
Performance Studies of the Blossom V Algorithm
REU Site: Interdisciplinary Program in High Performance Computing

Changling Huang1, Christopher C. Lowman2, Brandon E. Osborne3, Gabrielle M. Salib4,
Graduate assistants: Ari Rapkin Blenkhorn4, Jonathan S. Graf5, Samuel Khuvis5,

Faculty mentor: Matthias K. Gobbert5, Clients: Tyler Simon6 and David Mountain6

1Department of Computer Science, Rutgers University,
2Department of Mathematics, University of Maryland, College Park,

3Department of Physics and Astronomy, Austin Peay State University,
4Department of Computer Science and Electrical Engineering, UMBC,

5Department of Mathematics and Statistics, UMBC,
6Laboratory for Physical Sciences

Technical Report HPCF–2015–26, hpcf.umbc.edu > Publications

Abstract

The Blossom V algorithm is used in graph theory to compute a perfect matching
of minimum cost. We conducted performance studies on the algorithm using the maya
cluster in the UMBC High Performance Computing Facility to better understand the
performance capabilities and emphasize potential approaches for improvement. In the
performance studies, we varied the number of nodes, graph density, and weight range
for numerous graphs. For each graph, we recorded execution times and memory usage.
For all graphs used in the performance studies, we found that the majority of time is
spent in initialization. We also found that as graph density increases, both execution
time and memory usage increase. While we anticipated these conclusions, we reached
other conclusions that were more surprising. We determined that as the weight range of
a graph increases, initialization time and total execution time increase. We also found
that scaling down integer weight ranges to real-valued weight ranges has a limited
effect on initialization time and total execution time. Future studies should focus on
speeding up the initialization process of the algorithm.

Key words. matching, perfect matching, augmenting path, blossom, blossom shrinking

AMS subject classifications (2010). 05C70, 68R10

1 Introduction

Blossom V is a powerful algorithm which finds a perfect matching of minimum cost in a
graph [6]. Jack Edmonds (1965) developed the first installment of the Blossom algorithm
with worst case complexity O(n2m), where n is the number of nodes and m is the number of
edges in a graph. The current worst case complexity of the algorithm is O(n(m+ n log n)),
as found by Gabow [4,6].

Kolmogorov compares the speed of the Blossom V implementation with previous im-
plementations in [6]. Blossom V outperforms its predecessors in most cases, including in
practical applications such as Delaunay Triangulations and Planar Ising models [6].

1

hpcf.umbc.edu

Our group analyzed the overall performance of the Blossom V algorithm by collecting
timing and memory data for graphs with various numbers of nodes, graph densities, and
weight ranges. We used the analytical tool gprof, which reports the time spent in each func-
tion, to determine areas that would profit most from parallelization [5]. We used Memcheck
to determine total memory usage of each graph and to determine the largest graph that we
could test in terms of number of nodes and graph density.

Manipulating the weight ranges of graphs yielded unexpected timing results. Further-
more, varying graph density influenced execution times and total memory usage.

The remainder of this report is organized as follows: Section 2 provides information on
graph theory and the Blossom V implementation. Section 3 details the methodology of our
performance studies and analysis. Section 4 presents the results of our performance studies
and analysis. Finally, Section 5 summarizes the results of these analyses and discusses future
efforts for improvement of the algorithm.

2 Background

2.1 Graph Theory Terminology

The Blossom V algorithm operates on a weighted undirected graph, G = (V,E, c), where V
is the set of vertices (or nodes), E is the set of edges, and c is the set of costs (or weights)
of the edges. The order of the graph, n, is defined as |V (G)|, the cardinality of the set V .
The size of the graph, m is defined as |E(G)|, the cardinality of the set E.

A matching consists of a set of edges M ⊆ E, such that each node in V is incident with
at most one edge in M . M is defined as maximal if the addition of any edge not in M will
render M no longer a matching. A maximal matching with maximum cardinality is called a
maximum matching. A maximum matching is a maximal matching, but a maximal matching
is not always a maximum matching.

A perfect matching is a maximum matching where each node in V is incident with exactly

Figure 2.1: Edges 4-0 and 5-1 form a maximal, but not maximum, matching.

2

Figure 2.2: Edges 1-0, 4-3, and 5-2 form a perfect matching.

one edge in the matching; hence, a perfect matching can only be found in a graph where
n is even. If n was odd, then every node in V would be incident with an edge in a perfect
matching only if two edges shared a common node. However, a node incident with multiple
edges contradicts the definition of a matching and thus a graph where n is odd cannot
contain a perfect matching. Additionally, the cardinality of a perfect matching M must be
|M | = (n/2). If |M | < (n/2), then at least 2 nodes are not incident with any edge in M
and thus M is not perfect. If |M | > (n/2), then ∃ a node in V that is incident with at
least 2 edges in M , meaning M is not a matching at all. Thus, for a perfect matching M ,
|M | = (n/2).

A graph can contain more than one perfect matching. The Blossom V algorithm aims
to find a perfect matching of minimum cost in a weighted graph. The perfect matching is
constructed by iteratively adding edges to an initially empty matching M along augmenting
paths in the graph. A path P in G is alternating if edges within the path are alternately
in and not in M . An exposed vertex is one that is not incident with any edge in M . P
is augmenting if it starts and ends at two exposed vertices and is an alternating path. To
perform a matching augmentation along an augmenting path P , M is replaced with a new
matching M1 = M⊕P as shown in Figure 2.3. It can be proven that a matching is maximum
if and only if there is no M -augmenting path in G [7].

A critical component of the Blossom V algorithm involves the use of blossoms. Given a
graph G, a blossom B is defined as a cycle consisting of 2k + 1 edges, exactly k of which
belong to a matching M . The blossoms can be shrunk and expanded, as shown in Figure 2.4.
Shrinking the blossoms makes it possible to treat them as singular nodes during execution
of the algorithm. Searches performed on the resulting reduced graph are more efficient.

3

(a) (b)

Figure 2.3: Figure (a) displays the augmenting path P prior to augmentation with the white
nodes denoting exposed vertices and the solid line denoting the original matching M . In
figure (b), a new matching M1 is obtained by augmentation: the edge in M is dropped and
the two edges connecting the incident nodes of M to the exposed nodes are added to M1.

(a) (b)

Figure 2.4: Blossom with five vertices in (a) being shrunk to a contracted node in (b).

4

2.2 Blossom V Overview

2.2.1 Optimization through Duality

To find a perfect matching of minimum cost, Blossom V uses the linear programming concept
of duality. In duality theory, the desired optimization problem, or primal problem, can be
solved by considering a second, closely-related dual problem. The primal problem is subject
to specific constraints and the dual is used to ensure the final solution is optimal. The primal
problem used to find the minimum cost matchings is expressed as

min
∑
e∈E

cexe (2.1)

with the constraints

x(δ(v)) =1 ∀ v ∈ V, (2.2)

x(δ(S)) ≥1 ∀ S ∈ O, (2.3)

xe ≥0 ∀ e ∈ E, (2.4)

where ce represents the cost of edge e = (u, v) and xe denotes a vector in e holding values 1
or 0 (1 for a matched edge and 0 for an unmatched edge). In the list of constraints, x(δ(v))
represents the sum of xe vectors at each node, O denotes the set of all odd subsets (i.e. with
odd cardinality) of V with at least three nodes, S is a subset of V , and x(δ(S)) denotes the
sum of all xe vectors with one vertex in S. The corresponding dual problem is shown as

max
∑
v∈V

yv +
∑
S∈O

yS (2.5)

subject to the constraints

slack(e) ≥0 ∀ e ∈ E, (2.6)

yS ≥1 ∀ S ∈ O, (2.7)

where slack(e) denotes the reduced cost of edge e, yv represents the feasible dual vector at
each vertex, and yS represents the dual vector pertaining to each edge of S ∈ O. If an edge
has zero slack (i.e. the cost ce of the edge is equal to the sum of yu, yv, and each yS vector) it
is known as tight. If slack(e) is greater than zero only at unmatched edges and yS is greater
than zero only when x(δ(S)) = 1, the complementary slackness conditions are satisfied and
a perfect matching is reached [6].

2.2.2 Primal and Dual Updates

A tree T is defined as a connected graph without any cycles. The search for augmenting
paths uses a forest data structure of individual trees that corresponds to different portions of
a graph G. Every node v is given a label l(v) ∈ {+,−,∅}. Nodes with label ∅ are considered
free vertices ; otherwise, they belong to an alternating tree. The root of the alternating tree is
labeled + but it is considered unmatched. Consequently, the number of trees is the number
of unmatched nodes. In addition, only + vertices may have more than one child; however, −

5

vertices may only have one. The algorithm finds matchings and dual solutions that satisfy
the complementary slackness conditions and forms augmenting paths consisting of only tight
edges. Without changing the dual variables, the following primal operations are performed
using only tight edges:

Grow If ∃ edge(u, v), l(u) = + and l(v) = ∅, the tree of u can be grown by the addition of
node u and the corresponding matched node.

Augment If ∃ edge(u, v), l(u) = l(v) = + and u, v belong to different trees, then the
cardinality can be increased by flipping the matching along the path connecting the
roots of the two trees. All vertices in the tree become free.

Shrink If ∃ edge(u, v), l(u) = l(v) = + and u, v are in the same tree, then there must exist
a cycle of odd length that can be shrunk.

Expand If node v is a blossom with yv = 0, l(v) = −, then it can be expanded to a blossom.

The primal updates cannot always be immediately applied; thus, the dual variables must
be modified in order to create tight edges. A dual change δT is added to yv for nodes labeled
“+” and subtracted from yv for nodes labeled “−” in each tree. Blossom V uses a variable
δ approach with the constraints

δT ≤ slack(u, v) (u, v) is a (+,∅) edge, u ∈ T, (2.8)

δT + δT ′ ≤ slack(u, v) (u, v) is a (+,+) edge, u ∈ T, v ∈ T ′, T 6= T ′, (2.9)

δT ≤ slack(u, v)/2 (u, v) is a (+,+) edge, u, v ∈ T, (2.10)

δT ≤ yv v is a “−” node and a blossom, v ∈ T, (2.11)

δT + δT ′ ≤ slack(u, v) (u, v) is a (+,−) edge, u ∈ T, v ∈ T ′, T 6= T ′. (2.12)

When one of the above constraints becomes tight, the primal operations can be applied.
Constraint 2.8 corresponds to a GROW operation, 2.9 to an AUGMENT operation, 2.10 to
a SHRINK operation, and 2.11 to an EXPAND operation. If constraint 2.12 becomes tight
then no operations can be performed. The algorithm cycles between primal and dual updates
until the optimal perfect matching is reached. Refer to [6] for a more detailed description of
the implementation.

3 Methodology

3.1 Hardware

We conducted performance studies on the Blossom V algorithm using the 2013 portion of
the maya cluster in the UMBC High Performance COmputing Facility. Figure 3.1 displays
a schematic of one of the compute nodes on the cluster that was used to conduct the perfor-
mance studies. Each compute node consists of two eight-core 2.6 GHz Intel E5-2650v2 Ivy
Bridge CPUs [2]. Each core of each CPU has 32 kB of L1 cache and 256 kB of L2 cache,
and all cores of each CPU share 20 MB of L3 cache [2]. Each compute node has 64 GB of
main memory [2].

6

Figure 3.1: Schematic of a maya 2013 compute node.

3.2 Generating Testable Data

We used the SSCA2 random graph generator in the GTgraphs suite to create testable graphs
[1]. SSCA2 creates a directed graph with integer edge weights and writes it to a file in
DIMACS format. We created graphs of up to 65536 vertices and 3913764 edges. A number
of parameters could be specified, such as maximum parallel edges, minimum weight, and
clique size; however, the graphs generated often did not contain a perfect matching and
caused the algorithm to produce a segmentation fault. Because a reliable range of test data
could not be produced by SSCA2, we wrote two additional generators to ensure that the
graphs were connected.

The first generator creates complete graphs, or graphs in which every pair of distinct
vertices is connected by exactly one edge. It accepts the desired scale for vertices and writes
each matching and a randomly generated weight to each line of an output file in DIMACS
format. The second generator creates connected graphs of a specified scale and density.
Graph density d is defined as the number of edges in a graph divided by the total number
of possible edges that a graph can have, shown as

d =
2|E|

|V |(|V | − 1)
. (3.1)

For simplicity, graph density will be referred to as “density” from this point on. The generator
computes the number of edges |E| and creates an adjacency matrix that stores random edge
weights at each pertinent cell. Two vertices are matched by incrementing one parameter in
the matrix, randomly generating the second, and applying a weight to the edge. A second

7

pass is then performed to connect the remaining unconnected vertices and apply random
weights to the edges. The data is then written to a file in DIMACS format.

3.3 Performance Study Methods

To determine which components of the Blossom V algorithm take the longest to complete, we
used the GNU profiler gprof. gprof can generate a function call hierarchy, count the number
of times each function is called, and determine the percentage of total time spent in each
function [5]. In order to profile the code, the flag -pg must be added to the Makefile. Once
compilation is complete, running the executable generates a gmon.out file containing the
profiling information. The file can then be converted to a dot file using the gprof2dot.py

script by [3]. The dot file can then be converted to a PNG file to view a tree diagram of
function calls.

We conducted performance studies for graphs with n = 1024 (210), 2048 (211), 4096 (212),
8192 (213), 16384 (214), 32768 (215) nodes; graph densities d = 0.125, 0.25, 0.5, 1; and initial
integer weight ranges ri from 1 to 102, 1 to 104, 1 to 106, and 1 to 108. The complete graph
generator was used to create graphs with a density of 1 and the connected graph generator
was used for all other graphs. From this point on, the range of possible weights that can be
assigned to an edge in a graph will be referred to as “weight range” for simplicity.

In our performance studies, we recorded initialization time and total execution time for
graphs with various values of n, d, and ri. Initialization time includes updating optimization
variables and assigning matchings, while total execution time is how long the algorithm runs
from start to finish. In order to determine the initialization time and total execution time
of a graph, the program stores the wall clock time at the beginning and end of each major
section and calculates the difference before displaying each of the times.

We first generated five random graphs, each with the same combination of n, d, and
ri. We then executed the algorithm on each of the five graphs in order to determine the
initialization time and total execution time for each graph. Finally, we aggregated and
averaged the timing values for the five graphs and recorded the average values. The process
was repeated for each possible combination of n, d, and ri.

In our performance studies, we also recorded total memory usage of the algorithm for
each possible combination of n and d. In contrast to our timing experiments, we used only
one graph for each (n, d) combination because graphs with the same number of nodes and
edges require nearly identical amounts of memory, regardless of weight range. To determine
memory usage, we used the Valgrind analysis tool Memcheck. Memcheck logs all mem-
ory reads/writes [8]. It also intercepts calls to malloc/new/free/delete [8]. The command
valgrind ./blossom5 -e <graph_file> initiates the profiling with Memcheck; however,
for graphs with n = 32768 nodes and densities d = 0.5 and d = 1, Memcheck did not work
properly due to invalid write errors. For these graphs, we used Matlab to perform linear
regression and recorded the predicted values with the associated R2 values.

We were interested to see how scaling down the edge weights of a graph would affect
initialization time, total execution time, and total memory usage for graphs with larger
weight ranges. For each graph that was generated and used for the performance studies
described above, we scaled down the weights and recorded initialization time, total execution
time, and total memory usage and repeated the previous procedures. We scaled down the

8

weights of a graph by dividing each edge’s weight by the maximum value in the original
graph’s weight range. Consequently, the resulting scaled-down weight ranges rs were 10−2

to 1, 10−4 to 1, 10−6 to 1, and 10−8 to 1.
Finally, we were interested to see how changing the initial weight ranges would affect

initialization time and total execution time of graphs. We modified the initial weight ranges
by maintaining the range and shifting the minimum and maximum values of the range. An
example of a modified weight range rm would be 301 to 400. For each initial weight range ri,
we chose five modified weight ranges. For each of these modified weight ranges, we generated
five graphs, each with n = 32768 nodes and density d = 1. We then gathered initialization
time and total execution time for each of the five graphs, averaged the times, and recorded
them the same way we did for our initial performance studies. The variable rm is used the
represent a modified weight range from this point on.

3.4 Analysis Methods

We define I(n,d,ri) and T(n,d,ri) to represent the initialization time and total execution time,
respectively, for a graph with n nodes, density d, and initial weight range ri. Upon completion
of the performance studies, we first analyzed the slowdown effect on initialization time and
total execution time that results from increasing density.

Sd(I, n, d, ri) =
I(n,d,ri)
I(n,0.125,ri)

(3.2)

and

Sd(T, n, d, ri) =
T(n,d,ri)
T(n,0.125,ri)

(3.3)

represent the slowdown in initialization time and total execution time, respectively, when
compared to the initialization time and total execution time for a graph with n nodes, density
d = 0.125, and initial weight range ri.

We then analyzed the slowdown effect on initialization time and total execution time
that results from increasing the initial weight range ri.

Sri(I, n, d, ri) =
I(n,d,ri)

I(n,d,1−102)
(3.4)

and

Sri(T, n, d, ri) =
T(n,d,ri)

T(n,d,1−102)
(3.5)

represent the slowdown in initialization time and total execution time, respectively, when
compared to the initialization time and total execution time for a graph with n nodes, density
d, and weight range 1 to 102.

For graphs with scaled-down weights, we define I(n,d,rs) and T(n,d,rs) as before, but with
scaled-down real-valued weight ranges rs from 10−2 to 1, 10−4 to 1, 10−6 to 1, and 10−8 to
1. Upon completion of the performance studies for graphs with scaled-down weights, we

9

analyzed the speedup effect on initialization time and total execution time that results from
scaling down the edge weights.

Srs(I, n, d, ri, rs) =
I(n,d,ri)
I(n,d,rs)

(3.6)

and

Srs(T, n, d, ri, rs) =
T(n,d,ri)
T(n,d,rs)

(3.7)

represent the speedup in initialization time and total execution time, respectively, when
compared to the initialization time and total execution time for a graph with n nodes,
density d, and initial weight range ri.

Finally, for graphs with modified weight ranges rm, we define I(n,d,rm) and T(n,d,rm) as
before, but with modified integer weight ranges as described in Section 3.3. Upon completion
of the performance studies with these modified weight ranges, we analyzed the slowdown
effect on initialization time and total execution time for graphs with n = 32768 nodes and
density d = 1 that results from using these modified weight ranges.

Srm(I, ri, rm) =
I(32768,1,rm)

I(32768,1,ri)
(3.8)

and

Srm(T, ri, rm) =
T(32768,1,rm)

T(32768,1,ri)
(3.9)

represent the slowdown in initialization time and total execution time, respectively, when
compared to initialization time and total execution time for a graph with n = 32768 nodes,
density d = 1, and initial weight range ri.

4 Results

Table 4.1 demonstrates how initialization time and total execution time differ for graphs
with various numbers of nodes, densities, and integer weight ranges. Tables 4.2 and 4.3
demonstrate the effect that density and weight range, respectively, have on initialization
time and total execution time.

Table 4.4 demonstrates how initialization time and total execution time differ for graphs
with various numbers of nodes, densities, and real-valued weight ranges. Table 4.5 demon-
strates the effect that using real-valued weight ranges, as opposed to integer weight ranges,
has on initialization time and total execution time.

Table 4.6 demonstrates how initialization time and total execution time differ for graphs
with n = 32768 nodes, density d = 1, and modified weight ranges as described in Section 3.3.
Also for Table 4.6, ri indicates the original weight range, while rm indicates the modified
weight range. Table 4.7 demonstrates the effect that using modified weight ranges has on
initialization time and total execution time of graphs with n = 32768 nodes and density
d = 1.

Finally, Table 4.8 demonstrates the effect that density has on memory usage for graphs
with integer weight ranges and graphs with real-valued weight ranges.

10

Figure 4.1: Tree diagram for our graph generator with n = 215, d = 1, and an edge weight
range of 1 to 100000000.

Figure 4.2: Tree diagram for the SSCA2 generator with n = 215.

The results in Tables 4.1, 4.4, and 4.6 all indicate that the majority of total execution
time is composed of initialization, which is consistent with the results produced by gprof.
Figure 4.1 shows the call hierarchy for a graph created by our graph generator. Although we
were unable to produce consistent testable graphs in SSCA2, we examined a call graph for
a sample that worked. Despite a larger call graph due to graph shape, initialization remains
the most significant portion.

4.1 Effect of Graph Density on Initialization Time and Total
Execution Time

The timing results in Table 4.1 indicate that as graph density increases, both initialization
time and total execution time of a graph tend to increase, regardless of the number of nodes
or weight range. For smaller graphs, the increase appears to be minimal. For example, a
graph with n = 2048 nodes, density d = 1, and weight range ri from 1 to 102 has an initial-
ization time of 0.168 seconds and a total execution time of 0.204 seconds. In comparison,

11

Table 4.1: Initialization time and total execution time for graphs with various numbers of
nodes, densities, and weight ranges.

a) Initialization time in seconds
n m d 1− 102 1− 104 1− 106 1− 108

1024 65472 0.125 0.010 0.013 0.012 0.014
1024 130944 0.250 0.016 0.023 0.023 0.024
1024 261888 0.500 0.021 0.055 0.061 0.063
1024 523776 1.000 0.041 0.175 0.192 0.204
2048 262016 0.125 0.049 0.077 0.078 0.080
2048 524032 0.250 0.069 0.211 0.234 0.222
2048 1048064 0.500 0.098 0.630 0.655 0.659
2048 2096128 1.000 0.168 1.500 1.684 1.756
4096 1048320 0.125 0.169 0.779 0.778 0.804
4096 2096640 0.250 0.216 1.879 2.217 2.176
4096 4193280 0.500 0.366 4.001 4.891 5.099
4096 8386560 1.000 0.663 7.577 9.832 10.122
8192 4193792 0.125 0.471 6.028 6.531 6.353
8192 8387584 0.250 0.763 11.274 13.531 13.719
8192 16775168 0.500 1.390 20.977 27.102 29.909
8192 33550336 1.000 2.554 45.742 53.652 53.014

16384 16776192 0.125 1.605 30.605 38.502 40.013
16384 33552384 0.250 2.902 60.614 76.217 79.609
16384 67104768 0.500 5.368 136.237 156.232 153.970
16384 134209536 1.000 10.254 314.655 304.438 310.850
32768 67106816 0.125 6.074 181.449 219.804 226.965
32768 134213632 0.250 11.207 433.533 439.950 434.774
32768 268427264 0.500 27.505 1236.385 1077.068 905.743
32768 536854528 1.000 47.547 729.372 2649.447 2677.173

b) Total execution time in seconds
n m d 1− 102 1− 104 1− 106 1− 108

1024 65472 0.125 0.010 0.014 0.014 0.016
1024 130944 0.250 0.020 0.025 0.024 0.025
1024 261888 0.500 0.031 0.061 0.065 0.065
1024 523776 1.000 0.047 0.200 0.202 0.213
2048 262016 0.125 0.054 0.079 0.081 0.084
2048 524032 0.250 0.091 0.222 0.250 0.230
2048 1048064 0.500 0.148 0.660 0.673 0.704
2048 2096128 1.000 0.204 1.564 1.739 1.839
4096 1048320 0.125 0.204 0.819 0.806 0.832
4096 2096640 0.250 0.336 1.932 2.285 2.259
4096 4193280 0.500 0.476 4.210 4.965 5.244
4096 8386560 1.000 0.808 8.175 10.193 10.433
8192 4193792 0.125 0.605 6.143 6.642 6.460
8192 8387584 0.250 1.204 11.753 13.746 13.918
8192 16775168 0.500 1.571 21.819 27.428 30.382
8192 33550336 1.000 2.933 47.768 53.763 54.049

16384 16776192 0.125 2.420 31.273 38.811 40.279
16384 33552384 0.250 4.074 63.530 77.030 80.552
16384 67104768 0.500 6.399 141.237 158.295 155.207
16384 134209536 1.000 10.788 326.793 308.734 313.352
32768 67106816 0.125 8.262 185.352 220.753 227.823
32768 134213632 0.250 13.006 444.490 441.151 438.229
32768 268427264 0.500 29.046 1288.294 1090.053 918.233
32768 536854528 1.000 49.087 878.405 2670.155 2700.346

a graph with the same number of nodes and weight range, but density of d = 0.125, has
an initialization time of 0.049 seconds and a total execution time of 0.054 seconds. Hence,

12

(a) Graphs with weight range 1− 102. (b) Graphs with weight range 1− 104.

(c) Graphs with weight range 1− 106. (d) Graphs with weight range 1− 108.

Figure 4.3: Slowdown in initialization time as graph density increases.

the difference in initialization time between the two graphs is only 0.119 seconds, and the
difference in total execution time between the two graphs is only 0.150 seconds. For larger
graphs, the increase appears to be more significant. For example, a graph with n = 32768
nodes, density d = 1, and weight range ri from 1 to 102 has an initialization time of 47.547
seconds and a total execution time of 49.087 seconds. In comparison, a graph with the same
number of nodes and weight range, but density of d = 0.125, has an initialization time of
6.074 seconds and a total execution time of 8.262 seconds. Hence, the difference in initial-
ization time between the two graphs is 41.500 seconds, and the difference in total execution
time between the two graphs is 40.825 seconds.

Though the increase in initialization time and total execution time appears to be more
significant for larger graphs than for smaller graphs, this does not accurately indicate how
much slower the times are as density increases for various sizes of graphs. For example,
a graph with n = 1024 nodes, density d = 1, and weight range ri from 1 to 106 has an
initialization time 16.000 times slower and a total execution time 14.429 times slower than
a graph with n = 1024 nodes, density d = 0.125, and weight range ri from 1 to 106. In
comparison, a graph with n = 32768 nodes, density d = 1, and weight range ri from 1 to
106 has an initialization time 12.054 times slower and a total execution time 12.906 times
slower than a graph with n = 32768 nodes, density d = 0.125, and weight range ri from 1 to
106. The data can be found in Table 4.2, which contains observed slowdown values that were
calculated using equations (3.2) and (3.3). The results in Table 4.2 indicate how much slower
initialization time and total execution time are as density increases for each combination of
n and ri. These results are presented graphically in Figures 4.2 and 4.4, which also display
the overall trend that both initialization time and total execution time tend to increase as
density increases, regardless of the number of nodes and weight range.

13

Table 4.2: Slowdown in initialization time and total execution time as graph density in-
creases.

a) Slowdown in initialization time
n m d 1− 102 1− 104 1− 106 1− 108

1024 65472 0.125 1.000 1.000 1.000 1.000
1024 130944 0.250 1.600 1.769 1.917 1.714
1024 261888 0.500 2.100 4.231 5.083 4.500
1024 523776 1.000 4.100 13.462 16.000 14.571
2048 262016 0.125 1.000 1.000 1.000 1.000
2048 524032 0.250 1.408 2.740 3.000 2.775
2048 1048064 0.500 2.000 8.182 8.397 8.238
2048 2096128 1.000 3.429 19.481 21.590 21.950
4096 1048320 0.125 1.000 1.000 1.000 1.000
4096 2096640 0.250 1.278 2.412 2.850 2.706
4096 4193280 0.500 2.166 5.136 6.287 6.342
4096 8386560 1.000 3.923 9.727 12.638 12.590
8192 4193792 0.125 1.000 1.000 1.000 1.000
8192 8387584 0.250 1.620 1.870 2.072 2.159
8192 16775168 0.500 2.951 3.480 4.150 4.708
8192 33550336 1.000 5.423 7.588 8.215 8.345

16384 16776192 0.125 1.000 1.000 1.000 1.000
16384 33552384 0.250 1.808 1.981 1.980 1.990
16384 67104768 0.500 3.345 4.451 4.058 3.848
16384 134209536 1.000 6.389 10.281 7.907 7.769
32768 67106816 0.125 1.000 1.000 1.000 1.000
32768 134213632 0.250 1.845 2.389 2.002 1.916
32768 268427264 0.500 4.528 6.814 4.900 3.991
32768 536854528 1.000 7.828 4.020 12.054 11.796

b) Slowdown in total execution time
n m d 1− 102 1− 104 1− 106 1− 108

1024 65472 0.125 1.000 1.000 1.000 1.000
1024 130944 0.250 2.000 1.786 1.714 1.563
1024 261888 0.500 3.100 4.357 4.643 4.063
1024 523776 1.000 4.700 14.286 14.429 13.313
2048 262016 0.125 1.000 1.000 1.000 1.000
2048 524032 0.250 1.685 2.810 3.086 2.738
2048 1048064 0.500 2.741 8.354 8.309 8.381
2048 2096128 1.000 3.778 19.797 21.469 21.893
4096 1048320 0.125 1.000 1.000 1.000 1.000
4096 2096640 0.250 1.647 2.359 2.835 2.715
4096 4193280 0.500 2.333 5.140 6.160 6.303
4096 8386560 1.000 3.961 9.982 12.646 12.540
8192 4193792 0.125 1.000 1.000 1.000 1.000
8192 8387584 0.250 1.990 1.913 2.070 2.154
8192 16775168 0.500 2.597 3.552 4.129 4.703
8192 33550336 1.000 4.848 7.776 8.094 8.367

16384 16776192 0.125 1.000 1.000 1.000 1.000
16384 33552384 0.250 1.683 2.031 1.985 2.000
16384 67104768 0.500 2.644 4.516 4.079 3.853
16384 134209536 1.000 4.458 10.450 7.955 7.780
32768 67106816 0.125 1.000 1.000 1.000 1.000
32768 134213632 0.250 1.574 2.398 1.998 1.924
32768 268427264 0.500 3.516 6.951 4.938 4.030
32768 536854528 1.000 5.941 4.739 12.096 11.853

14

(a) Graphs with weight range 1− 102. (b) Graphs with weight range 1− 104.

(c) Graphs with weight range 1− 106. (d) Graphs with weight range 1− 108.

Figure 4.4: Slowdown in total execution time as graph density increases.

4.2 Effect of Weight Range on Initialization Time and Total
Execution Time

The timing results in Table 4.1 also indicate that as the weight range increases, both initial-
ization time and total execution time tend to increase, regardless of the number of nodes or
density. For smaller graphs, the increase is minimal. For example, a graph with n = 1024
nodes, density d = 1, and weight range ri from 1 to 102 has an initialization time of 0.041
seconds and a total execution time of 0.047 seconds. In comparison, a graph with n = 1024
nodes, density d = 1, and weight range ri from 1 to 108 has an initialization time of 0.204
seconds and a total execution time of 0.213 seconds. Hence, the difference in initialization
time is only 0.163 seconds, and the difference in total execution time is only 0.166 seconds.
For larger graphs, the increase is more significant. For example, a graph with n = 32768
nodes, density d = 1, and weight range ri from 1 to 102 has an initialization time of 47.547
seconds and a total execution time of 49.087 seconds. In comparison, a graph with n = 32768
nodes, density d = 1, and weight range ri from 1 - 108 has an initialization time of 2677.173
seconds and a total execution time of 2700.346 seconds. Hence, the difference in initialization
time is 2629.626 seconds, and the difference in total execution time is 2651.259 seconds.

To more accurately measure the increases in initialization time and total execution time,
we calculated slowdown values using equations (3.4) and (3.5). The results can be found in
Table 4.3 and are presented graphically in Figures 4.5 and 4.6.

Overall, Figures 4.5 and 4.6 reinforce that as the weight range increases, both initializa-
tion time and total execution time tend to increase, regardless of the number of nodes or
density. Moreover, they reinforce that as the weight range increases, slowdown in initial-
ization time and total execution time is much smaller for small n, such as n = 1024 and
n = 2048; and, slowdown is very large for large n, such as n = 16384 and n = 32768.

15

(a) Graphs with density = 0.125. (b) Graphs with density = 0.25.

(c) Graphs with density = 0.5. (d) Graphs with density = 1.

Figure 4.5: Slowdown in initialization time as weight range increases.

Figures 4.5 and 4.6 also reveal an interesting anomaly when the weight range increases
from 1 to 102 to 1 to 104. For the majority of the graphs, there appears to be a spike in
slowdown of initialization time and total execution time as the weight range is increased
from 1 to 102 to 1 to 104; but, slowdown values do not change nearly as much when the
weight range is increased from 1 to 106 and from 1 to 108. Further investigation is needed
to determine why this happens.

4.3 Effect of Weight Scaling on Initialization Time and Total
Execution Time

Given that initialization time and total execution time tend to increase as weight range
increases, we hypothesized that scaling down the weights of the original graphs would lead
to speedup in both times. We believed execution times would decrease because the scaled-
down weight ranges consisted of real-valued numbers in the half-open interval (0,1], and thus
the scaled-down weight ranges would be much smaller than any of the original weight ranges.
Thus, speedup values were calculated using equations (3.6) and (3.7) and the results were
recorded in Table 4.5. Speedup less than 1 indicates that a graph with a scaled-down weight
range had a longer initialization time and/or total execution time than its corresponding
original graph. Speedup equal to 1 indicates no change in initialization time and/or total
execution time between a graph with a scaled-down weight range and its corresponding
original graph. Speedup greater than 1 indicates that a graph with a scaled-down weight
range had a shorter initialization time and/or total execution time than its corresponding
original graph.

The results in Table 4.5 indicate that there are no discernible trends in speedup. Over-
all, there is a mix of speedup values less than 1, equal to 1, and greater than 1 for both

16

Table 4.3: Slowdown in initialization time and total execution time as weight range increases.

a) Slowdown in initialization time
n m d 1− 102 1− 104 1− 106 1− 108

1024 65472 0.125 1.000 1.300 1.200 1.400
1024 130944 0.250 1.000 1.438 1.438 1.500
1024 261888 0.500 1.000 2.619 2.905 3.000
1024 523776 1.000 1.000 4.268 4.683 4.976
2048 262016 0.125 1.000 1.571 1.592 1.633
2048 524032 0.250 1.000 3.058 3.391 3.217
2048 1048064 0.500 1.000 6.429 6.684 6.724
2048 2096128 1.000 1.000 8.929 10.024 10.452
4096 1048320 0.125 1.000 4.609 4.604 4.757
4096 2096640 0.250 1.000 8.699 10.264 10.074
4096 4193280 0.500 1.000 10.932 13.363 13.932
4096 8386560 1.000 1.000 11.428 14.830 15.267
8192 4193792 0.125 1.000 12.798 13.866 13.488
8192 8387584 0.250 1.000 14.776 17.734 17.980
8192 16775168 0.500 1.000 15.091 19.498 21.517
8192 33550336 1.000 1.000 17.910 21.007 20.757

16384 16776192 0.125 1.000 19.069 23.989 24.930
16384 33552384 0.250 1.000 20.887 26.264 27.432
16384 67104768 0.500 1.000 25.379 29.104 28.683
16384 134209536 1.000 1.000 30.686 29.690 30.315
32768 67106816 0.125 1.000 29.873 36.188 37.367
32768 134213632 0.250 1.000 38.684 39.257 38.795
32768 268427264 0.500 1.000 44.951 39.159 32.930
32768 536854528 1.000 1.000 15.340 55.723 56.306

b) Slowdown in total execution time
n m d 1− 102 1− 104 1− 106 1− 108

1024 65472 0.125 1.000 1.400 1.400 1.600
1024 130944 0.250 1.000 1.250 1.200 1.250
1024 261888 0.500 1.000 1.968 2.097 2.097
1024 523776 1.000 1.000 4.255 4.298 4.532
2048 262016 0.125 1.000 1.463 1.500 1.556
2048 524032 0.250 1.000 2.440 2.747 2.527
2048 1048064 0.500 1.000 4.459 4.547 4.757
2048 2096128 1.000 1.000 7.667 8.525 9.015
4096 1048320 0.125 1.000 4.015 3.951 4.078
4096 2096640 0.250 1.000 5.750 6.801 6.723
4096 4193280 0.500 1.000 8.845 10.431 11.017
4096 8386560 1.000 1.000 10.118 12.615 12.912
8192 4193792 0.125 1.000 10.154 10.979 10.678
8192 8387584 0.250 1.000 9.762 11.417 11.560
8192 16775168 0.500 1.000 13.889 17.459 19.339
8192 33550336 1.000 1.000 16.286 18.330 18.428

16384 16776192 0.125 1.000 12.923 16.038 16.644
16384 33552384 0.250 1.000 15.594 18.908 19.772
16384 67104768 0.500 1.000 22.072 24.737 24.255
16384 134209536 1.000 1.000 30.292 28.618 29.046
32768 67106816 0.125 1.000 22.434 26.719 27.575
32768 134213632 0.250 1.000 34.176 33.919 33.694
32768 268427264 0.500 1.000 44.354 37.529 31.613
32768 536854528 1.000 1.000 17.895 54.396 55.011

initialization time and total execution time. Of the 192 speedup values presented in Table

17

(a) Graphs with density = 0.125. (b) Graphs with density = 0.25.

(c) Graphs with density = 0.5. (d) Graphs with density = 1.

Figure 4.6: Slowdown in total execution time as weight range increases.

4.5, only 40 are greater than 1. This indicates that for the majority of the graphs, using
the scaled-down weight ranges led to initialization times and total execution times that were
either the same or slower than when the original weight ranges were used. But among the
152 speedup values less than or equal to 1, 114 were greater than or equal to 0.900 and 97
were greater than or equal to 0.950, indicating that slowdown was trivial in many cases. Ad-
ditionally, the maximum speedup value in Table 4.5 was only 1.240, indicating that speedup
was also trivial when it did occur for graphs with scaled-down weight ranges.

4.4 Effect of Modified Integer Weight Ranges on Initialization
Time and Total Execution Time

We originally hypothesized that using modified integer weight ranges would lead to increased
initialization times and total execution times. Thus, slowdown results were calculated using
equations 3.8 and 3.9 and were stored in Table 4.7. “Slowdown(I)” stands for slowdown in
initialization time, while “Slowdown(T)” stands for slowdown in total execution time.

No definitive conclusions can be drawn from this data. For example, slowdown values
were higher for graphs with weight ranges 101 to 200, 301 to 400, 501 to 600, 701 to 800,
and 901 to 1000 than graphs with weight ranges 1000001 to 2000000, 3000001 to 4000000,
5000001 to 6000000, 7000001 to 8000000, and from 9000001 to 10000000. Additionally,
every slowdown value was between 0.836 and 1.266 until we tested graphs with the weight
ranges from 700000001 to 800000000 and from 900000001 to 1000000000, where speedup
spiked to over 14 in both cases. In order to best determine how these types of weight range
modifications affect initialization time and total execution time, future studies should be
more comprehensive. Graphs of various sizes should be used and more weight ranges should
be tested.

18

Table 4.4: Initialization times and total execution times for graphs with various numbers
nodes, densities, and scaled-down weight ranges.

a) Initialization time in seconds
n m d 10−2 − 1 10−4 − 1 10−6 − 1 10−8 − 1

1024 65472 0.125 0.012 0.013 0.012 0.014
1024 130944 0.250 0.018 0.024 0.023 0.025
1024 261888 0.500 0.022 0.057 0.059 0.065
1024 523776 1.000 0.042 0.188 0.192 0.205
2048 262016 0.125 0.057 0.080 0.078 0.081
2048 524032 0.250 0.068 0.225 0.235 0.221
2048 1048064 0.500 0.099 0.705 0.653 0.663
2048 2096128 1.000 0.167 1.655 1.677 1.755
4096 1048320 0.125 0.170 0.829 0.780 0.790
4096 2096640 0.250 0.216 2.056 2.225 2.185
4096 4193280 0.500 0.367 4.656 4.872 5.083
4096 8386560 1.000 0.676 9.711 9.934 10.140
8192 4193792 0.125 0.471 6.906 6.565 6.381
8192 8387584 0.250 0.763 14.334 13.584 13.745
8192 16775168 0.500 1.391 27.508 27.206 29.879
8192 33550336 1.000 2.599 58.726 54.024 53.059

16384 16776192 0.125 1.607 40.278 39.052 40.019
16384 33552384 0.250 2.912 79.871 77.390 79.822
16384 67104768 0.500 5.369 169.058 160.150 153.852
16384 134209536 1.000 10.251 370.340 432.790 310.871
32768 67106816 0.125 6.064 232.685 223.389 226.415
32768 134213632 0.250 11.194 493.116 458.500 434.452
32768 268427264 0.500 23.184 1313.296 936.438 1035.865
32768 536854528 1.000 60.461 849.706 2879.156 2838.738

b) Total execution time in seconds
n m d 10−2 − 1 10−4 − 1 10−6 − 1 10−8 − 1

1024 65472 0.125 0.013 0.014 0.014 0.014
1024 130944 0.250 0.022 0.026 0.025 0.026
1024 261888 0.500 0.025 0.064 0.063 0.066
1024 523776 1.000 0.048 0.209 0.203 0.214
2048 262016 0.125 0.059 0.082 0.080 0.084
2048 524032 0.250 0.107 0.233 0.251 0.230
2048 1048064 0.500 0.149 0.733 0.671 0.708
2048 2096128 1.000 0.204 1.707 1.730 1.837
4096 1048320 0.125 0.239 0.855 0.807 0.817
4096 2096640 0.250 0.336 2.091 2.287 2.269
4096 4193280 0.500 0.477 4.796 4.936 5.229
4096 8386560 1.000 0.794 10.053 10.292 10.447
8192 4193792 0.125 0.611 7.006 6.677 6.483
8192 8387584 0.250 1.187 14.569 13.800 13.929
8192 16775168 0.500 1.572 27.708 27.529 30.354
8192 33550336 1.000 2.873 59.723 54.143 54.097

16384 16776192 0.125 2.424 40.582 39.401 40.286
16384 33552384 0.250 4.086 80.815 78.213 80.771
16384 67104768 0.500 6.400 171.273 161.874 155.092
16384 134209536 1.000 10.757 379.232 438.403 313.418
32768 67106816 0.125 8.253 233.212 224.242 227.361
32768 134213632 0.250 12.987 498.499 459.942 437.986
32768 268427264 0.500 24.410 1341.316 944.145 1050.224
32768 536854528 1.000 61.962 960.990 2891.076 2856.454

19

Table 4.5: Speedup in initialization time and total execution time of graphs with scaled-down
weight ranges.

a) Speedup in initialization time
n m d 10−2 − 1 10−4 − 1 10−6 − 1 10−8 − 1

1024 65472 0.125 0.833 1.000 1.000 1.000
1024 130944 0.250 0.889 0.958 1.000 0.960
1024 261888 0.500 0.955 0.965 1.034 0.969
1024 523776 1.000 0.976 0.931 1.000 0.995
2048 262016 0.125 0.860 0.963 1.000 0.988
2048 524032 0.250 1.015 0.938 0.996 1.005
2048 1048064 0.500 0.990 0.894 1.003 0.994
2048 2096128 1.000 1.006 0.906 1.004 1.001
4096 1048320 0.125 0.994 0.940 0.997 1.018
4096 2096640 0.250 1.000 0.914 0.996 0.996
4096 4193280 0.500 0.997 0.859 1.004 1.003
4096 8386560 1.000 0.981 0.780 0.990 0.998
8192 4193792 0.125 1.000 0.873 0.995 0.996
8192 8387584 0.250 1.000 0.787 0.996 0.998
8192 16775168 0.500 0.999 0.763 0.996 1.001
8192 33550336 1.000 0.983 0.779 0.993 0.999

16384 16776192 0.125 0.999 0.760 0.986 1.000
16384 33552384 0.250 0.997 0.759 0.985 0.997
16384 67104768 0.500 1.000 0.806 0.976 1.001
16384 134209536 1.000 1.000 0.850 0.703 1.000
32768 67106816 0.125 1.002 0.780 0.984 1.002
32768 134213632 0.250 1.001 0.879 0.960 1.001
32768 268427264 0.500 1.186 0.941 1.150 0.874
32768 536854528 1.000 0.786 0.858 0.920 0.943

b) Speedup in total execution time
n m d 10−2 − 1 10−4 − 1 10−6 − 1 10−8 − 1

1024 65472 0.125 0.769 1.000 1.000 1.143
1024 130944 0.250 0.909 0.962 0.960 0.962
1024 261888 0.500 1.240 0.953 1.032 0.985
1024 523776 1.000 0.979 0.957 0.995 0.995
2048 262016 0.125 0.915 0.963 1.013 1.000
2048 524032 0.250 0.850 0.953 0.996 1.000
2048 1048064 0.500 0.993 0.900 1.003 0.994
2048 2096128 1.000 1.000 0.916 1.005 1.001
4096 1048320 0.125 0.854 0.958 0.999 1.018
4096 2096640 0.250 1.000 0.924 0.999 0.996
4096 4193280 0.500 0.998 0.878 1.006 1.003
4096 8386560 1.000 1.018 0.813 0.990 0.999
8192 4193792 0.125 0.990 0.877 0.995 0.996
8192 8387584 0.250 1.014 0.807 0.996 0.999
8192 16775168 0.500 0.999 0.787 0.996 1.001
8192 33550336 1.000 1.021 0.800 0.993 0.999

16384 16776192 0.125 0.998 0.771 0.985 1.000
16384 33552384 0.250 0.997 0.786 0.985 0.997
16384 67104768 0.500 1.000 0.825 0.978 1.001
16384 134209536 1.000 1.003 0.862 0.704 1.000
32768 67106816 0.125 1.001 0.795 0.984 1.002
32768 134213632 0.250 1.001 0.892 0.959 1.001
32768 268427264 0.500 1.190 0.960 1.155 0.874
32768 536854528 1.000 0.792 0.914 0.924 0.945

20

Table 4.6: Initialization times and total execution times for graphs with modified integer
weights.

ri rm Initialization Time (s) Total Execution Time (s)
1− 102 101− 200 59.702 61.017
1− 102 301− 400 59.876 61.405
1− 102 501− 600 59.903 62.053
1− 102 701− 800 59.131 61.223
1− 102 901− 1000 60.188 62.008
1− 104 10001− 20000 734.177 757.254
1− 104 30001− 40000 712.700 734.272
1− 104 50001− 60000 713.916 834.620
1− 104 70001− 80000 695.741 942.709
1− 104 90001− 100000 707.156 754.112
1− 106 1000001− 2000000 2561.781 2577.299
1− 106 3000001− 4000000 2433.891 2457.337
1− 106 5000001− 6000000 2652.002 2676.802
1− 106 7000001− 8000000 2428.703 2457.649
1− 106 9000001− 10000000 2323.484 2357.401
1− 108 100000001− 200000000 2743.963 2757.626
1− 108 300000001− 400000000 2708.643 2726.601
1− 108 500000001− 600000000 2907.024 2920.235
1− 108 700000001− 800000000 38254.665 38265.777
1− 108 900000001− 1000000000 38717.599 38732.945

Table 4.7: Slowdown of initialization time and total execution time for graphs with modified
integer weight ranges.

ri rm Slowdown(I) Slowdown(T)
1− 102 101− 200 1.256 1.243
1− 102 301− 400 1.259 1.251
1− 102 501− 600 1.260 1.264
1− 102 701− 800 1.244 1.247
1− 102 901− 1000 1.266 1.263
1− 104 10001− 20000 1.007 0.862
1− 104 30001− 40000 0.977 0.836
1− 104 50001− 60000 0.979 0.950
1− 104 70001− 80000 0.954 1.073
1− 104 90001− 100000 0.970 0.859
1− 106 1000001− 2000000 0.967 0.965
1− 106 3000001− 4000000 0.919 0.920
1− 106 5000001− 6000000 1.001 1.002
1− 106 7000001− 8000000 0.917 0.920
1− 106 9000001− 10000000 0.877 0.883
1− 108 100000001− 200000000 1.025 1.021
1− 108 300000001− 400000000 1.012 1.010
1− 108 500000001− 600000000 1.086 1.081
1− 108 700000001− 800000000 14.289 14.171
1− 108 900000001− 1000000000 14.462 14.344

4.5 Effect of Graph Density on Memory Usage

Table 4.8 contains total memory usage (in gigabytes) for graphs with the initial integer
weight ranges and graphs with the scaled-down real-valued weight ranges. Below the table
are the associated R2 values for the predicted values. Results are rounded to the nearest
one-thousandth of a gigabyte. Ultimately, we found that varying the weight range did not

21

change memory usage in many cases, and if it did it was by 0.001 gigabytes. Hence, the
memory results in Table 4.8 are for graphs with two arbitrary weight ranges: 1 to 108 and
10−8 to 1.

Whether a graph has integer weights or real-valued weights, it is evident that memory
usage is largely dependent on the number of nodes and edges in a graph. For large graphs
(like the ones we generated), memory usage approximately doubles as density doubles. Ad-
ditionally, the results indicated that for almost every n and d, a graph with integer weights
uses less memory than a graph of the same size with real-valued weights. This is not surpris-
ing given that a real-valued weight is stored as a double, which requires more bytes than an
int.

Using these results, we observed whether it is possible to estimate the amount of memory
used from the number of nodes and edges. Performing a sizeof operation on the node
and edge structs, we find that 72 bytes of memory are allocated for each node and 96
bytes of memory are allocated for each edge. Taking our example with n = 32768 and
m = 536854528, 51540393984 bytes, or 51.540 GB, should be allocated. Compared to our
linear-regression approximation of 57.990 GB, the calculation yields an underestimation;
however, it provides a good foundation for the minimum amount of memory one should
expect to use.

Table 4.8: Total memory usage (GB) for graphs with initial integer weight ranges and graphs
with scaled-down real-valued weight ranges.

n m d Initial Weight Ranges Scaled-down Weight Ranges
1024 65472 0.125 0.007 0.007
1024 130944 0.250 0.014 0.015
1024 261888 0.500 0.028 0.029
1024 523776 1.000 0.057 0.059
2048 262016 0.125 0.029 0.030
2048 524032 0.250 0.057 0.059
2048 1048064 0.500 0.113 0.118
2048 2096128 1.000 0.227 0.235
4096 1048320 0.125 0.114 0.118
4096 2096640 0.250 0.227 0.235
4096 4193280 0.500 0.453 0.470
4096 8386560 1.000 0.906 0.940
8192 4193792 0.125 0.454 0.471
8192 8387584 0.250 0.907 0.940
8192 16775168 0.500 1.813 1.880
8192 33550336 1.000 3.624 3.758

16384 16776192 0.125 1.813 1.881
16384 33552384 0.250 3.625 3.760
16384 67104768 0.500 7.249 7.517
16384 134209536 1.000 14.496 15.033
32768 67106816 0.125 7.251 7.519
32768 134213632 0.250 14.498 15.035
32768 268427264 0.500 28.995 30.069
32768 536854528 1.000 57.990 60.137

R2 = 0.99999999 R2 = 0.99820064

22

5 Conclusions

We determined that as graph density increases, initialization time and total execution time
of a graph both tend to increase. Additionally, we determined that total memory usage of
the algorithm is largely dependent on the number of nodes and edges in a graph. These
conclusions were not surprising to us and were anticipated. Because Blossom V is a search
algorithm, it seems logical that adding more edges to traverse would lead to increases in
initialization time and total execution time. Also, it seems logical that adding more nodes
and edges to a graph would lead to an increase in memory usage.

On the other hand, we also reached some very important conclusions that we had not
previously anticipated. We determined that as the weight range of a graph increases, ini-
tialization time and total execution time tend to increase. Additionally, we determined that
scaling down the initial integer weight ranges to real-valued weight ranges in the half-open
interval (0,1] has a limited effect on initialization time and total execution time.

These conclusions indicate where future work should be focused when trying to improve
the Blossom V implementation. Future implementations of the algorithm should address
the issue of significantly increased run-time that results from having larger edge weights,
especially since scaling down the weights shows no significant effect on run-time. Addition-
ally, future implementations should aim to be more memory efficient in order to increase the
range of computational problem sizes that can be run on a given hardware configuration.
Finally, future investigations should consider parallelization of the algorithm with a focus on
improving initialization time, which is where the majority of execution time was spent for
the graphs that we generated.

Acknowledgments

These results were obtained as part of the REU Site: Interdisciplinary Program in High Per-
formance Computing (hpcreu.umbc.edu) in the Department of Mathematics and Statistics
at the University of Maryland, Baltimore County (UMBC) in Summer 2015. This program
is funded by the National Science Foundation (NSF), the National Security Agency (NSA),
and the Department of Defense (DOD), with additional support from UMBC, the Depart-
ment of Mathematics and Statistics, the Center for Interdisciplinary Research and Consulting
(CIRC), and the UMBC High Performance Computing Facility (HPCF). HPCF is supported
by the U.S. National Science Foundation through the MRI program (grant nos. CNS–0821258
and CNS–1228778) and the SCREMS program (grant no. DMS–0821311), with additional
substantial support from UMBC. Co-author Gabrielle Salib was supported, in part, through
a contract from the National Security Agency (NSA), UMBC, the Meyerhoff Scholars Pro-
gram. Graduate assistants Ari Rapkin Blenkhorn, Jonathan Graf, and Samuel Khuvis were
supported during Summer 2015 by UMBC.

References

[1] David A. Bader and Kamesh Madduri. GTgraph: A synthetic graph generator suite.
http://www.cse.psu.edu/~kxm85/software/GTgraph/gen.pdf. Accessed: 2015-16-07.

23

hpcreu.umbc.edu
http://www.cse.psu.edu/~kxm85/software/GTgraph/gen.pdf

[2] UMBC High Performance Computing Facility. System description. http://hpcf.umbc.
edu/system-description/. Accessed: 2015-14-07.

[3] José Fonseca. gprof2dot. https://github.com/jrfonseca/gprof2dot, 2015.

[4] H.N. Gabow. Data structures for weighted matching and nearest common ancestors with
linking. In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms,
1(1):434–443, 1990.

[5] Free Software Foundation Inc. GNU gprof. https://sourceware.org/binutils/docs/
gprof/. Accessed: 2015-30-07.

[6] Vladimir Kolmogorov. Blossom V: a new implementation of a minimum cost perfect
matching algorithm. Math. Prog. Comp., 1(1):43–67, 2009.

[7] Lszl Lovsz and Michael D. Plummer. Matching Theory. Akadmiai Kiad, 1986.

[8] Julian Seward and Nicholas Nethercote. Valgrind’s tool suite. http://valgrind.org/

info/tools.html. Accessed: 2015-12-07.

24

http://hpcf.umbc.edu/system-description/
http://hpcf.umbc.edu/system-description/
https://github.com/jrfonseca/gprof2dot
https://sourceware.org/binutils/docs/gprof/
https://sourceware.org/binutils/docs/gprof/
http://valgrind.org/info/tools.html
http://valgrind.org/info/tools.html

	Introduction
	Background
	Graph Theory Terminology
	Blossom V Overview
	Optimization through Duality
	Primal and Dual Updates

	Methodology
	Hardware
	Generating Testable Data
	Performance Study Methods
	Analysis Methods

	Results
	Effect of Graph Density on Initialization Time and Total Execution Time
	Effect of Weight Range on Initialization Time and Total Execution Time
	Effect of Weight Scaling on Initialization Time and Total Execution Time
	Effect of Modified Integer Weight Ranges on Initialization Time and Total Execution Time
	Effect of Graph Density on Memory Usage

	Conclusions

