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Abstract

Delirium occurs in about 80% cases in the Intensive Care Unit (ICU) and is associated with
a longer hospital stay, increased mortality and other related issues. Delirium does not have
any biomarker-based diagnosis and is commonly treated with antipsychotic drugs (APD).
However, multiple studies have shown controversy over the efficacy or safety of APD in
treating delirium. Since randomized controlled trials (RCT) are costly and time-expensive,
we aim to approach the research question of the efficacy of APD in the treatment of delirium
using retrospective cohort analysis. We plan to use the Causal inference framework to look
for the underlying causal structure model, leveraging the availability of large observational
data on ICU patients. To explore safety outcomes associated with APD, we aim to build a
causal model for delirium in the ICU using large observational data sets connecting various
covariates correlated with delirium. We utilized the MIMIC III database, an extensive
electronic health records (EHR) dataset with 53,423 distinct hospital admissions. Our null
hypothesis is: there is no significant difference in outcomes for delirium patients under
different drug-group in the ICU. Through our exploratory, machine learning based and
causal analysis, we had findings such as: mean length-of-stay and max length-of-stay is
higher for patients in Haloperidol drug group, and haloperidol group has a higher rate of
death in a year compared to other two-groups. Our generated causal model explicitly shows
the functional relationships between different covariates. For future work, we plan to do
time-varying analysis on the dataset.

© 2022 R. Adib, M.O. Gani, S.I. Ahamed & M. Adibuzzaman.
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Causal Inference on Delirium Patients from MIMIC-III

1. Background and Problem Statement

With a focus on the theoretical development of causal inference methodologies in the pre-
vious three chapters, this chapter aims to discuss a practical, real-world application of the
causal inference framework to untangle unknown healthcare information. For this purpose,
we look into Delirium patients in the ICU.

Delirium (or acute brain failure) Girard et al. (2008) is a disorder or disruption of
consciousness, presenting with a reduced capacity to focus, sustain, or shift concentration.
Delirium occurs in about 80% cases in the Intensive Care Unit (ICU) and is associated with
a more extended hospital stay, increased mortality for each additional day with Delirium
in the ICU Pisani et al. (2009) and other clinical complications such as self-extubation
and removal of catheters. Two of the significant issues in diagnosing and treating delirium
patients are:

• Currently, no biomarker exists to diagnose Delirium; rather, Delirium is diagnosed
with subjective assessment tools such as the confusion assessment method (CAM)
Inouye et al. (1990); Wassenaar et al. (2015). This diagnosis requires the presence
of a physician active in the medical center and makes the diagnosis and detection of
Delirium patients in the real-world challenging.

• Delirium is commonly treated with antipsychotic drugs (APD) Girard et al. (2008)
such as Haloperidol, Ziprasidone, Olanzapine, etc. However, multiple randomized
controlled trials (RCTs) have shown either conflicting or inconclusive results about
the efficacy of APD in the treatment of delirium Neufeld et al. (2016); Hatta et al.
(2014). This has created a controversy over the efficacy or safety of APD in treating
Delirium.

RCTs have been considered the gold standard since the 1960s Greene and Podolsky
(2012). The goal was to identify the causation of diseases and understand the causal effect
of drugs by the regulatory bodies such as the FDA and clinical communities. The key ideas
behind RCT are:

• By random assignment of treatment or interventions, the confounding bias, i.e., the
bias due to the assignment of treatment or presence of other variables, can be removed
from the estimand, including the unobserved confounders.

• By comparing similar population groups of treatment and control arm, an estimation
can be made about treatment efficacy in the target population group.

However, RCTs have their own set of challenges as well. RCTs have become increasingly
time-consuming, costly, and are often infeasible for safety and efficacy reasons Frieden
(2017). Thus there is a need to find alternatives to RCTs, possibly to detect causal effects
from other sources of information and aid in removing controversies of treatments in the
field.

Recent advances in technology and the adoption of computerized systems in routine
healthcare have enabled the collection and curation of large volumes of data during routine
healthcare, albeit with confounding biases. At the same time, recent advances in the theory
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Figure 1: RCT for Antipsychotics-based treatment for Delirium

of causal model, more specifically structure causal models (SCM), provides the framework
for adjusting for these confounding biases in many cases. This removal of biases can be
done (sometimes even if the confounders are unobserved) from observational data using
adjustment formulas such as backdoor/front door criterion Bareinboim and Pearl (2016b);
Pearl et al. (2016); Spirtes et al. (2000). However, this approach requires developing a
graphical representation of the problem domain with meticulous scrutiny of the variables’
relationship, structure learning algorithms, clinical experience, and existing literature.

With the availability (collection, storage, maintenance) of large-scale data in different
branches of science (healthcare, finance, sociology) and technology (connected health, smart
home), opportunities exist to extract necessary information from it. Big data has aided in
the revolution of neural networks, advanced reinforcement learning, and improved statistical
machine learning methodologies. Most research advancements integrating big data revolve
around curve fitting and correlation. However, without causal relationships, scientists lack
the power of intervention or to even explore hypothetical scenarios (counterfactuals).

Big data is responsible for many breakthroughs and advancements in healthcare, con-
tributing to improved treatment policy solutions and collaborated information from multiple
sources. Although most breakthroughs are based on predictive models, causal relationships
are more crucial for healthcare. This has led to countless experimental trials (randomized
controlled trials, case-control studies) on finding the efficacy or impact of an intervention
on target outcomes. Causal inference leverages big data and contributes to finding causal
information, sometimes even without experiments. One of the strengths of causal inference
methodologies is to draw conclusions on causal effects from observational data. Causal in-
ference and its potential with big data are not limited to healthcare only; it has shown great
potential in other fields (finance, sociology, law) as well Hofer et al. (2008); Nishioku et al.
(2009); Semmler et al. (2005). Artificial intelligence is iteratively improved with research
work and is getting better at decision making and predictive modeling.
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Since RCTs cost a lot in terms of money and time, emulation of RCTs from the obser-
vational dataset can help reduce them. It also would aid in using datasets from all over
the world to find causation in other diseases and health complexities. While RCTs are
the gold standard for identifying causal effects of interventions, it is time-consuming and
costly. On the other hand, the data collected during routine care, such as electronic health
records (EHR), might also be valuable to generate insight, identify the disease pathway and
estimate the effect of interventions using recent advances in methods for causal inference.

We aim to study the efficacy of APD in the treatment of Delirium using retrospective
cohort analysis. We plan to use the Causal inference framework to look for the underly-
ing causal structure model, leveraging the availability of large observational data on ICU
patients. It will help us to untangle the causal relationship between variables and look
into the counterfactual world (what-if). To explore safety outcomes associated with APD,
our research work targets to develop a causal model for Delirium in the ICU using large
observational data sets. We aim to utilize the MIMIC III database, an extensive electronic
health records (EHR) dataset with 53,423 distinct hospital admissions Adibuzzaman et al.
(2016). Our null hypothesis is: that there is no significant difference in outcomes for delir-
ium patients under different drug-group in the ICU. If successful, our research work should
help clear the common controversy over prescribing APDs as well as shed light on the un-
derlying causal mechanism triggering Delirium in ICU patients. In other words, we propose
the following specific aims.

1. Create and curate three cohorts for patients with Delirium in the ICU from MIMIC
EHR data.

2. Develop structural causal models (SCM) with the domain expertise to integrate clin-
ical knowledge and probabilistic information from the data to estimate the causal
effect of interventions.

3. Validate the models with statistical methods and independent data sets.

Figure 2: Target observational study from large EHR data

Epidemiologists have continuously involved causal inference tools, such as causal struc-
ture learning algorithms, in identifying underlying causal structures. The process is impact-
ful since it generates a causal model based on the information available (data, literature,
expertise), leading to a better understanding of the disease ecosystem; and estimates causal
effects based on that. This creates a potential to explore Delirium-treatment-related con-
troversies through observational datasets. Different studies have taken different paths; few
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studies Vitolo et al. (2018); Adegunsoye et al. (2019) have used specific SLA algorithms to
detect a causal DAG applicable for a targeted research question, whereas others Schlüter
et al. (2019); Arendt et al. (2016) have assumed the causal structure from literature, and
validated them using datasets available. We plan to create a similar computational pipeline
for Delirium patients in the ICU inspired by these.

2. Method

To create a data cohort on Delirium patients in the ICU, along with relevant covariates, we
seek help from MIMIC-III Johnson et al. (2016), a publicly available large electronic health-
care dataset. MIMIC-III is curated for twelve (12) years (2001-2012) and holds information
on around 53k distinct hospital admissions with around 40k distinct patient histories. The
database is well-maintained, de-identified, and open for researchers (with necessary and
relevant access protocol) to explore and investigate.

The general process starts with appropriate data mining and data preparation process.
We plan to extract information regarding Delirium patients (based on relevant ICD-9 code)
and related covariates (decided upon exploring literature). We then move forward with the
data analysis protocol, which consists of three (3) types of analysis:

• Exploratory analysis: to explore data distribution and dataset properties

• Machine learning-driven analysis: to infer primary point of interest (i.e., primary
outcome) based on all available covariates, as a standard approach to prediction

• Causal analysis:

– Causal structure generation: to regenerate underlying causal model through var-
ious structure learning algorithms

– Causal effect estimation: to evaluate the ‘true’ causal effect of treatment on our
defined points of interests

3. Results

This section describes our data curation protocol in detail, along with data exploration and
analysis. We present our general findings based on those steps taken.

3.1. Covariate Selection

We start the process by defining the research questions (Is Haloperidol better at treating
Delirium patients in the ICU, compared to no antipsychotics or other antipsychotics, such
as Ziprasidone, Olanzapine, etc.?). We formulate this question based on controversies
present in existing literature (described in the background section). Our null hypothesis
is that there is no significant difference in target outcomes for Delirium patients under
different antipsychotics treatment groups in the ICU. We define the treatment as the an-
tipsychotics prescribed after being diagnosed with Delirium in the ICU, with three different
arms (Haloperidol, no antipsychotics, and other antipsychotics). Our primary outcomes are
(1) patient death in hospital and (2) patient death timeline (death in 30 days / 90 days /
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sex age race icd9 codes

sofa apsiii surgery pneumonia

sepsis dementia alzheimers depression

anxiety met. acidosis airway obs. copd

liver disease heart disease mechvent. mechvent. count

time to mechvent. drug group drug categories count drug timelength

death in hospital death timeline length of stay time in mechvent.

Table 1: Features in MIMIC-Delirium

a year / survived more than a year). Our secondary outcomes are (1) length of stay in the
ICU and (2) time put in mechanical ventilation. A total of fifty (50) relevant covariates
are explored and marked, which are closely correlated with our points of interests (primary
and secondary outcomes) for Delirium patients in the ICU. However, due to the lack of
availability of all covariates in the observational dataset, we opt for the most significant
twenty-eight (28) covariates, as listed in Table 1. Here, the drug group (Haloperidol, no
drug, other drugs) is the treatment provided. Primary outcomes are death in hospital &
death timeline, and secondary outcomes are the length of stay & time in mechvent.

These all together defined a target trial that we plan to emulate. The target trial is
inspired by existing RCTs done on delirium patients to find the effects of antipsychotics
and is designed to minimize the effect of confounding variables and (selection) bias. Based
on these, we start our data curation process from the MIMIC-III dataset.

3.2. Data Curation Process

To determine eligible Delirium patients, we look into patients with ICD-9 code 293.0 (Delir-
ium due to conditions classified elsewhere) ICD9Data.com. We extract relevant information
about the patients from admissions, icu stays, and diagnoses icd table to form the base
dataset. We then infuse it with information from cptevents, d icd diagnoses and prescrip-
tions tables, and other views presented in the public repository of the database (sofa, apsiii,
ventdurations) MIT-LCP. We merge all information together to create our target dataset
of 1398 patients. We name this curated dataset as MIMIC-Delirium for future references.

3.3. Data Overview & Exploratory Insights

After our data curation to create MIMIC-Delirium dataset, we successfully extract 1671 ICU
stays with 1445 hospital admission counts on 1398 unique patients and their relevant 28
covariate information. In terms of treatment provided in the ICU, we found 681 (40.75%)
were given Haloperidol, 528 (31.60%) were given other antipsychotics and 462 (27.65%)
were given no antipsychotics. In terms of outcome, 311 (18.61%) had death in 30 days,
108 (6.46%) had death in 90 days, 175 (10.47%) had death in a year, and 253 (15.14%)
survived at least a year (information on 821 (49.13%) were unknown). Among the common
associated diseases in the ICU, 375 (22.44%) had Sepsis, 484 (28.96%) had Pneumonia,
1035 (61.94%) had (a variation of) heart diseases, and 97 (5.80%) had (a variation of) liver
diseases. Figure 4 shows the general data distribution on age in years skewed to right since
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Patients
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Disease & Drug Information
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Figure 3: Data mining protocol (simplified)

Delirium is frequent in elderly population and length-of-stay in days (skewed to left since
higher number of ICU stay is severe and rare).

Figure 4: Data distribution on age in years (left) and length-of-stay in days (right)

Additionally, we had findings such as mean length-of-stay and max length-of-stay is
higher for patients in the Haloperidol drug group, most patients, who were given multiple
APD, were given Haloperidol, The Haloperidol group has a higher death rate in a year than
the other two groups, etc.

For the statistical analyses, we conducted a one-way between-subjects ANOVA to com-
pare the effect of the drug group on length of stay in Haloperidol, no drug, and other drugs
group. With p < 0.05, we found a significant effect of the drug group on the length-of-stay.
Post hoc comparisons by the Tukey HSD test indicate that the mean score for the Haloperi-
dol group (mean: 7.47, deviation: 8.55) was significantly higher compared to no drug group
(mean: 4.12, deviation: 5.66) and other drugs group (mean: 5.44, deviation: 6.14).

3.4. Predictive Analysis on MIMIC-Delirium dataset

Before our deep dive into causal exploration, we briefly explored the MIMIC-Delirium
dataset for predictive analysis. We employed standard supervised classification algorithms
on the complete dataset, with all 24 covariates (discarding the output features) as fea-
tures and death in hospital as the label. We deployed 10-fold cross-validation with Logistic
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Regression, Support Vector Machine, and XGBoost algorithm. Mean accuracy with Logis-
tic Regression is 89.71%, mean accuracy with SVM is 89.11%, and test-mlogloss-mean for
XGBoost (with 50 rounds of boosts) is 0.2724. For XGBoost, we also find that length-of-
stay and age have the highest impact in predicting outcome death in this case, which is
self-explanatory. Figure 5 shows the general correlation between features as a heatmap.

Figure 5: Correlation heatmap of MIMIC-Delirium

3.5. Causal Analysis on MIMIC-Delirium dataset

Our causal analysis is built upon two steps: (1) causal structure generation and (2) causal
effect estimation (based on causal structure generated).

3.5.1. Causal Structure Generation

To generate the most feasible underlying causal structure from the MIMIC-Delirium dataset,
we rely on causal structure learning algorithms (SLA), with assumptions of causal sufficiency
and faithfulness. Specifically, we apply eight (8) causal structure learning algorithms: (1)
PC, (2) FCI, (3) GES, (4) GIES, (5) GDS, (6) LINGAM, (7) MMHC, and (8) MMTABU,
with help from existing R libraries: (1) pcalg Kalisch et al. (2012); Hauser and Bühlmann
(2012) and (2) pchc Tsagris (2021). With the application of these SLAs, we have eight
(8) individual causal graphs. However, we apply majority voting to each edge to merge
all this information together. This merging defines an edge as being present in the final
graph if it is present in more than 50% cases (more than four graphs). Although this
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Causal effect of drug group on:

death in death length of stay time in
hospital timeline in days mech. vent.

Hal. vs. No Drug 0.0310 -0.1291 1.8372 12.3007

Other Drug vs. No Drug 0.0216 0.0373 1.6102 8.1912

Hal. vs. Other Drug 0.0113 -0.1386 -0.0533 4.4827

Table 2: Outcomes estimation in Average Treatment Effects (ATE)

is a straightforward and naive solution to merge multiple causal graphs, we employ this
ensembling method since no standard has been established in the literature yet. Figure 6
shows the final merged causal graph generated.

3.5.2. Causal Effect Estimation

With the causal structure generated, we now focus on causal effect estimation. For this
purpose, we employ the pipeline proposed by Microsoft Do-Why library Sharma et al.
(2019):

• Modeling

• Identification

• Estimation

• Refutation

With modeling completed as part of the causal structure generation step, we now focus
on causal effect identification and estimation. Based on the causal structure generated,
we identify the conditional probability equation for the four target outcomes. Specifically,
we express the do-calculus operations Bareinboim and Pearl (2016a) in order to ‘virtually’
manipulate the outcomes. The do-calculus equations are presented below:

• P (death in hosp|do(drug group)) =
∑

age P (death in hosp|drug group, age)P (age)

• P (death timeline|do(drug group)) =
∑

age P (death timeline|drug group, age)P (age)

• P (los days|do(drug group)) =
∑

heart disease,mechvent P (los days|drug group, heart disease,mechvent)P (heart disease,mechvent)

• P (time in mechvent|do(drug group)) =
∑

age,mechvent P (death in hosp|drug group, age,mechvent)P (age,mechvent)

We now find the causal effect estimates based on these causal expressions identified. In
Table 2, we present the causal effect estimations, as Average Treatment Effects (ATE), for
treatment, aka, drug group on the four target outcomes. As shown in the table, the causal
effect of treatment on death in Delirium and death timeline is very close. However, any
drug, Haloperidol (1.8372) and other drugs (1.6102), does much better in reducing hospital
length of stay compared to the no drug patient group (-0.0533). In addition to that, any
drug performs better (8.1912) in reducing time in mechanical ventilation compared to no
drug (4.4827), and Haloperidol does better (12.3007) than any other drugs (8.1912).
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race

age

mechvent_count

mechvent sex depression

surgery dementia alzheimers time_to_mechventanxiety

drug_categories
distinct_count drug_group apsiii

sofadeath_hospdeath_timeline

los_days

time_in_mechvent

pneumonia sepsis met_acidosis

heart_disease drug_timelength liver_disease

airway_obs copd

Figure 6: Combined Causal Graph for Delirium in the ICU (blue: treatment, red: primary
and secondary outcomes)
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We now move to the final stage of causal effect estimation, which is the refutation of the
estimated effect. We do so in four different steps: by adding a random common cause to the
causal model, adding an unobserved common cause to the causal model, using a Placebo
treatment, and using a subset of data. The expectation for these four is that:

• Adding a random common cause: should not change the estimated outcome from
before since this should be adjusted by use of do-calculus expressions

• Adding an unobserved common cause: should change the estimated outcome
from before since the unobserved confounder induces non-removable biases in the
system

• Using a placebo treatment: should be close to zero since placebo treatment should
not have any impact on the outcome

• Using a subset of data: should not change the estimated outcome from before since
underlying data distribution did not change

Application of these four steps results in the following values, which also align with our
expectations for a stable causal model and estimated effect:

• Estimated effect: 0.0309

• Add a random common cause: 0.0310

• Add an Unobserved Common Cause: 0.0262

• Use a Placebo Treatment: 0.0003

• Use a subset of data: 0.0319

4. Discussion

We have explored a potential observational study on Delirium patients in the ICU in this
study. Our curated dataset is analyzed through two lenses: regular observational analysis
and ‘simulated’ randomized controlled trial through the structural theory of causation. We
have multiple novel contributions to this research work:

• Our observational study creates a prospective data cohort (MIMIC-Delirium) for
Delirium patients

• Data properties for MIMIC-Delirium provides insight into the general patient demog-
raphy in the ICU

• Machine learning-driven analysis on MIMIC-Delirium presents usage of prediction-
based computational modeling and these algorithm’s general strengths

• Causal analysis on MIMIC-Delirium found:

– No significant impact (X) of Antipsychotics choice in one of the primary out-
comes, death in hospital
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– No significant impact (X) of Antipsychotics choice in length of stay in the ICU;
however, usage of any drug shows better outcome (X) compared to that with no
drugs

– Haloperidol performs better (X) in affecting time in mechanical ventilation, com-
pared to the similar impact of usage of other drugs or no drugs,

Our study relies on a few underlying assumptions. We assume that the Delirium patients
in the ICU represent general Delirium demography since it occurs more frequently ( 80%
cases in ICU) in the ICU compared to other traditional medical settings. Additionally, in
generating the causal structure, we did not incorporate any background knowledge from
peer-reviewed literature because of the existing controversies over the usage and benefits
of Antipsychotics on the Delirium population (discussed in the background section). One
of the critical limitations of our study is the lack of involvement of experienced physicians
actively working in the ICU. Their involvement can aid in disputing general confusion in
different parts of the study; however, bias from their understanding needs to be handled by
involving multiple physicians. This limitation can be mitigated in future work.

In summary, our proposed analysis and pipeline create pathways for similar studies,
especially in the healthcare research domain. The abundance of curated large electronic
healthcare data presents a potential to find unexplored insights in a specific population
group. Causal inference, especially the structural theory of causation, holds the potential
to handle such research questions, look for causal insights, and report them appropriately.
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