comparison of the approach with similar other approaches in Chap-

ter 5.2. We finally end the thesis with Conclusion in Chapter 6 and discuss some

possible future works in Chapter 7.
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Chapter 2: Related Work

As mentioned before, there are many algorithms that make use of GANs for im-

age quality assessment and for reducing noise levels in natural image datasets, we

would be discussing some of those models and algorithms here. Amongst the ap-

proaches that make use of Deep Learning, there are many Iterative Algorithms

too that researchers have researched upon for image reconstruction and it has

been shown that image reconstruction helps in improving the quality of image in

Low-Dose CT-scans which also will be discussed here. Other than using the ap-

proaches from deep learning there are mainly two approaches that focus on LDCT

denoising that is

• Sinogram filtration

• Iterative algorithms

We would be starting our discussion on related works with these algorithms and

later on discuss some of the approaches that utilize the methodology of GANs.
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2.1 Sinogram filtration

For CT-scans, a sinogram is nothing but raw data that contains the 2-D array of

the projections. The plane representation angular parameter and distance along

the projection direction is what the sinogram is. Mainly sinograms are used for

image reconstruction, but many researchers such as Davood Karimi et. al [11]

were able to design an algorithm that performs filtration using the sinogram data

after the image reconstruction has been performed. This in turn provides a CT-

scan with lower noise than the original.

One other similar approach to the one mentioned above is performed by Armando

Manduca et al. [12] which uses sinograms. They also perform filtration but here

the authors have designed an algorithm that uses Sinogram smoothing with bilat-

eral filtering. The authors have proposed the idea of using bilateral filtering di-

rectly after the image reconstruction and according to their analysis sharper edges

are well suited to techniques like bilateral filtering but the noise model in image

space is very complex and hence they apply bilateral filtering on projection space

which in turn also produces a denoised scan from Low-Dose CT-scan.

2.2 Iterative algorithms

Iterative algorithms are mainly used for image construction using different tech-

niques such as a statistical noise model [13–15] and prior image information such

as sinogram in the image domain. Some other image priors are Total Variation
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[16] and dictionary learning [17]. These algorithms can be used for reconstructing

images and then apply different filtration methods to reconstruct an image with

lower amount of noise than the original CT-scan.

These algorithms have provided convincing results so far, but the only disadvan-

tage of using them is that the resources required to run the algorithms are too

many and scarcely available. For example the image priors for iterative algorithms

and the sinogram raw data for sinogram filtration is not readily available as the

CT-scan itself. Also, these approaches require a high amount of computational

cost as mentioned before and thus that also can be considered as a disadvantage

of using such methods.

2.3 Image quality assessment and LDCT Denoising using GANs

There are many different approaches that have been researched upon by many

researchers for improving the quality of an image using GANs and performing Im-

age Quality Assessment (IQA). One such approach is followed by Wei et. al [18]

which incorporates the knowledge gained from the IQA metrics into the GAN

model because as per the analysis from the authors using only GAN with convo-

lutional neural networks makes it less robust to blur and noise from which noise is

of our main concern. The IQA used here returns a score which can then be given

to GAN for efficient learning. They have used another network such as VGG-

16, Inception-v2, and MobileNet as a classifier which classifies between artifacts,

noise and blur based on which they predict a score for the quality of an image.
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The NIMA is an image quality assessment network used by the authors which has

been incorporated with a classifier as described above.

Wolterink et. al [9] were the first authors to build a GAN for Low-Dose CT-scan

denoising. The GAN constructed by them incorporates voxelwise loss. The gener-

ator and discriminator for the GAN are both convolutional neural networks. They

have evaluated the results of denoising on mainly three training strategies: Only

voxelwise loss, voxelwise and adversarial loss and the third used only adversarial

loss. It was reported that they were able to achieve the highest PSNR ratio with

only voxelwise loss but lost image statistics while the adversarial loss was able to

capture the image statistics of routine-dose scans better and thus maintaining the

original features necessary in a CT-scan.

One other such approach where authors have incorporated another metric to train

the GAN more efficiently is by using a sharpness detection network by Xin Yi et.

al [19]. Their GAN is a Sharpness Aware GAN in the sense that for Low-Dose

CT scans they were able to use a conditional Generative Adversarial network

and train a sharpness detection network along with the GAN to guide the train-

ing process of GAN itself. The results obtained by this approach are fairly pretty

good and the amount of noise removed from the LDCT scans does perceptively

make a difference in making any type of diagnosis for radiologists.

One of the few accomplishments from the field of machine learning is the Resnet

architecture developed by Kaiming He et al. [20]. A Resnet follows the concept

of residual learning and forming skip connection layers between the convolutional

layers to preserve features and a stable back-propogation for deep CNNs, following
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the same learning in GANs is made possible by Chenyu You et al. [21], who pro-

posed an architecture for GANs that contain Skip connection layers and network

in network model. The generator G proposed by the authors contains a Feature

Extraction Network and a Reconstruction Network that focuses on extracting and

maintaining the original features from the CT scan so that the generated slices

are a close representation of the normal dose CT slices but with suppressed noise

levels. The discriminator in the complete model is a vanilla CNN with few convo-

lutional layers and few fully connected layers at the end. The authors use L1 loss

function for the GAN and to stabilize the training of the GAN they use Wasser-

stein GAN with gradient penalty which contains an adversarial loss as well. The

authors claim that the results obtained using their network design suggests that

the proposed method can be generalized to various medical image denoising prob-

lems but further efforts are needed for training, validation, testing and optimiza-

tion [21].

One of the other approaches for medical image denoising by the group of authors

Chenyu You et al. [22], is shown to give suppressed levels of noise in Low-Dose

CT scan by using Wasserstein GAN along with a Structural loss. The network of

the Generator contains multiple convolutional layers and the network for the Dis-

criminator is similar to the one discussed before, consisting of vanilla CNN layers.

The loss function incorporated by the authors along with the adversarial loss is

termed as Structural loss and is defined using the equation for the Structural sim-

ilarity index metric [23]. The authors also mention that the purpose for using the

multi-scale SSIM for creating the loss function is to preserve high-resolution and
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critical features for diagnosis. The authors were able to show suppressed levels of

noise from Low-Dose CT scan by incorporating the appropriate loss function in

their WGAN.

In terms of using GANs for generating slices with lower amount of noise from

Low-Dose scans, it is important that the generator does not add any artificial fea-

tures to the scans and generate the scan which maintains all the features required

for diagnosis and are present in the normal-dose CT scan as well. Eunhee Kang et

al. [24] proposes a network architecture that specifically targets the importance of

maintaining the features of the scan. They propose an architecture that has two

discriminators and two generators and three loss functions which includes the ad-

versarial loss, cyclic loss and additionally identity loss. Since the GAN network

proposed here has multiple components the loss functions defined by authors that

cyclic loss and identity loss use the information from each component to build a

scan that suppresses noise levels and maintain the feature space at the same time.

The feature space is important to maintain and thus even our model incorporates

the use of perceptual loss to extract features and maintain them in our generated

scans. The authors [24] mentioned above also provide extensive analysis on the

scans and claim that their proposed method is good at reducing the noise in the

input low-dose CT images while maintaining the texture and edge information.
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Chapter 3: Background

3.1 Generative Adversarial Networks (GANs)

There are many machine learning models nowadays that can perform tasks that

achieve human-level accuracies, but not all tasks that run using machine learning

achieve those results. Generating an image that is never seen before by anyone

and still maintain the features that humans perceive in it is an important and no-

table breakthrough in the field of machine learning and we were able to achieve

those results by using a Generative Adversarial Network (GAN) proposed by Ian

J. Goodfellow et. al [25]. Our network here uses a variant of the GAN version

proposed by the original author and hence it is necessary to discuss the basic im-

plementation of a GAN here.

A Generative Adversarial Network is a network that consists of two other net-

works from which one works as a generative network and the other works as a

discriminative network. The generative model would be termed as G here, and

the discriminative would be termed as D. From both networks, the desired result

would be obtained from the generative model given that we need something new,

it does that by capturing the data distribution provided to the GAN. While the

discriminative model would be estimating a probability of a sample coming from
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the training data and not from the Generator (G). Both of the models are sup-

posed to train each other and solve the minimax problem that will be described

later. During the training, G is supposed to maximize the probability of D making

a mistake that is G is supposed to produce results in such a manner that D labels

those results coming from the training data rather than from G.

Figure 3.1: Brief overview of the GAN architecure by [26]

In simpler terms, let’s assume the generator in our GAN to be a forger of arts

which means it’s task is to create duplicates of the original art. The discriminator

here is assigned the task to verify the authenticity of the art, that is, given an art

to verify that it is fake or is it drawn by the original author. The discriminator

would not be knowing from which distribution it is getting the arts so the art can

be real as well fake. When the training starts G would start with drawing random

noise and D would be predicting them as False seeing which G’s parameters get

updated and it improves upon its results as new and new data it gets to see. The

D then should be able to recognize G’s fake images in order to increase its own ac-

curacy and thus both of the models would be learning from each other until both
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of them start producing expected results.

Therefore we can say that we train D to maximize the probability of assigning the

correct label to both training samples as well samples from G. We simultaneously

train G to minimize log(1 − D(G(z))) where G(x) is a differentiable function rep-

resented by the generator network and D(y) represents the probability of y com-

ing from the training sample and not from G. The minimax game that these both

networks play with each other can be termed as V (D,G) and can be formulated

as described in equation 3.1.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.1)

Here, Pz(z) represents an input noise variable considered as prior for the generator

and Pdata(x) represents the input data that is the training data provided to GAN.

3.2 Problems in GANs

Although GAN has shown success in many realistic image generation tasks, the

training is not that easy, the process is known to be slow and unstable. A GAN

without any modifications contains several problems that makes its training very

difficult and may not give expected results every time. There are two common

divergences used in Generative models Kullback–Leibler (KL) divergence and

Jensen–Shannon (JS) divergence.
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3.2.1 Kullback–Leibler Divergence

KL Divergence measures how a probability distribution p diverges from a second

expected probability distribution q. The minimum divergence here that we can

achieve is zero which will be when p(x) == q(x). KL divergence is also asymmet-

ric which means, when p(x) is close to zero but q(x) is significantly greater than

zero, then q’s effect is disregarded because we measure how p diverges from q [26].

Now, this can give inaccurate results when we just want to measure the similarity

between two equally important distributions.

3.2.2 Jensen–Shannon Divergence

JS Divergence is also a measure of similarity between two probability distribu-

tions, but it is bounded by [0, 1]. The JS Divergence is symmetric and more smooth

than the KL Divergence.

One of the main issues of the GAN discussed above is of Vanishing gradient which

makes the training difficult. Suppose if the discriminator D achieves 100% accu-

racy, that is it becomes perfect, then in that case the Loss would become zero

because of which we end up with no gradient to update the loss during the iter-

ations. Therefore, there are mainly two concerns that arise from this,

• If the discriminator performs well, then the gradient of the loss function

drops down close to zero and the learning slows down or may stop com-

pletely
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• If the discriminator does not perform at all, then the generator would not

have its appropriate feedback and the loss function would be unable to rep-

resent the reality

Because of such reasons it becomes difficult to fully train a Generative Adversarial

Network and receive expected or even good results.

3.3 Wasserstein GAN

Considering the instability of GAN, Wasserstein GAN is a variant of the same.

The main concern in the GAN is of using the divergence as loss functions for gen-

erator and discriminator so we used a completely different metric here for loss

function which would increase the performance of the GAN even when discrimi-

nator shows great results. The modification and network architecture for Wasser-

stein GAN proposed by Arjovsky et al. [27], has shown better results than GAN

[26] in my experiments including tasks related to medical imaging, thus we would

be using WGAN for our further research.

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ[‖ x− y ‖] (3.2)

Earth-Mover (EM) distance or Wasserstein-1 is a type of distance formula that

we can use to construct the loss function for the Wasserstein GAN, in fact the

name of the GAN also comes from the name of the distance formula. Here, for

the distance, we would be using a set of joint distributions whose marginals are Pr
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and Pg. Here γ(x, y) represent how much “mass” is required to transport from x

to y so that the distribution Pr is transformed into the distribution Pg [27]. The

EM distance then becomes the “cost” of the optimal transport plan.

The authors [27] also discuss about Kantorovich-Rubinstein duality [28] which

formulates the equation described in equation 3.3.

W (Pr,Pθ) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)] (3.3)

Where supremum is over all the 1-Lipschitz functions f . As per the authors, if

we have a parameterized family of functions which in our case would be related

to the discriminator and generator, then we could incorporate equation 3.3 into

our GAN’s loss function such that those family of functions are all K-Lipschitz

functions from some K.

The new loss function suggested by the authors [27, 29] that improves the training

of GAN for WGAN is formulated in equation 3.4.

min
G

max
D

LWGAN(D,G) = −Ex[D(x)] + Ez[D(G(z))]

+ λEx̂[(‖ 5x̂ D(x̂)‖2 − 1)2] (3.4)

Here it is another minimax problem that needs to be solved by the network af-

ter all the architecture is still of a GAN. The first two terms perform the Wasser-

stein distance estimation using the EM distance equation with the duality [28],

and the last term is added for network regularization which is a gradient penalty
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term suggested by I. Gulrajani et al. [29]. x̂ is uniformly sampled along straight

lines connecting pairs of generated and real samples and λ is a constant weighting

parameter [30]. From the equation, we can see that WGAN removes the log func-

tion in the losses and also drops the last sigmoid layer in the implementation of

the discriminator D.

The discriminator D is now not the direct critic of telling the fake samples apart

from real ones but is instead trained to learn a K-Lipschitz continuous function

to help compute the Wasserstein distance [26]. To maintain the continuity of the

function, the authors [27] suggests clamping the weights to a small window such

as [−0.01, 0.01] after every gradient update, this would preserve the Lipschitz con-

tinuity. Now as the loss function decreases in training, the Wasserstein distance

gets smaller and the generator’s output becomes closer to the real data distribu-

tion. It is to be noted though, that the loss function is configured to measure the

Wasserstein distance between the real distribution Pr and fake distribution Pg, as

required.

As discussed above, clipping the weight in turn again causes instability in long-

term training. The WGAN suffers with slow training because of that and is not

recommended. To negate the issue of clipping weight the author in collabora-

tion with I. Gulrajani et. al [29] came with the term of gradient penalty which

is added in our loss function and which works a regularization parameter to pre-

serve the Lipschitz continuity and also helps us avoid weight clipping. The main

ideology behind clipping weight is to have a gradient norm of 1 for f between the

points interpolated from real and generated data. Therefore, instead of applying
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the clipping, if the gradient norm moves away from its target norm value 1 then

we penalize the model using our gradient penalty term.

In GAN, the loss function measures how well it fools the discriminator rather than

a measure of the image quality. Therefore in GAN, even when the image qual-

ity improves, the generator loss does not drop and it becomes difficult to perform

evaluations except visually. On the contrary, the WGAN loss function reflects the

image quality as well along with the difference between the real and fake distribu-

tions, which is desirable for our experiments.

3.4 Perceptual Loss

Generative Adversarial Networks use generative models that start generating im-

ages from noise patterns during training then as the loss decreases or comes closer

to zero it produces the images as the same as the real distribution. Here, for our

task it is imperative that we maintain the low-contrast structures in the CT-scan

and the rest of the information present in the slices. For this to happen we would

be using the perceptual loss function along with a VGG-19 network [6].

Many networks with similar needs as ours have used Mean squared error (MSE)

loss function for the same reason, here MSE tries to minimize the pixel-wise error

between the image patches from both data distributions. However, the MSE loss

can generate blurry images or cause distortion or loss of details in the slices [3, 5],

which if happened defies the purpose of denoising CT-scans. Therefore, rather

than using the MSE loss function it is more advantageous and fruitful to use Per-

23



ceptual Loss function [3].

LPL = `φ,jfeat(ŷ, y) =
1

CjHjWj

‖φj(ŷ)− φj(y)‖2
2 (3.5)

The equation 3.5 is the perceptual loss function, where C, H, and W represents

depth, height and width. ŷ represents the result obtained from the generator and

y represents the image patch from the real data distribution which for us would

be the NDCT data distribution. φj represents the feature extractor, here VGG-19

would be used as a feature extractor.

The VGG-19 network here works as a feature extractor so that proper comparison

can be made between the generator’s output and the ground truth distribution

in terms of the extracted features. We are using a pre-trained VGG model which

takes color images as input, since our CT-images are grayscale we duplicate the

CT slices to make RGB channels before feeding to the VGG network. The VGG

network itself has 16 convolutional layers and 3 fully connected layers [30]. The

output obtained from the last convolutional layer is the feature that is extracted

by the VGG network and is used in the perceptual loss function. One of the many

reasons for using pretrained VGG-19 model is that it maintains the features of the

images, which for a CT-scan is important so that the medical personnels can diag-

nose correctly. It also provides expected results because it is previously computed

on a very large natural image dataset [7].
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3.5 Charbonnier Loss

Here, the generator G is tasked at generating slices with suppressed amounts of

noise levels from Low-Dose CT scans, one of the possible outcomes in such cases

is to generate blurry slices of scans. Now as discussed previously MSE Loss can

induce some amount of blur in the images [3, 5] but the same cannot be said for

L1 Loss. Here we use a loss function proposed by Charbonnier et al. [31] which

can also be used as a regularizer for the GAN.

Using only the adversarial loss of the GAN can construct artifacts in the images

and show ringing patterns or unnecessary edges around any object as shown by

Alice Lucas et al. [32]. Such patterns can be regularized in GAN by adding a reg-

ularizer with the loss function. One of the common regularizers for image syn-

thesis corresponds to the distance estimate between the generated image and the

ground truth image available from the training dataset. Hence, we would be using

the equation 3.6 proposed by Pierre Charbonnier et al. [31].

LCL = C(x̂, x) =
∑
i

∑
j

√
(x̂i,j − xi,j)2 + ε2 (3.6)

This equation is termed as Charbonnier Loss and is often referred as pseudo-

huber loss as well because it resembles the equation of Huber Loss [33]. Other

than that it has been shown by Jonathan Brown [34] that the loss function com-

bines the properties of L2 loss and L1 loss by being strongly convex when close

to target/minimum and less steep for extreme values [34]. Also according to the
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authors the loss function is an adaptive and robust loss function and thus we de-

cided to add to our GAN’s loss function. In the equation 3.6, LCL references the

Charbonnier Loss that we would be using before, i and j refer to pixel coordinates,

x̂ represents the estimated image obtained from the last layer of the generator and

x represent the ground truth NDCT image. ε is a small constant that is preferred

to be kept close to zero and thus in our case it is set to ε = 0.001. We also found

that using the Charbonnier loss instead of MSE Loss in pixel and feature-space

provides better results visually and has less amount of blur than that induced by

MSE Loss. The features in the slices are maintained by using the Perceptual loss

and thus the Charbonnier Loss helps in regularizing the GAN to reduce the arti-

facts in the generated slices.
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Chapter 4: Methodology

4.1 Dataset

For a given machine learning model, using the correct set of data and collecting

the right amount of data, is very important. In general terms, a GAN would re-

quire a very large amount of data for training the model as there are two neu-

ral networks incorporated in it, which train simultaneously as will be seen from

the GAN architecture in the paper. Here, for training purposes, we are using the

dataset provided by Kaggle Super Bowl 2017 Data Science competition [35]. The

dataset contains thousands of high-resolution DICOM lung CT-scans which were

originally obtained from the National Cancer Institute. All of the scans are ob-

tained from high-risk patients and further, we preprocess the data to meet our

needs so that we can train a model that can identify and mitigate noise from the

CT-scans.

Each image in the original data without any preprocessing contains a series with

multiple axial slices of the chest cavity and a variable number of 2D slices. There-

fore, from each patient, we extract 20 slices where each slice is in DICOM format

with the necessary header information available such as slice thickness, rescale intercept,

rescale slope, and pixel array. We used 75 patients out of 1200 for which each pa-
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tient has at least 20 slices so that the model can be trained on the provided pa-

tients. Out of the 75 patients examinatios, we split the data in train, validation

and testing. 65 patients slices have been used for training the Generative Adver-

sarial Network, 6 patient’s examinations have been used as validation distribution

and 4 patient’s examination have been used as test distribution.

4.2 Simulating Low-dose CT-scans

Figure 4.1: Noise classes in the following order (a) GOOD, (b) AVG GOOD, (c)
NEUTRAL, (d) AVG BAD, (e) BAD

Given that the goal of our machine learning model is to reduce the noise in each

CT-scan of the patient, we would need separate data with respect to the orig-

inal DICOM scans. Therefore, we created visually similar scans to the original
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dataset which had some amount of noise in it, here we have created 5 amounts of

noise levels as shown in the image. The noise to each slice is added in the form

of Poisson distribution. The labels created are BAD, AVG BAD, NEUTRAL,

AVG GOOD, and GOOD with the respective interval values of adding noise with

standard deviation of 10, 50, 120, 180 and 0 Hounsfield units. Here we can see

that the dataset labeled as GOOD does not have any type of noise incorporated

in it and thus we would be considering those patient slices as Normal-dose CT

scans for our training purposes and the dataset labeled as AVG BAD would be

used as low-dose CT scans for training which has noise added to the slices. Mov-

ing forward from here, Normal-Dose CT represents the dataset labeled GOOD

and Low-Dose CT represents the dataset AVG BAD.

Figure 4.2: Directory tree for training data

To add the Poisson noise to the original dataset it was imperative for us to con-

vert the DICOM slices to NumPy arrays so that appropriate pixel-level modifica-

tions can be made to the slices, but once the slices were converted to Numpy for-
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mat, it is not possible to convert them into DICOM again as there are certain at-

tributes needed in the DICOM file obtained from the scanner and thus while sav-

ing the modified datasets we store few attributes of DICOM such as Slice Thick-

ness, Rescale Intercept and Rescale Slope along with the slice’s pixel values. Now,

once the datasets have been prepared we modify the directory structure and cre-

ate a different structure such that the Machine Learning model can read the input

data for training as well testing purposes. The directory structure that has been

designed is shown in the figure 4.2 where each patient ID will be having 2 sub-

directories named LDCT and NDCT.

4.3 Data preprocessing

Since we already simulate the dataset for our respective category the machine

learning model would be taking the training data in the format of Numpy arrays

which are already read from the Dicom pixel arrays during simulation. Therefore

all slices of the scan which are given as an input to the model are in the format

of Numpy arrays which stores the Pixel array, Slice Thickness, Rescale Intercept

and Rescale Slope obtained from the original metadata of the DICOM scanned

file. We also convert the pixel values to Hounsfield Units in order to distinguish

between air and the cell structure in the CT-scans, this is considered as an im-

portant pre-processing step when dealing with CT-scans. The values such as Slice

Thickness, Rescale Intercept and Rescale Slope are needed for the pixel values to

be converted to Hounsfiled units and this were stored beforehand in the numpy
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arrays during simulation and are being read by the machine learning model ac-

cordingly.

Apart from that, we normalize the slices too among the specified range in the

model while reading the training data. We also train the model on image patches

and thus the patches are created for each scan randomly while reading the CT

slices. The patches are formed to increase the dataset so that the GAN can learn

appropriate mapping, the training is performed on the patches but the validation

data and test data are given to the model as whole images so that our goal of de-

noising a complete image is preserved. To maintain this patches among the batch

data we use Queue, Threading and Tensorflow Coordinators which also provide

support to the GAN training by reading the data and maintaining it faster than

reading the data normally in a single thread.

4.4 Loss Function

Overall using the equation 3.4 and 3.5 and 3.6 we formulate a combined equation

that represents the complete loss function for our WGAN network as shown in

equation 4.1.

min
G
{λ1[max

D
LWGAN(D,G)] + λ2LPL(G) + (1− λ1 − λ2)LCL(G)} (4.1)

Here λ1 and λ2 are used as weighting parameters to control the trade-off between

the three loss functions that is between WGAN adversarial loss LWGAN and the

Perceptual loss from VGG LPL and the Charbonnier Loss LCL. The perceptual
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loss here suppresses the noise by comparing the perceptual features of a denoised

output generated from the generator against the ground truth NDCT in an es-

tablished feature space, while the GAN focuses more on migrating the data noise

distribution from strong to weak statistically to achieve results that are more close

to NDCT distribution. And the Charbonnier loss acts as a regularizer to the GAN

training which supports the model by reducing the generation of any artifacts in

the generator’s output. The weights λ1 > 0 and λ2 > 0 with λ1 + λ2 < 1 are

hyper-parameters and are determined experimentally.

4.5 Network Architecture

The overall architecture for the complete WGAN mainly consists of three parts.

The parts used are already discussed above but here would see the architecture

which defines which part interacts where and the details of the same.

The first part that we have is the generator itself which is a convolutional neural

network with 8 convolutional layers, following that we have kept small 3 X 3 ker-

nels in each convolutional layer. The figure 4.3 represents the overall architecture

of the model but we can also see the complete network for the Generator, here

n represents the number of convolutional kernels, s represents for convolutional

stride and k represent the size of the convolutional kernel as a square. For exam-

ple, n32s1k3 means 32 convolutional kernels with stride 1 and size 3 X 3. Each of

the first seven layers here in the Generator has 32 filters and only the last gener-

ates the feature map with a single 3 X 3 filter, which in turn is also the output of
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Figure 4.3: Overall architecture of the network

the generator G. Apart from the convolutional layers we also need an activation

function after each layer and here we use the Rectified Linear Unit [36].

The second module of the architecture is the pre-trained VGG network which ex-

tracts features and returns them to the perceptual loss function which in turn

returns the loss value. The VGG would take the denoised output from the gen-

erator G as input and would return the extracted features required to calculate

perceptual loss. The perceptual loss would then be calculated using previously

mentioned Eq. 3.5. As soon as we get the error value we update the weights of

only G and keep the weight parameters for the pre-trained network intact as we

do not have to update them. The second module also includes the calculation of

the Charbonnier loss as shown in the figure, it is calculated alongside the calcula-
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tion of the perceptual loss.
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Figure 4.4: Discriminator

The third and the final part of the network architecture is the discriminator D

itself which is shown in the figure 4.4. The convention of n64s1k3 is the same con-

vention as that explained for the Generator previously. The discriminator here

has 6 convolutional layers which has shown good results in certain tasks [3]. Here

the first two layers would be having 64 filters, then the next two would be hav-

ing 128 filters and the last two would contain 256 filters each. Among the convo-

lutional layers we also have added three batch normalization layers for stabiliz-

ing/optimizing the training for GAN as can be seen from the figure of the Dis-

criminator 4.4.

Using the same methodology as the generator, for discriminator also we would

have a small 3 X 3 kernel size. But here in D, we also have fully connected lay-

ers (FCL) at the end, after the last convolutional layer we would have a FCL with

1024 outputs following which we have another FCL with 512 outputs and the last

FCL would have just one single output. As we are using Wasserstein GAN, follow-

ing the convention from the original authors [27], we have not kept a sigmoid cross

entropy layer at the end of the discriminator.
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4.6 Network Training

During experiments, the model is optimized using the Adam optimizer [37]. We

experimented with the model with different hyper-parameters multiple times and

concluded that the values in table 4.1 for their corresponding hyper-parameters

produce the best results. As we also train the slices on patches the patch size can

also be considered as a hyper-parameter and in our experiments larger the size of

the patch size we use larger the memory we need, thus keeping that into consider-

ation the suggested patch size is 64 X 64.

Parameters Value Parameters Value

Epochs 800 Perceptual loss weight 0.3

Learning rate 0.0001 Adversarial loss weight 0.5

Batch size 128 Epsilon 0.001

Discriminator’s iteration 3 Adam Beta1 0.5

Gradient penalty weight 10 Adam Beta2 0.9

Table 4.1: Hyper parameters for training

Along with all this we also save checkpoints at specified interval of the model, and

it also saves the final model weights for testing with different datasets. The gradi-

ent penalty weight is chosen as 10 suggested by Gulrajani et al. [29].

4.7 Training Evaluation

Once the GAN starts generating slices that are visually better than the Low-Dose

CT-scans then comes the most important task of evaluating them. One of the

many approaches that have also been incorporated by Yang et. el [30], is of using
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Figure 4.5: PSNR GEN vs NDCT during training

Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error Loss (MSE). Among

them, PSNR is a well-known metric specifically for noise evaluations, figure 4.5

here shows the graph of PSNR while training from which we can see that the ratio

is increasing with the number of epochs which is consistent with the training re-

sults obtained. This means that for each epoch the generated slices are relatively

less noisy to the Low-Dose scans. It is to be noted here that the higher the value

of PSNR, the lower the noise it represents. Apart from that, we also observed that

the MSE values between the generated scans and the Low-Dose scans are consis-

tent with the training results.

4.8 Handling Normalization

Initially while generating the slices from the GAN, we observed that the slices

are normalized because of the normalization preprocessing performed on the in-

put data before giving input to the model. Thus, the metrics such as MSE and

PSNR were not accurate and were representing inaccurate information. So, we
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subtracted the images among each other and realized that the scale for the gener-

ated image was different than that of the Low-Dose and Normal-Dose images, so

to avoid this situation we performed rescaling on the generated image and added

a step of post-processing to the model which will be discussed in the next section.

Figure 4.6: Image differences

Fig. 4.6 here shows the experiments we performed once the model was trained

completely and it was producing results. We can see from the subtracted images

that scale for all three of the distributions is the same which previously wasn’t

and thus we added the post-processing methods as mentioned before to our GAN

network. We can say that all images are in the same scale because before visual-

ising or subtracting the images we added a small block in the center of each im-

age which we can see in the first row of the images. For the second row too the

block is there but the block is visually the same in all images in the second row

because subtracting zero with zero doesn’t change the image pixels visually. The
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only reason the second row is in gray color is because of the cmap used while ac-

tually plotting the images.

4.9 Evaluation Metric

4.9.1 PSNR and SSIM

Later in results chapter 5.2, we would be seeing the results obtained using our

network and approach. As suggested by National Instruments [38], Peak signal-to-

noise (PSNR) ratio can be considered as a good image quality metric. The term

PSNR in itself is a ratio between the maximum power of a signal and the power

of distorting noise that affects the quality [38]. Hence we use PSNR as one of the

evaluation metric and for comparison as well which would be seen in later sec-

tions.

Apart from PSNR, we also use Structural Similarity Index (SSIM) as an evalu-

ation metric. As proposed by Zhou Wang et al. [23], the SSIM metric can also

be used as an image quality assessment metric. As per the equation of SSIM, we

can see that it also takes the similarity of edges into account between two im-

ages. Hence it can be said that it takes the overall structure of the image also

into account and not just difference between two images. SSIM is considered as a

perception-based model [39] and thus is considered as an image quality assessment

metric.
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4.9.2 Noise Algorithm

There are many approaches to evaluate images and noise in them but since we are

using CT-scans which are not just normal images we need to evaluate the scans

in a manner that radiologists agree with and technicians right after the scan can

understand whether the scan performed is upto the quality of that the radiologists

can evaluate. Hence we use a methodology proposed by Ranjith Kamalanathan et

al. [10] which focuses on fast noise and standard deviation between the regions of

interests in the CT-scans. The methodology is based upon the work of Samei et

al. [40] which focuses on measuring the stochastic noise.

The methodology for the evaluation first reads the CT-scan and converts the pixel

values to hounsfield units so that specific regions of interest can be detected from

them. The histogram with representation of the pixel values for the hounsfield

units is as shown in the figure 4.7.

The histogram shown in Fig. 4.7 is generated from our original NDCT datasets

for which after the preprocessing and converting the pixel values to the hounsfield

units the frequency vs HU has been plotted. The table which describes the sub-

stance in the scans and corresponding expected HU is referred from [10,40,41].

Once the scans are loaded and necessary preprocessing is performed on the slices

we perform segmentation on them and find the regions of interest for soft tissue

by specifying a range of 0 to +300. The range in the table 4.2 for the soft tissue

would be almost in the same range as ours but since our slices are also from the

generated distribution we need to increase the range a bit. For finding the boxes
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Figure 4.7: Frequency vs HU in 20 slices

that belong in the regions of interest the authors have enforced a strict bounding

that is if any pixel value that does not fall in the range of 0 to +300 then we dis-

regard that box and move on with other regions. These regions have been found

using a kernel which traverses from left to right and then top to bottom. Few ex-

amples of the kernels are shown in Fig 4.8. One thing to be noted here is that the

regions of interest might fall over the edges which represent the transition between

Substance HU Substance HU

Air -1000 Blood +30 to +45

Lung -500 Muscle +10 to +40

Fat -100 to -50 Grey Matter +37 to +45

Water 0 White Matter +20 to +30

CSF 15 Liver +40 to +60

Kidney +20 to +45 Soft Tissue +100 to +300

Bone +700 to +3000 Abscess/Pus 0 to +45

Table 4.2: Substances corresponding to the Hounsfield Units
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two or more types of anatomical regions and thus to remove those ROIs an en-

hancement filter was applied to the slice image. The enhancement filter is the so-

bel filter [42]. Using the filter and other processing methods discussed above we

were able to fetch the regions of interest from the slices.

Figure 4.8: ROIs obtained from the noise algorithm

One modification that was required and performed by us to fit the algorithm for

our data distribution was to store the boxes/ROIs from the NDCT slices and use

the same boxes for the LDCT and generated slices so that consistent and proper

noise levels are estimated for the complete data distribution. After the consoli-

dated collection of ROIs are obtained we find standard deviation of each of the

ROIs for each slice. The global noise was then calculated by the average of the

Standard Deviation of all ROIs. Once we get the global noise levels, we integrate

them with noise variance computed by measuring the variance across each of the

pixels present in the image for the purpose of image quality analysis [10], to es-

timate the integration, the fast noise variance estimation method developed by

John Immerkaer [43] was used.

Fig.4.8 here shows the boxes/ROIs for the slices obtained from the noise algo-
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rithm. The standard deviation has been calculated over these regions and as we

can see the regions are also consistent with the range specified and no region is

over the other edge which would show transition between the two or more anatom-

ical regions. We can also see the boxes obtained from the NDCT slices are also

the same boxes kept on the generated and LDCT slices for better and consistent

noise estimation. The results obtained from the noise algorithm is upto expecta-

tion and consistent with the experiments. More about the values and noise levels

will be described in the results section.
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Chapter 5: Results

5.1 Experimental Design

In this chapter we would be discussing the results obtained using the proposed

CL-WGAN model. Apart from the results obtained, we also show a comparison

with five other models, which also include two state-of-the-art published methods.

For experimental purposes we have used the same primary dataset which includes

simulated low-dose CT-scans and their corresponding normal-dose CT-scans which

forms our primary dataset. The results and charts shown here are obtained from

the 82 slices from 4 different patient scans, and this is the test data distribution.

All models have been trained and tested on the same primary distribution, there-

fore the comparison is also done using the same 82 slices test data for all models.

The same data distribution has also been used for obtaining the results for the

Noise algorithm as shown in section 5.4.

5.2 Denoising Results

Fig.5.1 shows the final result of a test patient with specific slice. As it can be ob-

served, the image labeled as GEN is the image generated by the generator. We
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Figure 5.1: Result obtained from GAN

can see that compared to the simulated LDCT the generated image has significant

lower amount of noise relatively. The generated image is a close representation

of the NDCT ground truth image as no significant artifacts have been induced

in the image and the overall structure of the image is preserved. We would be

seeing the performance of the model compared with other loss functions in later

sections where we would also look into the Peak Signal-to-Noise Ratio (PSNR)

and Structural Similarity Index (SSIM) of the images. From the Fig.5.1 we can

see that the image also preserves softer lines outside the cell structure, this is be-

cause of the use of the perceptual loss. The perceptual loss maintains the features

of the ground truth image in the generator. We can see that the generated image

and the ground truth NDCT image are visually similar, this is because the VGG

loss/perceptual loss calculated using the VGG network is computed in a feature

space that is trained previously on a very large natural image dataset [7].

It also can be seen that the amount of blur is very minimal in the generated im-

age which means that the model actually learns to denoise the image without

learning that blurring also reduces the amount of granular noise induced in the
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LDCT image. The charbonnier loss [31] is very useful in improving the image

quality over the number of epochs because it acts as a regularizer for our gener-

ative adversarial network.

Figure 5.2: Image patches created during training

Fig.4.8 can also be considered as an example of the result obtained using the gen-

erator on a test patient, the results for the noise algorithm would be discussed

in the following sections. We also compare our results with certain models in the

following section where PSNR, SSIM and the noise algorithm are used as the eval-

uation metrics.

Fig.5.2 here shows few examples of the patches that have been used for training.

As mentioned previously, that we train on image patches and during training the

generator generates the patches which is the right-most patch in the figure. The
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left-most patch is the LDCT patch and the center patch is ground truth NDCT

patch. The (b) patch in figure5.2 shows that the generator is able to reduce the

granular noise from the LDCT image but the line present in the ground truth are

still not obtained. Although it is not a 100 percent match we can observe that the

generated patch for both (a) and (b) are visually very similar to the NDCT patch.

5.3 Quantitative Analysis and Comparison

We compare our proposed CL-WGAN model versus 5 alternative methods. Two

of these methods are considered state-of-the-art CT denoising GANs from re-

cent literature [22, 30]. We also compare against a L1 perceptual loss, the MSE

perceptual loss and the adversarial loss. Finally, as a naive baseline we compare

against the original noisy LDCT scan. We find that CL-WGAN achieves the high-

est PSNR on the test dataset of any of the methods in this comparison as seen in

figure 5.3. We describe each of these methods as follows,

SSL-WGAN is the structurally senstitive loss SSIM equation as proposed by Chenyu

You et al. [22]. PL-WGAN is the Wasserstein GAN architecture as proposed by

[30]. WGAN is a baseline GAN using Wasserstein adversarial loss but without

the use of any perceptual loss term. MSE-WGAN and L1-WGAN represents the

Wasserstein GAN perceptual loss as well as the MSE perceptual loss functions re-

spectively. LDCT represents the original test image scan with Poisson noise, and

is expected to be lower than the rest of the models.

Figure 5.3 shows the PSNR ratio of the generated images for 82 test slices for
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Figure 5.3: PSNR obtained during testing

each model in the comparison. We can see that CL-WGAN was able to produce

the highest PSNR when compared to other methods, followed by PL-WGAN [30],

SSL-WGAN [22], and WGAN. The MSE-WGAN and L1-WGAN achieved a lower

PNSR.

Figure 5.4 shows the comparison of the Structural Similarity Index (SSIM) which

is a perceptual metric for image quality. We see that the proposed CL-WGAN

outperforms the other methods in accordance with this metric as well. Overall,

the ordering of the results with SSIM are largely similar to the PSNR results, al-

though we see that WGAN performs more competitively in comparison to the PL-

WGAN [30] and SL-WGAN [22] models for this evaluation metric.

It can be seen that although the MSE-WGAN achieves relatively higher PSNR ra-

tio the SSIM value for the same is very low compared to others and in some cases
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Figure 5.4: SSIM obtained during testing

very close to the LDCT curve as well, this can be considered as a disadvantage

of using MSE Loss with the GAN because as mentioned previously and shown by

many researchers [9, 30] it induces blur in the generated images which in turn can

add unnecessary artifacts and reduce the overall structural composure of the im-

age.

5.4 Results obtained using the Noise Algorithm

The results obtained and calculated using the Noise Algorithm proposed by Ran-

jith Kamalanathan et al. [10] are consistent with the quantitative results obtained

using PSNR and SSIM as shown in the previous sections.

In table 5.1 we see the results obtained by passing figure 5.1 to the noise algo-

rithm proposed by Ranjith Kamalanathan et al. [10] which is largely similar to
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SD Noise

LDCT 169.41
NDCT 42.93

CL-WGAN 46.13
SSL-WGAN 47.01
PL-WGAN 52.42

MSE-WGAN 51.90
L1-WGAN 51.43

WGAN 41.96

Table 5.1: Noise Algorithm results on figure 5.1

the method developed by Ehsan Samei [40]. The noise algorithm is discussed in

more detail in section 4.9 on page 38. Essentially here SD Noise represents the

value of standard deviation in soft tissue and other smooth regions within the

scan.

In an ideal scenario, a denoising algorithm should achieve the noise estimation us-

ing this approach which is as close as possible to the NDCT ground truth slices.

As it can be seen in table 5.1, the NDCT can be considered as the value that we

are trying to achieve and compared to other algorithms CL-WGAN provides a

value that is closest to the NDCT image. The LDCT slice does contain simulated

noise levels and thus the value provided by the algorithm is extremely high which

is as expected. We can see that although SSL-WGAN does not provide close re-

sults to us relatively for PSNR and SSIM it does maintain structural integrity

and reduces noise better than other methods as the value is relatively low with

respect to other comparisons. Although the difference between PL-WGAN and

MSE-WGAN is not much it is safe to say that PL-WGAN provides visually bet-

ter quality results than MSE-WGAN as per our observation on test slices and also
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the noise algorithm did gave lower values than MSE-WGAN for most of the slices.

The PSNR and SSIM obtained for PL-WGAN is also higher than that of MSE-

WGAN which provides validity to the generated slices.

Apart from that we also show the results obtained for the L1-WGAN and WGAN

here, which are the networks as discussed in the previous section. The L1-WGAN

here produces very close results to MSE-WGAN and understanding the fact that

L1 essentially calculates a difference between two images the relative closeness

with MSE-WGAN is to be expected. Also, WGAN here is seen to be producing

values lower than that of the ground truth image which means that the gener-

ated images from only using the adversarial loss are over-smoothed which also

supports our visual observation. And although for some slices as per our obser-

vation WGAN estimates the closest to NDCT, the overall mean values are smaller

relatively to the other models which suggests that it compromises the information

and the structure of the slices [30].

Following the discussion, we would now show more results of the test data slices

obtained from the generator and evaluated on the noise algorithm. It is also to be

noted that all the images shown in the above sections and the following images

contribute to the PSNR 5.3 and SSIM 5.4 plots as well.

50



LDCT

NDCT

GEN

Figure 5.5: Result 2

SD Noise

LDCT 168.30
NDCT 38.59

CL-WGAN 46.52
SSL-WGAN 47.10
PL-WGAN 52.95

MSE-WGAN 52.51
L1-WGAN 52.61

WGAN 42.51

Table 5.2: Noise values for
5.5
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Figure 5.6: Result 3

SD Noise

LDCT 167.74
NDCT 38.29

CL-WGAN 45.54
SSL-WGAN 46.86
PL-WGAN 52.36

MSE-WGAN 51.52
L1-WGAN 50.95

WGAN 41.45

Table 5.3: Noise values for
5.6
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Chapter 6: Conclusion

The main goal and motivation for this paper is to achieve the ground truth NDCT

image given a Low-Dose CT-scan. There are many ways to build up the mapping

from LDCT to NDCT and capture the noisy features and denoise them to gen-

erate a close representation of the NDCT scans. This research hence provides a

thorough evaluation of a network model which is more dedicated towards combin-

ing synergistic loss functions such as the perceptual loss and the charbonnier loss

to guide the denoising process, so that the resultant denoised slices are as close as

to their corresponding NDCT slices.

The perceptual loss in the model provides us with a closer understanding of hu-

man perception which is embedded in the VGG network as it is previously trained

on a large natural image dataset. This human perception proves to be impor-

tant when compared the results along with the MSE loss metric, we can see that

the results obtained using the perceptual loss are better than that obtained from

MSE loss visually as well. We can also agree that using just Wasserstein GAN

or a GAN alone would not be able to provide the results currently obtained as a

GAN only provides the map of the data distribution between LDCT and NDCT

and not the image content correspondence which is of high important for CT-scan
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evaluation.

The charbonnier loss along with network optimization for faster training proves

to be a good regularization function for the Wasserstein GAN during training.

As it also is a variant of Huber loss and known as pseudo-Huber loss, it acts as a

regularizer to train the GAN and produce images with an approximate quality as

the NDCT (ground truth) images.

Hence, we conclude that using a combination of loss functions that are targeted

towards the main goal of achieving denoised CT-scans produces better results

quantitatively which are consistent with the evaluation on a published noise eval-

uation metric. We also show that the denoising of CT-scans can be achieved by

using the appropriate loss functions and does not always need the network archi-

tecture to be complex. Therefore, we can say that our network architecture along

with the integration of the Perceptual loss and Charbonnier Loss produces im-

ages with reduced level of noise and can be said as a close representation of the

Normal-Dose CT-scan.
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Chapter 7: Future Work

As we discussed in chapter 2, there are several ways to utilize the reconstruction

methods which focus more on the statistical side of image production and pro-

vides denoised images. One thing to extend our current model and provide better

evaluation is to compare the results with some of the reconstruction networks and

algorithms along with some new metrics such as quality of the image or the time

invested in generating a image given a low-dose CT-scan. One of the other exten-

sion to current model can be of building a complex network architecture such as

using residual networks/skip connection layers in the GAN or use cyclic loss func-

tion based on the residual layers and integrate the same with the Perceptual loss

and Charbonnier loss functions used currently. Few complex networks as such as

discussed in the related work section as we have seen previously. More compli-

cated generators may can improve the results or degarde it but it for sure can be

considered as a future experimentation in addition to the current model.

In addition to making the model a bit complex, we can also train the model or

even test the robustness of the model by using multiple datasets. Having a large

amount of data coming from different places but with same distribution can help

the model be robust because different datasets can have different amount of noise
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in them and thus the model gets a chance to learn denoising and noisy features

of varying amounts. This can be helpful in making a complete robust denoising

model which can generate a denoised image which is a close approximate of the

NDCT image from a noisy LDCT image containing noise of different levels.

As we saw from the results described in 5.3, 5.4 and 5.1, changing the loss func-

tions and network architecture can produce different results for denoising networks

and thus using an appropriate additive loss function can be a crucial measure of

improving the model. More experimentation can be performed on extending the

equation 4.1 by adding/removing different loss functions that can generate de-

noised slices. Novel loss function which provides a reasonable insight in denois-

ing images can also be integrated with this model and can be made more robust

to noise in not only CT-scans but natural images as well. Since denoising in CT-

scans includes maintaining the image’s overall structure and the content the same

can also be probably used for denoising natural images which contain a similar

noise levels as the Low-dose CT-scans.
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arXiv preprint arXiv:1701.07875, 2017.

[28] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science
& Business Media, 2008.

[29] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. Improved training of wasserstein gans. In Advances in
neural information processing systems, pages 5767–5777, 2017.

[30] Qingsong Yang, Pingkun Yan, Yanbo Zhang, Hengyong Yu, Yongyi Shi, Xu-
anqin Mou, Mannudeep K Kalra, Yi Zhang, Ling Sun, and Ge Wang. Low-
dose ct image denoising using a generative adversarial network with wasser-
stein distance and perceptual loss. IEEE transactions on medical imaging,
37(6):1348–1357, 2018.

[31] Pierre Charbonnier, Laure Blanc-Feraud, Gilles Aubert, and Michel Barlaud.
Two deterministic half-quadratic regularization algorithms for computed
imaging. In Proceedings of 1st International Conference on Image Process-
ing, volume 2, pages 168–172. IEEE, 1994.

[32] Alice Lucas, Santiago Lopez-Tapia, Rafael Molina, and Aggelos K Katsagge-
los. Generative adversarial networks and perceptual losses for video super-
resolution. IEEE Transactions on Image Processing, 28(7):3312–3327, 2019.

[33] Peter J Huber. Robust estimation of a location parameter. In Breakthroughs
in statistics, pages 492–518. Springer, 1992.

59



[34] Jonathan T Barron. A general and adaptive robust loss function. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4331–4339, 2019.

[35] Data science bowl 2017. https://www.kaggle.com/c/

data-science-bowl-2017/data.

[36] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814, 2010.

[37] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[38] Peak signal-to-noise ratio as an image quality metric. https:

//www.ni.com/en-us/innovations/white-papers/11/

peak-signal-to-noise-ratio-as-an-image-quality-metric.html.

[39] Structural similarity. https://en.wikipedia.org/wiki/Structural_

similarity.

[40] Olav Christianson, James Winslow, Donald P Frush, and Ehsan Samei. Au-
tomated technique to measure noise in clinical ct examinations. American
Journal of Roentgenology, 205(1):W93–W99, 2015.

[41] Hounsfiled scale. https://en.wikipedia.org/wiki/Hounsfield_scale.

[42] Nick Kanopoulos, Nagesh Vasanthavada, and Robert L Baker. Design of an
image edge detection filter using the sobel operator. IEEE Journal of solid-
state circuits, 23(2):358–367, 1988.

[43] John Immerkaer. Fast noise variance estimation. Computer vision and image
understanding, 64(2):300–302, 1996.

60

https://www.kaggle.com/c/data-science-bowl-2017/data
https://www.kaggle.com/c/data-science-bowl-2017/data
https://www.ni.com/en-us/innovations/white-papers/11/peak-signal-to-noise-ratio-as-an-image-quality-metric.html
https://www.ni.com/en-us/innovations/white-papers/11/peak-signal-to-noise-ratio-as-an-image-quality-metric.html
https://www.ni.com/en-us/innovations/white-papers/11/peak-signal-to-noise-ratio-as-an-image-quality-metric.html
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Structural_similarity
https://en.wikipedia.org/wiki/Hounsfield_scale



	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Computed Tomography Scan
	Radiation Dose
	Visualizing CT-scans
	Using GANs
	Loss functions and its integration with WGAN
	Evaluation of the CT-scans
	Thesis Statement
	Contributions
	Organization of Thesis

	Related Work
	Sinogram filtration
	Iterative algorithms
	Image quality assessment and LDCT Denoising using GANs

	Background
	Generative Adversarial Networks (GANs)
	Problems in GANs
	Kullback–Leibler Divergence
	Jensen–Shannon Divergence

	Wasserstein GAN
	Perceptual Loss
	Charbonnier Loss

	Methodology
	Dataset
	Simulating Low-dose CT-scans
	Data preprocessing
	Loss Function
	Network Architecture
	Network Training
	Training Evaluation
	Handling Normalization
	Evaluation Metric
	PSNR and SSIM
	Noise Algorithm


	Results
	Experimental Design
	Denoising Results
	Quantitative Analysis and Comparison
	Results obtained using the Noise Algorithm

	Conclusion
	Future Work
	Bibliography



