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Abstract—The Joint ICA (JICA) and the Transposed IVA
(tIVA) models are two effective solutions based on blind source
separation that enable fusion of data from multiple modalities
in a symmetric and fully multivariate manner. In [1], their
properties and the major issues in their implementation are
discussed in detail. In this accompanying paper, we consider the
application of these two models to fusion of multi-modal medical
imaging data—functional magnetic resonance imaging (fMRI),
structural MRI (sMRI), and electroencephalography (EEG) data
collected from a group of healthy controls and patients with
schizophrenia performing an auditory oddball task. We show
how both models can be used to identify a set of components
that report on differences between the two groups, jointly, for
all the modalities used in the study. We discuss the importance
of algorithm and order selection as well as trade-offs involved
in the selection of one model over another. We note that for
the selected dataset, especially given the limited number of
subjects available for the study, jICA provides a more desirable
solution, however the use of an ICA algorithm that uses flexible
density matching provides advantages over the most widely used
algorithm, Infomax, for the problem.

Index Terms—Keywords: data fusion, multimodality, fMRI,
MRI, EEG, medical imaging, source separation, ICA, IVA.

I. INTRODUCTION

In the medical field, acquisition of multiple brain imaging
modalities from the same participants has been a common
practice for some time. Different modalities report on differ-
ent aspects of the given problem, and contain common, or
complementary, information as well as distinct. Hence, it is
of particular interest to leverage the use of information that
is common across different modalities to enable their full
interaction for inference. Given the fact that data from multiple
modalities has been available for some time, it is not a surprise
that the field has been a particularly active one. While most of
the earlier approaches, and a great number of those today, are
essentially integrative in nature, where one modality is used
to constrain another [2], [3], recently the emphasis has been
shifting to methods that enable frue fusion, where different
modalities can influence each other, hence making full use of
the “cross-information” that exists across modalities.
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Methods based on latent variable analysis use either a matrix
or tensor representation to decompose the available multi-
modal data into factors/components to explain the relation-
ships, and hence are both multivariate and data driven. While
coupled or linked tensor decompositions [4], [5], dictionary
learning [6] or nonnegative matrix factorization [7] enable
such decompositions as well, their application to medical im-
age fusion has been limited, see e.g., [2], [8], [9]. Techniques
based on blind source separation (BSS) on the other hand, have
found wide use in multi-modal medical image fusion [2], [3],
[10]. A reason for their attractiveness has been their ability to
generate useful decompositions with few assumptions and, in
general, without the need to introduce additional constraints
for uniqueness.

The Joint ICA (JICA) model introduced in [11] has been
implemented in the Fusion ICA Toolbox [12] and widely
used in fusion of multiple medical imaging modalities includ-
ing functional magnetic resonance imaging (fMRI) and elec-
troencephalography (EEG) [3], [11], [13]-[17], genetic and
fMRI [18], structural MRI (sMRI) and EEG [19], functional
and structural cardiac imaging data (current density imaging
and diffusion tensor imaging) [20], functional near-infrared
spectroscopy and fMRI [21], diffusion tensor imaging and
fMRI [22], EEG and electromyography (EMG) [23], positron
emission tomography and sMRI [24] data, among many others.

Two other multivariate approaches, canonical correlation
analysis (CCA) [25] and partial least squares (PLS) [26] also
provide full interaction of two datasets, and enable fusion
using second-order-statistics (SOS), as opposed to the higher-
order statistics (HOS) considered in ICA. Both have been
applied to fusion of multi-modal medical imaging data and
examples of CCA include [27], [28] and of PLS [29], [30],
where the focus has been primarily on association of two
functional imaging modalities, EEG and fMRI. The extension
of CCA to multiple datasets, multiset CCA (MCCA) [31],
has been used to find associations across three modalities,
fMRI, EEG, and sMRI [28], [32], and to perform fusion
of concurrently acquired EEG and fMRI data [13], [33]. In
addition, the latter problem has been also addressed using an
extension of PLS to multiset data [30]. On the other hand,
when JICA is applied to fusion of three modalities, generally,
its extensions are considered as in [34], [35] since common
covariations across three modalities is a serious constraint.

In the accompanying paper [1], we introduce the Trans-
posed independent vector analysis (tIVA) model as an ex-
tension of the MCCA-based model proposed in [27], [28],
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and study the properties of tIVA along with jICA that has
been widely applied to fusion of multi-modal medical image
data. Through its generalization of ICA to multiple datasets,
IVA enables the incorporation of HOS into the MCCA-based
model and, as demonstrated with multiple simulation examples
in [1], can provide advantages over the jICA model that
has been widely used. In this paper, we use fMRI, sMRI,
and EEG data collected from healthy controls and patients
with schizophrenia performing an auditory oddball (AOD)
task, and demonstrate the application of the two models,
JICA and tIVA, to this dataset. In the process, we revisit
the main considerations such as algorithm and order choice,
and discuss implementation details. We address the difficult
problem of validation for the medical domain and hope to
provide guidance in the application of these two models and
others such as the MCCA+jICA model [36]. We show that for
this given dataset, the jICA model might be preferable over
tIVA, and in the case of jICA, use of a flexible ICA algorithm
with adaptive density matching capability, like the entropy
bound minimization (EBM) algorithm [37], is more preferable
than the Infomax algorithm [38], which is typically used for
JICA. Next, we introduce the data used in the study, and then,
in Section III, discuss the details of the implementation, and
present the results in Section IV. The paper concludes with a
discussion of the results in Section V.

II. DATA: MODALITIES AND FEATURES USED

We use medical imaging data from three modalities, fMRI,
sMRI, and EEG, to compare the performance of the two
models, jICA and tIVA, introduced in [1], and consider issues
such as algorithm choice and order selection, again discussed
in [1], for this selected dataset. The data used in the study
was collected from 36 subjects—22 healthy controls and 14
schizophrenia patients. The fMRI and EEG data were collected
separately while the subjects performed an auditory oddball
(AOD) task that required them to press a button when they
detect a particular infrequent sound among three kinds of
auditory stimuli. Details of the task design and the participants
are given in [39]. Both fMRI and EEG report on the brain func-
tion, but fMRI by measuring changes in the blood-oxygenation
level, while EEG by measuring electrical field through the
scalp. Since we work with multivariate features extracted from
both—as explained next—associations become possible for
these two very different types of functional measurement.
Structural MRI, on the other hand, provides information about
the tissue type of the brain: gray matter, white matter, and
cerebrospinal fluid. Since structure underlies brain function,
we study the effect of bringing this third modality into the
fusion study. Next, we briefly introduce each modality, the
preprocessing used for each dataset, and the multivariate
features generated for the fusion of these data.

FMRI data provides a measure of brain function on a mil-
limeter spatial scale and a sub-second (and delayed) temporal
scale. The data consists of repeatedly imaging the 3-D volume
of the brain slice-by-slice, usually while the subject performs
a particular task. A number of preprocessing steps important

for fMRI: slice timing correction to account for the sequential
acquisition of the slices, registration to correct for subject
motion in the scanner, spatial filtering to reduce noise, and
spatial normalization to be able to compare brains across
different individuals and to use standardized atlases to identify
particular brain regions. For fMRI data, we use the task-related
spatial activity maps as calculated by the general linear regres-
sion approach using Statistical Parametric Mapping (SPMS8)
[40] as the spatial features for the fusion analysis.

SMRI analysis refers to the acquisition and processing of
T1-, T2-, and/or proton density-weighted images. Multiple
structural images are often collected to enable multispectral
segmentation approaches. The primary outcome measure in
a structural image may include a measure of a particular
structure (e.g., volume or surface area) or a description of the
tissue type (e.g., gray matter or white matter). There are many
methods for preprocessing sMRI data which may include bias
field correction for intensity changes caused by radio fre-
quency (RF) or main magnetic field (B() inhomogeneities [41],
spatial linear or non-linear [42] filtering and normalization.
MRI images are typically segmented using a tissue classifier
producing images showing the spatial distribution of gray
matter, white matter, and cerebrospinal fluid. Both supervised
and automated segmentation approaches have been developed
for sMRI analysis [43]-[45] and each technique is optimized
to detect specific features. We use probabilistically segmented
gray matter images as the SMRI features for the fusion study.

EEG is a technique that measures brain function by recording
and analyzing the scalp electrical activity generated by brain
structures. Like MRI, it is a noninvasive procedure that can
be applied repeatedly in patients, healthy adults, and children
with virtually no risks or limitations. Local current flows are
produced when brain cells are activated. It is believed that
contributions are primarily driven by large synchronous pop-
ulations of firing neurons. The recorded electrical signals are
then amplified, digitized, and stored. Event-related potentials
(ERPs) are small voltage fluctuations resulting from evoked
neural activity and are one of many ways to process EEG data.
These electrical changes are extracted from scalp recordings
by computer averaging of the epochs—recording periods—
of EEG time-locked to repeated occurrences of sensory, cog-
nitive, or motor events. The spontaneous background EEG
fluctuations, which are typically random relative to when the
stimuli occurred, are averaged out, leaving the ERPs. These
electrical signals reflect only the activity that is consistently
associated with the stimulus processing in a time-locked way.
The ERP, thus, reflects, with high temporal resolution, the
patterns of neuronal activity evoked by a stimulus. Due to their
high temporal resolution, ERPs provide unique and important
timing information about the processing in the brain and are an
ideal tool for studying the timing aspects of both normal and
abnormal cognitive processes. We use ERPs from the midline
central position (Cz) for the fusion study because it appeared to
be the best single channel to detect both anterior and posterior
sources for the given task.

The feature data from the three modalities is thus formed
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into three matrices, a feature for each of 36 subjects by the
number of voxels for fMRI and sMRI, V; = 60,261, V, =
306, 626, respectively, and subjects by time points for ERP,
36 by T' = 451.

III. EXPERIMENTAL SET-UP AND IMPLEMENTATION

When addressing the choice of a model and an algorithm
for the given model, first, the available data determines certain
choices. In our case, since the data comes from a total of
36 subjects, for the tIVA model, use of an algorithm that
takes HOS into account would not be feasible as for reliable
computation of HOS one would require higher number of
samples, at least a couple of hundred. Thus, we compare
the performance of jICA using two algorithms, Infomax [38]
and EBM [37], and use only algorithms that take SOS into
account for the tIVA model. We consider two implementations
of MCCA, those using the MAXVAR and the GENVAR cost
functions, and for tIVA, consider only IVA with multivariate
Gaussian (IVA-G) [46]. The MAXVAR cost achieves MCCA
by maximizing the largest eigenvalue of the source component
vector autocovariance matrix and GENVAR by minimizing the
product of the eigenvalues of the autocovariance matrix [1],
[31]. When data from only two modalities is fused, then both
MAXVAR and GENVAR reduce to CCA. In the subsequent
discussions, we use jICA and tIVA when specifically referring
to the model, and when specifying the algorithm, we use
two versions for the tIVA model, tMCCA and tIVA such
that tMCCA-MAXVAR and tMCCA-GENVAR refer to the
use of MAXVAR and GENVAR costs, and tIVA-G to use of
IVA-G. For jICA, we have jICA-Infomax and jICA-EBM for
JICA using Infomax and EBM. Next, we discuss the main
considerations in the implementation of these two models for
the given dataset.

Selection of the most stable run: Other than CCA and MAX-
VAR, all the algorithms are of iterative type, and hence, as
n [47], [48], it is important to make sure that we evaluate
the consistency of a given algorithm using multiple runs and
identify a result that represents a consistent estimate to use as
the final output of that algorithm. This is achieved by running
the algorithm multiple times and identifying what we call the
best run. We used the minimum spanning tree (MST) method
introduced in [49] and implemented in the toolbox Group
ICA of fMRI (GIFT) [50] for the task. The method generates
a matrix for each pair of runs whose elements are given
by 1 minus the correlation coefficient between the estimated
components from those runs. The minimum cost of aligning
the sources between runs is found, and a graph is constructed
with nodes corresponding to runs and edges corresponding
to the minimum cost of aligning the runs. An MST, with
corresponding central node, is generated for this graph. Since
the method was originally proposed for ICA, it can be directly
applied to the spatially concatenated “joint” components for
JICA. For the tIVA model, the components (spatial maps)
are aligned based on the sign of the correlation between
the corresponding profiles such that whenever the correlation
is negative for a given modality, then both the estimated

component and corresponding profile for that component are
multiplied by —1. We have used 10 runs for each iterative
method and used average pairwise correlation between aligned
components of each run to evaluate the consistency of a
given algorithm, hence a modified version of the consistency
compared to [49].

Selection of the components of interest: Since the data we use
comes from a patient and a control group, we can use the
fusion results to identify differences between the groups, i.e.,
to identify biomarkers for schizophrenia. These correspond
to components estimated directly as the result of the ICA
or IVA decomposition, for fMRI, these are spatial activation
maps, responses for the ERP, and structural maps for sMRI,
reflecting increase/decrease in the case of fMRI and sMRI (in
activation levels and gray matter volume respectively), and
deviation from the expected ERP for the given task in the
case of EEG data. To identify the components of interest,
we perform a 2-sample ¢-test on the loadings (values) of the
profiles for the two groups and identify those that pass a
given significance threshold. The component corresponding to
a profile that demonstrates significant difference, as measured
by the t-test then yields the result of the fusion for the given
modalities. This is demonstrated in the simulation example
given in Section IV and shown Figure 4 in [1]. Hence, the
sign of the t-statistic determines whether the activation of
the component is higher for patient or controls. We display
only components that have a positive sign—meaning greater
activation for controls than patients—in the ¢-statistic corre-
sponding to the two-sample ¢-test run on the corresponding
column of the mixing matrix. If ¢-statistic is negative, we
multiply the column of the mixing matrix and corresponding
estimated source by —1. In the components that we display,
which are all normalized through the Z-score—the activations
(red, orange, yellow) correspond to an increase in controls
over patients and deactivations (blue) correspond to a decrease
in controls versus patients. We use a p-value of 0.05 as
the threshold to determine the candidate component maps,
and without correction to be able to generate a significant
number of candidates as components of interest. We retain the
most significant five components for fMRI, sMRI, and ERP
that correspond to the profiles with p-values that exceed this
significance level, i.e., have p-values lower than 0.05. These
components are then further evaluated using prior information
about the properties of spatial and temporal components to
identify the final components of interest. For fMRI, we expect
smooth and focal regions of activity, and similarly for sMRI,
smooth regions in the gray matter. The ERP components, on
the other hand, would be expected to have a smooth response,
typically with peaks that would coincide with those of the
average ERP such as N1, N2, and P3 shown in Figure 1
along with the estimated ERP components. To complement
this information, in a joint BSS framework, the results of a
single modality ICA results are helpful as well, since they
provide guidance with evaluation of the results. We performed
single modality analysis using Infomax and EBM.
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Order selection and other processing steps: Another important
consideration is the best way to balance the contributions
of each modality to the fusion results, which is especially
important for the jICA model. Since the dimensionality of
the datasets are significantly different, for the jJICA model, to
balance the contributions of each, ERP data is repeated 100
times—simple interpolation of ERP also generated the same
result—and the sMRI and fMRI data are used as is. After
this step in jICA, and for the original data for tIVA, the data
from each modality is normalized to have zero mean and unit
variance. For order selection, using the data that is balanced
in contribution as described, we first determined the order for
JjICA using MDL/BIC criterion with the sampling approach
to generate i.i.d. samples [51], which yielded the following
orders: 14 for all three modalities, 9 for fMRI-ERP, 32 for
fMRI-sMRI, and 32 for sMRI-ERP. To enable comparisons
across models and two vs three modality results, a single
order is chosen for all the results, which is 15. This decision
was based on the guidance using the information theoretic
criterion as well as evaluation of the stability and quality of the
results as discussed in Section III.C in [1]. For this problem,
the evaluation is based on the statistical significance of the
estimated profiles and the interpretability of the estimated
components as in [28], [52]. It was observed that the results
were quite similar in terms of ¢-statistics and the estimation
of components that are most significant for orders 10 and 20,
whereas the performance started to degrade in terms of ¢-
statistics and the estimated areas started to significantly change
at orders 5 and 25. Hence, the final dimensions of the three
datasets used for jJICA were X; € RV*Vr X, € RV*Ve and
X, € RVXTe for fMRI, sMRI, and ERP respectively N = 15,
V¢ = 60,261, V, = 306,626, and T' = 45, 100.

For the tIVA model, since the number of samples—subjects
in this case—is much smaller than the number of voxels or
time points, using a data-driven technique such as pairwise
CCA does not generate useful results for determining the order
of common subspace across modalities. Using the procedure in
[53], the dimensions of signal and common subspace (n, ) for
pairwise combinations are computed as (17, 3) for f/MRI-ERP,
(17,4) for fMRI-sMRI, and (12, 1) for sMRI-ERP. Again, the
estimation was stable for orders 10 and 20 indicating that 15
was a good target order for tIVA as well, and would allow
direct comparison with the jICA results. Thus, for the tIVA
model, all three datasets were of dimension 36 x 15.

IV. RESULTS

First, it is important to note that certain components, or
more specifically, certain spatial areas for fMRI and sMRI
and temporal characteristics for ERP, were consistently de-
tected across models and algorithms, an aspect that increases
the overall confidence in the final results. In particular, for
the jICA model, the components for the two algorithms,
Infomax and EBM were very similar with one important
difference. For EBM, most of the components that passed
our initial screening—i.e., had a p-value in terms of group
difference smaller than 0.05—were also deemed interpretable,
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Fig. 1. Components generated for fusion of all three datasets using jICA.
The significance and average consistency values for the components estimated
using jJICA-Infomax are (.0046, 1.00) for the top component and (.023, 1.00)
for the second one. The values for JICA-EBM are (.0021, .96) for the first
component and (.0048, .96) for the second.

i.e., physically meaningful and hence useful, while a good
number of candidates generated by Infomax that exceeded
the set threshold were eventually eliminated as they did not
correspond to physically meaningful components. Among the
modalities, ERP appeared to be most informative while SsMRI
the least if we were to use the group difference p-values as the
main criterion for this given dataset. However, in all cases, all
three modalities proved to be useful as we explain next. More
importantly, when available, the results point to advantages
of using all available modalities jointly in a fully multivariate
framework as we propose. We performed the analyses using
all three modalities as well as pairs of modalities—both
with the jICA and tIVA models—and compared those against
results from fusion of all three modalities. In general, while
similar components were estimated, the three way results
showed smaller areas, hence were more specific in terms of
the detected activation differences for fMRI and gray matter
differences for sMRI.

We first discuss the jICA results and then compare the
tIVA results with those. It is important to reiterate that the
components we show correspond to areas in fMRI and sMRI,
and temporal characteristics in ERP that are fully linked
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Fig. 2. Components generated using jICA-EBM with two modalities at a time.

The significance and average consistency values for the two components are

(a) (.0015, 1.00) for the fMRI-ERP pair, and (b) (.0021, .85) for sMRI-ERP.
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Fig. 3. Components generated using EBM using single modality. The
significance and average consistency values for components are given by (a)
(.039, .78), (b) (.042, .85), (c) (.010, 1.00), and (d) (.045, 1.00).

across the modalities such that they jointly inform on the
differences across patients with schizophrenia compared with
the healthy controls. Hence, they link all three modalities that
are essentially of different characteristics. In the figures that we
show, red indicates areas where there is more activation or gray
matter volume for controls, healthy participants, compared
with patients as explained in Section III. All spatial maps
are thresholded at a Z-score of 3.5, and as mentioned before,
all p-values are not corrected for multiple comparisons unless
specified otherwise.

JICA results: In Figure 1, we show the jICA results for
Infomax and EBM, where we also give the values for the sig-
nificance of the estimated components and their consistency.
First, we note the similarity of the two components across
algorithms, and then the higher significance of the components
in terms of group difference generated by EBM compared to
Infomax. The most significant component estimated by EBM
even passes the threshold in terms of statistical significance
using the conservative Bonferroni correction. This is further
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Fig. 4. Components generated for fusion of all three datasets using tIVA.
The significance and average consistency values for the components estimated
using MAXVAR are (.0069, 1.00), and (.0066, 1.00) for the top component
and (.0093, 1.00) for the second one estimated using GENVAR. For IVA-
G, we have a single component that shows significant group difference with
(.013, .75).

supported by the fact that EBM resulted in only two significant
components while for Infomax, there were two additional
components that were not physically meaningful even though
they were statistically significant. On the other hand, the con-
sistency of EBM is lower compared to that of Infomax, which
is expected as Infomax uses a fixed nonlinearity while EBM
uses an adaptive approach for density matching. In Figure 1,
the top component identifies changes in the motor execution
region (anterior) associated with N2 (also similar to the N2/P3
complex), and the second component, differences in motor
planning regions and motor (anterior to motor execution) as
well as some thalamus associated with the N1 peak. These
regions and the ERP deviation correspond to areas that have
been also previously noted as affected in schizophrenia.

As we noted, we also performed pairwise fusion analyses.
For the ERP component, use of three modalities rather than
two yielded more physically interpretable results for jICA.
We show an example in Figure 2 where the ERP component
appears very similar for the two combinations, fMRI-ERP and
SMRI-ERP, and corresponds to the top component shown for
Infomax and EBM in Figure 1. In this example, we note
that bringing in the third modality into the analysis provides
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Fig. 5. Components generated using tIVA with two modalities at a time.
Note that both MAXVAR and GENVAR reduce to CCA for two datasets. The
significance and average consistency for components are given by (.0065, .92)
for the component estimated using IVA-G and (.0066, 1) using CCA.

additional advantages, yields an ERP that is easier to interpret
physically, and also yields more consistent differences in gray
matter for sMRI. In addition, in Figure 3, we show four
components estimated using EBM with a single modality at
each time. The results of the single modality analysis hence
can provide the guidance for the interpretation of the fusion
results, and, as expected, similar components result in most
cases. With multiple modalities, however, significance of the
results increases and connections across modalities in terms
of the observed group—healthy and patients—differences are
established.

In Table I, we show the mutual information (MI) values
of the estimated components for the fusion results as well
as single modality results. The values are calculated for the
best run, and after normalizing the estimated component using
Z-scoring to allow for comparisons across different pairs. As
expected, in most cases, EBM yields lower MI values as it uses
an adaptive density estimation procedure and hence can better
optimize the criterion, i.e., can better maximize independence
among the estimated components. It is also worth noting that
the MI values are higher for the fusion results than those
for a single modality. This is also expected as jICA treats
the combination of multiple modalities as a single underlying
source, which typically will have a more complicated and
richer distribution as it is formed by samples from multiple
modalities.

tIVA results: In Figure 4, we show the results of the fusion
of three modalities using the tIVA model, with tMCCA-
MAXVAR, tMCCA-GENVAR, and tIVA-G. First, note that
since the profile matrices are not constrained to be the same
for all modalities and each modality has a separate profile
matrix, we can now estimate components that are not sig-
nificant in all three modalities, and in the case of tIVA-G,
the only component that is estimated is an fMRI-ERP pair.
We see correspondences to the most significant—shown on

top for Infomax and EBM in Figure 1—component detected
by JjICA in these results. The component shown on top for
GENVAR and the only significant component detected using
IVA-G show similar difference in fMRI and an affected ERP
component with characteristics similar to the N2/P3 complex.
But in the case of tMCCA-GENVAR, the areas with functional
change—areas of decreased activity and decreased gray matter
in patients—are split among two components, one showing
stronger association with sMRI. Since tMCCA-GENVAR and
tIVA-G make use of the same cost function with difference
in constraint for the demixing matrix, which is orthogonal
for MCCA, it is not surprising that the results are more
similar, and in fact the combined areas of change for fMRI
for the two GENVAR components bear much resemblance
to the fMRI result in the single component estimated using
IVA-G, which also yields a better estimate of the N2/P3-
like complex. The MAXVAR cost only takes the maximum
eigenvalue into account and hence estimates only a single
significant component that links all three modalities while
the GENVAR/IVA-G cost, which takes all eigenvalues of
the source component vector matrix into account, provides
a more balanced representation of the underlying common
components, i.e., group differences, among the datasets. In
addition, IVA-G is the least constrained approach among those
and is the one that that yields a single component that is
significant, and the sMRI difference is not part of this result
since, as a modality, SMRI has the weakest connection to the
other two modalities, as also noted in the simulation results
in [1].

Order selection: In Section III, we noted that the suggested
orders for the signal subspace using [51] for the jICA model
are 14 for all three modalities, 9 for fMRI-ERP, 32 for
fMRI-sMRI, and 32 for SsMRI-ERP. In general, these values
follow a similar trend to the number of significant components
determined using the modality combinations for jICA, in that
the combination of fMRI-sMRI and sMRI-ERP resulted in
more significant components than using fMRI-ERP and all
three modalities. For the tIVA model on the other hand, the
joint order selection scheme of [53] indicated a similar number
of joint components for the two combinations, fMRI-ERP
and fMRI-sMRI as three and four, and suggested a smaller
number, one, for the SMRI-ERP combination. This finding also
correlates with the number of significant components detected
using methods that use the tIVA model, where between 2 and
4 significant components were found for fMRI-ERP, between
4 and 5 significant components were found for fMRI-sMRI,
and between 2 and 3 components were found using sSMRI-
ERP. The consistent detection of the smallest order with the
sMRI and ERP combination is also expected due to the more
significant difference in the nature of these two modalities.
Hence, order selection, and especially that of common and
modality specific subspaces, provides another promising way
to perform exploratory analysis of multi-modal data.

V. DISCUSSION

In this paper, we study the application of the jICA and
the tIVA models to fusion of data from two groups that
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[ IMRI-SMRI-ERP | fMRISMRI | fMRI-ERP | sMRI-ERP |

Infomax | 0.59+0.05 [ 0.43+0.02 | 0.354+0.15 | 0.56 +0.04
EBM 0.30+£0.06 | 0.4240.06 | 0.2240.09 | 0.26 +0.05
y fMRI [ sMRI [ ERP |
Infomax | 0.05 4 0.01 [ 0.0540.01 [ 0.33 +0.05
EBM | 0.034+0.01 | 0.09 +0.03 | 0.28 +0.06
TABLE I

AVERAGE PAIRWISE MUTUAL INFORMATION AMONG THE ESTIMATED COMPONENTS FOR JICA AND SINGLE MODALITY ICA RESULTS

perform an AOD task. We performed both three-way fusion
among the modalities as well as two-way and single modal-
ity decompositions using the two models, and studied their
relationships. As demonstrated with numerous examples for
fMRI [54], the maximization of independence is a useful tool
for brain imaging as enables us to identify non-systematically
overlapping components, and also separates the ERP compo-
nents into interpretable waveforms in most cases [11], [28].
In a joint analysis, the estimated components identify regions
that are co-varying together, e.g., the functional and structural
regions in the case of fMRI and sMRI, providing important
information not available from either modality alone. Such an
approach also does not require the regions for the different
modalities to be in the same location, an important point as
structural and functional information is not co-localized in
many cases

We show that both with tIVA and jICA, fusion of all three
modalities together leads to meaningful areas that show group
differences and increased focality, and these areas are what
would be expected to be implicated in schizophrenia. In the
three-way analysis, the areas that demonstrate change in fMRI
and sMRI are, in general, smaller and the ERP character-
istics are easier to interpret. However, the link between the
two functional modalities fMRI and ERP appears to be the
strongest and the sensitivity for the components showing group
difference, in general, decreased when sMRI was added to the
analysis. Thus, even though using all the available modalities
in such a multivariate analysis framework is attractive for
multiple reasons, there may be penalties associated as well,
which in this case, manifests as an overall decrease in the
sensitivity of the detected group differences with sMRI. For
the given dataset, since the number of samples is only 36, the
relatively small sample size limits the performance of tIVA,
and having a strong constraint as jICA imposes, seems to lead
to results that are easier to interpret. In addition, the stronger
relation between the ICA results from each dataset separately
and the jICA results, leads to greater confidence in jICA results
as a whole. Also, use of an algorithm like Infomax that empha-
sizes sparse distributions leads to more focal estimates for the
spatial maps and narrower responses for the ERP. However,
in terms of the physical interpretability of the components we
estimate as well as their overall significance values, EBM leads
to more desirable performance than the Infomax algorithm,
which has been the algorithm of choice in almost all jICA
implementations. When interpreting the significance values,

however, some caution might be required. As suggested by
the simulation results given in [1], the statistical significance
values might be over-estimated with jICA and under-estimated
with tIVA if the connection with a given dataset is weak, and
the estimation performance with tIVA would be expected to be
more reliable using the tIVA approach, especially when there
are sufficient number of samples.

When interpreting the results with real data, it is important
to remember the main points demonstrated by the simula-
tion results. When the structure of the connection across
the modalities is strong, both models perform similarly, but
tIVA outperforms jJICA when the connection between any of
the multiple modalities decreases, and the estimation of the
component with the weaker link will be significantly impacted
for jJICA. On the other hand, jICA is more robust to noise if
the underlying structure is strong, since it assumes that the
modalities share the same mixing matrix, i.e., profiles. This
strong assumption enables jICA to average out the effects
of noise. Based on the overall results, we would expect the
component estimations for fMRI-EEG to be reliable for both
models, possible more for jICA, whereas for fMRI-sMRI and
SMRI-EEG, the results obtained by the tIVA model might be
more reliable. In addition, judging the quality of results using
only the t-values for group differences might be somewhat
misleading. Through its strong assumptions, jICA might lead
to increased sensitivity while its estimation performance in
terms of recovery of the underlying components might be
deteriorating as shown for the simulation example in Figure 6
in [1]. Number of samples is another important factor affecting
the performance, especially for the tIVA model. Simulation
results demonstrate that the tIVA model becomes more at-
tractive when sample size—number of subjects—increases.
For the example with the real data, since we only have 36
subjects, the situation favors the jICA model. It is also worth
noting that when the sample size is low, the limitations of the
models or algorithms we have noted due to the assumptions
on independence or orthogonality are of less concern as such
statistical properties are better satisfied for larger sample sizes.

Given such trade-offs in performance, it is natural to con-
sider extensions of these models, and there are a number of
them. These include the MCCA+ICA model [34], which per-
forms MCCA using the tIVA model and then applies jICA to
the reconstructed components post-MCCA. Since maximally
independent components are desirable for interpretation but
the assumption of common profiles across multiple datasets
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might be too strong—especially when fusing more than two
modalities—the goal here is to align the components that are
common across the modalities prior to the jICA step. However,
the additional MCCA step provides advantages when the link
among modalities—as typically measured by correlation—
is weak, and since in the setup considered for this paper
we are primarily interested in components that are highly
correlated across the modalities, for this dataset, the use of
MCCA+ICA leads to identical results to those obtained using
JICA alone. Another approach similar to [34] is used in [23]
where the features are obtained using a multivariate latent
variable preprocessing step for fusion of EEG and magne-
toencephalography (MEG) data. Another approach, linked ICA
[55] assumes a single mixing matrix for the modalities like
JICA but estimates the weighting for each modality using a
Bayesian approach. Finally, in parallel ICA [35], [56] multiple
ICAs are performed while maximizing the correlation across
profiles—selected columns of mixing matrices—through an
alternating procedure between these two objectives. Reference
[56] introduces the approach for two datasets with application
to fusion of sSMRI with genetic data and [35] extends it to three
datasets, including fMRI in the analysis as the third modality.
More comprehensive reviews of various data fusion methods
based on blind source separation are given in [10], [57].

While extensions are always useful, with these two papers,
the first one, [1], that discusses jJICA and tIVA models in detail,
and the current paper that examines their implementation for
a specific dataset, our goal has been to fully understand the
issues behind two fundamental BSS models for multi-modal
data fusion and to provide guidance to the user. In the process,
we noted issues such as the desirability of using a flexible ICA
algorithm like EBM for the jICA model, the importance of
order selection and its potential to enable exploratory analyses
of multi-modal data, and the advantages of tIVA model over
JICA when the connections among datasets are not all similar
and when sufficient number of samples is available. Finally,
we would like to note that diversity across and within datasets
plays an important role in multi-modal data fusion enabling a
fully multi-variate approach and BSS techniques like ICA and
IVA are powerful solutions for the task.
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