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Abstract:

Modern computation based on the von Neumann architecture is today a mature cutting-edge science. In this 
architecture, processing and memory units are implemented as separate blocks interchanging data 
intensively and continuously. This data transfer is responsible for a large part of the power consumption. The 
next generation computer technology is expected to solve problems at the exascale — that is a quadrillion 
(1018) calculations each second. Even though these future computers will be incredibly powerful, if they are 
based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and 
will not have intrinsic physically built-in capabilities to learn or deal with complex and unstructured data as 
our brain does. Neuromorphic computing systems are aimed at addressing these needs. The human brain 
performs about 1015 calculations per second using 20W and a 1.2L volume. By taking inspiration from biology, 
new generation computers could have much lower power consumption than conventional processors, could 
exploit integrated non-volatile memory and logic, and could be explicitly designed to support dynamic 
learning in the context of complex and unstructured data. Among their potential future applications, 
business, health care, social security, disease and viruses spreading control might be the most impactful at 
societal level. 

This roadmap envisages the potential applications of neuromorphic materials in cutting edge technologies 
and focuses on the design and fabrication of artificial neural systems. The contents of this roadmap will 
highlight the interdisciplinary nature of this activity which takes inspiration from biology, physics, 
mathematics, computer science and engineering and will target new computational substrates and engines, 
based on new materials and engineering principles for efficient and low-power neuromorphic computing; 
new architectures and algorithms for learning and adaptation/plasticity. This will provide a roadmap to 
explore and consolidate new technology behind both present and future applications in many 
technologically relevant areas. 
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Introduction 
 
Computers have become essential to all aspects of modern life and are omnipresent all over the globe. Today, 
the recent data-intensive applications have placed a high demand on hardware performance, e.g. access 
latency, capacity, bandwidth, and cost, and on the cognitive level (AI), e.g., data processing modes, 
architectures, and algorithms. However, the ever-growing pressure for big data creates additional challenges: 
(1) energy consumption - due to the rapid development of sophisticated algorithms and architectures, power 
dissipation has become a big challenge and currently, about 5–15% of the world’s energy is spent in some 
form of data manipulation (transmission or processing); (2) memory bandwidth - Von-Neumann’s computer 
architectures have made an incredible contribution to the world of science and technology for decades, 
however, their performance is still inefficient due to the need to constantly shuffle data between physically 
separated logic and memory units. 
 
The current progress in Complementary Metal Oxide Semiconductor (CMOS) technology and computer 
hardware will not be self-sustained forever. Furthermore, these computers will not have the intrinsic 
capabilities to learn or deal with complex and unstructured data as the human brain does. Thus, there are 
significant research efforts worldwide in developing a profoundly different approach inspired by biological 
principles - neuromorphic systems. Inspiration from nature is a vital part of our advancement to a more 
sustainable future with neuromorphic devices having much lower power consumption than conventional 
processors, integrated non-volatile memory and logic, and dynamic learning capabilities in the context of 
complex and unstructured data. Building artificial neural networks that mimic a biological counterpart is one 
of the remaining big challenges in computing. If the technical questions are solved in the next few years, the 
neuromorphic computing market is projected by 2034 to rise from $69 million (2024) to $21.3 billion. A 
neuromorphic computer chip that shows ultra-low computational power and speed like a brain will become 
a reality if we unravel the architectural and computational principles of a biological brain. Solving this mystery 
will drive the demand for neuromorphic devices for real-world applications.  
 
In line with these increasingly pressing issues, the general aim of the Roadmap on Neuromorphic Computing 
and Engineering is to assess the potential applications of neuromorphic technology in cutting edge 
technologies and highlight the necessary advances required to reach these. The roadmap addresses: 
 

• Neuromorphic materials 
• Neuromorphic circuits 
• Neuromorphic algorithms 
• Applications 
• Ethics 

 
To advance the field of neuromorphic computing and engineering, the exploration of novel materials and 
devices will be of key relevance in order to improve the power efficiency and scalability of state-of-the-art 
CMOS solutions in a disruptive manner. Memristive devices are highly promising candidates to act as energy- 
and space-efficient hardware representation for synapses and neurons in neuromorphic circuits. Memristive 
devices have originally been proposed as binary non-volatile random-access memory and research on this 
field has been mainly driven by the search for higher performance solid-state drive technologies (e.g., Flash 
replacement) or storage class memory. However, based on their analog tunability and complex switching 
dynamics, memristive devices enable novel computing approaches such as analog computing or the 
realisation of novel learning rules. A large variety of different physical phenomena has been reported to 
exhibit memristive behaviour, comprising electronic effects, ionic effects as well as structural or ferroic 
ordering effects. The material classes range from magnetic alloys, metal oxides, chalcogenides to 2D van de 
Waals materials or organic materials. Within this roadmap, we cover a broad range of materials and 
phenomena with different maturity levels with respect to their use in neuromorphic circuits. We consider 



emerging memory devices that are already commercially available as binary non-volatile memory such as 
phase-change memory, magnetic random-access memory, ferroelectric memory as well as redox-based 
resistive random-access memory and review their prospects for neuromorphic computing and engineering. 
We complement it with nanowire networks, 2D materials and organic materials that are less mature but may 
offer extended functionalities and new opportunities for flexible electronics or 3D integration.  
 
Another key aspect of neuromorphic engineering is the design and implementation of neuromorphic circuits. 
A key element in neuromorphic circuits is that they all take inspiration from the brain, thus typically displaying 
a non-von Neumann architecture with distributed computation in several cores. The term ‘neuromorphic’ 
generally refers to circuits that aim at mimicking the information processing by the brain, e.g., by using spikes 
to represent, exchange and compute data as in spiking neural networks. At the same time, circuits that are 
only loosely inspired by the brain, such as artificial neural networks and reservoir computing networks, are 
also generally included in the roster of neuromorphic circuits, thus will be covered in this roadmap. 
Regardless of the specific learning and processing algorithm, a key processing element in neuromorphic 
circuits is the crosspoint array to accelerate the matrix-vector multiplication (MVM). This is a common feature 
of many neuromorphic circuits, including spiking and non-spiking networks, and takes advantage of Ohm’s 
and Kirchhoff’s laws to implement multiplication and summation in the network. The MVM crosspoint circuit 
allows for the straightforward hardware implementation of synaptic layers with high density, high speed, and 
high energy efficiency, although the accuracy is challenged by stochastic variations in memristive devices. An 
additional circuit challenge is the mixed analog-digital computation, which results in the need for large and 
energy-hungry analog-digital converter (ADC) circuits at the interface between the analog crosspoint array 
and the digital system. Finally, neuromorphic circuits seem to take the most benefit from hybrid integration, 
combining front-end CMOS technology with novel memory devices that can implement MVM and neuro-
biological functions, such as spike integration, short-term memory and synaptic plasticity. Hybrid integration 
may also need to extend, in the long term, to alternative nanotechnology concepts, such as bottom-up 
nanowire networks, and alternative computing concepts, such as photonic and even quantum computing, 
within a single system or even a single chip with 3D integration. In this scenario, a roadmap for the 
development and assessment of each of these individual innovative concepts is essential. 
 
A fundamental challenge in neuromorphic engineering for real application systems is to train them directly 
in the spiking domain in order to be more energy-efficient, more precise, and also be able to continuously 
learn and update the knowledge on the portable devices themselves without relying on heavy cloud 
computing servers. Spiking data tend to be sparse with some stochasticity and embedded noise, interacting 
with non-ideal non-linear synapses and neurons. Biology knows how to use all this to its advantage to 
efficiently acquire knowledge from the surrounding environment. In this sense, computational neuroscience 
can be a key ingredient to inspire neuromorphic engineering, and learn from this discipline how brains 
perform computations at a variety of scales, from small neurons ensembles, meso-scale aggregations, up to 
full tissues, brain regions and the complete brain interacting with peripheral sensors and motor actuators. 
On the other hand, fundamental questions arise on how information is encoded in the brain using nervous 
spikes. Obviously, to maximize energy efficiency for both processing and communication, the brain 
maximizes information per unit spike. This means unravelling the information encoding and processing by 
exploiting spatio-temporal signal processing to maximize information while minimizing energy.  
 
We end the roadmap with a section addressing the ethical questions that may arise in the wake of 
advancements in neuromorphic computation. We hope that this roadmap represents an overview and 
updated picture of the current state-of-the-art as well as be the future projection in these exciting research 
areas. Each contribution, written by leading researchers in their topic, provides the current state of the field 
and the future perspective. This should guide the expected transition towards efficient neuromorphic 
computations and highlight the opportunities for societal impact in multiple fields. 
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1.1 Phase-change memory 
Abu Sebastian, IBM Research – Zurich, Switzerland 
Manuel Le Gallo, IBM Research – Zurich, Switzerland 
Andrea Redaelli, STMicroelectronics, Agrate, Italy 
 
Status 
Phase-change memory (PCM) exploits the behaviour of certain phase-change materials, typically 
compounds of Ge, Sb and Te, that can be switched reversibly between amorphous and crystalline 
phases of different electrical resistivity [1]. A PCM device consists of a certain nanometric volume of 
such phase change material sandwiched between two electrodes.  
 
In recent years, PCM devices are being explored for brain-inspired or neuromorphic computing mostly 
by exploiting the physical attributes of these devices to perform certain associated computational 
primitives in-place in the memory itself [2,3]. One of the key properties of PCM that enables such in-
memory computing (IMC) is simply the ability to store two levels of resistance/conductance values in 
a non-volatile manner and to reversibly switch from one level to the other (binary storage capability). 
This property facilitates in-memory logical operations enabled through the interaction between the 
voltage and resistance state variables [3]. Applications of in-memory logic include database query [4] 
and hyper-dimensional computing [5].  
 
Another key property of PCM that enables IMC is its ability to achieve not just two levels but a 
continuum of resistance values (analogue storage capability) [1]. This is typically achieved by creating 
intermediate phase configurations through the application of partial RESET pulses. The analogue 
storage capability facilitates the realization of matrix-vector multiply (MVM) operations in O(1) time 
complexity by exploiting Kirchhoff’s circuit laws. The most prominent application for this is deep 
neural network (DNN) inference [6]. It is possible to map each synaptic layer of a DNN to a crossbar 
array of PCM devices.  There is a widening industrial interest in this application owing to the promise 
of significantly improved latency and energy consumption with respect to existing solutions. This in-
memory MVM operations also enable non-neuromorphic applications such as linear-solvers and 
compressed sensing recovery [3]. 
 
The third key property that enables IMC is the accumulative property arising from the crystallization 
kinetics. This property can be utilized to implement DNN training [7,8]. It is also the central property 
that is exploited for realizing local learning rules like spike-timing-dependent plasticity in spiking 
neural networks [9,10]. In both cases, the accumulative property is exploited to implement the 
synaptic weight update in an efficient manner. It has also been exploited to emulate neuronal 
dynamics [11].  
 
Note that, PCM is at a very high maturity level of development with products already on the market 
and a well-established roadmap for scaling. This fact, together with the ease of embedding PCM on 
logic platforms (embedded PCM) [12] make this technology of unique interest for neuromorphic 
computing and IMC in general. 



Roadmap on Neuromorphic Computing and Engineering 

 
Figure 1.  Key physical attributes that enable neuromorphic computing. a. Non-volatile binary storage facilitates in-memory logical 
operations relevant for applications such as hyper-dimensional computing. b. Analog storage enables efficient matrix-vector multiply 
operations that are key to applications such as deep neural network inference. c. The accumulative behaviour facilitates applications such 
as deep neural network training and emulation of neuronal and synaptic dynamics in spiking neural networks. 

 
Current and Future Challenges 
 
PCM devices have several attractive properties such as the ability to operate them at timescales on 
the order of tens of nanoseconds. The cycling endurance is orders of magnitude higher for PCM 
compared to other non-volatile memory devices such as Flash memory. The retention time can also 
be tuned relatively easily with the appropriate choice of materials, although the retention time 
associated with the intermediate phase configurations could be substantially lower than that of the 
full amorphous state.   

 
Figure 2.  Key challenges associated with PCM devices a. The SET/RESET conductance values exhibit broad distributions which is 
detrimental for applications such as in-memory logic. b. The drift and noise associated with analogue conductance values results in 
mprecise matrix-vector multiply operations. c. The nonlinear and stochastic accumulative behaviour result in imprecise synaptic weight 

updates. 
However, there are also several device-level challenges as shown in Figure 2. One of the key challenges 
associated with the use of PCM for in-memory logic operations is the wide distribution of the SET 
states. These distributions could detrimentally impact the evaluation of logical operations. The central 
challenge associated with in-memory MVM operations is the limited precision arising from the 1/f 
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noise as well as conductance drift. Drift is attributed to the structural relaxation of the melt-quenched 
amorphous phase [13]. Temperature-induced conductance variations could also pose challenges. One 
additional challenge is related to the stoichiometric stability during cycling where ion migration effects 
can occur [14]. Moreover, the accumulative behaviour in PCM is highly nonlinear and stochastic. While 
one could exploit this intrinsic stochasticity to realize stochastically firing neurons and for stochastic 
computing, this behaviour is detrimental for applications such as DNN training in which the 
conductance must be precisely modulated. 
 
PCM-based IMC has the potential for ultra-high compute density since PCM devices can be scaled to 
nanoscale dimensions. However, it is not straightforward to fabricate such devices in a large array due 
to fabrication challenges such as etch damage and deposition of materials in high-aspect ratio pores 
[15]. The integration density is also limited by the access device, which could be a selector in the back-
end-of-the-line (BEOL) or front-end bipolar junction transistors (BJT) or Metal-Oxide-Semiconductor 
Field Effect Transistors (MOSFET). The threshold voltage must be overcome when SET operations are 
performed, so the access device must be able to manage voltages at least as high as the threshold 
voltage. While MOSFET selector size is mainly determined by the PCM RESET current, the BJT and BEOL 
selectors can guarantee a minimum cell size of 4F2, leading to very high density [16]. However, BEOL 
selector-based arrays have some drawbacks in terms of precise current control, while the 
management of parasitic drops is more complex for BJT-based arrays [17].  
 
Advances in Science and Technology to Meet Challenges 
A promising solution towards addressing the PCM nonidealities such as 1/f noise and drift is that of 
projected phase-change memory (Projected PCM) [18, 19]. In these devices, there is a non-insulating 
projection segment in parallel to the phase-change material segment. By exploiting the highly non-
linear I-V characteristics of phase-change materials, one could ensure that during the SET/RESET 
process, the projection segment has minor impact on the operation of the device. An increase in the 
reset current is anyway expected and some work should be done on material engineering side to 
compensate for that. However, during read, the device conductance is mostly determined by the 
projection segment that appears parallel to the amorphous phase-change segment. Recently, it was 
shown that it is possible to achieve remarkably high precision in-memory scalar multiplication 
(equivalent to 8-bit fixed point arithmetic) using projected PCM devices [20]. These projected PCM 
devices also facilitate array-level temperature compensation schemes. Alternate multi-layered PCM 
devices have also been proposed that exhibit substantially lower drift [21]. 
 
There is a perennial focus on trying to reduce the RESET current via scaling the switchable volume of 
the PCM device. Either by shrinking the overall dimension of the device in a confined geometry or by 
scaling the bottom electrode dimensions of a mushroom-type device. The exploration of new material 
classes such as single elemental Antimony could help with the scaling challenge [22].  
 
The limited endurance and various other non-idealities associated with the accumulative behaviour 
such as limited dynamic range, nonlinearity and stochasticity can be partially circumvented with multi-
PCM synaptic architectures. Recently, a multi-PCM synaptic architecture was proposed that employs 
an efficient counter-based arbitration scheme [23]. However, to improve the accumulation behaviour 
at the device level, more research is required on the effect of device geometries as well as the 
randomness associated with crystal growth. 
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Besides conventional electrical PCM devices, photonic memory devices based on phase-change 
materials, which can be written, erased, and accessed optically, are rapidly bridging a gap towards all-
photonic chip-scale information processing. By integrating phase-change materials onto an integrated 
photonics chip, the analogue multiplication of an incoming optical signal by a scalar value encoded in 
the state of the phase change material was achieved [24]. It was also shown that by exploiting 
wavelength division multiplexing, it is possible to perform convolution operations in a single time step 
[24].  
 
Concluding Remarks 
The non-volatile binary storage, analogue storage and accumulative behaviour associated with PCM 
devices can be exploited to perform in-memory computing. Compared to other non-volatile memory 
technologies, the key advantages of PCM are the well understood device physics, volumetric switching 
and easy embeddability in a CMOS platform. However, there are several device and fabrication-level 
challenges that need be overcome to enable PCM-based IMC and this is an active area of research. 
 
It will also be rather interesting to see how PCM-based neuromorphic computing will eventually be 
commercialized. Prior to true IMC, a hybrid architecture where PCM memory chips are used to store 
synaptic weights in a non-volatile manner while the computing is performed in a stacked logic chip is 
likely to be considered as an option by the industry. Despite the tight interconnect between the 
stacked chips, data transfer will remain a bottleneck for this approach. A better solution could be PCM 
directly embedded with the logic itself (BEOL) without any interconnect bottleneck and eventually we 
could foresee full-fledged non-von Neumann accelerator chips where the embedded PCM is also used 
for analogue in-memory computing.  
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Status 
 
Ferroelectricity was firstly discovered in 1920 by Valasek in Rochelle salt [1] and describes the 
ability of a non-centrosymmetric crystalline material to exhibit a permanent and switchable 
electrical polarization due to the formation of stable electric dipoles. Historically, the term 
ferroelectricity stems from the analogous behavior with the magnetization hysteresis of 
ferromagnets when plotting the ferroelectric polarization versus the electrical field. Regions 
of opposing polarization are called domains. The polarization direction of such domains can 
be switched typically by 180° but based on the crystal structure also other angles are possible. 
Since the discovery of the stable ferroelectric barium titanate (BTO) in 1943 ferroelectrics 
found application in capacitors in electronics industry. Already in the 1950s ferroelectric 
capacitor (FeCAP) based memories (FeRAM) have been proposed [2], where the information 
is stored as polarization state of the ferroelectric material. Read and write operation are 
performed by applying an electric field larger than the coercive field EC. The destructive read 
operation determines the switching current of the FeCAP upon polarization reversal, thus 
requiring a write-back operation after readout. Thanks to the development of mature 
processing techniques for ferroelectric lead zirconium tantalate (PZT) FeRAMs are 
commercially available since the early 1990s [3]. However, the need for a sufficiently large 
capacitor together with the limited thin-film manufacturability of the perovskite materials so 
far restricted their use to niche applications [4].  
The ferroelectric field effect transistors (FeFET) that was proposed in 1957 [5] features a 
ferroelectric capacitor as gate insulator, modulating the transistor’s threshold voltage that 
can be sensed non-destructively by measuring the drain-source current. Perovskite based 
FeFET memory arrays with up to 64kBit have been demonstrated [6]. But due to difficulties 
in the technological implementation, limited scalability and data retention issues, no 
commercial devices became available.  
The ferroelectric tunneling junction (FTJ) was proposed by L. Esaki et al. in 1970s as a “polar 
switch” [7] and was firstly demonstrated in 2009 using a BaTiO3 ferroelectric layer [8]. The 
FTJ features a ferroelectric layer sandwiched between two electrodes, thus modifying the 
tunneling electro-resistance. A polarization-dependent current is measured non-destructively 
when applying electrical fields smaller than EC. 
Since the fortuitous discovery of ferroelectricity in hafnium oxide (HfO2) in 2008 and its first 
publication in 2011 [9] the well-established and CMOS-compatible fluorite-structure material 
has been extensively studied and recently gained a lot of interest in the field of nonvolatile 
memories and beyond von-Neumann computing [10] [11]. 
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Current and Future Challenges 
 
Very encouraging electrical results of fully front-end-of-line (FEOL) integrated FeFET devices 
have been reported recently based on >1Mbit memory arrays [12]. The ability of fine-grained 
co-integration of FeFET memory devices together with CMOS logic transistors paves the way 
for the realization of brain-inspired architectures to overcome the limitations of the van-
Neumann bottleneck, which restricts the data transfer due to limited memory and data bus 
bandwidth [13]. However, one of the main challenges for the FeFET devices and topic of 
intense research is the formation of ferroelectric HfO2-based thin films featuring a uniform 
polarization behavior at nano-scale as an important prerequisite for the realization of small 
scaled devices with feature sizes <100nm.  
Another important challenge for many application cases is the limited cycling endurance of 
silicon-based FeFETs that is typically in the range of 105 cycles. This value is mainly dictated 
by the breakdown of the dielectric SiO2 interfacial layer that forms between the Si channel 
and the ferroelectric gate insulator.  
Ferroelectric capacitors have been successfully integrated into the back-end-of-line (BEOL) of 
modern CMOS technologies and operation of a HfO2-based based FeRAM memory array was 
shown [14]. At this point the main challenge is the decrease of the ferroelectric layer thickness 
well below 10nm to allow scaling of 3D capacitors towards the 10nm node. Moreover, 
phenomenon such as the so called “wake-up effect” with increasing of Pr for low cycle counts 
as well as the “fatigue effect” resulting in a reduction of Pr at high cycle counts due to oxygen 
vacancy redistribution [15] and defect generation have to be tackled. That is especially 
important for fine-grained circuit implementations where the switching properties of single 
ferroelectric devices impact the designed operation point of analogue circuits.  
One of the most interesting benefits of FTJ devices is the small current density making them 
very attractive for applications requiring massive parallel operations such as analogue matrix-
vector-multiplications in larger cross-bar structures [16]. However, increasing the ratio 
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between the on-current density and the self-capacitance of the FTJ devices turns out as one 
of the main challenges to increase the reading speed for these devices. The tunneling current 
densities depend strongly on the thickness of the ferroelectric layer and the composition of 
the multi-layer stacks. The formation of very thin ferroelectric layers is hindered by 
unintentional formation of interfacial dead layers towards the electrodes and increasing 
leakage currents due to defects and grain-boundaries in the poly-crystalline thin films.  
 
 
 
 
Advances in Science and Technology to Meet Challenges 
 
Although ferroelectricity in hafnium oxide has been extensively studied for over one decade 
now, there are still many open questions in understanding the formation of the ferroelectric 
Pca21 phase and regarding the interaction with material layers such as electrodes, dielectric 
tunneling barriers in multi-layer FTJs or interfacial layers in FeFETs. Moreover, the interplay 
between charge trapping phenomenon and ferroelectric switching mechanisms [17] or the 
different behavior of abrupt single domain switching [11] and smooth polarization transitions 
in negative capacitance devices that were observed in the very similar material stacks are still 
not completely understood. However, that knowledge will be an important ingredient for 
proper optimization of material stacks as well as electrical device operation conditions.  
On the materials side the stabilization of the ferroelectric orthorhombic Pca21 phase in 
crystallized HfO2 thin films has to be optimized further. Adding dopants, changing oxygen 
vacancy densities or inducing stress by suitable material stack and electrode engineering are 
typical measures. In most cases a poly-crystalline material layer is attained consisting of a 
mixture of different crystalline ferroelectric and non-ferroelectric phase fractions. Moreover, 
ferroelectric grains that differ in size or orientation of the polarization axis, electronically 
active defects as well as grain size dependent surface energy effects give rise to the formation 
of ferroelectric domains that possess different electrical properties in terms of coercive field 
EC (typical values ~1 MV/cm) or remnant polarization Pr (typical values 10 – 40 μC/cm2) with 
impact on the device-to-device variability and the gradual switching properties that are 
important especially for analog synaptic devices. Some drawbacks of the poly-crystallinity of 
ferroelectric HfO2- and ZrO2-based thin films could be tackled by the development of epitaxial 
growth of monocrystalline ferroelectric layers [18] where domains might extend over a larger 
area. Especially in the case of FTJs the effect of domain wall motion might allow a more 
gradual and analogue switching behavior even in small scaled devices. The utilization of an 
anti-ferroelectric hysteretic switching that was demonstrated in ZrO2 thin films bears the 
potential to overcome some limitations that are related to the high coercive field of 
ferroelectric HfO2, such as operation voltages being larger than the typical core voltages in 
modern CMOS technologies or the limited cycling endurance [19].  
Finally, besides the very encouraging results adopting ferroelectric HfO2 in 2019 another 
promising material was realized. The AlScN is a semiconductor processing compatible and 
already utilized piezoelectric material that was made ferroelectric [20]. 
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Concluding Remarks 
 
The discovery of ferroelectricity in hafnium oxide has led to a resumption in the research on 
ferroelectric memory devices, since hafnium oxide is a well-established and fully CMOS 
compatible material in both front end of line and back end of line processing. Besides the 
expected prospective realization of densely integrated non-volatile and ultra-low-power 
ferroelectric memories in near future, this development directly leads to the adoption of the 
trinity of ferroelectric memory devices – FeCAP, FeFET and FTJ - for beyond von Neumann 
computing. While in the memory application the important topic of reliability on the array 
level is yet to be solved, for neuromorphic applications the linear switching to many different 
states, especially in scaled down devices, is a topic that needs further attention. Moreover, 
very specific properties of the different ferroelectric device types demand for the 
development of new circuit architectures that facilitate a proper device operation taking into 
account the existing non-idealities. A thorough design technology co-optimization will be the 
key to fully exploit their potential in neuromorphic and edge computing. Finally, large scale 
demonstrations of ferroelectrics based neuromorphic circuits need to be investigated to 
identify all possible issues.  
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Status 
Resistive random access memories (RRAMs), also named memristive devices, change their resistance 
state upon electrical stimuli. They can store and compute information at the same time, thus enabling 
in-memory and brain-inspired computing [1, 2]. RRAM devices relying on oxygen ion migration effects 
and subsequent valence changes are named valence change memory (VCM) [3]. They have been 
proposed to implement electronic synapses in hardware neural networks, due to the ability to adapt 
their strength (conductance) in an analogue fashion as a function of incoming electrical pulses 
(synaptic plasticity), leading to long-term (short-term) potentiation and depression. In addition, 
learning rules such as spike-time or spike-rate dependent plasticity, paired-pulse facilitation or the 
voltage threshold–based plasticity have been demonstrated; the stochasticity of the switching process 
has been exploited for stochastic update rules [4-6]. Most of the VCM devices are based on a two-
terminal configuration, and the switching geometry involves either confined filamentary, or interfacial 
regions (Fig.1A). Filamentary VCMs are today the most advanced in terms of integration and scaling. 
Their switching mechanism relies on the creation and rupture of conductive filaments (CF), formed by 
a localized concentration of defects, shorting the two electrodes. The modulation/control of the CF 
diameter and/or CF dissolution can lead to two or multiple stable resistance states [7, 8]. Prototypes 
of neuromorphic chips have been recently shown, integrating HfOx and TaOx-based filamentary-VCM 
as synaptic nodes in combination with CMOS neurons [9-11]. In interfacial VCM devices, the 
conductance scales with the junction area of the device, and the mechanism is related to a 
homogenous oxygen ion movement through the oxides, either at the electrode/oxide or oxide/oxide 
interface. Reference material systems are based on complex oxides, such as bismuth ferrite [12] and 
praseodymium calcium manganite [13]; or bilayers stacks, e.g. TiO2/TaO2 [14] and a-Si/TiO2 [15]. 
Finally, 3-terminal VCM redox transistors have been recently studied (Fig.1A-right), where the 
switching mechanism is related to the control of the oxygen vacancy concentration in the bulk of the 
transistor channel [16, 17]. While interfacial and redox-transistor devices are today at low 
technological readiness, and most of the studies are reported at single device level, they promise 
future advancement in neuromorphic computing in terms of analogue control, higher resistance 
values, improved reliability, reduced stochasticity with respect to filamentary devices [18]. To design 
neuromorphic circuits including VCM devices, compact models are requested. For filamentary devices 
compact models including variability are available [18, 19], but lacking for interfacial VCM and redox-
based transistors.  
 
Current and Future Challenges 
VCM devices have been developed in the last 15 years mainly for storage applications, but for 
neuromorphic applications the required properties differ. In general, desirable properties of 
memories for neural networks include (i) analogue behaviour or controllable multilevel states, (ii) 
compatibility with learning rules supporting also online learning, (iii) tuneable short-term and long-
term stability of the weights to implement various dynamics and timescales in synaptic and neuronal 
circuits [4-6]. A significant debate still refers to the linear/non-linear and symmetric/asymmetric 
conductance update of experimental devices, synaptic resolution (number of resistance levels), and 
how to exploit or mitigate these features (Figs1-B,C). 
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Filamentary devices are the most mature type of VCMs. Nevertheless, many issues are pending: e.g. 
control of multi-level operation, device variability, intrinsic stochasticity, program and read disturbs, 
and the still too low resistance level range for neuromorphic circuits [20]. Moreover, the 
understanding/modelling of their switching mechanism is still under debate. Whereas first models 
including switching variability and read noise are available [18, 19], retention modelling, and the 
modelling of volatile effects and device failures are current challenges. First hybrid CMOS-VCM chips 
have been developed demonstrating inference application, but so far they do not support on-chip 
learning [9-11]. 
Interfacial VCM devices show in general less variability, less (no) read instability and a very analogue 
tuning of the conductance states, which can leads to a more deterministic and linear conductance 
update compared to filamentary devices [13]. Still these properties are not characterized on a high 
statistical basis. The retention, especially for thin oxide devices, is lower than for filamentary devices, 
which may be still compatible with some applications. As the conductance scales with area, the 
achievable high resistance levels promise a low power operation. Typical devices, however, have a 
large area or thick switching oxides, and scaling them to the nanoscale is an open issue. Moreover, 
devices showing a large resistance modulation require high switching voltages, not easily compatible 
with scaled CMOS nodes. The fabrication and characterization of interfacial VCM arrays needs to be 
further addressed. Simulation models for interfacial VCM are not available yet and need to be 
developed.  
Redox-based VCM transistors have been only shown on a single device level [16, 17]. Thus, reliable 
statistical data on cycle-to-cycle variability, device-to-device variability and stability of the 
programmed states is not available yet. Moreover, the trade-off between switching speed and voltage 
has not been studied in detail. Another challenge is the understanding of the switching mechanism 
and the development of suitable models for circuit design.  
The open challenges for all three types of VCM devices are summarized in Table I.  
 
 
Advances in Science and Technology to Meet Challenges 
The current challenges for VCM-type devices push the research in various but connected directions, 
which span from material, to theory, devices and architecture. A better understanding of material 
properties and microscopic switching mechanisms is definitely required. However, the key step is to 
demonstrate the device integration in complex circuits and hybrid CMOS-VCM hardware 
neuromorphic chips. While VCMs are not ideal devices, many issues can be solved or mitigated at 
circuit level still taking advantage of their properties in term of power, density, and dynamic 
properties. 
In this context, filamentary VCM devices are the most mature technology, but their deployment into 
neuromorphic computing hardware is still at its infancy. A comprehensive compact model, depicting 
complete dynamics including retention effects, e.g. to accurately simulate online learning, is required 
for the development of optimized circuits. On the material level, the biggest issues are read noise and 
switching variability. Due to the inherent Joule heating effect, the transition time of the conductance 
switching is very short and depends strongly on the device state [21]. This makes it hard to control the 
conductance update. Future research could explore very fast pulses in the range of the transition time 
to update the cell conductance, or use thermal engineering of the device stacks to increase the 
transition time. Finally, to achieve low power operation, resistance state values should be moved to 
the MΩ regime.  
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For interfacial and redox-transistor VCM devices, one of the next important steps is to shift from 
single device research to large arrays, possibly co-integrated with CMOS. This step enables to collect 
a large amount of data, which is required for modelling and demonstrating robust neuromorphic 
functions. It would be highly desirable to identify a reference material system with a robust switching 
mechanism supported by a comprehensive understanding and modelling from underlying physics to 
compact and circuits modelling. Indeed, the modelling of these devices are still at its infancy. One 
open question for both devices is the trade-off between data retention and switching speed. In 
contrast to the filamentary devices, the velocity of the ions are probably not accelerated by Joule 
heating. Thus, the voltage needs to be increased more than in filamentary devices, to operate the 
devices at fast speed [22]. This might limit the application of these device to a certain time domain as 
the CMOS might not be able to provide the required voltage. By using thinner device layers or material 
engineering this issue could be addressed.  
 
 
Concluding Remarks 
The VCM device technologies can integrate novel functionalities in hardware as key elements of the 
synaptic nodes in neural networks, i.e. to store the synaptic weight. Moreover, they can enable new 
learning algorithms that enable bio-plausible functions over multiple timescales. At the moment, it is 
still not clear which can be the best “final” VCM material system and/or VCM device type, having each 
of them advantages and disadvantages. The missing “killer” system, with consolidated 
properties/understanding/easy manufacturing, prevents to concentrate the efforts of the scientific 
community in single direction to bring VCM device to industrial real applications beyond a niche 
market. While filamentary VCMs are already been implemented in neuromorphic computing 
hardware, interfacial VCM or redox transistor can open new perspectives in the long term. To this end, 
there is an urgent request to further develop VCM devices enhancing new properties through a 
combined synergetic development based on materials design, physical and electrical characterizations 
and multiscale modelling to support the microscopic understanding of the link between the device 
structure and the electrical characteristics. Moreover, the device development targeting brain-
inspired computing systems can only go hand-in-hand with theory and architectures design in a 
holistic view.  
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Figure 1.  A. Sketch of the three types of VCM devices (filamentary, interfacial and redox transistor). B. Possible functionalities that can 
be implemented by VCM devices, namely binary memory (left), analog/multilevel (centre) and stochastic (right) memory. In the figures, 
the device resistance evolution is plotted as a function of applied electrical stimuli (pulses). C. Schematic drawing of some of the 
interesting properties of VCM for neuromorphic applications, i.e. synaptic plasticity dynamics and type of memory with different long or 
short retention scales (LTM, STM) . Many experimental VCM devices show a non-linear and asymmetric modulation of the conductance 
(G) update, but plasticity dynamics can be as well modulated by programming strategies or materials engineering. 
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Table I. Summary of status and open challenges of the three types of VCM devices. 
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1.4 Electrochemical metallization cells 
Ilia Valov, Peter Gruenberg Institute PGI-7, Forschungszentrum Juelich GmbH, 
52425 Juelich, Germany 
 
Status 
Electrochemical metallization memories were introduced in nanoelectronics with perspective to be 
used as memory, optical, programmable resistor/capacitor devices, sensors and as well for crossbar 
arrays and rudimentary neuromorphic circuits by M. Kozicki[1, 2] under the name programmable 
metallization cells (PMC). These type devices are termed also conductive bridging random access 
memories (CBRAM) or atomic switches[3]. The principle of operation of these two electrode devices 
using thin layers as ion transporting media is schematically shown in Figure 1. As electrochemically 
active electrodes Ag, Cu, Fe or Ni are mostly used and as counter electrodes Pt, Ru, Pd, TiN or W are 
preferred. Electrochemical reactions at the electrodes and ionic transport within the device trigged by 
internal[4] or applied voltage the formation of metallic filament (bridge) short-circuiting the 
electrodes and defining low resistance state (LRS). Voltage of opposite polarity is used to dissolve the 
filament, returning the resistance to high ohmic state (HRS). LRS and HRS are used to define Boolean 
1 and 0, respectively.   
 
Apart from prospective for a paradigm shift in computing and information technology offered by 
memrsitive devices in general[5], ECMs provide particular advantages compared to other redox-based 
resistive memories. They operate at low voltages (~ 0.2 V to ~ 1 V) and currents (from nA to µA range) 
allowing for low power consumption. Huge spectrum of materials can be used as solid electrolytes, 
ionic conductors, mixed conductors, semiconductors, macroscopic insulators and even high-k 
materials such as SiO2, HfO2, Ta2O5 etc. predominantly in amorphous but also in crystalline state[6]. 
The spectrum of these materials includes also 1D and 2D materials but also different polymers, bio-
inspired / bio-compatible materials, proteins and other organic and composite materials[7, 8]. The 
metallic filament can vary in thickness and may either completely bridge the device, or be only partially 
dissolved providing multilevel to analog behaviour. Very thin filaments are extremely unstable and 
dissolve fast (down to 1010 sec)[9]. The devices are stable against radiation/cosmic rays, high energy 
particles and electromagnetic waves and can operate in large temperature range[10, 11]. Due to 
these properties, ECMs can be implemented to various environments, systems and technologies. The 
typical applications are as selector devices, volatile, non-volatile digital and analog memories, 
transparent and flexible devices, sensors, artificial neurons and synapses[12-14]. The devices can 
combine more functions and are thought as basic units for the fields of autonomous systems, beyond 
von Neumann computing and artificial intelligence. Further development in the field is essential to 
realise the full potential of this technology.    
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Current and Future Challenges 
 
Despite the apparent simplicity and ease operation ECM cells are complex nanoscale systems, relying 
on redox reactions and ion transport at extreme conditions[15]. Despite low absolute voltages and 
currents, the devices are exposed to electric fields of up to 108 V cm-1 and current densities of up to ~ 
1010 A cm-2. There is no other example in the entire field of electrochemical applications even 
approaching these conditions. Small device volume, harsh and strongly non-equilibrium conditions is 
making the understanding of fundamental processes and their control extremely challenging. The 
latter results in less precise (or missing) control over the functionalities and reliable operation. Indeed, 
maybe the most serious disadvantage of ECMs is the large variability in switching voltages, currents 
and resistive states. Additional problems are fluctuations and drift of the resistance states, as well 
their chemically and/or physically determined instabilities.      
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Principle operation and current-voltage characteristics of electrochemical metallization devices. The individual physical 
processes are related to the corresponding part of the I-V dependence. The figure is reproduced from[Valov2011001]  
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Several notable issues should be taken in consideration:  1) Missing unequivocal experimental value 
about what part of the applied current is carried by ions and by electrons. Whereas in macroscopic 
systems these numbers are constant, in nanoscale ECMs it may vary depending on the conditions and 
charge concertation. 2) The charge/ion concentration may vary with time. Due to the small volume, it 
is easy to enrich or deplete the film with mobile ions (acting as donors/acceptors) during the operation 
cycles, resulting in deviation of the switching voltages and currents and finally to failures. 3) Again due 
to small volume, even low number of foreign atoms/ions (impurities) will cause considerable changes 
in the electronic properties. Impurities or dopants and as well the matrix significantly alter the 
characteristics due to effects on the switching layer[16, 17] or on the electrodes[18]  . 4) Effects of 
protons and oxygen. Both can be incorporated either during device preparation (e.g. lithography 
steps, or deposition technique e.g. ALD etc. ) or from the environment[19], even if capping layer is 
used. Many devices even cannot operate without presence of protons and many electrode materials 
such as Cu, Mo, W or TiN etc. can be partially or even are fully oxidized by environmental factors.  5) 
Interfacial interactions are commonly occurring at the electrode/solid electrolyte interface. The 
thickness of these interfacial layers can sometime even exceed the thickness of the switching layer 
and inhibit or support reliable operation[20].              
All these effects have their origin in the nanosize of the devices and highly non-equilibrium operating 
conditions.  
 
Advances in Science and Technology to Meet Challenges 
 
Addressing the challenges and issues that still limit the implementation of ECM devices in the praxis, 
should be considered on different levels. On a fundamental level, an in-depth understanding of the 
nanoscale processes and rate-limiting steps that determine the resistive switching mechanism is 
essential. To overcome the current limitations the theory should be further improved to account not 
only quantitatively but also qualitatively for the fundamental differences in thermodynamics and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

Figure 2.  Schematic differences between ideal cells (left) and real cells accounting for interface interactions occurring due to sputtering 
conditions, chemical interactions or environmental influences. The figure is modified from[Valov2017001].   
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kinetics on the nanoscale compared to the macroscale. The scientific equipment needs to be improved 
to address the demand on sufficient mass and charge sensitivity and as well lateral and vertical 
resolution. Accent should be set on in situ and in operando techniques at real conditions enhanced by 
high time and imaging resolutions.  
On a materials level, efforts should be made to understand and effectively use the relation between 
physical and chemical material properties, such as chemical composition, non-stoichiometry, purity, 
doping, density, thickness and mechanical properties and device performance and functionalities. A 
more narrow selection from the vast sea of ECM materials should be made on which systematic 
research should be performed. Final task to be achieved by these selective materials research 
approach is establishing a universal materials treasure map.  
On a device/circuit/technology level, common problems such as sneak path problem still need to be 
addressed. Limitation of interactions between devices and high-density integration (also within 
CMOS) needs to be further improved.  The control during the deposition of layer materials should be 
adjusted to avoid layer intermixing, contaminations and incorporation of impurities. In many cases, 
deposition of thin films of non-oxidized elements or components with higher affinity to oxygen such 
as W, Mo, TiN or oxygen-free containing chalcogenides is possible only after special pre-care. The 
technological processes must be adapted and regularly controlled to ensure high quality and defined 
chemical composition.  Additional efforts should also be made to integrate devices utilizing different 
functionalities and allowing for higher degree of complexity. The internal electromotive force should 
be further explored and utilized in respect autonomous systems and as well applications in space 
technologies and medicine should be further developed.  
 
These issues are in fact highly interrelated and closely depend on each other. Most important on the 
current stage of development of ECM devices is to understand and control the relation between 
material properties, physical processes and device performance and functionalities. This knowledge 
will result in improved reliability of the devices and advanced technology.  
 
Concluding Remarks 
[Include brief concluding remarks. This should not be longer than a short paragraph. (200 words max)] 
ECM devices have been intensively developed in the last 20 years however, still not reaching their full 
potential. Opportunities for various applications in the fields of nanoelectronics, nanoionics, 
magnetics, optics, sensorics etc. and prospective for implementation as basic units in neuromorphic 
computing, big data processing, autonomous systems and artificial intelligence are impeded by 
insufficient control of the nanoscale processes and incomplete knowledge on the relation between 
material properties, fundamental processes and devices characteristics and functionalities. To achieve 
these tasks, not only existing theory but also the scientific equipment and characterization techniques 
should be further improved allowing a direct insight in the complex nanoscale phenomena. Interacting 
and complementing fundamental and applied research is the key to address these issues in order to 
deploy the advantages and opportunities offered by the electrochemical metallization cells into 
modern information and communications technologies.          
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1.5 - Nanowire Networks 
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Status 
 
The human brain is a complex network of about 1011 neurons connected by 1014 synapses, 
anatomically organized over multiple scales of space, and functionally interacting over 
multiple scales of time [1]. Synaptic plasticity, i.e. the ability of synaptic connections to 
strengthen or weaken over time depending on external stimulation, is at the root of information 
processing and memory capabilities of neuronal circuits. As building blocks for the realization 
of artificial neurons and synapses, memristive devices organized in large crossbar arrays with 
a top-down approach have been recently proposed [2]. Despite the state-of-art of this rapidly 
growing technology demonstrated hardware implementation of supervised and unsupervised 
learning paradigms in artificial neural networks (ANN), the rigid top-down and grid-like 
architecture of crossbar arrays fails in emulating the topology, connectivity and adaptability of 
biological neural networks, where the principle of self-organization governs both structure and 
functions [1]. Inspired by biological systems (Figure 1a), more biologically plausible 
nanoarchitectures based on self-organized memristive nanowire (NW) networks have been 
proposed [3]–[8] (Figure 1b and c). Here, the main goal is to focus on the emergent behaviour 
of the system arising from complexity rather than on learning schemes that require addressing 
of single ANN elements. Indeed, in this case main players are not individual nano objects but 
their interactions [9]. NW networks can be fabricated by randomly dispersing NWs with a 
metallic core and an insulating shell layer on a substrate by a low-cost drop casting technique 
that does not require nanolithography or cleanroom facilities. The obtained NW network 
topology shows small-world architecture similarly to biological systems [10]. Both single NW 
junctions and single NWs show memristive behaviour due to the formation/rupture of a 
metallic filament across the insulating shell layer and to breakdown events followed by 
electromigration effects in the formed nanogap, respectively (Figure 1e-h) [7]. Emerging 
network-wide memristive dynamics were observed to arise from the mutual electrochemical 
interaction in between NWs, where the information is encoded in “winner-takes-all” 
conductivity pathways that depend on the spatial location and temporal sequence of stimulation 
[11]–[13]. By exploiting these dynamics, NW networks in multiterminal configuration can 
exhibit homosynaptic, heterosynaptic and structural plasticity with spatiotemporal processing 
of input signals [7]. Also, nanonetworks have been reported to exhibit fingerprints of self-
organized criticality similarly to our brain [3], [14], [15], a feature that is considered 
responsible for optimization of information transfer and processing in biological circuits. 
Because of both topological structure and functionalities, NW networks are considered as very 
promising platforms for hardware realization of biologically plausible intelligent systems. 
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Figure 1.  Bio-inspired memristive NW networks. (a) Biological neural networks where synaptic connections between neurons are 
represented by bright fluorescent boutons (image of primary mouse hippocampal neurons); (b) self-organizing memristive Ag NW 
networks realized by drop-casting (scale bar, 500 nm). Adapted from [7] under the terms of Creative Commons Attribution 4.0 License, 
Copyright 2020, Wiley-VCH. (c) Atomic switch network of Ag wires. Adapted from [8], Copyright 2013, IOP Publishing. (d-e) Single NW 
junction device where the memristive mechanism rely on the formation/rupture of a metallic conductive filament in between metallic 
cores of intersecting NWs under the action of an applied electric field and (f-g) single NW device where the switching mechanism, after 
the formation of a nanogap along the NW due to an electrical breakdown, is related to the electromigration of metal ions across this gap. 
Adapted from [7] under the terms of Creative Commons Attribution 4.0 License, Copyright 2020, Wiley-VCH. 
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Current and Future Challenges 
 
Current and future challenges for hardware implementation of neuromorphic computing in the 
bottom-up NW network will need integrated theoretical and experimental multidisciplinary 
approaches involving material physics, electronics engineering, neuroscience and network 
science (an overview of the roadmap is shown in Figure 2). In NW networks, unconventional 
computing paradigms that emphasize the network as a whole rather than the role of single 
elements need to be developed. In this framework, great attention has recently been devoted to 
the reservoir computing (RC) paradigm where a complex network of nonlinear elements is 
exploited to map input signals into a higher dimensional feature space that is then analysed by 
means of a readout function. Despite NW networks have been recently proposed as physical 
reservoirs [16], an experimental hardware implementation of reservoir computing still 
represents a challenge. For this purpose, the design and fabrication of multiterminal memristive 
NW networks able to process multiple spatio-temporal inputs with nonlinear dynamics, fading 
memory (short-term memory) and echo-state properties are needed. Importantly, these NW 
networks have to operate at low voltages and currents to be implemented with conventional 
electronics. These represent challenges from the material science point of view, since to 
achieve this goal NWs have to be optimized in terms of core-shell structures for tailoring ionic 
dynamics underlying resistive switching mechanism. Also, a fully-hardware RC system 
requires hardware implementation of the readout function for processing outputs of the NW 
network physical reservoir. Despite in principle a neural network readout can be implemented 
by means of crossbar arrays of ReRAM devices, the software/hardware architecture for 
interfacing the NW network with the ReRAM readout represents a challenge from the 
electronic engineering point of view. To fully investigate the computing capabilities of these 
self-organized systems, modelling of the emergent behaviour is required for understanding the 
interplay in between network topology and functionalities. This relationship can be explored 
with a complex network approach by means of graph theory metrics. Current challenges in 
understanding and modelling the emergent behaviour of NW networks rely on the experimental 
investigation of resistive switching mechanism in single network elements, including a 
statistical analysis of inherent stochastic switching features of individual memristive elements. 
Also, combined experiment and modelling are essential to investigate hallmarks of criticality 
including short and long-range correlations among network elements, power-law distributions 
of events and avalanche effects by means of an information theory approach. Despite scale-
free networks operating near the critical point similarly to the cortical tissue are expected to 
enhance information processing, understanding how critical phenomena affect computational 
capabilities of self-organized NW networks still remain an open challenge. 
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Figure 2.  Roadmap for the development of neuromorphic systems based on NW networks. 



Roadmap on Neuromorphic Computing and Engineering 

Advances in Science and Technology to Meet Challenges 
 
Understanding dynamics from the nanoscale, at the single NW/NW junction level, to the 
macroscale where a collective behaviour emerges is a key requirement for implementing 
neuromorphic-type of data processing in NW networks. At the nanoscale, scanning probe 
microscopy (SPM) techniques can be employed to assess local network dynamics. In particular, 
Conductive Atomic Force Microscopy (C-AFM), that provides information on the local NW 
network conductivity, can be exploited not only as a tool to investigate changes of conductivity 
after switching events, but also for locally manipulating the electrical connectivity at the single 
NW/NW junction level [17]. Scanning Thermal Microscopy (SThM) can be employed to 
locally measure the network temperature with spatial resolution < 10 nm, well below the 
resolution of the conventional Lock-in Thermography (LIT) [12], providing information about 
nanoscale current pathways across the sample. At the macroscale, advances in electrical 
characterization techniques are required for analysing the spatial distribution of electrical 
properties across the network and their evolution over time upon stimulation. In this 
framework, one-probe electrical mapping can be adopted for spatially visualizing voltage 
equipotential lines across the network [18], even if this scanning technique does not allow an 
analysis of the network evolution over time. In contrast, non-scanning electrical resistance 
tomography (ERT) have been recently demonstrated as a versatile tool for mapping the network 
conductivity over time at the macroscale (~ cm2) [19]. Thus, ERT can allow in-situ direct 
visualization of the formation and spontaneous relaxation of conductive pathways, providing 
quantitative information on the conductivity and morphology of conductive pathways in 
relation with the spatio-temporal location of stimulation. Advancements in the synthesis of 
core-shell NWs are required for engineering the insulating shell layer surrounding the metallic 
inner core that acts as a solid electrolyte. Taking into advantage of the possibility of producing 
conformal thin films with control of thickness and composition at the atomic level, Atomic 
Layer Deposition (ALD) represents one of the most promising techniques for the realization of 
metal-oxide shell layers. Also, alternative bottom-up nanopatterning techniques such as Direct 
Self-Assembly (DSA) of Block Copolymers (BCPs) can be explored for the fabrication of self-
organizing NW networks with the possibility of controlling correlation lengths and degree of 
order [20]. This approach can allow a statistical control of network topology. Customized 
characterization techniques, from the nanoscale to the macroscale, coupled with a proper 
engineering of NW structure/materials and network topology, will ultimately enable the control 
of network dynamics needed for efficient computing implementations. 
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Concluding Remarks 
 
Self-organized NW networks can provide a new paradigm for the realization of neuromorphic 
hardware. The concept of nanoarchitecture, where the mutual interaction among a huge number 
of nano parts causes new functionalities to emerge, resembles our brain, where an emergent 
behaviour arises from the synaptic interactions among a huge number of neurons. Besides 
reservoir computing that represents one of the most promising computing paradigms to be 
implemented on these nanoarchitectures, unconventional computing frameworks able to 
process sensor inputs from the environment can be explored for online adapting of robot 
behavior. In perspective, more complex network dynamics can be explored by realizing 
computing nanoarchitectures composed of multiple interconnected networks or by stimulating 
networks with heterogeneous stimuli. In this scenario, NW networks that can learn and adapt 
when externally stimulated - thus mimicking the processes of experience-dependent synaptic 
plasticity that shapes connectivity of our nervous system - would not only represent a 
breakthrough platform for neuro-inspired computing but could also facilitate the understanding 
of information processing in our brain, where structure and functionalities are intrinsically 
related.  
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Status 

Computing in sensory or memory devices allows for reducing latency and power consumption 

associated with data transfer [1] and is promising for real-time analysis. Functional diversity 

and performances of these two distinct computing paradigms are largely determined by the 

type of functional materials. Two-dimensional (2D) materials represent a novel class of 

materials and show many promising properties, such as atomically thin geometry, excellent 

electronic properties, electrostatic doping, gate-tuneable photoresponse, superior thermal 

stability, exceptional mechanical flexibility and strength, etc. Stacking distinct 2D materials on 

top of each other enables creation of diverse van der Waals (vdW) heterostructures with 

different combinations and stacking orders, not only retaining the properties of dividual 2D 

components but also exhibiting additional intriguing properties beyond those of individual 2D 

materials.  

2D materials and vdW heterostructures has recently shown great potential on achieving in-

sensor computing and in-memory computing, as shown in Fig. 1. There has intense interest in 

exploring unique properties of 2D materials and their vdW heterostructures for designing 

computational sensing devices. For example, photovoltaic properties of gate-tuneable p-n 

homojunction based on ambipolar material WSe2 were exploited for ultrafast vision sensor 

capable of processing images within 50 ns [2]. Employing gate-tuneable optoelectronic 

response of WSe2/h-BN vdW heterostructure can emulate the hierarchical architecture and 

biological functionalities of human retina to design reconfigurable retinomorphic sensor array 

[3].  

    2D materials and their associated vdW heterostructures were also introduced for in-memory 

computing devices and circuits to improve the switching characteristics and offering additional 

functionalities. Several switching mechanisms such as conductive filament [4], charging-
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discharging [5-7], grain boundary migration [8], ionic intercalation [9, 10], lattice phase 

transition [11], etc., have been reported in 2D materials-based planar and vertical devices. With 

strict limitation in available space and the number of references, only a few representative 

works are mentioned in this roadmap. Interested readers are encouraged to refer to previous 

review article [12]. Based on superior thermal stability and atomically-sharp interface of 

graphene/MoS2-xOx/graphene vdW heterostructure, a robust memristive device was reported 

to exhibit endurance of 107 at room temperature and stable switching performance in a record-

high operating temperature of 340 0C [13]. Different from oxide-based memristive devices, 

metal/2D material/metal vertical devices with layered-structure feature of switching medium 

were used to mimic high-performance electronic synapses with good energy efficiency [14], 

which holds promise for modelling artificial neural network in a high-density memristive 

crossbar array [15]. Reducing the thickness of switching medium down to monolayer allows 

for fabrication of thinnest resistive switching devices with featuring the conductive-point 

resistive switching mechanism [16, 17].  

Current and Future Challenges 

In these prototype demonstrations of in-sensor computing, the fabricated device arrays are 

limited due to the challenge in large area synthesis of 2D materials and vdW heterostructures. 

However, all these works no doubt show that the unique properties of 2D materials and vdW 

heterostructures can be utilized to achieve ultralow-latency and reconfigurable in-sensor 

computing [2, 3]. To eventually realize practical applications of in-sensor computing, 

innovation is demanded to address issues associated with materials, device physics, array size 

and controlling peripheral circuit. The challenges that must be overcome in the future include 

growing large-area single crystal materials, exploiting suitable sensing device structures and 

mechanisms to handle sensory information, fabricating large-scale computational sensory 

device arrays with good uniformity, high yield and reliability, as well as designing peripheral 

circuits that efficiently control programmable operations of in-sensor computing arrays. 

   In contrast to in-sensor computing, many distinct operating mechanisms were already 

explored to realize 2D materials-based memristive devices for in-memory computing. From 

structural point of view, planar or vertical metal/insulator/metal (MIM) configurations of 

isolated devices with relatively large area are mainly studied. Vertical MIM devices with small 

lateral area would enable high integration density and would be considered by the industry. 
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However, crossbar study of MIM vertical devices is limited due to the difficulty in synthesis 

of large area 2D materials with controllable thickness and high quality vdW heterostructure 

with controllable interface. From electrical point of view, most 2D materials based MIM 

devices cannot achieve endurances of larger than 106 cycles and stability study of the resistive 

states was not always demonstrated in multilevel resistive switching devices reported so far. 

Besides, a unified criterion for yield and variability has been not yet established, which leads 

to a challenge in evaluating the maturity of 2D materials technology for circuit- and system-

level applications of in-memory computing. Clearly stating yield-pass criteria and variability 

Figure 1. 2D and vdW heterostructure materials for neuromorphics. The in-sensor computing 
devices include WSe2-based homojunction for ultrafast machine vision (Adapted with 
permission [2], Copyright 2020, Springer Nature) and WSe2/h-BN vdW heterostructure for 
reconfigurable vision sensor (Adapted with permission [3], Copyright 2020, The American 
Association for the Advancement of Science); the in-memory computing devices include 
self-selective vdW memristor (Adapted with permission [4], Copyright 2019, Springer 
Nature), electrically tuneable homojunction based synaptic circuit (Adapted with permission 
[5], Copyright 2020, Springer Nature), vdW semi-floating gate memory (Adapted with 
permission [6], Copyright 2018, Springer Nature), gate-tuneable heterostructure electronic 
synapse (Adapted with permission [7], Copyright 2017, American Chemistry Society), grain 
boundary mediated MoS2 planar memristor (Adapted with permission [8], Copyright 2015, 
Springer Nature), ionic intercalation memristive device (Adapted with permission [10], 
Copyright 2019, Springer Nature), phase change memristive devices (Adapted with 
permission [11], Copyright 2019, Springer Nature), robust graphene/MoS2-xOx/graphene 
vdW memristor (Adapted with permission [13], Copyright 2018, Springer Nature), multilayer 
h-BN electronic synapse (Adapted with permission [14], Copyright 2018, Springer Nature), 
atomristor (Adapted with permission [16], Copyright 2018, American Chemistry Society).  
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windows of memristive devices is especially important in 2D materials given the large number 

of local defects intrinsic to scalable synthesis methods as well as other extrinsic defects 

introduced during integration. 

Advances in Science and Technology to Meet Challenges 

2D materials for in-sensor computing and in-memory computing are emerging research 

fields and are still in their infancy. The family of 2D materials database is rapidly expanding 

and a large number of family members already reported in experiments are available for 

computational sensory and memory devices. In particular, some of air-stable 2D single-crystal 

materials such as graphene, h-BN and MoS2, etc. can be synthesized directly on metal wafers 

and transferred to target wafer substrate in a reliable approach [18]. Besides these advances in 

materials growth, recent advances in device physics and arrays as well as peripheral circuits 

would offer unprecedented opportunities to realize devices arrays on wafer scale with 2D 

materials that are suitable for in-sensor and in-memory computing applications.  

For practical applications of in-sensor computing, further exploration of novel device 

physics related to 2D materials is required. For example, in the case of vision sensor, a few 

distinct types of visual information (i.e. orientation, colour, etc.) have to be sensed and 

processed simultaneously with low power consumption and low latency. Notably, significant 

progresses have been achieved in anisotropic optoelectronics based on low-lattice symmetry 

2D materials and bandgap engineering by electrical field and quantum confinement in 2D 

materials. This would facilitate the device design with new mechanism that enables to sense 

and process visual information related to orientation, colour and others. Recently, a 32 × 32 

optoelectronic machine vision array has been fabricated with a large-area monolayer MoS2 

synthesized by metal-organic chemical vapor deposition to propel the functional complexity in 

visual processing to an unprecedented level [19]. Together with the advance in industrial 

foundry synthesis of large-area ambipolar WS2 directly on dielectric by plasma enhanced 

atomic layer deposition, the promising demons of in-sensor computing should be extended to 

a larger scale array to benchmark against the performance of conventional material-based 

technology.  

Traditionally, in-memory computing is usually implemented in 1T1R crossbar array to avoid 

the sneak path issue. Similarly, 2D material based resistive switching devices should be 

organized in such way. To that end, radically new growth processes are desired to achieve all-

2D materials 1T1R integrated circuit applications. Furthermore, to fabricate a large-scale 
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crossbar array with high yield and low variance, it is required to spatially engineer the precise 

atomic vacancy patterns on the surface of wafer-scale single crystal 2D semiconductors or 

insulators, in particular for monolayer form.  

Beyond individual 2D materials, vdW heterostructures by stacking 2D materials with 

distinct electronic properties can retain the properties of each component and exhibit additional 

properties inaccessible in individual 2D materials. With the breakthrough in material synthesis 

and fabrication of large-scale integrated arrays as well as peripheral circuits, use of 2D vdW 

heterostructures in in-sensor and in-memory computing would provide a disruptive technology 

to solve the challenges of traditional electronics based on von Neumann architecture.  

Concluding Remarks 

     In conclusion, more exploration of 2D vdW heterostructures and continued effort in 

exploiting novel device physics will offer more possibilities for energy-efficient and low-

latency in-sensor and in-memory computing, respectively. For example, vdW heterostructure 

device with high photoresponsivity over broadband spectrum is expected to deal with visual 

information in an ultra-wide dynamic range close or beyond human retina. By sensing visual 

information encoded with other degrees of freedom, e.g. multi-coloured wavelengths, 

polarization, phase, etc., it would further enhance the information processing capability of in-

sensor computing chip. The unique properties of 2D vdW heterostructures are not limited to 

in-sensor computing applications, but also show promise in in-memory computing. Exploring 

spin-orbit torque and ferroelectric polarization in vdW heterostructure for energy-efficient in-

memory computing would be a case in point. The current and future challenges of achieving 

computing in sensory and non-volatile devices mainly arise from materials synthesis, device 

physics and array integration. However, all recent advances have indicated that 2D vdW 

heterostructures can provide numerous opportunities for exploration and hold promise for 

innovation in material growth, device physics, array integration and peripheral circuit for 

desirable in-sensor and in-memory computing devices as well as their fusion for real-time and 

high energy-efficiency data analysis applications [20].  
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Status 

Organic semiconductors (OSCs) have emerged as candidate materials for artificial synaptic devices owing 
to their low switching energies, wide-range of tunability, and facile ion-migration due to the large free 
volume within the material. OSCs emulate neuroplasticity at the single unit level with a wide range of 
synaptic switching mechanisms demonstrated for both two-terminal devices, which utilize filament 
formation,[1] charge trapping,[2] and ion migration, as well as three-terminal transistor-like architectures 
such as ion-gated electrochemical transistors[3] and charge trapping transistors. In most cases, the resistive 
switching of polymers is either via metal-ion migration to form conductive pathways (Figure 1a-b) or by 
reversible doping where the oxidation state of the OSC is modulated via charge trapping on defect sites 
(such as implanted nanoparticles), redox reactions (e.g. protonation/deprotonation), or ion intercalation 
(Figure 1c-d). 

The ability to tailor the properties of OSCs makes them a particularly promising class of materials for 
neuromorphic devices since both chemical and microstructural control over the materials can dramatically 
influence device performance (Figure 1e). Side-chain engineering of OSCs can enhance ionic mobility in 
the materials, enabling relatively high-speed device operation,[4] whereas modification of chemical 
moieties on the polymer backbone can be used to tune of energy levels and electronic conductivity.[5] The 
crystallinity and microstructure of these materials allow for yet another degree of freedom which can be 
exploited to further optimize them to emulate synaptic behavior.[6] Lastly, the relatively low-cost and 
solution processability makes OSCs particularly attractive where large-area or printable devices are desired, 
such as when interfacing with biological systems.  

Thus far, OSC neuromorphic devices have demonstrated a variety of synaptic functionality, including the 
representation of synaptic weight as electrical resistance,[3] excitatory postsynaptic potential (EPSC), 
global connectivity,[7] and pulse shaping.[8] This broad functionality makes OSCs promising for 
applications ranging from high-performance computing to biological interfacing of neuromorphic systems. 
Recently, three-terminal electrochemical devices with low switching energy have been demonstrated which 
can overcome several challenges associated with parallel operation of a hardware neural network in a 
crossbar architecture,[9] showing the promise for organic materials in neuromorphic engineering. In this 
work, however, we will discuss the general challenges and outlook for using OSCs in neuromorphic 
computing without focusing on any single device, application, or architecture. 

 
 



   
 

   
 

 
Figure 1. Organic neuromorphic device operation. 
a. Schematic of filament formation and b. corresponding read current vs. voltage response. c. Schematic of 
three-terminal neuromorphic device based on modulating the channel carrier concentration and d. the 
corresponding programming curve. e. Schematic of organic semiconductor structure showing backbone 
represented by a conjugated thiophene (green), the molecular packing distance (gold), and the tunable 
sidechains (purple). 
 



   
 

   
 

Current and Future Challenges  
Speed. Increasing the speed of organic devices has long been a central goal in materials engineering. In 
OSCs, device speed can be limited by electronic mobilities, ionic mobilities, defects, or stray capacitances. 
Recent advances in side-chain engineering of mixed ionic/electronic conducting OSCs have notably 
improved the speed at which organic devices operate, but their speeds still lag behind their inorganic 
counterparts. Furthermore, the electronic mobilities of OSCs are typically lower than their 
inorganic/crystalline counterparts, also limiting speed. 

Density. Patterning of OSCs presents a fundamental challenge for increasing device density due to the 
incompatibility between OSCs and many of the solvents and photon wavelengths used in photolithography. 
Consequently, outside of additive manufacturing methods such as printing, the most widespread methods 
of patterning OSCs rely on either sacrificial hard masks to protect the OSC from solvents,[10] or the use of 
orthogonal photoresist solvents which do not damage the OSC.[11] Additionally, deposition of highly 
uniform OSC films is challenging due to complex microstructures, and nontraditional fabrication 
techniques are required to enable vertical architectures to reduce the individual device footprint (3-terminal) 
and interconnect complexity. 

Integration. An additional challenge revolves around incorporating organic neuromorphic devices/systems 
with traditional digital systems while avoiding damage during back-end-of-the-line (BEOL) processing. 
The electronic properties of OSCs typically degrade at elevated temperatures (typically >150 oC) due to 
phase transitions (e.g. Tg, Tm) or temperature-induced morphological changes (e.g. thermal expansion, 
backbone twisting). This temperature sensitivity is problematic due to required processing temperatures of 
~400 oC used to anneal Cu interconnects in inorganic device stacks. Although crossbar architectures offer 
a straightforward method of replicating the vector-matrix multiplication desired in ANNs, the need to 
control sneak currents often requires an access device, increasing the complexity of the array and providing 
an additional integration challenge. 

Environmental and Electronic Stability. A final remaining challenge for OSCs is to achieve long-term 
device stability and resistance state retention. Interfaces of OSCs and dielectrics are susceptible to formation 
of traps resulting from exposure to oxygen or moisture, leading to irreversible changes in device 
performance. Additionally, because of the inherently low switching energy found in many organic 
neuromorphic devices, “SET” OSCs are susceptible to leakage due to parasitic reactions with the 
surrounding atmosphere.[12] Finally, both the charge transport and doping reactions in OSCs must be stable 
at the typical operating temperatures of computers (~85 oC) without suffering from changes in morphology 
due to thermal annealing. 



   
 

   
 

 

Figure 2. State-of-the-art organic neuromorphic devices. 
a. Analog resistance tuning of an electrochemical neuromorphic device under ±2-V 200-ns write pulses 
(gray shaded area), followed by 100-ns write-read delay and +0.3-V 500-ns readout (orange shaded area). 
The horizontal dashed lines are a guide to the eye to represent tunable conductance states. b. The volumetric 
scaling of electrochemical doping enables channel conductance of devices to be tuned with increasingly 
lower write energies and shorter write pulses as device sizes are reduced. c. Cross-sectional schematic of 
fabrication procedure of densely packed ion-gel-gated vertical P3HT synapses and d. optical microscopy 
images of a crossbar array. e A non-volatile ionic floating gate (IFG) memory consisting of a filament 
forming access device (green) attached to a PEDOT:PSS organic synapse (blue). f Schematic of parallel-
programmable neuromorphic array using IFG memory divided into a two-layer neural network, as indicated 
by orange and green. Analog network inputs Vi

R are applied across the source-drain rows, while 
programming inputs Vi

W and Vj
W are applied along the gate row and drain column, respectively. Adapted 



   
 

   
 

from ref.[13], AAAS, (a,b); Reproduced from ref. [14], Springer Nature Ltd, (c,d); Adapted from  ref. [9], 
AAAS, (e,f).  
 

Advances in science and technology to meet challenges 
Speed. To improve organic device speed, it is first essential to identify the rate limitations. For example, in 
ion-gated devices, both the ion and electronic mobilities can dictate the switching speed. Spyropoulos et. 
al. have shown that for ion-gated devices, presence of the electrolyte ions within the OSC can improve 
device response time.[15] Additionally, strain-relaxation following the insertion or removal of species may 
also limit the time to reach a stable resistance state.[16] Once the fundamental speed limits are identified, 
polymers and devices can be engineered to optimize for the critical parameters (e.g. ion mobility, parasitic 
capacitances, strain response). In a recent example, selection of the electrolyte and OSC materials allowed 
for electrochemical neuromorphic devices to operate with 200 ns write operations and <1 µs read-write 
cycles (Figure 2 a-b).[13] 

Density. Novel nanofabrication processes which can accurately define OSCs in vertical architectures can 
reduce device footprints, increasing device density. Strategies such as utilizing metal contacts as hard masks 
can enable nanopatterning of OSC channels with resolutions limited by conventional lithographic 
techniques,[17] but defining gate and electrolyte geometries with similar precision for complete 3-terminal 
devices introduces additional complexity. Choi et. al. recently demonstrated vertical 3-terminal 
electrochemical neuromorphic devices which reduced the single cell footprint to ca. 100 µm by 100 µm in 
a crossbar architecture using photo-crosslinked P3HT as the channel material (Figure 2c-d). In principle, 
this cell could be reduced significantly using the same general technique with the use of advanced 
photolithography.  

Integration. Advancements in non-traditional chip manufacturing (BEOL alternatives)[18] are necessary 
for seamless integration of OSCs with silicon technology. Sneak currents in neuromorphic arrays can be 
avoided by using filament-forming access devices coupled to three-terminal memories, as shown by Fuller 
et. al. (Figure 2e-f).[9] Increasing the temperature stability of OSCs also helps enable complete integration 
with conventional BEOL processing. Recently, Gumyusenge et. al. demonstrated that nanoconfined OSCs 
in high-performance polymer blends exhibit robust temperature-independent mobilities up to 220oC,[19] a 
notable step towards integration.   

Environmental and Electronic Stability. Although the stability of OSCs presents challenges for developing 
neuromorphic devices, recent design strategies provide promise. The modularity of OSCs enables tuning 
of both molecular orbital energies as well as morphology. For example, engineering OSCs with high 
ionization potentials can eliminate cross-reactions with moisture or oxygen.[5] Further optimization of OSC 
crystallinity[6] and encapsulation methods[12], which shield devices from the ambient atmosphere, could 
further improve stability.  

Concluding remarks 

Organic materials have rapidly grown into a promising class of materials for neuromorphic systems and 
could be harbingers of other unconventional semiconductors for these applications. While there are great 
challenges facing organics before they are suitable for commercial neuromorphic computing systems, 
including significant improvements to speed, density, integration, and stability, there are no fundamental 
barriers preventing OSCs from satisfying these metrics.  

Owing to their biocompatibility and softer mechanical properties, organics are of interest for direct 
connections between biological systems and neuromorphic computers, such as in brain-machine interfaces 



   
 

   
 

and adaptive prosthetic devices. Inspired by the biomimicking nature of neuromorphic systems, there is a 
strong push towards direct integration with prosthetics to match the low power computation already found 
in the human brain. These systems and devices would form direct interfaces with tissue, repairing 
augmenting functionality or act as “smart system” for wearable electronics. Recently, organic 
neuromorphic devices have been tuned to match either the output signals for “talking” to[8] or by 
responding to neurotransmitter signals for “listening” to[20] the biological domain. We postulate that 
organic materials will shine as neuromorphic devices in bioelectronic interfaces due to the relative maturity 
of the materials class in the bioelectronic space.  
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Status 

Spintronics, or spin electronics, manipulates the spin of electrons in addition to their charge. This 
brings multiple interesting features for neuromorphic computing: the non-volatile memory provided 
by nanomagnets and the non-linear dynamics of magnetization induced by fields or currents (1).  These 
two aspects allow the same materials to be used to mimic the essential operations of synapses and 
neurons. Important experimental results have thus been obtained in recent years. 

Synapses - The first way to realize spintronic synapses is to store the weights in digital Spin Torque-
Magnetic Random Access Memories (ST-MRAMs) (2). Gigabit devices from the latter are now 
commercially available in several large foundries. They consist of magnetic tunnel junctions, formed 
by an ultra-thin (∼1 nm) insulator sandwiched between magnetic layers, integrated in the CMOS 
process. The main advantage of ST-MRAMs over their competitors is their endurance, which is more 
than two orders of magnitude higher, a very important factor for the chips dedicated to learning, that 
will require very many read/write cycles. Indeed, the resistance change mechanism comes from a 
reversal of magnetization by current pulses of the order of nanoseconds and a hundred millivolts, a 
purely electronic phenomenon that does not require the movement of ions or atoms in a 
nanostructure as in ReRAMs or PCMs. Moreover, they are non-volatile, retaining information even 
when the power is switched off. Associative memories integrating ST-MRAMs (Fig.1a) have enabled 
significant gains in power consumption, with only 600µW per recognition operation, i.e. a 91.2% 
reduction compared to a twin chip using conventional Static Random Access Memory (2).  

The second way to realize spintronic synapses is to directly imitate a synapse with a magnetic tunnel 
junction. In this case, the junction acts as a memristor device, which takes as input a current and 
multiplies it by its resistance, which thus plays the role of the synaptic weight. The stability of 
magnetization in magnetic tunnel junctions allows them to retain the value of the weight. Since 
magnetization is naturally bistable, magnetic tunnel junctions are very good candidates for neural 
networks with binary weights (3). It is also possible to modify the materials or geometry so that the 
magnetization changes orientation via non-uniform states. This has allowed to experimentally realize 
analog synapses (Fig. 1b) (4–6), as well as to train a small neural network with magnetic multi-state 
synapses (Fig. 1c) (7). 

 



Fig.1 - Spintronic synapses. (a) Schematic of an associative memory circuit with ST-MRAM cell, 
reproduced from (2) (b) R-I hysteresis loop of a spintronic memristor based on current-induced domain 
wall displacement in a magnetic tunnel junction, reproduced from (4) (c) ) R-I hysteresis loop of a 
spintronic memristor exploiting spin-orbit torques in a ferromagnetic/antiferromagnetic bilayer, 
reproduced from (6). 

 

Neurons - In most neural network algorithms, neurons simply apply a non-linear function to the real-
valued synaptic inputs they receive. The characteristics of the nonlinear dynamics of spintronics can 
be exploited to mimic biology more closely, which could lead to increased computing functionalities 
such as local and unsupervised learning. Biological neurons transform the voltage on their membrane 
into electrical spike trains, with a mean frequency that is non-linearly dependent on the voltage. 
Magnetic tunnel junctions transform DC inputs into an oscillating voltage with a frequency that 
depends non-linearly on the injected current. This property can be used to imitate neurons. In stable 
junctions such as those used for ST-MRAMs, the spin torque can induce oscillations between about ten 
MHz and ten GHz depending on the materials and geometry. These oscillations have been used with a 
single device to recognize pronounced digits with a time-multiplexed reservoir (8). Four coupled 
spintronic nano-oscillators were also trained to recognize vowels via their synchronization patterns to 
RF inputs (Fig. 2a) (9). In unstable junctions, thermal fluctuations may be sufficient to induce 
telegraphic voltage behavior, allowing the mimicking of stochastic neurons with minimal energy 
consumption. Neuromorphic tasks have been performed by small experimental systems composed of 
such junctions, using neural networks (10, 11) or probabilistic algorithms (12). 

 

Fig.2 - Spintronic Neurons. (a) Principle of vowel recognition with four coupled spintronic nano-
oscillators, reproduced from (9). Left: schematic of the implemented neural network. Right: schematic 
of the experimental set-up and associated microwave emissions in free (light blue) and phase-locked 
(navy) states.  (b) Superparamagnetic tunnel junction behaviour under different input voltage (time 
traces at the bottom, average resistance top right) and circuit implementing a probabilistic bit (top 



left)  (12). (c) Schematic of a population of superparamagnetic tunnel junctions assembled in a neural 
network reproduced from (10). 

 

Current and Future Challenges 
 

The challenge is now to create large-scale spintronic neuromorphic circuits capable of solving useful 
tasks at low energy consumption, especially for embedded artificial intelligence. This requires the 
integration of layers of synapses and spintronic neurons interfaced in deep networks. The major 
disadvantage of spintronics compared to other technologies is the low resistance ratio between the 
OFF and ON states of the magnetic tunnel junctions, of the order of 2-3 compared to more than 10 in 
other resistive memory technologies. These small variations in resistance make the reading of the state 
of the junctions more complex, and have so far prevented the development of magnetic tunnel 
junction crossbar arrays as realized in other resistive technologies. It is therefore necessary to continue 
the effort on the material side to push the resistance variations towards their theoretical Roff/Ron 
value > 100 (13, 14). On the CMOS design side, the development of low-power circuits allowing 
efficient reading of the state of the junctions, such as sense-amplifier, is crucial. The first 
demonstrations will certainly rely on binarization of resistance values for the inference phase and 
implementation of hardware Binary Neural Networks, before end-to-end on-chip learning solutions 
are developed.  

Combining ionic and spintronic effects will be one of the keys to efficient learning of neuromorphic 
chips. It was recently demonstrated that strong magnetoelectric effects enable control of magnetic 
dynamics by the electric field created by the interface, more efficiently than previous methods (15).  

A critical challenge for the development of hardware neural networks is to achieve a high density of 
connections. Spintronics offers several opportunities to tackle this issue. Long-range connections can 
be implemented via spin currents and magnetic waves or by physically moving magnetic textures such 
as skyrmions and solitons (1, 16). Furthermore, the multilayer nature of spintronic devices allows them 
to naturally stack in three dimensions, opening the path to vertical communication (17).  

Spintronic neuromorphic chips will be able to receive as inputs fast signals compatible with digital 
electronics (classical binary junctions), radio-frequency inputs (GHz oscillator), as well as inputs varying 
at the speed of the living world, thanks to superparamagnetic junctions or magneto-electric effects 
that can operate at timescales between seconds and milliseconds. There is active research on 
developing spintronic devices for on-chip communication (using their capability to emit and receive 
microwaves), magnetic sensing (with promising biomedical applications) and energy harvesting, all of 
which could benefit neuromorphic chips (1). 

Taking full advantage of the dynamical behavior of spintronic devices will require the development of 
dedicated learning algorithms, inspired by advances in both machine learning and computational 
neuroscience. The fact that the behavior of spintronic devices relies on purely physical phenomena 
that can be predictively described and integrated into neural network programming libraries is a key 
enabler for this task (18).  

Advances in Science and Technology to Meet Challenges 
 

Spintronics is undergoing promising new developments from which neuromorphic chips could benefit. 
Antiferromagnetic materials and interfaces with optics bring the possibility of information processing 



and transmission at THz speed (19). Spin/charge conversions are increasingly efficient thanks to new 
materials such as topological insulators.  

Finally, the multifunctionality of spintronics also makes it possible to train complex physical systems 
that do not exactly reproduce the synapse/neuron structure, such as, for example, arrays of spin wave 
transmitters/receivers, or fixed or mobile magnetic particles, such as skyrmions and domain walls (20). 
Micromagnetic simulations with predictive power, coupled with gradient descent, have modeled 
learning tasks (18). Experimental demonstrations with these complex physical systems remain to be 
carried out. 

 

Concluding Remarks 
 

In the short term, neuromorphic spintronics should see the commercialization of artificial intelligence 
chips storing synaptic weights into current and future generations of ST-MRAMs. This should be 
followed by the development hardware neuron circuits leveraging the dynamical properties of 
magnetic tunnel junctions to implement synapses and neurons for inference and learning. In the longer 
term, more exotic materials and textures offer the fascinating prospect of in-materio computation 
based on complex physical effects. 
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2.1 - Deep Learning 
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Status 
The development of Deep Learning (DL) has brought Artificial Intelligence (AI) to the spotlight of 
broad research communities. The brain-inspired neural network models with different structures and 
configurations have made significant progress in a variety of complex tasks [1]. However, in 
conventional von Neumann architecture, the physically separated computing unit and memory unit 
require frequent data shuttling between them, which results in considerable power consumption and 
latency cost. One promising approach to tackle this issue is to realize in-memory computing (IMC) 
paradigm where each underlying device component functions as memory and computation elements 
simultaneously. Non-volatile devices based on resistive switching phenomena [2-3], such as redox 
memristor, phase change, magnetic and ferroelectric devices, could support such computing system 
and show greatly improved performance in data centric computation tasks.  
 
Analogue resistive-switching memory based in-memory computing is promising to bring orders of 
magnitudes improvement in energy efficiency compared to the conventional von Neumann 
hardware. The devices are assembled in a crossbar structure to conduct vector-matrix multiplication 
(VMM) operations, where the input vectors are encoded as voltage amplitude, pulse widths, pulse 
numbers, or sequential pulses with different significances, and the matrix elements are mapped to 
tunable cell conductance where each cell is often represented in the differential form of a pair of 
devices. Thanking to Ohm's law for multiplication and Kirchhoff’s Current Law for accumulation, 
the dense crossbar could conduct multiplication-accumulation (MAC) fully in parallel and the 
computation occurs at the data location. Since VMM calculation accounts for the majority of 
computation during inference and training of deep learning algorithms, this in-memory computing 
paradigm could help the hardware to meet stringent requests of low power dissipation and high 
computing throughput.  
 

 
Figure 1. Schematic of underlying in-memory computing hardware for deep learning acceleration, 
presented from crossbar level, macro circuit level, and monolithic system level, respectively.  
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Major progresses have been made in this area, spanned from device optimization to system 
demonstration [2-4]. The oxide-memristor devices have been scaled down to 2 nm in an array [5] 
and 3D stacked architecture has been fabricated in laboratory to enhance the network connectivity 
[6]. In addition, various deep neural network models, including perceptron [7-8], Multiple Layer 
Perceptron (MLPs) [9], Long Short Term Memory (LSTM) [10] based Recurrent Neural Networks 
(RNNs), and Convolutional Neural Networks (CNNs) [11], have been demonstrated based on non-
volatile resistive-switching crossbars or macro circuits. These demonstrations have covered the 
typical learning algorithms for supervised learning, unsupervised learning and reinforcement 
learning. More recently, a multiple-array based memristor system [11] and some monolithically 
integrated memristor chips have been demonstrated [12-13], and it is encouraging to see that this 
kind of in-memory computing system could achieve an accuracy comparable to software results and 
reach >10 TOPS/W energy efficiency using 8 bit input precision [11]. However, despite the fast 
development of hardware prototypes and demonstrations, a monolithically integrated IMC chip with 
large and tiled crossbars (shown in Fig. 1) for practical and sophisticated DL models (e.g. 
ResNET50) is still under-explored, and the accomplished tasks are limited to relatively small dataset 
(e.g. MNIST, CIFAR10) rather than handling large workloads (e.g. ImageNet).  
 
Current and Future Challenges 
 
One fundamental challenge of the IMC system originates from the device non-ideal characteristics 
and process issue towards large-scale heterogeneous integration. No matter what the specific 
switching mechanism is, the analogue-switching non-volatile memory device show some inherent 
device-wise and cycle-wise variance, reading fluctuations, state drift or stuck, or limited on/off ratio. 
Although the rich dynamics could be explored for neuromorphic systems in attempt to resemble 
biological phenomenon more faithfully, these uncontrolled non-ideal behaviors would inevitably 
affect the accuracy of the DL model and deteriorate the system performance in most cases. The 
high-level system researches often unrealistically assume ideal device features, resulting in some 
significant discrepancy from practical applications. Moreover, the forward propagation and 
backward propagation pose stringent requirement for linear I-V behavior to conduct accurate MAC 
operations, while the update procedure demands the device showing state-independent conductance 
tuning curves with sufficient linearity and symmetry with respect to the programming pulses to 
insure training convergence and efficiency. In spite of the undergoing advances in device 
optimization and exploration, ideal device is still missing. Thus, the IMC systems need various 
compensating strategies, which can substantially degrade system efficiency. 
 
In terms of heterogeneous integration, the advanced foundry process for large-scale fabrication of 
analogue-switching devices is absent, regardless of the specific device category. Although NOR 
Flash is commercially available, it’s large operation voltages and slow speeds together with its 
limited endurance and scalability make it at best an interim solution, to be replaced by emerging 
devices. Oxide memristor is promising in dense integration given the demonstration of 2nm feature 
size and 3D stacking ability at lab. However, only 130nm analog-switching technology [12-13] and 
22nm digital-switching technology [14] in foundry have been reported. Many other kinds of devices 
require back-end process with high temperature, complex layer deposition or special handling 
process, which present obstacles for them to be monolithically integrated with the mainstream 
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CMOS technology. The absence of high-uniformity and high-yield process in mainstream foundries 
for large-scale and small-footprint integration of analogue-switching devices has been slowing 
down the development of IMC circuits. 
 
Errors in analog IMC and inefficiency of periphery circuits also imposes serious challenges for 
practical hardware. Analog computing directly utilizing physical laws is superior in energy 
efficiency, whereas it only suits for low-precision tasks so far. Although DL algorithms put loose 
constraints on parameter precisions (such as 4bit weights for regular inference tasks), state-of-the-
art models still demands accurate digitalized value representations. However, the conductance states 
of analog devices always follow a certain distribution and deviate from the target mapping values, 
which would bring in weight representing errors. In addition, at the array/crossbar level, the parasitic 
effects along the metal wires would lead to inevitable IR drop and result in inaccurate programming 
and computing. This effect becomes more severe if the array size is increased for higher 
performance. Such systematic errors may be mitigated through some algorithm and architecture co-
design, such as compensations in the mapping algorithms. The periphery circuits would also 
introduce computing errors due to the voltage loss on analogue switches, transistor mismatch, 
unfixed clamping voltage and environmental fluctuations. All these together would substantially 
lower analogue computing accuracy and prevent IMC system from realistic applications if not 
appropriately addressed. 
 

 

Figure 2. The breakdown of area and power consumption in a macro-circuitry instance [11]. (a) Area 
overhead. (b) Power overhead. 
 
To take the full advantage of IMC features, all necessary functional blocks should be integrated 
monolithically with device crossbars (as shown in Fig.1), including buffers, interfacial circuits 
(mainly ADCs, converting the accumulated current to digital signals), routing units, control logic 
and digital processing. These circuits are expected to match the device operating requirements, such 
as programming voltage and driving currents. In such a complete on-chip system with tiled crossbars, 
the auxiliary periphery circuits might consume much more power, area and latency than the analog-
domain VMM calculation. Although the IMC paradigm eliminate the movement of DL weights, it 
still needs data flowing between different layers and requires on-chip memory accessing. 
Meanwhile, the parallel MAC calculations desire multiple ADCs locating at the end of each column 
to carry out fast conversations frequently. According to the profile of a designing instance, the ADCs 
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account for the majority of power and area overhead (shown in Fig.2) [11]. Exploiting a larger 
crossbar to conduct VMM is beneficial to boost system performance by amortizing the periphery 
circuit overhead in the whole system, which, however, would lead to larger parasitic capacitance 
and resistance, higher dynamic range of the output current and lower device utilization ratio. The 
inefficiency of periphery circuits, especially the ADCs, is becoming the system bottleneck of IMC 
hardware, where innovations are needed in the co-design of device and architecture.  
 
Advance in Science and Technology to Meet Challenges 
 
Extensive multi-disciplinary efforts are needed in order to advance the development of IMC-based 
deep learning accelerators, as co-designs of device, circuit, architecture and algorithm are required 
to build practical IMC system [15]. 
 
First of all, researches in material engineering and device optimization should be conducted either 
based on present analogue-switching non-volatile devices or for the exploration of novel devices, 
aiming at enhanced reliability, improved programming linearity and symmetry while maintaining 
high switching speed, low programming power and intensive scaling potential. In addition, stable 
stack process for large-scale heterogeneous integration of highly uniform crossbar is needed for 
practical applications. The development of 3D process could drive the device density to next level 
and bring in extra dimension to explore more efficient system. Even more importantly, 3D structures 
enable the massive connectivity and low-loss communications required for complex neural 
networks.  
 
Second, at the macro-circuit level, there is plenty of room to optimize the crossbar structure and the 
periphery circuits. For example, basic 2-transistor-2-memristor (2T2M) configuration [12] could be 
utilized as a signed-weight unit to construct IMC arrays, where in-situ subtraction operation is 
conducted in analog domain with the differential current being accumulated subsequently. Such 
configuration reduces total flowing currents to mitigate IR drop effect, which makes it available to 
build larger crossbar. Apart from this, encoding input signal by pulse width or low voltage amplitude 
range might bypass the nonlinear current-voltage characteristic issue, at the expense of increasing 
system latency or circuitry complexity. On the other hand, novel periphery circuitry design 
customized for IMC is required, including fast, low-power ADC and high-throughput routing 
scheme with little on-chip memory. For example, time-domain interfaces could be used to replace 
conventional ADC-based interfaces [16]. Furthermore, some emerging devices with rich 
nonlinearities could potentially replace circuitry blocks directly [17]. 
 
Finally, system-level innovations are critical to expedite the development of IMC hardware. From 
architecture perspective, time division multiplexing of ADCs and replicating same weights to 
different crossbars are key technologies in order to optimize the system dataflow and boost the 
computing parallelism. In addition, despite the difficulties in data storing and transmission in 
analogue domain, interfacing, transferring and processing the information in analogue format is 
intriguing due to the potential of huge efficiency benefits. From the algorithmic point of view, 
configuring and optimizing the DL models to fit IMC device features and reduce hardware cost is 
demanded. On-chip learning, hardware-aware learning and hybrid learning are some representative 
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works to mitigate device non-ideal characteristics and computing errors. 
 
Concluding Remarks 
 
In-memory computing based on analogue-switching non-volatile device shows exceptional 
superiority regarding computing throughput and energy efficiency than the conventional von 
Neumann hardware, suited for dealing with data centric problems and brain-inspired deep learning 
algorithms. In spite of the significant advancements in device explorations and system 
demonstrations, device non-ideal behaviors, difficulties in large-scale heterogeneous integration, 
inaccuracies of analog computing and inefficiency of periphery circuits pose great challenges to 
promoting the in-memory computing technologies for practical application. Monolithic integration 
of a complete system that unleash the full potential of the in-memory computing features with tiled 
crossbar architecture and smooth dataflow is still missing. Consequently, extensive co-design efforts 
from device optimization, circuitry design, architecture exploration and algorithm tailoring are 
consistently needed. With the utilization of more emerging devices and advanced 3D integration 
process, the in-memory computing promises bright future of deep learning hardware. 
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2.2  Spiking neural networks 
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Status 

The design of neuromorphic circuits for implementing spiking neural networks represents one of the main 
activities of Neuromorphic Computing and Engineering. Currently, these activities can be divided into two 
main classes: (i) the design of large-scale general-purpose spiking neural network simulation platforms 
using digital circuits and advanced Complementary Metal-Oxide Semiconductor (CMOS) fabrication 
processes [1–3], and (ii) the design of analog biophysically realistic synaptic and neural processing circuits 
for the real-time emulation of neural dynamics applied to specific sensory-motor online processing tasks 
[4–8]. This latter effort pursues the original goal of Neuromorphic Engineering, set forth over thirty years 
ago by Carver Mead and colleagues [9, 10], to use the physics of electronic devices for understanding the 
principles of computation used by neural processing systems. While the strategy of building artificial neural 
processing systems using CMOS technologies to physically emulate cortical structures and neural 
processing systems was mainly restricted to academic investigations for basic research in the past, the 
recent advent of emerging memory technologies based on memristive devices spurred renewed interest in 
this approach, also for applied research and practical applications. One of the main reasons is that the 
analog and mixed-signal analog/digital neuromorphic processing architectures that implement adaptation, 
learning, and homeostatic mechanisms are, by construction, robust to device variability [11, 12]. This is a 
very appealing feature that enables the exploitation of the intricate physics of nanoscale memristive 
devices, which have a high degree of variability, for carrying out complex sensory processing, pattern 
recognition, and computing tasks. Another appealing feature of these mixed-signal neuromorphic 
computing architectures, that enables a perfect symbiosis with memristive devices, is their “in-memory 
computing” nature: these architectures are typically implemented as large crossbar arrays of synapse 
circuits that represent at the same time the site of memory and of computation. The synapses in each row 
of these arrays are connected to Integrate-and-Fire (I&F) soma circuits, located on the side of the array. 
The soma circuits sum spatially all the weighted currents produced by the synapses, integrate them over 
time, and produce an output pulse (spikes) when the integrated signal crosses a set threshold. In turn the 
synapses are typically stimulated with input spikes (e.g., arriving from other soma circuits in the network), 
and convert the digital pulse into a weighted analog current [6, 11]. Depending on the complexity of the 
synapse and soma circuits, it is possible to design systems that can exhibit complex temporal dynamics, for 
example to create spatio-temporal filters matched to the signals and patterns of interest, or to implement 
adaptive and learning mechanisms that can be used to “train” the network to carry out specific tasks. 

Current and Future Challenges 

Artificial neural networks can achieve impressive performance in solving an incredible amount of problems, 
thanks to their learning abilities. The backbone of learning in neural networks simulated on standard 
computing technologies is the “backpropagation through time” (BPTT) algorithm [13]. So an important 
challenge for spiking neural networks is to understand how to implement learning mechanisms as powerful 
as BPTT. This goal is particularly challenging for hardware spiking neural networks, because their circuits 
can only rely on local signals due to their “in-memory computing” nature, because they have limited 
resolution, and because their synapses are often affected by cycle-to-cycle and device-to-device variability. 
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In addition, neuromorphic spiking neural architectures do not have access to external memory blocks 
where to store or retrieve information, like in von Neumann architectures. On one hand this has the 
advantage of removing the infamous von Neumann memory bottleneck [14, 15], which refers to the 
problem of having to transfer information from storage areas to computing ones at very high rates, and 
which accounts for the vast majority of the exceedingly large power consumption figures of standard 
computers. On the other however, this introduces the problem that spiking neural computing systems 
cannot arbitrarily choose the resolution of the data they need to store, or the times at which they access 
it during the course of their computations. 

This adds an even more complicated challenge of understanding how to manage memory and time in 
such architectures: spiking neural networks can be seen as non-linear filters that process information 
online, as data is flowing through them. To carry out real-time computation on a sensory input stream, 
these networks must retain a short-term memory trace of their recent inputs. Without learning, there are 
fundamental limits on the lifetimes of these memory traces that depend on both the network size and the 
longest time-scales supported by the elements used in the network [16]. So an important requirement for 
enabling the construction of hardware spiking neural networks that can be deployed in a wide range of real-
world applications is to develop volatile memristive technologies that have a large distribution of time 
scales, ranging from micro-seconds to hours and days [12]. 

To exploit the features of neuromorphic spiking hardware to their fullest extent, there are therefore 
two tightly interlinked critical challenges that need to be addressed in conjunction: (i) the development of 
a radically different theory of computation that combines the use of fading memory traces and nonlinear 
dynamics with spike-based learning mechanisms for recurrent networks, and (ii) the development of both 
volatile and non-volatile memory technologies, compatible with CMOS analog circuits, that support the 
theories developed. 

Advances in Science and Technology to Meet Challenges 

The challenges that the Neuromorphic Computing and Engineering field faces, for understanding how to 
best design signal processing and online learning mechanisms in hardware spiking neural networks for 
solving complex problems might seem insurmountable. However, biological brains are an existence proof 
that robust and stable computation can be achieved, using a computing substrate that is analog, and that 
uses inhomogeneous and imprecise signal processing elements. So understanding how animal brains, even 
small insect brains with fewer than one million neurons, manage to achieve this tasks will be key for making 
progress also in this domain. Specifically, the advances in science that are required to meet these challenges 
need a strong interdisciplinary approach. Advances in theoretical and computational neuroscience will 
provide a core component. But these will need to be complemented with notions and results from multiple 
sub-fields of electrical engineering, such as information theory, signal processing, and control theory, as 
well as other disciplines such as mathematics and computer science. 

In parallel, it is clear that the technology used today in conventional computing systems is not ideally 
suited for building brain-inspired neuromorphic hardware. Emerging nanoscale memristive memory 
technologies represent a promising development that can provide solid-state electronic elements able to 
emulate different properties of biological synapses and neurons. Important advances in technology 
required to meet the challenges outlined above can indeed be provided by the development of both volatile 
and non-volatile memristive devices with characteristics that are compatible with the specifications 
provided by the theory. However, to mass-produce neuromorphic computing systems at scale, it is 
important that these device are compatible with standard CMOS fabrication processes. As one of the most 
important features of existing CMOS circuits used for implementing spiking neural network is their ability 
to perform computations using extremely small amounts of power [6], it will be important that the 
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memristive devices designed to be co-integrated with these circuits do not require large amounts of 
currents to change conductance. 

As the development of neuromorphic circuits and memristive devices for building hardware spiking 
neural networks to carry out computation is a very recent phenomenon, there is a unique opportunity for 
making concrete progress toward meeting the challenges faced by following, a co-design approach that 
drives both advances in science and in technology together. 

Concluding Remarks 

Implementing spiking neural networks computing systems with analog CMOS circuits and memristive 
devices is hard. Besides few examples of proof-of-concept systems that have been applied to very specific 
tasks, such as sensory processing or spatio-temporal pattern recognition [17–19], no general purpose 
solution exists yet. More importantly, no well established formal methodology exists for automatically 
designing or programming them. 

However we are witnessing incredible progress being made independently in artificial neural networks, 
in machine learning, in neuroscience, and in memory technology developments. In addition, there is a large 
demand for the development of novel low-power computing technologies for applications “at the edge”, 
i.e., applications that need to process data measured locally, without connecting to remote servers on the 
internet, often with low latency and in compact packages. 

So brain-inspired approaches for building such technologies are extremely promising, and the potential 
of research and development in memristive/CMOS spiking neural networks computing systems is extremely 
high. 
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Status 
This perspective outlines a roadmap of emerging hardware approaches that utilize neuromorphic 
and physics-inspired principles to solve combinatorial optimization problems faster and more 
efficiently than traditional CMOS in von Neumann architectures.  Optimization problems are 
ubiquitous in modern society, needed in training artificial neural networks, building optimal 
schedules (e.g., airlines), allocating finite resources, drug discovery, path planning (VLSI and 
shipping), cryptography, and graph analytics problems (social networks, internet search). Such 
problems are often extremely challenging, requiring compute resources that scale exponentially 
with the problem size (i.e., NP-complete or NP-hard complexity). Mathematically, in a combinatorial 
optimization problem [1] one has a pre-defined cost function, 𝑐𝑐(𝒙𝒙), that maps from a discrete 
domain 𝑿𝑿��⃗  (nodes, vectors, graph objects) to ℝ, the real number space, and the goal is to find the 
𝒙𝒙��⃗ 𝒐𝒐𝒐𝒐𝒐𝒐 that achieves the globally optimum cost value 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚(𝒙𝒙��⃗ 𝒐𝒐𝒐𝒐𝒐𝒐).   

While exact methods for solving optimization problems have been developed, these can be too 
time-consuming for challenging or even modest-sized instances.  Instead, there is steadily rising 
popularity for faster meta-heuristic approaches, such as simulated annealing [2] and evolutionary 
algorithms [3], computing models such as Boltzmann machines [4], Ising models [5][6], and 
variations of Hopfield networks [7].  These take inspiration from physical and biological systems 
which solve optimization problems (Fig 1) spontaneously.  Many naturally-occurring phenomena, 
including the trajectories of baseballs and shapes taken by amoeba, are driven to extrema of 
objective functions by following simple principles (e.g., least action or minimum power dissipation 
[8]).  In one example, proteins, which are long chains of amino acids, can contort into an 
exponentially large number of different shapes, yet they repeatably stabilize into a fixed shape on 
the time-scale of milliseconds. For a protein composed of only 100 peptide bonds, it is estimated 
that there are over 10300 different conformal shapes. Even exploring one every picosecond (10-12 
sec), takes more than the age of the universe to explore them all.  Instead, nature uses efficient 
dynamics to arrive at a solution in less than a second. 

Current and Future Challenges  
Neuromorphic and physics-based hardware complements the meta-heuristic algorithms and models 
described above. Emerging hardware approaches include Quantum-based Annealers [9][10], Optical 
or Coherent Ising Machines [11][12][13], CMOS-based digital annealers [14][15][16], analog resistive 
memory-based systems [17][18], coupled oscillators [8][19][20][21], and probabilistic bit logic 
[22][23]. Some of these techniques are illustrated in Figure 1, and Table 1 highlights some of their 
respective features, strengths, and challenges.  

We highlight and compare some of today’s emerging approaches on the Max-cut benchmark 
(partitioning a graph). D-Wave’s quantum annealer uses low-temperature superconducting devices 
comprising 5,000 bits in a sparsely coupled network. Prior work shows solving a 200 node cubic graph 
in 11ms, consuming around 25kW power to operate at cryogenic temperature. The coherent Ising 
machine (CIM) based on optical parametric oscillators is another approach, where a fully connected 
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2,000 node CIM uses a kilometer long fiber cavity to accommodate the degenerate optical parametric 
oscillator (DOPO) pulses and takes about 50ms to solve Max-Cut problem on a 200 node cubic graph. 
CIM utilizes measurement-and-feedback schemes for coupling the spins, that is provided by 
traditional CMOS based field-programmable-gate-arrays (FPGAs). Several CMOS-based digital or 
mixed-signal hardware accelerators have also been developed. The Ising chip demonstrated by Hitachi 
uses CMOS static random access memory (SRAM) cells as spins while the coupling is realized using 
digital logic gates, used to implement the simulated annealing algorithm. Due to its non-von Neumann 
architecture, it exhibits a 50x lower energy-to solution over that of a CPU running a greedy algorithm 
to find Max-Cut of a 200 node random cubic graph. The energy dissipation is still orders of magnitude 
more than other Ising solvers recently implemented with emerging devices such as resistive RAM-
based cross-bar arrays and insulator-to-metal phase transition (IMT)-based coupled oscillator arrays. 
Analog in-memory computing using RRAM crossbar arrays has been utilized to demonstrate four 
orders of magnitude improvement in energy over CPUs [18]. IMT nano-oscillator-based Ising solvers 
may exhibit even lower energy consumption, primarily due to the ultra-low power dissipation of the 
IMT oscillators. The IMT oscillator network implements bi-directional ferromagnetic and anti-
ferromagnetic coupling using simple electrical elements such as resistance and capacitance, and can 
achieve highly parallelized all-to-all connectivity. The analog or continuous-time dynamics of these 
Ising solvers has an inherent advantage of parallelism which lowers the time to solution compared to 
CMOS annealers and CPUs operating in discrete time. The time-to-solution (or cycles-to-solutions) 
remains similar for both the IMT solver and RRAM-based hardware accelerator. 
 
Advances in Science and Technology to Meet Challenges 
Table 1 summarizes some of the current capabilities, strengths, and challenges to the highlighted 
emerging hardware approaches for optimization. In this section, we consider challenges shared by all 
approaches and the advances needed to address them. 

At the lowest level, there is substantial room to improve both the devices used in the solution state 
(or neuron) representation and in the connections between them. Whether a magnetic, electronic, or 
optical medium is used, these provide the core computational elements. Desired properties include 
multi-bit levels (many problem beyond Max-cut are no longer binary), high endurance and robustness, 
low variability, and rapid re-programmability. Material engineering targeting these properties is 
needed, and ideally kept compatible with today’s CMOS technology for future integration and mass 
production. 

To address important applications of the future, all hardware solutions will need to be able to scale to 
many thousands of variables and constraints.  For example, railway companies operate tens of 
thousands of trains per week for which optimal crew schedules are desired [24]. Supporting this 
necessitates breaking large problems across many processing units that must communicate at low 
latency, low energy, and high bandwidth.  While the efficiency of the processing sub-units may be very 
high, this communication quickly becomes the bottleneck and Amdahl’s law limits the benefits of the 
core processing circuits if there is a high communication overhead. Related to this challenge is the 
inherent connectivity for the processing units.  With limited connections between the nodes (e.g., only 
nearest or next-nearest neighbours), “embeddings” are used to solve problems with higher density 
connections, and these come with exponential penalties [25].  Maintaining efficient connectivity for 
large problems that must span many processing units will challenge all of today’s emerging 
approaches. Indeed, the massive fan-out capabilities in biological nervous systems averaging >10,000 
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connections between neurons shows how nature has addressed this problem and future 
neuromorphic systems tackling optimization may need to mimic these designs. 

With increasing scale and fan-out there arises the inevitable challenge of significant device parasitics 
and variability. Non-idealities include interconnect/wire parasitics in terms of line-to-ground 
capacitance, line-to-line capacitance and frequency variability for the oscillator approaches.  With 
increasing problem size and the concurrent increase in the size of the network, it will be increasingly 
difficult to find the globally optimal solution.  The reduction in success probability can be mitigated by 
increasing the number of anneal cycles and/or executing larger trial batches, but only at the expense 
of time-to-solution.  An alternate approach could be to exploit emerging monolithic three-dimensional 
integration technology that provides multiple tiers of interconnect that can be dynamically configured 
to provide an efficient, scalable and dense network on chip. This promising direction will provide new 
architectural opportunities for on-chip implementation of large dense networks with programmable 
connections that are beyond the capabilities of existing process and packaging technologies today.  

We stress that optimization problems are highly diverse, and even within a problem category (e.g., 
scheduling) specific instances can have different traits and levels of difficulty, such as the characteristic 
scale of barriers between minima, the density of saddle points, or the relative closeness in value 
between local and global minima. Consequently, domain experts have developed techniques highly 
tailored to their problem class. This could entail parameter choices such as using different noise 
distributions or cooling schedules (simulated annealing), to algorithmic variations such as ensembles 
of models exchanging temperatures (parallel tempering) or populations exchanging and mutating 
characteristics (genetic algorithms). Thus, it is desired for any emerging hardware to support these 
rich variations as much as possible, exposing internal parameters to the user for control, as well as 
provisioning the architecture to efficiently realize the more promising algorithmic variations.  
Many optimization problems may also involve substantial pre- and post-processing computations.  For 
example, transforming a practical airline crew scheduling problem into the prototypical NP-hard “set-
cover” problem first involves constructing sub-sets from viable rotations. Such pre- and post-
processing, let alone mid-stream processing (replica exchange in parallel tempering), requires flexible 
and complex architectures that include traditional digital units in addition to neuromorphic and 
physics-based optimization solvers.  
The above challenges highlight the need for hardware designs to be algorithm and “software aware.”  
Equally important is the development of algorithms and tools that are strongly “hardware aware.”  
These must be designed to exploit the strengths of the underlying processing units—such as cheap 
stochasticity or certain types of parallelism [26] —while, simultaneously mitigating their respective 
weaknesses—such as reduced precision.  Thus, constructing successful systems for optimization 
solving will require a deep co-design from materials, devices, and packaging, all the way up to 
algorithms and software tools. 
 

Concluding Remarks 
This perspective has highlighted the promise in leveraging physics- and brain-inspired principles to 
tackle today’s most intractable computational problems. There are future challenges spanning all 
levels of the computing stack. Highly diverse approaches are being explored leveraging electronic, 
magnetic, optical, or quantum systems.  Ultimately, we expect the winning approach will be the one 
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that gathers an excited community of users by building flexible, performant, and reliable optimization 
solvers, and thus begin the virtuous relationships between users, software, and hardware researchers.  
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Figure 1.  Optimization in society and nature. Top row: important application areas include flight scheduling, VLSI routing, training 
artificial neural networks. Middle row: optimization in nature includes protein folding (see text), object motion obeying the principle of 
least action, and the orientation of magnetic spins in a crystal. Bottom row: some highlighted emerging hardware approaches include 
probabilistic logic bits implemented with Magnetic Tunnel Junctions (MTJ) [21], Coherent Ising Machine [12], coupled oscillators [19], 
and analog in-memory computing [17]. 
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2.4 – Enabling technologies for the future heterogeneous neuromorphic 
accelerators 
Elisa Vianello, CEA, LETI, Université Grenoble Alpes, Grenoble, France 
Alexandre Valentian, CEA, LIST, Université Grenoble Alpes, Grenoble, France 
 
Status 
Artificial Intelligence (AI) and in particular Artificial Neural Networks (ANNs) have demonstrated 
amazing results in a wide range of pattern recognition tasks including machine vision, natural language 
processing, and speech recognition. ANN hardware accelerators place significant demands on both 
storage and computation. Today’s computing architectures cannot efficiently handle AI tasks: the 
energy costs of transferring data between memory and processor at the highest possible rates are 
unsustainably high. As a result, the development of radically different chip architectures and device 
technologies is fundamental to bring AI to power-constrained applications, such as Data of Things, 
combining Edge analytics with IOT. 
 
Current and Future Challenges 
Most of the AI applications today are still running in the Cloud, i.e. in data centers which offer large 
storage capacity and processing power [1]. The learning phase, for which you need large datasets, is 
done in the Cloud, and inference tasks are performed on the same assets. Such a scheme is not 
sustainable in the long run: with the increasing demand for intelligent devices, the data centers will 
not be able to sustain the load. Part of it will have to be offloaded to the devices themselves. This is 
the current challenge that companies and research teams are taking on: to enable running inference 
tasks at the edge, thanks to dedicated hardware accelerators. The main pathway for the 
implementation of such constrained systems is the reduction of the power consumption. This also 
relates to longer battery life, and to heat dissipation, which cannot be afforded. Since the complexity 
of neural networks tends to grow over time, this problem will only become more acute. In data-centric 
application such as AI, the main source of power consumption is data movement [2]. It costs hundreds 
of times more energy to move data to/from an external memory than to compute on it. One of the 
solutions is to handle lightweight data, which is why quantization of weights and activations is a field 
of active research, down to the extreme of binary neural networks. Second, the integration of dense 
memories, as close as possible to the processing engines (PE) exploiting new memory technologies 
and 3D integration schemes is mandatory. Some promising solutions are presented in the next section. 
The ultimate evolution consists in removing the PEs altogether and computing directly inside the 
memory: this is the In-Memory-Compute paradigm. 
Having accelerators dedicated to inference tasks at the edge is only the first step. The future challenge 
will be to perform the learning phase locally as well. Autonomous agents will need to learn from 
experience, in order to adapt to their environment, learn basic principles and rules, infer common 
sense. They will thus have to exhibit lifelong learning abilities. Such accelerators will have additional 
challenges, linked to the learning phase itself. For instance, the state-of-the-art method to train 
Artificial Neural Networks is the back-propagation algorithm, which minimizes a given loss function 
based on gradient descent [3]. However, its implementation on GPUs is energy-consuming and it does 
not satisfy edge requirements. 
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Advances in Science and Technology to Meet Challenges 
Artificial Intelligent (AI) systems are data-hungry: first, large amounts of memory are required for 
storing network states and parameters; second, the energy cost associated to data transfer between 
the memory and the processor is the major source of energy dissipation. Resistive memory devices, 
also referred as memristors, can provide massive on-chip data storage with low voltage and low-
latency accessibility. Their basic working principle relies on the modification of the material at atomic 
level causing a change of resistance. These memories include resistive-switching random access 
memory (RRAM), phase-change memory (PCM), magnetic random-access memory (MRAM), and the 
ferroelectric random access memory (FeRAM). They are currently implemented as a 1T1R structure, 
i.e. with one MOS transistor (1T) used for accessing one resistor (1R). The memory cell footprint is 
around 40F² and is limited by the access transistor. Promising results have been recently 
demonstrated to increase the memory density: using one transistor to access multiple RRAMs (1T4R) 
[4], stacking multiple 1T1R thanks to monolithic 3D technology [5], replacing the MOS transistor by a 
stacked nanowire transistor [6] or by a backend selector [7]. This last technology option enables 
efficient crossbar arrays with low leakage currents, leading to the highest density, with a footprint of 
4F². Another promising approach to achieve high density is to increase the number of resistance levels 
in a single cell, for storing multiple bits. RRAM arrays storing up to three bits were demonstrated [5, 
8]. Those multiple level cells not only increase the density, they are also a great mean for efficiently 
implementing In-Memory-Compute functions: provided that the resistance levels are linearly 
allocated, matrix-vector multiplications and accumulation (MAC) of inputs can be done in an analog 
manner, simply exploiting Ohm’s and Kirchhoff’s laws [9, 10].  
However, on-chip learning based on back-propagation remains a challenge on memristor-based 
hardware, because of non-ideal device properties: limited endurance, non-linear conductance 
modulation, as well as device variability [11]. Moreover, back-propagation does not allow continuous, 
incremental learning. This is tackled at technology level, but also at algorithm level. To achieve 
unsupervised learning, there have been multiple efforts implementing biologically plausible Spike 
Timing Dependent Plasticity (STDP)-variants and Hebbian learning using neuromorphic processors [12, 
13]. However, they are local learning rules and they do not provide any guarantee that network 
performance will improve in multilayer or recurrent networks. Novel algorithms where both inference 
and learning could fully be achieved out of core physics have been recently proposed such as, three-
factor spike-based learning rules [14, 15], Direct-Feedback Alignment [16], Equilibrium Propagation 
(Eq-prop) [17]. Next, these algorithms have to be mapped on real hardware tacking into account 
device non-idealities. Some recent works explored this direction. For instance, it has been 
demonstrated that drift behavior of PCM devices (generally considered a device non-ideality) can be 
exploited to implement long lasting eligibility traces, a critical ingredient of three-factor learning rules 
[18]. A machine learning scheme that leverages the RRAM variability to implement Markov Chain 
Monte Carlo (MCMC) sampling techniques to enable on-chip learning in Bayesian neural network has 
been demonstrated [19]. 
As can be imagined, many actors will provide accelerators for running AI workloads at the edge. They 
will use a combination of technologies, and different coding strategies: classical coding (FP32, BF16, 
INT8), spike coding (Rate, Temporal, Time-To-First-Spike), a combination of both. Since there is never 
one-size-fits-all solution, it is strongly believed that heterogeneous AI systems will play an important 
role for delivering products tailored to different application needs, as illustrated in Figure 1. Such 
systems will leverage IP reuse thanks to 2.5D and 3D integration technologies, thus reducing non-
recurring engineering (NRE) costs and time to market. Those technologies enable the integration of 
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different chips, also known as chiplet [20], built with different manufacturing processes. Those chiplets 
are co-integrated on silicon or glass substrates, or an organic interposers. Communication with the 
outside world is ensured thanks to through-silicon-vias (TSV) or through-mold-vias (TMV) and 
redistribution layers. 
For fulfilling that vision, issues such as interoperability and application mapping need to be addressed. 
A high-level AI system description language will be specified, for expressing the respective hardware 
resources and their interactions. Deep learning frameworks will be complemented with export 
capabilities on those heterogeneous platforms. 
 

 

 
Concluding Remarks 
Artificial Intelligence and in particular machine learning have made tremendous progress in image, 
video, sound and speech recognition tasks. The next challenge is enable unsupervised and continuous 
learning at the edge. Innovations ranging from single memory devices to full-scale architectures 
exploiting heterogeneous integration are required to meet the computational needs of such 
applications. 
 
Acknowledgements 
We acknowledge funding support from the H2020 MeM-Scales project (871371), the ECSEL TEMPO 
project (826655) and the ECSEL ANDANTE project (876925). 
 
References  
[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015). 

Figure 1.  Modular AI systems composed of heterogeneous components – each of which being optimized for a specific task and 
exploiting different technology solutions.  



Roadmap on Neuromorphic Computing and Engineering 

[2] E. Strubell, A. Ganesh, A. Mccallum, Energy and policy considerations for deep learning in NLP. In 
Proc. 57th Annual Meeting of the Association for Computational Linguistics (ACL) 3645–3650 (ACL, 
2019). 
[3] D. E., Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-propagating errors. 
Nature 323, 533–536 (1986). 
[4] E. R. Hsieh, et al., High-Density Multiple Bits-per-Cell 1T4R RRAM Array with Gradual SET/RESET 
and its Effectiveness for Deep Learning, In Proc. IEEE International Electron Devices Meeting (IEDM) 
(2019). 
[5] E. Esmanhotto, et al., High-Density 3D Monolithically Integrated Multiple 1T1R Multi- 
Level-Cell for Neural Networks, In Proc. IEEE International Electron Devices Meeting (IEDM) (2020). 
[6] S. Barraud, et al. 3D RRAMs with Gate-All-Around Stacked Nanosheet Transistors for In-Memory-
Computing, In Proc. IEEE International Electron Devices Meeting (IEDM) (2020). 
[7] D. Alfaro Robayo et al., Integration of OTS based back-end selector with HfO2 OxRAM for crossbar 
arrays, In Proc. IEEE International Electron Devices Meeting (IEDM) (2019). 
[8] Le, B. Q. et al. Resistive RAM with multiple bits per cell: array-level demonstration of 3 bits per cell. 
IEEE Trans. Electron Devices 66, 641–646 (2019). 
[9] A. Valentian et al., Fully integrated spiking neural network with analog neurons and RRAM 
synapses, In Proc. IEEE International Electron Devices Meeting (IEDM) (2019). 
[10] Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 
641–646 (2020). 
[11] S. Ambrogio, et al., Equivalent-accuracy accelerated neural-network training using analogue 
memory. Nature 558, 60–67 (2018). 
[12] M. Payvand and G. Indiveri, Spike-based plasticity circuits for alwayson on-line learning in 
neuromorphic systems, in IEEE International Symposium on Circuits and Systems (ISCAS) (2019). 
[13] D. R. B. Ly et al., Role of synaptic variability in resistive memory-based spiking neural networks 
with unsupervised learning, Journal of Physics D: Applied Physics, 51 (2018) 
[14] W. Gerstner, et al., Eligibility traces and plasticity on behavioral time scales: experimental support 
of neohebbian three-factor learning rules, Front. Neur. Circ., vol. 12, p. 53 (2018). 
[15] Guillaume Bellec et al., A solution to the learning dilemma for recurrent networks of spiking 
neurons. Nat Commun, 2020). doi.org/10.1038/s41467-020-17236-y 
[16] B. Crafton, A. Parihar, E. Gebhardt and A. Raychowdhury, Direct Feedback Alignment With Sparse 
Connections for Local Learning, Frontiers in Neuroscience (2019) 
[17] M. Ernoult, et al., Updates of Equilibrium Prop Match Gradients of Backprop Through Time in an 
RNN with Static Input, NeurIPS 2019 Processdings. arxiv.org/pdf/1905.13633.pdf 
[18] Y. Demirag et al., PCM-trace: Scalable Synaptic Eligibility Traces with Resistivity Drift of Phase-
Change Materials, to be published In Proc. IEEE International Symposium on Circuits and Systems 
(ISCAS) (2021) 
[19] T. Dalgaty, N. Castellani, C. T., K.-E. Harabi, D. Querlioz, and E. Vianello, In situ learning using 
intrinsic memristor variability via Markov chain Monte Carlo sampling, Nature Electronics (2021). 
 [20] Vivet, P. et al., A 220GOPS 96-core processor with 6 chiplets 3D-stacked on an active interposer 
offering 0.6-ns/mm latency, 3-Tb/s/mm2 inter-chiplet interconnects and 156-mW/mm2 @ 82%-peak-
dfficiency DC–DC converters. In Proc. IEEE International Solid-State Circuits Conference (ISSCC) 
46–48 (2020). 



Roadmap on Neuromorphic Computing and Engineering 
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Status 
The field of optical computing began with the development of the laser in 1960 and has since been 
followed by many inventions especially from the 1980s demonstrating optical pattern recognition and 
optical Fourier-transform processing [1]. Although these optical processors never evolved to 
commercial products due to a limited application space and the high competition with emerging 
electronic computers, photonic computing again gained much interest in recent years to overcome 
the bottlenecks of electronic computing in the field of artificial intelligence, where large datasets must 
be processed energy efficiently and at high speeds [2]. Optical computers are able to seriously 
challenge electronic implementations in these domains, particularly in throughput. Photonics further 
has allowed one to integrate optics on-chip enabling such optical neuromorphic processors to have 
several advantages compared to their electronic counterparts. One of them is based on the fact that 
photons are bosons and are able to occupy the same physical location (i.e. not subject to the Pauli 
exclusion principle). Thus, many can be transmitted through the same channel without mutual 
interference. This offers an intrinsically high degree of parallelization by wavelength and mode 
multiplexing techniques, enabling the use of the same physical processor to carry out multiple 
operations in parallel leading to high computing densities. Additionally, the data transport problem 
that is apparent in electronics at high signal speeds is easily addressed using photonic waveguides that 
serve as low power data links. Taken together with the fact that linear operations can be implemented 
in the optical domain with very high energy efficiency [3], photonics offers a promising platform for 
high speed and highly parallelised neuromorphic computing [4]. 
Many non-von Neumann photonic computing techniques have been demonstrated using integrated, 
fibre-based and free-space optics [3], showing a large variety of different approaches ranging from 
coherent neural networks [5], reservoir computing [6] and phase-change photonics [7]–[9] to 
hardware accelerators for the main computational bottlenecks (usually matrix multiplications) in 
conventional AI solutions [10], [11]. Most of these are analogous to in-memory computing that has 
most prominently been developed by IBM [12], [13]. Further advances in photonic computing might 
first lead to optical co-processors that accelerate specific operations such as vector-matrix 
multiplications and are implemented together with conventional electronic processors. The next step 
could be photonic neuromorphic computers avoiding electro-optic conversions. 
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Current and Future Challenges 
The current main limitations of neuromorphic photonics lie in scalability, system stability and 
interfacing with electronic systems. As most approaches that rely on analogue computing, the 
precision of photonic approaches depends on the noise accumulated in the processor. 
Whereas free-space implementations are often bulky and therefore difficult to scale, the challenges 
for integrated circuits are optical loss and the reliable fabrication of the individual components. 
Especially tuning the fabrication of resonant elements as ring resonators that are used for fast signal 
modulation and multiplexing require thermal tuning in order to operate properly. To gain from 
wavelength multiplexing and achieve highly parallel processing, the fabrication techniques need to 
provide sufficient reproducibility of the wavelength channels of the multiplexers. 
In addition to fabrication challenges, many neuromorphic photonic processors rely on coherent light 
and require precise control of the optical phase. Because the phase is strongly temperature 
dependent, excellent thermal stability of the system is necessary, which in itself can become a 
significant component of the overall power consumption of the system. Another challenge for 
integrated photonic circuits is the integration of light sources on CMOS compatible silicon platforms.  
Whereas linear operations can be carried out in photonic circuits intrinsically very well, all-optical non-
linear elements working at sufficiently low power and high speeds are more challenging to develop. 
However, from a strictly neuromorphic computing standpoint this is crucial, as non-linear elements 
determine spiking functionality in neurosynaptic networks, at least at the device level. 
From the overall system architecture standpoint for neuromorphic photonic computing, additional 
challenges regarding integration with conventional technologies exist. Given that most information 
processing is performed in the electronic domain, photonic neuromorphic systems usually have to be 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          
       

Figure 1.  Different implementations of neuromorphic photonic circuits. a) Coherent matrix multiplication unit based on MZIs [5]. 
Diffractive deep neural network [3]. c) All-optical neural network using phase-change materials [7]. 
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interfaced with electronic processors, e.g. to input the data or store the results of the computation. 
This imposes at least two electro-optic conversions, which decrease the overall energy efficiency of 
the system. As most neuromorphic processors are a type of analogue computing, additionally 
conversions between the digital and analogue domain have to be performed. Especially analogue to 
digital converters (ADC) can make up a huge part of the power budget and scale badly in terms of 
energy with the number of bits and operation speed [14]. To be able to use the high modulation 
speeds accessible in modulating and detecting optical signals, significant improvements in digitizing 
the results of the computation have to be made. 
 
Advances in Science and Technology to Meet Challenges 
Like their electronic counterparts, photonic neuromorphic processors require precise fabrication. 
With increased interest in photonic information processing, several photonic foundry services are 
emerging and are continuing to enhance their capabilities. These will be crucial to progress this field. 
Although vastly improved with good performance, the existing capabilities in photonic foundries are 
well behind those that exist in the more mature and established electronics. Improvements in 
fabrication techniques will give way to less variation in device specifications, e.g. in the wavelength 
specification of certain components like resonators or multiplexers and reduction of optical loss. This 
will be important to improve on the parameters that make photonic neuromorphic processors more 
advantageous, specifically the ability to wavelength multiplex. A useful tool in the fabrication process 
could be an additional tuning step after fabrication, to match the designed specifications such as 
measuring the resonance wavelength of a resonator and adjusting it to the desired wavelength as a 
post-processing correction. Advances in the standard components as modulators and detectors as 
well as the addition of new components to the libraries of photonic foundries and the development 
of new materials for non-volatile optical storage will enhance this field and bring these circuits closer 
to commercialization. 
Yet another crucial component is efficient light sources that can be integrated on photonics alongside 
reliable many-channel on-chip multiplexers. Integrated optical frequency combs that provide a wide 
optical spectrum with a fixed channel spacing that can be exploited for computing as a coherent light 
source are a prime example of this [15]. Photonic neuromorphic circuits rely on electronic control and 
therefore improvements in high-speed electronic components such as digital-to analogue (DAC) and 
analogue-to digital converters (ADC) are also very important. Further research could also lead to all-
optical DACs and ADCs circumventing the need for electro-optic conversions. In general, photonic 
neuromorphic processors that minimize conversions between the digital and analogue domains are 
preferable. A specific class of neural networks that could prove especially suitable for low power 
photonic processing are spiking neural networks, that reduce digital-to-analogue conversions by using 
binary spikes and their time dependence as information carriers. 
As the non-linear optical coefficients for silicon are small, functional materials that allow for such non-
linearity or other added functionality are also important [16]. A promising class of materials are phase-
change materials (PCMs) that switch their optical properties upon excitation and therefore effectively 
resemble a non-linear element [17], [18]. Although PCMs can be switched with low optical powers, 
significant improvements have to be made in increasing the switching speed in order to keep up with 
high modulation speeds enabled by photonics. Another class of materials considered for low power 
optical non-linearities are epsilon-near-zero materials [19]. 
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Operating with analogue signals results in a higher sensitivity to noise; recent advances in reducing 
the precision of neural networks to lower numbers of bits with low loss in prediction accuracy is one 
step to overcome this challenge [20] and further research in this area is also required. 
As photonic integrated circuits become more and more complex, similar to electronics, a three-
dimensional implementation seems necessary to avoid crosstalk and loss when routing the signals and 
avoid waveguide crossings, which also requires investigation. 
 

 

 
Concluding Remarks 
Photonic computing has been a promising field of research over the last decade as photonics matures.  
New challenges in handling huge amounts of data in the fields of artificial intelligence and machine 
learning that bring conventional electronic processors to their limits have resulted in a surge interest 
in photonic computing. This is because of their inherent advantage that enables high throughput, a 
high degree of parallelization together with the ability to carry out linear operations at very low 
energies. This makes photonic neuromorphic processors a very promising route to tackle the 
upcoming challenges in AI applications. 
In spite of the challenges photonic computing concepts that can overcome the limitations of electronic 
processors have been demonstrated in the recent years, and a roadmap to address their march into 
commercialization would be a huge benefit to society. 
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Section 3.1 - Learning in Spiking Neural Networks 
Emre Neftci, Department of Cognitive Sciences, University of California, Irvine, 
Irvine, CA, USA 
 
Status 
The dynamical nature of SNN circuits and their spatiotemporal sparsity supported by asynchronous 
technologies makes them particularly promising for fast and efficient processing of dynamical signals 
(Sec. 2.2). Learning in SNNs is to tune them in a data-driven manner and improve the reliability of their 
hardware implementations [1].  
In hardware, SNN Learning can be on-chip, or off-chip. On-chip learning requires learning circuit 
components alongside the neural dynamics. Neuromorphic engineering has extensively implemented 
learning dynamics derived from computational neurosciences, such as Spike Time Driven Plasticity 
(STDP) and its variants [2, 3]. These models are attractive for SNN hardware because they are event-
based and depend on locally available information. Learning requires significant memory and routing 
resources, which hinders scalability. On digital technologies, this is often solved by time-multiplexing 
a dedicated local plasticity processor [4, 5]. Unfortunately, that approach ultimately suffers from the 
same caveats as a Von Neumann computer. Emerging devices (Sec. 1) and related architectures (Sec. 
2.1) are promising alternatives, although much work is left to build them reliably and at scale.  
Off-chip training relies on a general purpose processor to train a model of the SNN, whose parameters 
are then mapped to the hardware. Provided a suitable model of the hardware substrate or a 
parameter conversion method, it generally achieves the best inference results on practical tasks [6, 
7]. Heterogeneous approaches combining on-chip and off-chip approaches have been successful at 
smaller scales [8], although scalability there remains hindered by the access to the local states. The 
suitability of on-chip or off-chip learning is highly dependent on the task. The former is best for 
continual learning (Sec 3.4) and the latter is best when a large dataset is already available and the SNN 
model and parameter conversion are near-exact. If the model is not exact, hybrid learning is often the 
most suitable method. 
Although STDP variants have been instrumental for modeling in neuroscience, mathematically 
rigorous rules derived from task objectives have a clear upper hand on practical performance and are 
likely to drive the majority future research [7, 9, 10]. Already today, the success of top-down modeling 
of learning to efficiently train SNNs ushered in a new wave of inspiration from Machine Learning (ML) 
[11], and accelerated the quest to build neuromorphic learning machines [1]. In the following, we 
focus on such learning approaches. 
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Current and Future Challenges 
Neuromorphic engineering is somewhat unique in its mission to create hardware for the sake of 
(neuro)scientific discovery. While the advantages of event-based computation are now increasingly 
evident (Sec. 4), it is natural to question whether online and on-chip learning is a technological 
necessity. That question is still open, but the challenges of scaling deep learning call for an alternative: 
A central impediment in deploying deep learning is the mismatch between the real-world and the 
training dataset. Furthermore, conventional neural network learning almost always relies on a von 
Neumann computer, the cost of which is tremendous energy [12]. Learning during task performance 
can overcome the first impediment, and can adapt to changing environments, provided the issues of 
sequential learning (e.g. catastrophic interference) are avoided [13]. Distributing learning in the 
hardware can reduce energy requirements, provided learning signals can be computed efficiently in a 
distributed fashion as well. Several strategies exist to implement such learning dynamics with varying 
degrees of success, of which on-chip learning is one [9]. Because the challenges of on-chip learning 
form a superset of those faced by other SNN learning approaches, we focus our challenge list below 
on that case. 
As with all learning theories, SNN learning requires suitable learning signals, which often involves 
space-time credit assignment, i.e. how blame or credit should be assigned to intermediate layers and 
neurons when targets pertain only to task performance. Backprop solves this problem via an iterative 
parameter and state updates, but its implementation is inconsistent with the physical nature of 
computation, and is thus reserved for off-chip learning. Assigning credit in space in a local fashion is 
an active field of research [14], that is now steadily advancing towards backprop alternatives. In some 
SNNs, credit can be assigned exactly in time using three-factor plasticity rules based on local surrogate 
gradients [9, 10]. Similarly to STDP, these rules rely on synapse-specific traces (unlike STDP however 
they include a third task-relevant factor such as error or reward). An important challenge is a 
mechanism to compute and store these synapse-specific traces locally, and separately from weight or 
parameter storage. Emerging devices, especially volatile memories, are central to this effort [15]. 
Among the various non-idealities of emerging materials and devices, device-to-device variability 
remains a major unsolved problem for successful learning in SNNs [16]. 
As no device will be perfect, the community as a whole needs to design neuron, synapse, plasticity 
and algorithms that are tailored to the device and the application. Unfortunately, a cultural disconnect 

gure 1.  Implementation Strategies and Roadmap of SNN Learning 
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between disciplines combined with the non-suitability of general-purpose computers and hardware 
to simulate SNNs at scale (e.g. GPUs) hinders the progress in adequate SNN learning technologies.  
 
Advances in Science and Technology to Meet Challenges 
ML and deep learning are specifically designed for computers available today.  While relying on deep 
learning technologies for SNN learning via off-chip learning will help reap early results, real 
breakthroughs will take place when software and algorithms are designed specifically for the 
constraints and dynamics of neuromorphic hardware. This involves moving beyond the concept of 
mapping conventional neural network architectures and operations to SNNs, and instead modeling 
the computational properties of biological neurons and circuits. A key enabler of such breakthroughs 
will be a differentiable programming library (e.g. Tensorflow) operating at the level of events and 
temporal dynamics that facilitates the scalable composition and tracing of operations. While recent 
work demonstrated SNN learning with ML frameworks [17, 18], the mapping of learning on dedicated 
hardware is nonexistent, even for conventional neural networks. This is due to a lack of applications 
and the more stringent requirements for learning. 
Even in off-line learning, training large-scale SNNs remains very slow and memory consuming due to 
the complexity of the underlying dynamics and gradients [9]. However, SNN’s spatiotemporal sparsity 
can be exploited in specialized hardware to accelerate learning. Spurred by the hardware efficiency of 
binarized neural networks, certain recent ML hardware are starting to support efficient sparse 
operations. Additional engineering efforts with such hardware will eventually allow fast computations 
of SNN dynamics and data. A community wide effort in this direction will boost several research areas, 
including the discovery of new (spatial) credit assignment solutions, the identification and control of 
the distinctive dynamics of SNNs (multiple compartments, dendrites, feedback dynamics, reward 
circuits etc.), and the evaluation of new materials and devices, all in the light of community-accepted 
benchmarks. Undertaking such device evaluations prior to the design and fabrication cycle, for 
instance via a suitable surrogate model of the device, will save precious resources and dramatically 
accelerate the development of emerging hardware.  
The ability to cross compile models in such a library can blur the line between hardware and software. 
This resonates well with the idea of on-chip and off-chip learning working in concert. That approach 
is attractive because the difficulties of online learning can be mitigated with multistage or 
heterogenous training, for example by first training off-line and then fine-tuning online [19]. This is 
because fewer learning cycles entails fewer perturbations of the network state, and thus mitigates the 
problems of sequential learning. At the same time, learning is achieved after a much smaller number 
of observations, which is essential in continual learning tasks (Sec. 3.4). The success of  such meta-
learning hinges on a good task set definition and is time consuming. Once again, dedicated general-
purpose computers, libraries and community-wide efforts are essential for this. 
Although ML is not the only approach for SNN learning, the tools developed to enable ML-style 
learning algorithms directly benefit other computational models and approaches. These include 
hyperdimensional computing, some variational inference algorithms, and neural Monte Carlo 
sampling, all of which rely on well-controlled stochasticity that can be modeled in simulations. 
 
Concluding Remarks 
Beyond hardware, the hidden figure of deep learning’s success has been software libraries. It enabled  
the composition and differentiation of hardware-optimized routines for inference and learning. 
Neuromorphic computing, and more specifically learning in neuromorphic hardware is arguably at a 
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similar standpoint today. Neuromorphic computing emphasizes a different set of constraints, 
exploiting the physics of the hardware and the distributed nature of computation. Exploring this new 
set of rules calls for a software library tailored to SNN dynamics and general-purpose hardware, which 
can greatly accelerate the discovery of new materials, architectures, and learning algorithms.  
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3.2 - Computational neuroscience 
Srikanth Ramaswamy, École Polytechnique Fédérale de Lausanne, Geneva, 
Switzerland 
 
Status 
Understanding the brain is probably the final frontier of modern science. Rising to this challenge can 
provide fundamental insights into what makes us human, develop new therapeutic treatments for 
brain disorders, and design revolutionary information and communication tools. Recent years have 
witnessed phenomenal strides in employing mathematical models, theoretical analyses and computer 
simulations to understand the multi-scale principles governing brain function and dysfunction – a field 
referred to as “Computational neuroscience”[1], [2]. Computational neuroscience aims at distilling the 
necessary properties and features of a biological system across multiple spatio-temporal scales – from 
membrane currents, firing properties, neuronal morphology, synaptic responses, structure and 
function of microcircuits and brain regions, to higher-order cognitive functions such as memory, 
learning and behavior. Computational models enable the formulation and testing of hypotheses, 
which can be validated by further experiments. 
 
The multidisciplinary foundations of computational neuroscience can be broadly attributed to 
neurophysiology, and the interface of experimental psychology and computer science. The first school 
of thought, neurophysiology, is exemplified by the model of action potential initiation and propagation 
proposed by Hodgkin and Huxley [3] and theoretical models of neural population dynamics [4]. 
Whereas, the second school of thought, at the interface of experimental psychology and computer 
science focuses on information processing and learning, which could be traced back to models of 
artificial neural networks that were developed about half a century ago [5]. Computational 
neuroscience became its own nascent field about three decades ago and has rapidly evolved ever 
since [6]. 
 
In the early stages of its conception, computational neuroscience focused almost entirely on states of 
sensory processing, mainly due to the fact that studies of cognitive function were restricted to the 
domain of psychology, which was beyond what empirical neuroscience could offer. However, since 
then, rapid strides in tools and techniques have enabled tremendous advances in our knowledge of 
the neural mechanisms brain underlying cognitive states such learning and memory, reward and 
decision-making, arousal and attention [7]–[9]. Consequently, the dynamic field of neuroscience 
bestows many opportunities and challenges. A recent development is the symbiosis between 
computational neuroscience and deep learning [10]. Deep learning models have enabled efficient 
means to analyze vast amounts of data to catalyze computational modeling in brain research. 
However, the current framework of deep learning is mostly restricted to object recognition or 
language translation. Identifying the fundamental mechanisms responsible for the emergence of 
higher cognitive functions such as attention and decision making, appropriately recapitulated into 
algorithms by computational models, will influence the next generation of intelligent devices. 
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Current and Future Challenges 
 
Thus far, computational neuroscience has been limited to modelling local circuits. However, an ever-
increasing number of big datasets from single-cell transcriptomes, micro, meso and macro-scale 
connectomes, large-scale neurophysiology, and functional brain activity mapping is enormously 
rapidly informing and enormously transforming the scale of computational models. The availability of 
datasets of unprecedented detail are nothing short of an industrial revolution in neuroscience. But 
the grand challenge is to assimilate the exponentially increasing data into new theories and 
computational models for multi-scale brain circuits. Over the past decade several collaborative 
endeavors have pioneered a high-throughput, team science approach to neuronal modelling, bringing 
together disparate disciplines such as experimental biology, computational neuroscience, high-
performance computing and data science that attempt to model neural circuits with thousands of 
detailed multicompartmental neurons and millions of synapses, and simulate these models on 
supercomputers. The first of these was probably the Blue Brain Project, followed by the Allen Institute 
for Brain Science, the US Brain Initiative, Japan Brain and Minds, the Human Brain Project, and the 
International Brain Laboratory [11]–[16]. 
 
The necessity to bring together large, multidisciplinary teams to work collaboratively on a single model 
arises when the spatial size and complexity of a model crosses a specific threshold. Annotating, 
databasing and retrieving the data used to build and validate the model, developing a software eco-
system to enable simulations, analyses and visualizations are all non-trivial tasks that need a cross-
disciplinary pool of people for planning and execution.  
 
How could one bring together a team for collaborative modeling? One way is by establishing consortia 
such as the Blue Brain Project or the Allen Brain Institute that are embedded within a university setting 
or as an independent, not-for-profit institute [17], [18]. Another way is to build a consortium across 
numerous laboratories such as the Human Brain Project or the International Brain Laboratory to 
exploit interdisciplinary strengths and benefit from synergy. However, neuroscience is still rather 
traditional in its structure and mainly comprises individual laboratories undertaking niche work. A big 
challenge is for such individual labs to grow beyond their set boundaries, perhaps through 
collaborations, to develop a team-science culture essential to enable the data-driven modeling and 
simulation of neural micro and mesocircuits, and ultimately the whole brain. Another challenge is how 
to assign credit to a team of scientists contributing to vast aspects of data gathering, curation, model 
building and simulation? Academic publications are the currency that drive scientific discovery and 
dissemination. How can team-science initiatives set a precedent for better credit assignment to early 
career scientists to gain the much-needed visibility required to advance their careers? 

Advances in Science and Technology to Meet Challenges 
 
The brain is undoubtedly the most sophisticated information processing device known to humankind. 
However, the underlying principles of its function and dysfunction seem to vastly differ from those 
understood through conventional computing hardware. Although we are far from fully understanding 
the principles of brain function, which operates by consuming a few watts of power, it still manages 
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to solve complex problems by devising algorithms that appear to be intractable with current 
computing resources. The brain is robust, reliable and resilient in its operation despite the fact that its 
building blocks could fail. All of these are highly advantageous features to instruct the better design 
of the next generation of computing hardware [19].  
 
In the future, computational models and simulations of brain function and dysfunction will be better 
informed through its unique capabilities to model and predict the outside environment, underlying 
design principles, their mechanisms and multi-scale organization and operation. The interface of 
experimental and computational neuroscience will shed new light on the unique biological 
architecture of the brain and help translate this knowledge into the development of brain-inspired 
technologies. 
 
We are still at the tip of the iceberg in dealing with and solving diverse challenges. It is possible that 
“neuromorphic” computing systems of the future will comprise billions of artificial neurons and the 
development, design, configuration and testing of radically different hardware systems will require 
new software compatible with the organizing principles of brain function. This will require a deep 
theoretical understanding of the way the brain implements its computational principles. Knowledge 
of the cognitive architectures underlying capabilities such as attention, visual and sensory perception 
can enable us to implement biological features that current computing systems lack. 
 
Concluding Remarks 
 
The fledgling field of computational neuroscience has now transformed into a dynamic and vibrant 
global community. Computational models and simulations offer an unprecedented framework to 
understand brain function and dysfunction. However, it appears that an efficient way forward to this 
end is through team-science endeavors that could provide a multidisciplinary ecosystem to handle 
diverse competencies required in gathering experimental data and translating these into large-scale 
computational models and simulations of brain function and dysfunction. This massively collaborative 
mode of working has been attempted with much success in other disciplines such as high-energy 
physics or bioinformatics. However, the success of collaborative approaches in computational 
neuroscience requires a number of technical, engineering and social challenges to be surmounted. 
The next generation of computational neuroscientists should commit to collaborative modelling and 
unhindered sharing of resources. Computational modeling and simulations provide the crucial link to 
unify the known knowns and identify the known unknowns of the brain, its function and dysfunction. 
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3.3 – Stochastic Computing 
Jonathan Tapson, School of Electrical and Data 
Engineering, University of Technology, Sydney, Australia 
 
Status 
The human brain is extraordinarily efficient in computation, using at least five orders of magnitude 
less power than the best neuromorphic silicon circuits [1].  Nonetheless, it still consumes 
approximately 20-25% of a human’s available metabolic energy, and it is safe to assume that the 
evolutionary pressure to optimize for power efficiency in the brain was extremely severe.  It therefore 
comes as a suprise that the transmission of signals through the brain’s synaptic junctions is apparently 
noisy and inefficient, with probabilities of 0.4-0.8 for transmission of an axonal spike being typical (see 
[2] for a detailed review).  This raises the question: is this transmission variability a bug or a feature?  
Also, can any brain-inspired computational system which does not include synaptic stochasticity 
capture the essence of human thought? Perhaps it serves to regularize biological neural networks, in 
the same way that machine learning techniques such as dropout are used to make artificial neural 
networks more robust. 
This, and many other similar questions, drive the field of stochastic computation [3, 4].  The field 
covers a large number of techniques in which some kind of probabilistic function, filter or network is 
used to create a computational output which would not be possible with deterministic systems.  For 
example, in neuromorphic neural networks, the use of nonlinear random projections has become a 
commonplace nethod for raising the dimensionality of an input space prior to a learned solution layer.  
Technologies as diverse as silicon device mismatch, memristor mismatch, and even random networks 
of conductive fibres have been proposed and tested for this purpose [5].   
Generally, stochastic computation methodologies fall into a number of categories: 

1. Systems where noise or randomness is used to add energy to a system, enabling it to traverse 
or establish states which were otherwise inaccessible.  The various phenomena of stochastic 
resonance and stochastic facilitation [3] are typical examples of these systems. 

2. Systems where the data or input streams are intrinsically random or noisy, and rather than 
filter or otherwise reduce the uncertainty in the signals, a computational system is devised 
which processes the raw signal to produce a computationally optimal output.  Recently, many 
of these systems apply Bayesian models [6], particularly when derived from biological 
principles. 

3. Systems in which it is required to project the input space nonlinearly to a higher dimension, 
in order to facilitate linear or other numerical solutions to some regression or classification 
problem.  This obviously includes conventional neural networks; however, there is an 
increasing body of research in both human neuroscience and machine learnging in which 
random nonlinear projections are found to be optimal for some function. 



Roadmap on Neuromorphic Computing and Engineering 

 

 
Current and Future Challenges 
Perhaps the most exciting theme for the future of stochastic computation is the modelling of random 
or noisy processes in the brain, and applying these to real world computational problems.  For 
example, there is increasing evidence that random projection layers are used in the brain to improve 
the versatility and selectivity of neural circuits.  This has parallels in random projection artificial neural 
networks, but the utility of these systems has, until now, been overshadowed by the performance of 
application specific machine learning systems.  Additionally, there is evidence that in spiking neural 
networks, noise appears to enable probabilistic inference [7].  As these systems move from academia 
into commercial fields of exploitation, the dapability oadn robustness of the random networks is likely 
to shine. 
There are some significant issues in exploiting stochastic computation.  For example, if randomness is 
created using intrinsically variable hardware means such as device mismatch, then the randomness is 
unique to each device, and therefore each device will need to be characterised before it can be used.  
This is reasonable in laboratory research, but infeasible as part of the workflow in producing high-
volume consumer goods. 
A further problem for stochastic computation is that many applications – for example, biomedical or 
aerospace systems – require deterministic and provably failsafe operation.  Systems that compute 
bsed on probability and statistical likelihoods may struggle to meet industrial standards, 
notwithstanding that their performance may be superior to current methods. 
 
Advances in Science and Technology to Meet Challenges 
The foundations of stochastic computation are not mature.  The field at present consists largely of 
proofs-of-concept, with few widely-applicable principles that can be applied in a generic way.  Noise 
and randomness are still seen as obstacles to be overcome in signal processing, so unless a practitioner 
has some prior experience of stochastic computing, there is little likelihood of applying these methods 

Figure 1.  Illustration of a simple stochastic computation, using logic gates (AND or MUX) to compute on strings of bits representing 
probabilistic coding of numbers.  Note that single-bit errors in the computation (as a result of noise) will not significantly change the 
output.  After [4]. 
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as part of a standard process.  Nonetheless, the increasing interest in Baysian methods, and their 
existence and application in biological neural systems, is generating growing interest in this approach. 
What the field requires for advancement are the following: 

• A foundational theory of probabilistic computing, integrating Bayesian, SR and random 
projections into a more general framework which answers the question: “I have noisy and 
nonlinear input data, or a noisy and nonlinear system.  How do I take advantage of the energy 
and nonlinearity rather than simply filtering it out?” 

• Current methods of implementing random connective weights and random numbers in 
silicon are not ideal.  In particular, there are few methods which allow the deterministic 
generation of “random” weights in ways that obviate the requirement to characterise each 
individual part prior to computation.  Similarly, generation of random numbers “on the fly” 
in computational platforms such as custom silicon or FPGAs requires a significant proportion 
of hardware and energy to be dedicated to it. 

 
Concluding Remarks 
The real world and natural organisms are intrinsically noisy and variable, and yet the most efficient 
computer known – the human brain – computes very successfully using noisy and variable hardware 
on noisy and variable signals.  As our understanding of this phenomenon grows, the desire to apply 
the principles in artificial computation will grow accordingly.  In stochastic computation, we have the 
beginnings of a model for this process, and it seems likely that in the future we will regard 
computational systems which do not use probabilistic principles as being as limited as we now regard 
classification and regression using the purely analytic methods that were conmmonplace before 
machine learning. 
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3.4 – Learning-to-Learn for Neuromorphic Hardware 
Franz Scherr, Wolfgang Maass, Inst. of Theor. Computer Science, TU Graz 
 
Status 
An important goal for neuromorphic hardware is to support fast on-chip learning in the hand of a 
user. Two problems need to be solved for that: 

1. A sufficiently powerful learning method has to run on the chip, such as stochastic gradient 
descent. 

2. It needs to be able to generalize from a single example (one-shot learning), or at least from 
very few.  

Evolution has found methods that enable brains to learn a new class from a single or very few 
examples. For instance, we can recognize the face of a new person in many orientations, scales, and 
lighting conditions after seeing it just once. But this fast learning is supported by a long series of 
prior optimization processes of the neural networks in the brain during evolution, development, and 
prior learning. In addition, insight from cognitive science suggests that the learning and 
generalization capability of our brains is supported by innate knowledge, e.g. about basic properties 
of objects, 3D space, and physics. Hence, in contrast to most prior on-chip learning experiments in 
neuromorphic engineering, neural networks in the brain do not start from a tabula rasa state when 
they learn something new. 
Learning from few examples has already been addressed in modern machine learning and AI [1]. Of 
particular interest for neuromorphic applications are methods that enable recurrently connected 
neural networks (RNNs) to learn from single or few examples. RNNs are usually needed for online 
temporal processing —an application domain of particular interest for energy-efficient 
neuromorphic hardware. The gold standard for RNN-learning is backpropagation through time 
(BPTT). While BPTT is inherently an offline learning method that appears to be off-limit for online on-
chip learning, it has recently been shown that BPTT can be approximated quite well by 
computationally efficient online approximations. In particular, one can port the online broadcast 
alignment heuristic from feedforward to recurrent neural networks [2,3]. In addition, one can 
emulate the common LSTM (long short-term memory) units of RNNs in machine learning  by 
neuromorphic hardware-friendly adapting spiking neurons. Finally, a computationally efficient online 
approximation of BPTT —called e-prop— works well for recurrent networks of spiking neurons 
(RSNNs), also with adapting neurons [3]. The resulting algorithm for on-chip training of the weights 
𝑊𝑊𝑗𝑗𝑗𝑗 for neuron 𝑖𝑖 to neuron 𝑗𝑗 of an RSNN —for some arbitrary but differentiable loss function 𝐸𝐸— 

takes there the form  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗

= ∑ 𝐿𝐿𝑗𝑗𝑡𝑡𝑡𝑡 𝑒𝑒𝑗𝑗𝑗𝑗𝑡𝑡  . The so-called learning signal 𝐿𝐿𝑗𝑗𝑡𝑡 at time 𝑡𝑡 is some online 

approximation to the derivative of the loss function 𝐸𝐸 with regard to the spike output of neuron 𝑗𝑗, 
and  𝑒𝑒𝑗𝑗𝑗𝑗𝑡𝑡  is an online and locally computable eligibility trace. If one optimizes the learning signals 𝐿𝐿𝑗𝑗𝑡𝑡 
and the initial values of the weights 𝑊𝑊𝑗𝑗𝑗𝑗  via Learning-to-Learn (L2L) for a range ℱ of potentially user-
relevant tasks 𝐶𝐶, these can be learnt from very few examples, see Figure 1 and [4, 5]. 
 
Current and Future Challenges 
The main choices that have to be made for such realization of fast on-chip learning are the choice of 
the family ℱ of tasks, the choice of the optimization method for offline priming through the 
definition of hyperparameters, and the choice of the hyperparameters. Options for the latter are for 
example  
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1. Just the learning rate parameters of on-chip learning rules are hyperparameters. 
2. Also the values of all synaptic weights of the RSNN are hyperparameters. 
3. Only the initial values of the synaptic weights of the RSNN are hyperparameters. 
4. In addition all parameters of an auxiliary NN —the learning signal generator— that 

generates online learning signals 𝐿𝐿𝑗𝑗𝑡𝑡 for fast convergence of e-prop are hyperparameters. 
Option 1 has been explored for RSNNs in [6, 7], and with an application to analog neuromorphic 
hardware in [8].  Option 2 is arguably the most commonly considered application of L2L in machine 
learning and computational neuroscience models [5, 9-13]. An attractive feature of this option for 
realizing fast on-chip learning is that it requires no synaptic plasticity for that. Rather, it uses hidden 
variables of the RNN for storing information from the few training examples that are needed for fast 
learning. In the case of machine learning, these hidden variables are the values of memory cells of 
LSTM units. In spiking neural networks these are the current values of firing thresholds of adapting 
neurons. An alternative is to choose only some synaptic weights to be hyperparameters, and to 
leave others open for fast on-chip learning [14]. Option 3 is used by the MAML approach of [15], 
where only very few updates of synaptic weights via BPTT are required in the inner loop of L2L. It 
also occurs in [4] in conjunction with option 4, see Figure 2 for an illustration. 
One common challenge that underlies the success of all mentioned options, is the efficacy of the 
training algorithm for the offline priming phase, the outer loop of L2L. While option 1 can often be 
carried out by gradient-free methods, the more demanding network optimizations of the other 
options tend to require BPTT for offline priming of the RNN. 
 
Advances in Science and Technology to Meet Challenges 
It is quite realistic to enable according to this L2L method fast on-chip learning on neuromorphic 
hardware. The most demanding aspect for the hardware is to be able to run the on-chip learning 
algorithm that is required. This can be implemented on most neuromorphic hardware if only simple 
local rules for synaptic plasticity are required in the inner loop of L2L, as in option 1. In the case of 
option 2 a spike-based neuromorphic hardware just needs to be able to emulate adapting spiking 
neurons. This can be done for example on SpiNNaker [16] and Intel’s Loihi chip [17]. Using BPTT for 
on-chip learning appears to be currently infeasible, but on-chip learning with e-prop is supported by 

Figure 1. Scheme for the application of L2L for offline priming of a neuromorphic chip.  Hyperparameters 𝛩𝛩 of the RSNN on the chip 
are optimized for supporting fast learning of arbitrary tasks 𝐶𝐶 from a family ℱ that captures learning challenges that may arise in the 
hands of a user. The resulting hyperparameters are then loaded onto the chip. Note that the desired generalization capability is here 
more demanding than usually: The chip also needs to learn tasks 𝐶𝐶 from the family ℱ very fast that did not occur during offline priming 
(but share structural properties with other tasks in the family ℱ). 
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SpiNNaker and the next generation of Loihi. Then option 4 can be used for enabling more powerful 
fast on-chip learning. The only additional requirements are that an offline primed learning signal 
generator can be downloaded onto the chip (once and for all), and that the chip supports 
communication of learning signals for gating local synaptic plasticity rules.  A sample application is 
illustrated in Figure 2: On-chip learning and generalization of a new spoken command from a single 
example.  
Future advances need to address the challenge of training extended learning problems during the 
offline phase. Besides improved gradient-based algorithms, also gradient-free training methods such 
as Evolution Strategies [18] are attractive for that. In fact, since the latter paradigm allows to employ 
neuromorphic hardware directly for evaluating the learning performance, this approach can benefit 
from the speed and efficiency of fast neuromorphic devices, as in [8]. Particularly fast neuromorphic 
hardware such as Brainscales [19] might support then even more powerful offline priming with 
training algorithms that could not be carried out on GPU-based hardware. 
 

 

 
Concluding Remarks 
Learning in neuromorphic hardware is likely to become split into two phases that each have 
different goals and require different learning methods: An extensive offline priming phase —either 
on the actual hardware or a software model for it— that optimizes selected hyperparameters but 
possibly also the network architecture for a large family of potential on-chip learning tasks in the 
hands of the user. The resulting hyperparameters and network architectures will be downloaded 
onto the neuromorphic hardware before it gets into the hands of the user. The hardware is then 
primed so that remaining open parameters can be learnt on-chip from very few examples, possibly 
even just one example. It is conceivable that this method can be expanded to provide another useful 
property for neuromorphic hardware in the hands of the user: That on-chip learning cannot bring 
the chip into an operating regime which is unsafe, or undesired for other reasons. It has already 
been verified that the outer loop of L2L can impose powerful priors for subsequent computing and 
learning of RSNNs [13].  
 

Figure 2.  Left:  Learning architecture for fast on-chip learning with e-prop. A learning signal generator produces online learning signals 
for fast on-chip learning. The weights of the learning signal generator as well as the initial weights of the learning network result from  
offline priming. Right: Example application for fast learning. In this task 𝐶𝐶, the learning network has to learn the new command 
“connect” from a single utterance, so that it recognizes it also from other speakers. The learning signal generator is only activated when 
the new command is learnt (leftmost green segment). 
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3.5 – Convolutional Neural Networks 
Priyadarshini Panda, Youngeun Kim, Department of Electrical Engineering, New 
Haven, Yale University, USA 
 
Status 
Recent machine learning literature show that Convolutional Neural Networks (CNNs) have been 
adopted successfully in various vision applications such as detection, image generation and tracking [1- 
5]. To apply Spiking Neural Networks (SNNs) to diverse vision tasks, convolutional SNNs should be 
explored as a priority. Consequently, there have been many attempts to train a convolutional SNN 
architecture. Conversion [6] proposes a weight balancing technique in order to convert pre-trained 
Artificial Neural Networks (ANNs) to SNNs. The conversion method yields competitive accuracy, but 
requires careful weight scaling to emulate the float value of ANNs and therefore its application is 
restricted to simple static image recognition. Surrogate gradient learning circumvents the non-
differentiability of an LIF neuron by defining an approximate gradient during backward propagation 
[7]. Training SNNs directly on spike trains can enable parsing various types of input representation 
beyond static images, and potentially lead to SNN implementation for diverse computer vision 
applications.  
 
Further, the development of convolutional SNNs is in tandem with a growing interest in Dynamic 
Vision Sensors (DVS). Different from a standard frame-based camera, a bio-plausible DVS camera 
emulates the human retina and generates asynchronous and binary spikes according to illumination 
changes. Therefore, this visual sensor has the advantage of a high frame rate, low energy consumption, 
and less blurring effect compared to a conventional frame-based camera [8]. A standard CNN fails to 
exploit the advantages of DVS camera inputs since neurons in CNNs cannot capture temporal 
information. On the other hand, owing to temporal spiking neuronal dynamics, SNNs are a natural fit 
for processing DVS data. Also, combining DVS camera inputs with SNNs yields a fully-spiking and 
energy-efficient system. Despite the potential advantages, an algorithm for training convolutional SNNs 
on DVS data is still underdeveloped. 
 
Current and Future Challenges 
Majority of previous works on convolutional SNNs classify static images. SNNs require spike train to 
process in temporal domain. Thus, various coding schemes have been proposed for converting static 
images to spikes [19]. It is important to select a proper coding strategy since the energy consumption 
on an asynchronous neuromorphic hardware is approximately proportional to the number of spikes. 
Currently, rate coding is the most widely-used coding scheme since it yields high application-level 
accuracy. But, rate coding generates spikes, where the number of spikes is proportional to the pixel 
intensity. This causes multiple (and sometimes redundant) spikes per neuron and therefore reduces the 
energy-efficiency of the overall system. In order to bring more energy advantages, a new coding scheme 
with fewer spikes should be explored. 
 
Another challenge is directly training deep convolutional SNNs. From ANN literature, it is well known 
that network depth is a crucial factor for achieving high accuracy on vision tasks. ANN-SNN conversion 
enables deep SNNs with competitive accuracy. But, emulating float activation with multiple binary 
spikes requires large number of time-steps, that in turn increases overall energy and latency. Surrogate 
gradient learning allows short latency and can be used with flexible input representations, but it suffers 
convergence issues when we scale up the depth. Therefore, convolutional SNNs with surrogate learning 
are still restricted to shallow networks on trivial datasets. Overall, effective spike-based training 
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techniques for deep convolutional SNNs is necessary to reap the full energy-efficiency advantages of 
SNNs. 
 
Finally, there is a need to investigate SNNs beyond the perspective of accuracy and energy-efficiency. 
Goodfellow et al. [9] showed that unrecognizable noise can induce a significant accuracy drop in ANNs. 
This questions the reliability of ANNs since humans do not misclassify when presented with such 
perturbed inputs. In this light, there is a need to analyze the robustness of SNNs . Furthermore, the 
internal spike behavior of SNNs still remains to be a “black-box” as that of conventional ANNs. In the 
ANN domain, several interpretation tools have been proposed and provide cues for advanced computer 
vision applications such as visual-question answering. In a similar vein, an SNN interpretation tool 
should be explored because of its potential usage for real-world applications where interpretability in 
addition to high energy-efficiency is crucial. 
 
Advances in Science and Technology to Meet Challenges 
Beyond rate coding, temporal coding generates one spike per one neuron in which spike latency is 
inversely proportional to the pixel intensity. Mostafa et al. [10] applied exponential kernel to derive 
locally exact gradients of spiking neurons. The author trains SNNs on XOR problem and MNIST dataset 
with much fewer number of spikes compared to standard rate coding. Han and Roy [11] tackled the 
memory access issue for tracking a synapse at every time-step until the synapse receives its first spike. 
They use two signed spikes that denote the start and finish time-step respectively, improving energy-
efficiency. Besides temporal coding, phase coding also has been proposed based on biological 
observation [12], which encodes temporal information into spike patterns based on a global oscillator 
in an energy-efficient manner [13]. 
 
In order to address the shortcomings of ANN-SNN conversion and surrogate gradient learning, Rathi 
et al. [14] proposed hybrid training- a conversion process followed by surrogate gradient learning. As 
a result, they achieve competitive performance with significantly lower latency. Wu et al. [15] presented 
a spatio-temporal backpropagation technique for direct training convolutional SNNs. The authors 
evaluate their method on static MNIST as well as DVS-based N-MNIST. Recently, Kim and Panda [16] 
addressed the scalability problem of direct spike-based training by proposing a time-specific batch 
normalization technique, called Batch Normalization Through Time (BNTT). The authors successfully 
trained convolutional SNNs from scratch with BNTT spike-based training on complicated datasets such 
as CIFAR100, Tiny-ImageNet and DVS CIFAR10. 
 
Few recent studies have shown that SNNs have more robustness compared to their ANN counterparts. 
For the first time, Sharmin et al. [17] observed that SNNs are more robust with respect to adversarial 
images. They provided a comprehensive analysis on VGG9 networks trained on CIFAR10 dataset with 
various attack scenarios including black-box and white-box attacks. Also, the authors of [18] asserted 
that a Poisson coding generator and non-differentiable neuronal dynamics are the main reasons for  
SNN robustness. Regarding interpretability, there is still no work in this direction so far. We believe 
that research on interpretability is essential to open up the possibility of an interpretable and reliable 
neuromorphic system. 
 
Concluding Remarks 
Convolutional architecture plays a key role in artificial intelligence. This architecture is also important 
in the neuromorphic community because of its bio-plausibility and practical usage for expanding SNN 
applicability for diverse scenarios. In order to bring the convolutional architecture to a neuromorphic 
system, recent works have focused on energy-efficient coding schemes and training techniques. In 
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addition to the development of SNNs with higher energy-efficiency and accuracy, robustness and 
interpretability of convolutional SNNs are significant research directions. Overall many technical 
challenges, such as training, coding, interpretability need  to be addressed to build reliable and accurate 
convolutional SNNs compatible with neuromorphic hardware. 
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3.6 Reservoir computing 
Gouhei Tanaka, International Research Center for Neurointelligence (IRCN), The 
University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan 
 
Status 
Reservoir computing (RC) is a machine learning framework capable of fast learning, suited mainly for 
temporal/sequential information processing [1]. The general concept of RC is to transform sequential 
input data into a high-dimensional dynamical state using a “reservoir” and then perform a pattern 
analysis for the reservoir state in a “readout”. This concept was originally conceived with a special 
class of recurrent neural network (RNN) models (see Fig. 1(a)), such as echo state networks (ESNs) [2] 
and liquid state machines (LSMs) [3]. The main characteristic is that the reservoir is fixed and only the 
readout is adapted or optimized using a simple (mostly linear) learning algorithm, thereby enabling 
fast model training. Owing to the computational efficiency, software-based RC on general-purpose 
digital computers has been widely applied to pattern recognition, such as classification, prediction, 
system control, and anomaly detection, for various time series data. To improve computational 
performance, many variants of RC models have been actively studied [4]. 
 
On the other hand, hardware-based RC is an attracting option for realizing efficient machine learning 
devices. A reservoir can be constructed not only with RNNs but also with other nonlinear systems. In 
fact, a rich variety of physical reservoirs have been demonstrated using electrical, photonic, spintronic, 
mechanical, material, biological, and many other systems (see Fig. 1(b)) [5]. Such physical RC is 
promising for developing novel machine learning devices as well as for finding unconventional physical 
substrates available for computation. The system architectures of hardware-based reservoir can be 
mainly classified into several types, including network-type reservoirs consisting of nonlinear nodes, 
single-nonlinear-node reservoirs with time-delayed feedback [6], and continuous medium reservoirs 
[7]. Many efforts are currently underway to improve computational performance, enhance energy 
efficiency, reduce computational cost, and promote implementation efficiency of the physical 
reservoirs. They are often combined with a software-based readout or a readout device based on 
reconfigurable hardware capable of multiply-accumulate operation. 
 
Further advances in physical RC would contribute to realizing novel artificial intelligence (AI) chips, 
which are distinguished from AI chips for deep learning. One of their potential targets is edge 
computing [8]. High-speed machine learning computation for data stream obtained from sensors and 
terminal devices would lead to data traffic reduction and data security enhancement in the Internet 
of Things (IoT) society. 
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Current and Future Challenges 
In exchange for the merit that speedy training is possible for RC systems with simple readouts, the 
fixed reservoir needs to be well designed for high computational performance. For ESNs and LSMs, 
there are plenty of theoretical and experimental results helpful in designing “good” RNN-based 
reservoirs [9]-[12]. So far, the potential of RC framework has been shown for many benchmark tasks 
and practical applications (see Table 1) [5]. Current challenges on software-based RC include 
enhancing the utility of RC models for industrial applications, comparing their cost-performance ratio 
with that of other machine learning methods, and developing extremely efficient RC models through 
various extensions. 
 
For hardware-based RC, however, design principles have yet to be fully established. Therefore, a 
fundamental challenge is to make recipes for constructing “good” physical reservoirs as well as 
identifying the main components governing the computational performance. The computational 
performance of RC systems relies on dynamical states of reservoirs when driven by input signals, which 
should have nonlinearity and memory (or history dependency) for temporal pattern recognition. The 
response characteristics of reservoirs can differ depending on the type of reservoir architecture, the 
physical property of the media/substrates in the reservoir, and the pre- and post-processing of signals 
to and from the reservoir. It is not straightforward to clarify how each of these factors influences the 
computational ability of the whole RC system, because they are not independent of each other in 
many cases. In hardware implementation of physical reservoirs, it is needed to consider physical 
constraints, such as possible time resolution and measurement precision in signal processing, which 
could also affect the computational property. Therefore, more theoretical and experimental studies 
are necessary for elucidating the relationship between physical and computational properties of RC 
systems. 
 
Toward practical applications of hardware-based RC systems, it is demanded to evaluate each physical 
reservoir in terms of different aspects such as computational performance, processing speed, power 
efficiency, scalability, miniaturizability, and robustness. After an accumulation of these evaluations for 
various pattern recognition tasks, it would be possible to make a comparison between different RC 
systems and determine which physical RC system meets a specific purpose. It is also significant to 
promote an integration of RC-based machine learning devices with IoT devices. 
 
Advances in Science and Technology to Meet Challenges 
RC models can be more efficient by using additional techniques and extended architectures. For 
instance, a hybrid of an ESN and a knowledge-based model enables better prediction of 
spatiotemporal chaotic behaviour in high-dimensional dynamical systems [13]. RC models can also be 
combined with some other machine learning techniques found in this roadmap. Another extended RC 
model is the deep RC model consisting of multiple reservoirs [14], which is effective for diversifying 
temporal representations and generating rich dynamical behaviour. 
 

Figure 1.  RC frameworks where the reservoir is fixed and only the readout weights 𝑊𝑊out is trained.  (a) A conventional RC system with 
an RNN-based reservoir as in ESNs and LSMs. (b) A physical RC system in which the reservoir is realized using a physical system or 
device. Figure reproduced from [5]. CC BY 4.0. 
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Methodologies for designing and implementing hardware-based RC are currently under intensive 
investigation. For instance, substantial progress has been made for electronic RC [15] and photonic RC 
[16]. Compared with them, other physical RC systems are still in the initial stage of development. More 
studies are required to harness nonlinearity and memory of physical reservoirs for efficient 
computation. 
 
On the one hand, it is significant to improve computational performance of physically implemented 
RC hardware such that it is competitive with other machine learning hardware. On the other hand, 
mathematical modelling and simulations of physical reservoirs are useful for proof-of-concept of novel 
hardware-based RC systems and analyses of their mechanisms. Both approaches are complementary 
for addressing the challenges mentioned above. 
 
Spiking neural networks (SNNs), which is one of the central topics in neuromorphic computing, have 
often been used for implementing a reservoir, mostly in the context of LSMs. Neuromorphic chips 
based on SNNs are available for emulating LSM models and thereby useful for exploring optimal 
setting of SNN-based reservoirs [17]. In the future, efficient SNN-based machine learning hardware 
for real-time computation could be realized based on the RC framework with biologically plausible 
mechanisms. 
 
 

 

 
 
Concluding Remarks 
Toward realizing extremely efficient RC systems and hardware for temporal pattern recognition, both 
algorithmic and implementation efforts are necessary. Moreover, both physical and computational 
viewpoints are required for development of physical RC. Therefore, the progress of physical RC would 
be accelerated by interdisciplinary collaborations between experts in different research areas. 
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Table 1.  Examples of subjects in RC applications. Table reproduced from [Tanaka et al. 2019]. CC BY 4.0. 
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3.7 – Computing with Spikes 
Simon Thorpe, CerCo, Université Toulouse 3, CNRS, CHU Purpan, Pavillon 
Baudot, 31059 Toulouse, France 
 
Status 

Deep learning architectures now dominate artificial intelligence. But although they are superficially 
neurally-inspired, there are significant differences with biology. The "neurons" in such systems 
typically send floating-point numbers, whereas real neurons send spikes. Attempting to model 
everything with floating-point numbers seems doomed to failure. The brain has 86 billion neurons, 
with around 7000 synapses each on average. Real-time simulation of such a system with a resolution 
of 1 millisecond would require (8.6E+10)*(7.0E+3)*(1.0E+3) floating-point operations a second – over 
600 PetaFLOPS, even without worrying about the details of individual neurons. This would saturate 
the most powerful supercomputer on the planet and require 30 Megawatts of power – over one 
million times the brain's remarkable 20W budget. How does the brain achieve such a low energy 
budget? It seems very likely that spikes could be a key to this efficiency and a reason why, since the 
late 1990s, spiking neural networks have attracted increasing interest [1-3]. 

A first critical advantage is that computation only occurs when there are spikes to process. The AER 
protocol (Address Event Representation), first proposed in 1992 [4], communicates by sending lists of 
spikes. It is used in many Neuromorphic systems, including Dynamic Vision Sensors (see section 3.7) 
and the multi-million processor SpiNNaker project  [5, 6]. An early event-driven spiking neuron 
simulator was the original version of  SpikeNet [7, 8].  At the time, the joke was that such a system 
could simulate the entire human brain in real-time – as long as none of the neurons spiked!  

Second, spikes allow the development of far more efficient coding schemes. The vast majority of 
researchers in both neuroscience and neural networks assume that neurons send information using a 
firing rate code. And yet, the very first recording of responses of the optic nerve by Lord Adrian in 
Cambridge in the 1920s demonstrated that while increasing the luminosity of a flashed stimuli 
increased both the peak firing rate and maintained firing rate of fibres, there was also a striking 
reduction in latency [9]. Thus, even with a flashed stimulus, response latency is not fixed.  Sensory 
neurons effectively act as intensity-to-delay convertors - a fact effectively ignored for over six decades. 
But in 1990, it was proposed that spike-arrival times across a population of neurons could be a highly 
efficient code [10], an idea confirmed experimentally for the retina in 2008 [11]. 

 
Current and Future Challenges 
 
If we accept that sensory neurons can act as intensity-to-latency convertors, it opens a whole range 
of interesting options.  Figure 1 compares various spike coding schemes for transmitting the activation 
levels for 16 input channels labelled A-P with 4-bit resolution. The "standard" method would be rate 
coding, which counts the number of spikes in a fixed period (e.g. 100 ms).  But there are numerous 
drawbacks of such an approach. First, how do you determine the length of the observation window? 
Second, rate coding is exceptionally vulnerable to changes in global intensity or contrast of the input 
profile that completely disrupt firing rates.  
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Using a temporal coding scheme avoids these problems. One option uses the order of firing as a code 
- Rank Order Coding [12]. Synaptic weights are set to values that depend on the input's rank. Then a 
simple feedforward shunting inhibition mechanism makes neurons selective by progressively reducing 
the effectiveness of later spikes. Although feasible, Rank Order Coding perhaps too powerful. Even 
with just 16 inputs, there are factorial 16 possible firing orders– nearly 21 trillion. Each pattern could 
be detected by a neuron with the appropriate set of weights.    

Another option, N-of-M coding [13], is much simpler. It uses a feedback inhibition circuit to count 
input spikes and block further firing once a given number of inputs have fired - an inexpensive way to 
implement a k-WTA (Winner-Take-All circuit). If a target neuron has W connections, it can detect 
specific combinations of inputs. Effectively, each neuron gets a level of excitation that depends on 

Figure 1.  Comparison of three different spike-based coding strategies. Top: Conventional Rate Coding using counts of spikes in an  
relatively long observation window. Middle: Rank Order Coding uses the order of firing of just the first spike in a shorter window. 
Bottom: N of M Coding which limits the number of spikes that a transmitted allows very rapid and efficient transmission of large 
amounts of data. 
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how well the N inputs spikes match their set of weights. Crucially, this can be done with binary 
synapses, greatly simplifying the implementation. 

Interestingly, this sort of coding had already been implemented in a commercial image processing 
package developed by SpikeNet Technology around two decades ago. The one published paper on the 
technology [14] explained that synapses between the eight orientation maps and neurons in the 
recognition maps were very sparse (less than 1% of possible connections). But it failed to mention that 
all the connections were binary - simply because the company wanted to keep its "secret sauce" 
secret!  

More recently, N-of-M coding has been explicitly implemented in AKIDA, a chip developed by 
BrainChip Inc, which can implement up to 1.2 million neurons. Individual neurons can have up to 
160,000 inputs (M=160,000), and the number of active inputs (N) can be any number. The chip counts 
the number of matches between the N incoming spikes and the neurons set of W binary weights, and 
the neuron fires if the number of matches exceeds a prespecified threshold.  
 

Advances in Science and Technology to Meet Challenges 

Switching to temporal coding with spiking neurons also makes it possible to envisage much more 
efficient learning algorithms. Standard Backpropagation can undoubtedly train systems to solve 
particular problems but requires huge numbers of training trials with labelled data. Fortunately, a 
human infant's brain does not need to be trained with millions of images of dogs and cats to categorize 
new images correctly! 

There is now good evidence that humans learn to detect virtually anything new that repeats, with no 
need for labelled data. If humans listen to meaningless Gaussian noise containing sections that repeat, 
they rapidly notice the repeating structure and form memories lasting for weeks [15]. And in 
experiments where random images from the ImageNet database are flashed at rates of up to 120 
frames per second, humans notice images that repeat, even with only  2-5 presentations [16]. None 
of the existing floating-point (or rate-based) supervised learning schemes could explain such learning. 
In contrast, a simple Spike-Time Dependent Plasticity rule that reinforces synapses activated before 
the target neuron fires makes them develop selectivity to patterns of input spikes that repeat[17], and 
will even find the start of the pattern [18]. Similar methods have also been used to generate selectivity 
to repeating patterns in the output of a Dynamic Vision Sensor corresponding to cars going by on a 
freeway – again in a totally unsupervised way [19]. 

These STDP based learning rules use continuously variable synaptic weights and typically require tens 
of repeats to find the repeating pattern, even when all parameters are optimized. But we have recently 
developed a new learning rule called JAST using binary weights  [20] that can match our ability to spot 
repeating patterns in as few as 2-5 presentations. The target neuron starts with a fixed number of 
binary connections. Then, instead of varying the strength of the synapses (as in conventional STDP 
learning), the algorithm effectively swaps the locations of the connections to match the repeating 
input pattern.  

The algorithm was originally implemented on a low-cost Spartan-6 FPGA, already capable of 
implementing a network with 4096 inputs and 1024 output neurons, and calculating the activation 
level and updating all the outputs 100,000 times a second. The circuit also included the learning 
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algorithm on-chip. Recently, the algorithm has been implemented on BrainChip's AKIDA chip with 
even more impressive performance. 

 
Concluding Remarks 

Although the Deep Learning revolution has transformed the landscape and allowed the development 
of artificial systems that rival or surpass human levels of performance, current systems lag behind 
their biological equivalents on several fronts. They are several orders of magnitude less energy 
efficient than biological systems, and the mode of learning is highly non-biological.   

Spiking neural networks could overcome many of these limitations in the next few years. Firstly, 
current systems are handicapped by very inefficient rate-based coding schemes or their floating-point 
equivalents. Spikes allow the use of temporal coding schemes such as Rank Order Coding and N-of-M 
coding that are way more efficient. Second, spikes allow the use of Spike-Time Dependent Plasticity 
rules, some of which operate with binary connections and can learn to recognize repeating patterns 
very efficiently.   

Finally, sending information as spikes will allow the implementation of vast networks with billions of 
neurons and trillions of connections even with currently available technology. The critical question is 
the level of sparseness that can be achieved. It is quite possible that many cortical neurons are silent 
a lot of the time ("Neocortical Dark Matter"), and that each neuron may only need a small number of 
(binary) connections. If so, the future impact of spike-based computation could be enormous.  
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4.1 - Robotics 
Chiara Bartolozzi, Event Driven Perception for Robotics, Italian Institute of 
Technology, iCub Facility, Genoa, Italy 
 
Status 
Neuromorphic systems, being inspired on how the brain computes, are a key technology for 
the implementation of artificial systems that solve problems that the brain solves, under very 
similar constraints and challenges. As such, they hold the promise to efficiently implement 
autonomous systems capable of robustly understanding the external world in relation to 
themselves, and plan and execute appropriate actions. 
The first neuromorphic robots were proof of concepts based on ad hoc hardware devices that 
emulated biological motion perception [1]. They relied on the know-how of chip designers, 
who had to manually turn knobs to tune the chip behaviour. That seed could grow into a 
mature field thanks to the availability of hardware that could be more easily tuned by non-
experts with standard software tools [2] and of quality dynamic vision sensors [3] and 
neuromorphic computing chips and systems [4,5] featuring many instances of neurons and 
(learning) synapses that could be used as computational primitives for perception and 
decision making. Since then, neuromorphic robotics followed three main paths, with the 
development of visual perception for robots using event-driven (dynamic) vision sensors 
[6,7], proof-of-concept systems linking sensing to control [8] and spiking neural networks for 
the control of motors [9,10]. At the same time, the neurorobotics community started 
developing models of perception, cognition and behaviour based on spiking neural networks, 
with recent attempts to implement those on neuromorphic platforms [11,12,13]. Finally, the 
computational neuroscience community has developed learning theories to reconcile deep 
neural networks with biologically inspired spike-based learning and to directly develop spiking 
neural models for motor control that in the future could be implemented on neuromorphic 
hardware [14,15,16]. 
In this rich and lively scenario, the multiple contributing communities and research fields have 
the potential to lead to the next breakthrough, whereby neuromorphic sensing and 
computing support the development of smart, efficient and robust robots. This research is 
timely and necessary, as robots are moving from extremely controlled environments, to 
spaces where they collaborate with humans, where they must dynamically adapt, borrowing 
from neural computational principles. 

 

 
 

             
    

Figure 1.  Neuromorphic robots: on the left the tracker chip mounted on a pan-tilt unit [1], 
on the right the iCub humanoid platform featuring event-driven vision sensors. 
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Current and Future Challenges 
The complexity of robotics poses a number of challenges for the neuromorphic community, 
that needs to demonstrate scalable methods for sensing, perception, decision making and 
control, that can be deployed in complex applications. 
The event-driven readout should be applied to the majority of sensors on the platforms, 
including those that convey information about the robot’s state (inertial, F/T sensors, 
encoders, etc.). Additionally, more sophisticated event-driven encoding could be 
implemented, by using local computation that emulates the neural encoding of specific 
sensory modalities. 
Understanding the neural code relative to stimuli properties up to decision making [17] will 
guide the design of spiking neural networks to extract meaningful information and take 
appropriate decisions. 
Controlling a robot requires translating information from the sensory to the joint domain, 
coordinating different joints to implement stable and smooth trajectories, and counteracting 
actuation errors. Also in this domain, it is crucial to understand principles of biological control 
and actuation that lead from the cortical motor commands, down to muscles’ recruitment 
and the relative feedback signals. 
At the same time, the big question is how much these principles are shaped on the properties 
of muscles, and how they have to change to be applied to any type of physical (artificial) 
actuation. Hidden in this research domain is the intrinsic link between the neural code for 
actuation and the sensory feedback code that interacts with control signals to effectively drive 
the system. 
Given the number of components that need to be developed and orchestrated, a possible 
path is the progressive integration of specific neuromorphic modules within a “traditional” 
robotic architecture. However, the overall system’s architectures might be based on very 
different assumptions and this hybrid architecture might not fully exploit the advantages of 
the neuromorphic paradigm. A fully neuromorphic system should be the final goal, requiring 
an exponential growth of the community working on all the bits and pieces that compose a 
robotic system. 
The signature of neuromorphic robots will be continuous learning and adaptation to different 
environments, different tasks, changes in the robot plant, different collaborators. This must 
be supported by hardware capable of handling plasticity at multiple temporal scales and a 
strong knowledge of how the brain implements such mechanisms. 
At the technological level, it is paramount to develop neuromorphic devices that can be 
embedded on robots, increasing the neurons and synapses count and fan-in fan-out 
capabilities, while maintaining a low power budget. Ideally, those devices have standard 
interfaces that do not require the use of additional components to be connected to the 
software infrastructure of the robots. 
 
Advances in Science and Technology to Meet Challenges 
The main components in which robotics is traditionally categorised – perception, decision-
making and control – are strictly connected and influence each other. Studying their interplay 
and understanding how the neural code reflects sensory information, decision processes and 
how these are influenced by action and vice-versa, is the future research challenge to bring 
neuromorphic agents to a level of complexity capable of enabling robots to effectively 
interact with humans. 
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An advancement in the understanding of the role of different brain areas, their working 
principles and their interaction with other areas across different temporal and spatial scales 
shall guide the design of artificial architectures using spiking neuron models, synaptic 
plasticity mechanisms, connectivity structures to implement specific functionalities. It is 
crucial to find the right level of detail and abstraction of each neural computational primitive 
and develop a principled methodology to combine them. Starting from highly detailed models 
of brain areas, the community shall find reduced models that can implement their basic 
functionality and that can be implementable on neuromorphic hardware. 
As the community is now developing spiking neural networks to extract information from a 
single sensory modality, the next step would be to take into account information from other 
sensory modalities, so that decisions depend on the state of the environment, of the robot 
and of the ongoing task. Among many others, a key area to take inspiration from is the 
cerebellum, that supports the acquisition of motor plans and their adaptation to the current 
(sensed) conditions. The resulting computational frameworks shall therefore include dynamic 
and continuous learning and adaptation. 
On the other hand, progress is necessary in the neuromorphic hardware supporting those 
new frameworks. New circuits for the emulation of additional computational primitives are 
needed, as well as the possibility to support dynamic, continuous learning and adaptation at 
multiple timescales. 
Specific to the robotic domain, neuromorphic devices should be truly embeddable. To this 
aim, standardisation of communication protocols, programming tools, online integration with 
the robot’s middleware must be developed. The necessary miniaturisation to pack more 
computational resources on a single system that can be mounted on a robot goes through 
the integration of silicon devices with memristive devices. On a longer term, nanotechnology 
and flexible electronics could represent a viable solution to further miniaturize, or distribute 
computational substrates that can de-localise computation to the periphery, or create folded 
structures similar to the cortex, that through folding increased the surface available for 
computation, achieving higher computational capabilities. 
 

 

 
Concluding Remarks 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Timeline of a possible development roadmap. In green required theoretical advancements in order of increasing complexity. In 
red the technological roadmap highlighting the path for new circuit and devices development, as well as the infrastructure needed for 
the integration on robotic platforms. 
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Neuromorphic sensing, computing and actuation are based on design principles that will 
make them excel in applications for which animals have evolved. At the same time, animals’ 
behaviour does not only depend on the brain but also on its embodiment, as the shape and 
distribution of sensors and of muscles, tendons, bones and their interaction influence how 
the sensory signals are acquired and must be interpreted, and how the control signal has to 
be delivered. The continuous interplay between brain, body and environment shapes neural 
computation and this must be taken into account when tailoring neuromorphic computation 
to robots. 
The result of this research path will be crucial and timely for developing the next generation 
of robots that face the extremely hard challenge of collaborating with humans in human-
designed habitat. 
The interdisciplinary nature of the neuromorphic approach results in a call for action towards 
different research communities and different souls within the neuromorphic community. 
Computational neuroscience and machine learning are called to be the theoretical backbone 
of neuromorphic computing, micro- and nano-electronics, engineering, physics and material 
science are called to develop the next generation physical substrate for neuromorphic sensing 
and computing. 
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4.2 – Self-Driving Cars 
Jonathan Tapson, School of Electrical and Data 
Engineering, University of Technology, Sydney, Australia 
 
Status 
Self-driving cars have been a staple of science fiction for decades; more recently, they have seemed 
like an attainable goal in the near future.  The machine-learning boom of the period 2015-2020 gave 
great cause for optimism, with experts such as the US Secretary of Transport Anthony Foxx declaring 
in 2016 [1] that “By 2021, we will see autonomous vehicles in operation across the country in ways 
that we [only] imagine today…My daughter, who will be 16 in 2021, won’t have her driver’s license. 
She will be using a service.”   
This optimism has faded away in the last three years, with the recognition that while it is 
straightforward to make cars autonomous in simple environments such as freeway driving, there are 
a multitude of situations where driving becomes too complex for current solutions to achieve 
autonomy.  It is tempting to refer to these as “corner cases” or “edge cases” – in the sense of being a 
highly unlikely combination of circumstances, at a “corner” or “edge” of the feature space, which 
produces a situation where a machine learning algorithms fails to operate correctly – except that, in 
the real-world of driving, these situations appear to be far more common than was originally expected. 
 
It may be helpful to use the industry terminology when discussing self-driving cars.  Self-driving is more 
formally known as ADAS (Advanced Driver Assistance Systems) and the industry generally uses the 
Society for Automotive Engineering’s (SAE) five-level ADAS model, illustrated below, when discussing 
autonomous driving capabilities. 

 

 
The more recent perception of ADAS progress can be summed up in a quote from Prof. Mary 
Cummings, Director of Duke University’s Humans and Autonomy Laboratory [2]: ““There are basically 
two camps.  First are those who understand that full autonomy is not really achievable on any large 
scale, but are pretending they are still in the game to keep investors happy.  Second are those who 
are in denial and really believe it is going to happen.” 

Figure 1.  The SAE ADAS model.  Note that levels 0-2 depend on continuous monitoring by the driver, whereas 3-5 do not.  The 
customary vision of an autonomous car would be ADAS Level 5 – a car which is able to be autonomous in all environments without any 
human supervision or intervention. 
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Between the optimistic and pessimistic extremes, there is a consensus view amongst ADAS 
researchers that while full Level 5 ADAS is unlikely to be available in the next five years, Level 4 ADAS 
is both an attainable and useful target. 
 
Current and Future Challenges 
One core challenge in achieving high levels of ADAS is perception, and particularly visual perception.  
It has become apparent that the visual perception of human drivers is extraordinarily hard to 
reproduce artificially.  The problem may be summed up with the following example: most, if not all, 
human drivers can infer the intent of a pedestrian viewed at a distance of 100m.  This is critically 
important for driving at moderate to high speeds (70-100kmh-1) in non-freeway environments, and is 
as yet impossible to achieve with machine vision [3].  Consider for example that a pedestrian 1.5m 
high when viewed at 100m distance subtends a angle of less than 1° vertically and perhaps 0.1° 
horizontally.  When imaged by a video imager through a moderately wide-angle lens, such as is 
necessary for the forward-facing cameras in an ADAS system, this corresponds to about 3x16 pixels in 
an HD system.  It might be thought that the system is improved by increasing the image resolution (it 
would be 10x85 pixels in a 4K system) but this also increases the space which must be searched for 
the pixels of interest. 
A second core challenge in ADAS is the complexity of the world that must be modeled by the machine 
learning systems.  Consider the example of a driver who sees a soccer ball bounce across the road in 
front of their moving car.  A human driver is able to draw on an entire world experience concerning 
balls (and their relationship to perhaps children, or dogs) in reacting to this event.  A machine learning 
system can (generally) only draw upon cases in their training set in determining a response.  The effect 
is that a human is able to respond to events which have never previously occurred, in their or anyone’s 
experience; machine learning systems are, as yet, not reliable in this regard.  This is utterly different 
to the problem faced by, say, a Go-playing ML system – the rules (the world model) of Go can be 
written in a single page of text.  It has taken some time for ML researchers to fully appreciate the 
difference between these two problems. 
A third problem is the power cost of computation required for ADAS.  It is obviously difficult to 
anticipate the power cost of something that hasn’t been achieved yet, but the table below gives typical 
figures.  For context, the 2019 Tesla FSD (Full Self Driving) chip is reported to achieve 36 TOPS at 72W 
power consumption. 
 

ADAS Capability Compute Requirements 
L2 2 TOPS 
L3 24 TOPS 
L4 320 TOPS 
L5 4000+ TOPS 

 
These figures raise questions as to the extent to which ADAS systems will reduce the power and range 
available, particularly for electric vehicles.  One model suggests a range reduction of the order 9-20% 
for the control systems for Level 4 ADAS [4], which is not insignificant, particularly for electric vehicles 
where range is a critical issue. 
 
Advances in Science and Technology to Meet Challenges 

Table 1.  Compute requirements for various ADAS levels (source: Horizon Robotics). 
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The perceptive reader will see that the problems facing the self-driving car industry are those which 
are addressed by neuromorphic engineering: modeling and reproducing human-quality perception; 
building cognitive models of the world; and reducing the power required for real-time perception-
cognition-action loop computation.   
There has been some interest in using neuromorphic dynamic vision sensors [5] for ADAS vision, but 
this is hampered by the low spatial resolution of current DVS sensors (which has a complex 
relationship to the spatio-temporal event processing capacity of the interfaces and downstream 
processors used) and a perception, perhaps inaccurate, that ADAS will always require conventional 
(static, framed) sensors, and therefore the inclusion of DVS systems in the sensor pack is a costly 
redundancy.  This problem may be solved in due course by hybrid DVS/static imagers.  In the bigger 
picture, the benefits offered by the high dynamic range and spatio-temporal resolution of DVS imagers 
has led to a general interest in event-based visual processing, which shows some potential to improve 
ADAS vision processing independently of the use of DVS.   
Perhaps the most important feature of human vision which enables driving is the extraordinary 
resolution of the fovea, coupled with saccadic motion to apply this resolution to small regions of 
interest (such as pedestrians).  There is significant (mostly unpublished) interest in using models of 
human salience [6] and attention to direct machine vision to areas of the visual (imager) field which 
require extra or high-resolution processing. 
Given the real-time nature of ADAS computation, and the necessity to process correlated streams of 
visual and 3D point-cloud data (from lidar systems), there is some expectation that event-based 
neuromorphic computation may be more suitable than current GPU-type computational hardware.  
At least one neuromorphic event-based hardware startup is focused on real-time vision processing for 
this purpose [7]. 
 
Concluding Remarks 
Achieving truly autonomous vehicles is something of a holy grail for engineering in the current era.  
Recently, there has been a reckoning that it is unlikely to be solved by incremental imporvements 
based on current technologies.  Neuromorphic engineering offers exactly the technological leaps that 
are required in perception, computation and cognition in order to achieve this goal.  In particular, 
building machine vision systems that acknowledge and model the unique features of human vision, 
and building computational systems that exploit the event-based sensory flow that is common to both 
human and ADAS systems, seem like clear areas for fruitful research. 
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4.3 – Neuromorphic computing for olfaction and chemosensation 
Thomas A. Cleland, Dept. of Psychology, Cornell University, Ithaca, NY, USA 
 
Status 
 Artificial olfactory systems were early adopters of biologically-inspired design principles.  Persaud 
and Dodd constructed an electronic nose in 1982 based explicitly on the principles of the mammalian 
olfactory system – specifically, the deployment of a diverse set of broadly-tuned chemosensors, with 
odorant selectivity arising from a convergent feature detection process based on the pattern of sensor 
responses to each odorant [1]. Such cross-sensor patterns, inclusive of sampling error and other 
sources of noise, invite machine learning strategies for classification. Gardner and colleagues 
subsequently trained artificial neural networks to recognize odorant-associated response patterns 
from chemosensor arrays [2], and constructed a portable, field-deployable system for this purpose 
[3].   
 The biomimetic principle of chemical sensing by arrays of partially selective chemosensors has 
remained the state of the art [4, 5].  Arrays obviate the need to develop highly selective sensors for 
analytes of interest, as high specificity can be readily achieved by the deployment of larger numbers 
of partially selective sensors [6].  Moreover, such systems are responsive to a wide range of chemical 
diversity (odorant quality space; Figure 1), enabling the identification of multiple chemical species and 
diagnostic odorant mixtures and effectively representing their similarity relationships.  The intrinsic 
redundancy of such chemosensor arrays also renders their responses more robust to contamination 
or interference, provided the analysis method is able to use the redundant information effectively.    
 In contrast, strategies for post-sampling signal processing and analysis have varied.  Typically, 
chemosensor array responses are conditioned by electronic preprocessors and then analyzed by one 
of a range of methods including linear discriminant analysis, principal components analysis, similarity-
based cluster analyses, and support vector machines, along with a variety of artificial neural network-
based techniques [4, 5, 7, 8]. However, more directly brain-inspired techniques also have been applied 
to both the conditioning and analysis stages of processing. For example, the biological olfactory bulb 
(OB) network (Figure 2) decorrelates similar inputs using contrast enhancement [9].  When applied as 
signal conditioning to artificial sensor data, this operation improved the performance of a naïve Bayes 
classifier [10]. Similarly, inhibitory circuit elements inspired by the analogous insect antennal lobe (AL) 
have been deployed to enhance the performance of support vector machines [8, 11].  Finally, fully 
neuromorphic circuits for analysis and classification have been developed that are based directly on 
OB/AL circuit architectures (first by [12]; reviewed in [13]; more recently [14, 15]).  These approaches 
are discussed below. 
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Current and Future Challenges 
 
 In many ways, the development of functional/deployable neuromorphic systems is presently 
limited by algorithms.  The energetic and efficiency benefits of neuromorphic engineering – arising 
from strictly local computation, the colocalization of memory and compute, and spike-mediated 
communication – are clear in principle, but these properties demand qualitatively new computational 
strategies to address real-world problems effectively.  Developing and optimizing these algorithms for 
particular tasks of interest is a central challenge for contemporary neuromorphic design.   
  One strategy for developing effective neuromorphic algorithms is to adapt circuit motifs from the 
biological brain. Armed with well-developed computational circuit models of olfactory brain 
structures, neuromorphic olfaction has embraced this strategy, incorporating features such as layered 
columnar organization, recurrent lateral inhibition, temporal dynamics, spike phase coding, distinct 
classes of excitatory and inhibitory neurons, custom synaptic learning rules, and adaptive network 
expansion [9].  Notably, even within these biomimetic constraints, algorithms can differ substantially.  
For example, lateral inhibition is often applied to decorrelate inputs, but also has served in different 
implementations to implement attractor dynamics [7, 12, 15], unsupervised clustering [14], and 
attractor-based denoising [15] in service to different functional goals.   
 The present challenge is to adapt these biomimetic algorithms to practical applications.  
Neuromorphic technology is well suited for low-power edge devices, putting a premium on properties 
like rapid, online learning and adaptation to local conditions that may be partially or wholly 
unpredictable.  Notably, both properties are weaknesses of deep networks [15], which require 
extensive training with examples of all planned targets including reasonable estimates of predicted 
future variance. Fundamentally, online learning in neuromorphic olfaction arises from selective 
plasticity, in which the network architecture directs the potentially disruptive effects of new learning 
to specific circuit elements, coupled with adaptive network expansion, which expands the physical 
network to encompass this new learning and render it accessible.  Systems with sufficient capacity for 
expansion can exhibit lifelong learning capabilities.  We have referred to this collection of properties 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

Figure 1.  Illustration of the capacities of chemosensor arrays to distinguish small changes in odorant quality.  [A] Axes denote a two-
dimensional quality (Q-) space of physicochemical similarity, ellipses depict the selectivities of three different chemosensors sampling 
that space.  Sensors with broader receptive fields cover a given sensory space more effectively.  Discrimination capacity (denoted by hot 
colors) is maximized where the dropoff of sensitivity is steepest, and where the chemoreceptive fields of multiple sensors overlap. [B] 
Example two-dimensional Q-space with 30 sensors (ellipse pairs, distinguishing selectivity from sensitivity) and 40 chemical ligands 
(points) deployed. [C] Mean discrimination capacity depends on the number of sensors deployed into a Q-space, shown as a function of 
the number of competing ligands deployed into the Q-space illustrated in B.  Deploying additional chemosensors reliably improves 
system performance.  Adapted from [6]. 
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as learning in the wild [9, 16], and focused on the capacity of such olfaction-inspired algorithms to 
learn targets from one- or few-shot learning and identify known targets amidst unpredictable 
interference [15], function in statistically unpredictable environments [17], and mitigate the effects of 
sensor drift and decay [16].  Notably, working neuromorphic olfaction algorithms have been deployed 
on diverse edge-compatible hardware platforms including Intel Loihi, IBM TrueNorth, field-
programmable gate arrays, and custom neuromorphic devices.    
 
  

 

 
 
Advances in Science and Technology to Meet Challenges 
 
 The theoretical performance capacities of machine olfaction are not clearly constrained by 
anything short of the fundamental signal to noise limits of their deployed environment.  The basic 
capacity to distinguish among similar odorants can be steadily increased by deploying arrays with 
larger numbers of different chemosensors, provided those chemosensors are responsive to a range of 
relevant ligands and distinguish between some of them (Figure 1; [6]).  The commensurate expansion 
in network size is tractable on neuromorphic devices in terms of both execution time and energy 
expenditure (illustrated on Intel Loihi by [15]).  The redundancy derived from sensors’ overlapping 
chemoreceptive fields also offers improved resistance to interference from other odorant sources.  
The actual capacity for such signal restoration under noise depends on the development of circuits 
that leverage this capacity, and while early efforts are promising [15], there is substantial room for 
algorithm improvement, such as integrating the pattern completion and clustering capabilities of 
piriform cortex circuitry, developing cognitive computing methods such as hierarchical category 
learning to optimize speed-precision tradeoff decisions, and improving performance in the wild.  
Making these capacities robust requires the development of larger-scale chemosensor arrays, 
including compact, high-density arrays that can be deployed in the field. Different sensor technologies, 
optimized both for different sample phases (gas, liquid) and different chemoreceptive ranges of 
sample quality (e.g., food odors for quality control, toxic gases for safety), will be required.  Large 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Annotated circuit diagram of mammalian olfactory bulb with three sensor classes (denoted by color).  Human olfactory bulbs 
exhibit roughly 400 sensor classes, whereas those of rats and mice express roughly 1200.  Glomerular layer (GL) circuitry performs signal 
conditioning, whereas the formation of target representations depends on synaptic plasticity between principal neurons (MT) and 
granule cell interneurons (Gr) in the external plexiform layer (EPL).  Principal neurons then project to multiple target structures including 
piriform cortex, which feeds back excitation onto granule cell interneurons.  Adapted from [9]. 
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libraries of candidate sensors can be screened [4, 18], reducing the need for predictive models of 
sensors’ chemoreceptive fields in this process. However, molecular imprinting technology, developed 
to produce highly specific chemosensors, now provides this capacity [19], and in principle could be 
adapted to produce broader receptive fields by imprinting analyte mixtures.   
 Neuromorphic circuits are not readily adaptable to arbitrary tasks; the domain-specific 
architectures that underlie their efficient operation also delimit the range of their applications.  
Olfaction-inspired networks are not limited to chemosensory applications [16], but they are not likely 
to be effective when tasks do not match their structural priors.  However, the characterization and 
analysis of such fully functional neuromorphic circuits enables the identification and extraction of 
computational motifs, yielding toolkits that can be intelligently applied to new functional circuits.  
Moreover, new techniques for spike-based gradient descent learning have successfully demonstrated 
few-shot learning in neuromorphic circuits preconfigured for the task domain by transfer learning [20].  
The design of task-specific neuromorphic circuits in the future is likely to depend on combinations of 
these strategies, with qualitative circuit elements drawn from theory and generalized domains 
established therein via emerging optimization strategies.    
 
 
Concluding Remarks 
 
 Machine olfaction has been an early and successful adopter of neuromorphic strategies for 
sampling and computation, in part because of the detailed elucidation of olfactory system networks 
by experimental and computational neuroscience.  Larger-scale sensor arrays and the continued 
development of postsampling neuromorphic circuitry for signal conditioning and contextually-aware 
category learning in the wild are critical emphases for near-term progress.  More broadly, the 
benchmarking and analysis of the various computational motifs contained in these functional 
biomimetic architectures may address broader theoretical and task-dependent questions such as 
where and when to gate plasticity in selectively plastic architectures, and the transformative capacities 
of local learning rules deployed within particular network contexts.   
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4.4 – Event Vision Sensors 
Christoph Posch, Prophesee, Paris, 
 
Status 
Neuromorphic Event-based (EB) vision sensors take inspiration from the functioning of the human 
retina, trying to recreating its visual information acquisition and processing operations on VLSI silicon 
chips. The first device of this kind out of C. Mead's group at Caltech, named the "Silicon Retina", made 
it on the cover of Scientific American in 1991 [1]. In contrast to early biologically more faithful models, 
often modelling many different cell types and signalling pathways, in turn leading to very complex 
designs with limited practical usability, in recent years more focus has been put on the creation of 
practical sensor designs, usable in real-world artificial vision applications. In [2], a comprehensive 
history and state-of-the-art review of neuromorphic vision sensors is presented.  
 
Today, the majority of EB sensor devices are based on the "temporal contrast" or "change detection" 
(CD) type of operation, loosely mimicking the transient Magno-cellular pathway of the human visual 
system (Figure 1). In contrast to conventional image sensors, CD sensors do not use one common 
sampling rate (=frame rate) for all pixels, but each pixel defines the timing of its own sampling points 
in response to its visual input by reacting to changes of the amount of incident light [3][6][7]. 
Consequently, the entire sampling process is no longer governed by an artificial timing source but by 
the signal to be sampled itself, or more precisely by the variations over time of the signal. The output 
generated by such a sensor is not a sequence of images but a quasi-time-continuous stream of pixel-
individual contrast events, generated and transmitted conditionally, based on the dynamics 
happening in the scene. Acquired Information is encoded and transmitted in the form of data packets 
containing the originating pixel’s X,Y coordinate, time stamp, and often contrast polarity. Other 
families of EB devices complement the pure asynchronous temporal contrast function with the 
additional acquisition of sustained intensity information, either pixel individually [4] or in the form of 
frames like in conventional image sensors [5]. 
 
Due to the high temporal precision of acquired visual dynamics, inherent data sparsity, and robust 
high dynamic range operation, EB sensors gain increasing prevalence as visual transducer for artificial 
vision systems in applications where the need for high-speed or low-latency operation, uncontrolled 
lighting conditions and limited resources in terms of power budget, post-processing capabilities or 
transmission bandwidth, coincide, e.g. in various automotive, IoT, surveillance, mobile or industrial 
use cases.  

 



Roadmap on Neuromorphic Computing and Engineering 

 
Current and Future Challenges 
Despite their undeniably beneficial characteristics, EB sensors face challenges regarding practical 
usability and competitiveness in an industrial product. Given the non-deterministic asynchronous 
nature of the data generation process, leading to e.g. non-constant data rates out of the sensor, the 
topic of integration of an EB sensor with post-processing into a vision system raises different questions 
around on-chip event data preparation and interfacing.  
 
Competing technologies for EB vision systems range from conventional computer vision to radar, lidar, 
ultrasound, PIR and more.  The challenges to make EB a successful technology are related to (1) 
electro-optical performance of the sensor itself, (2) system integration issues, and (3) challenges 
around the topic of post-processing for extracting the relevant information from the event data 
stream.  
 
Pixel size is one of the most important properties for competitiveness with respect to conventional 
image sensor-based systems. Silicon area, optical format, compatibility with standard optics, camera 
module dimensions, and form factors dominate cost and applicability of the vision system. Pixel area 
limits the sensor resolution but also influences the dynamic range of the sensor, in particular its 
sensitivity at low light levels, which are important factors in key applications such as automotive, 
mobile or IoT. Thanks to semiconductor technology advances including 3D integration, back-side 
illumination and improving photodiode efficiency, continuous progress is being made on these issues. 
With increasing pixel array sizes, the throughput of the sensor readout system and data interface are 
becoming increasingly relevant to retain the pixel data temporal precision in high-speed/low-latency 
applications. Power consumption is a key aspect in many artificial vision applications, particularly at 
the edge. EB vision systems promise to deliver low-power operation thanks to the data sparsity and 
related efficiency in sensing and processing. 
 
Processing of EB sensor data can be coarsely divided into (1) algorithms that prepare and optimize the 
raw pixel event data for more efficient transmission and processing on an (external) computation 
platform, and (2) algorithms that extract higher-level application-specific information out of the event 
data, to solve a vision task such as e.g. object detection, classification, tracking, optic flow, etc. The 
first group is preferably implemented close to where the raw data are generated, i.e near-sensor or 
in-sensor. Typically implemented in an on-chip HW data pipeline, algorithms pre-process the raw pixel 
data for more efficient transmission and post-processing, also with respect to memory access and 
processing algorithms requirements. This data conditioning pipeline can include functions such as 
recoding, formatting, rearranging, compressing, thinning, filtering, binning, histogramming, framing 
etc. The latter group includes all application-specific vision processing using computer-vision and/or 
ML-based algorithms and compute models, typically running on some form of application processor. 
The question of the optimal compute fabric and architecture to be used with EB sensors is unresolved 
today, and the optimal choice application dependent. However, as discussed widely in other parts of 
this review, emerging non-Von-Neumann architectures, in particular neuromorphic approaches such 

Figure 1.  a) Simplified three-layer retina model and b) corresponding CD pixel circuitry; in c) typical signal waveforms of the pixel circuit 
are shown. The upper trace represents an arbitrary voltage waveform at the node Vp tracking the photocurrent through the 
photoreceptor. The bipolar cell circuit responds with spike events of different polarity to positive and negative gradients of the 
photocurrent, while being monitored by the ganglion cell circuit that also transports the spikes to the next processing stage; the rate of 
change is encoded in inter-event intervals; d) shows the response of an array of CD pixels to a natural scene (person moving in the field-
of-view of the sensor). Spikes, also called “Events”, have been collected for some tens of milliseconds and are displayed as an image 
with ON (going brighter) and OFF (going darker) events drawn as white and black dots. 
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as SNN, are better suited to realize an efficient EB system than e.g. general purpose CPUs. Much 
progress is being made in this area, however challenges remain around the absence of well-
established deep learning architectures, including training techniques, for event data, or the lack of 
largescale datasets. 
 
Advances in Science and Technology to Meet Challenges 
EB sensors benefit from advances in semiconductor technology. Significant progress was made since 
early designs with array dimensions of about thousand pixels and pixel sizes of 1000μm2, to today, 
about 15 years later, where the most advanced EB sensors have 1-megapixel arrays (1000x larger) 
with 20μm2 pixels (50x smaller) [7] (Figure 2). In contrast to conventional image sensors, typically 
having one photodiode and 4 or 5 transistors in each pixel, pixels of EB sensors are small analog 
computers, typically using 50+ transistors for the required signal processing and communication 
functions. Early EB sensor designs employed standard CMOS processes and later front-side illuminated 
(FSI) CIS processes. All transistors and other devices needed to be placed next to the photodiode, 
leading to large pixel sizes and low fill factors. The introduction of back-side illuminated (BSI) CIS 
processes relaxed the situation and today, 3D wafer stacking combined with small pitch metal bonding 
allows to place most of the pixel circuitry underneath the photodiode. Latest generation EB sensors 
today reach pixel pitches below 5μm and fill factors above 75% [7].  
 
Following the CMOS technology and integration roadmaps will yield EB devices with increasing 
industrial applicability. Further advances in production and packaging technologies like triple wafer 
stacking, die-stacking system-in-package and wafer-level optics will support the trend to autonomous 
ultra-low power/small form-factor edge perception devices and artificial intelligence systems where 
the sensor is highly integrated and tightly packaged with pre-processing and application processing, 
thereby significantly reducing power consumption and transmission bandwidth requirements of an 
artificial vision system, e.g. in IoT, mobile or perception networks applications. 
 
A big impact on the usability and competitiveness of EB systems is expected to come from future 
advances in neuromorphic computing and event-based processing techniques. Spiking neural 
networks (SNN) are a natural fit for post-processing to the data generated by EB sensors [8][9]. But 
the sparse data output of EB sensors is also a good match to future hardware accelerators for 
conventional deep neural networks (DNN) that exploit activation and network sparsity [10]. 
 
Recently, a new kinds of neuromorphic vision devices beyond CMOS have been demonstrated, 
exploiting different electro-optical material properties and fabrication techniques to further advance 
the tight integration of sensing and processing, often combining photon transduction and analog 
neural network (ANN) functions into a single fabric [11]-[14] . Even though these devices are in their 
early proof-of-concept phase, interesting and promising results have already been demonstrated. 
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Concluding Remarks 
Integrating event-based vision sensing and processing with neuromorphic computation techniques is 
expected to yield solutions that will be able to penetrate the artificial vision market and gain 
considerable market share in the coming years [15]. This new class of extremely low-power and low-
latency artificial intelligence systems could, In a world where power-hungry deep learning techniques 
are becoming a commodity, and at the same time, environmental concerns are increasingly pressuring 
our way of life, become an essential component of a sustainable society. 
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4.5 – Neuromorphic Audition 
Shih-Chii Liu, Institute of Neuroinformatics, University of Zurich and ETH Zurich, 
Switzerland 
 
Status 
Neuromorphic audition technology is inspired by the amazing capability of human hearing. Humans 
understand speech even under difficult auditory scenarios and on a low brain power budget of a small 
fraction of the brain’s entire 10W. Matching the capability of human hearing is an important aspect 
of both algorithms and hardware for development of algorithms, hardware technology and 
applications for artificial hearing devices. 
 
Brief History: Human hearing starts with the biological cochlea which uses a space-to-rate encoding. 
The incoming sound is encoded as asynchronous output pulses generated by a set of broadly 
frequency-selective channels [1]. For frequencies below 3 kHz, these pulses are phase locked to the 
frequency [2]. This encoding scheme leads to sparser sampling of frequency information from active 
frequency channels instead of the maximal sampling rate used on a single audio input. The first silicon 
cochlea designs starting with the work of Lyon and Mead (electronic cochlea) [3], model the basilar 
membrane (BM) of the cochlea by a set of coupled filter stages. Subsequent designs include those 
with better matching properties for the filter stages and using coupled filter architectures ranging 
from the originally proposed cascaded type modeling the phenomenological output of the cochlea [3], 
to a resistively-coupled bank of bandpass filters that models the role of the BM and the cochlear fluid 
more explicitly [4][5].  
 
Later designs include models of the inner-hair cells (IHCs) on the BM, that transduce the BM and fluid 
vibrations into an electrical signal. They are frequently modelled as half-wave rectifiers (HWRs) in 
silicon designs. Some designs include the automatic gain control mechanism of outer hair cells (OHCs) 
that are useful for dealing with larger sound volume ranges from 60 – 120 dB. Cochlea designs starting 
from the early 2000s include circuits that generate asynchronous binary outputs (or spikes) encoded 
using the address-event representation (AER). Details and historical evolution of these VLSI designs 
are described in [4][5]. Recent spiking cochlea designs in more advanced technologies such as 65nm 
and 180nm CMOS demonstrate better power-efficiency (e.g. < 1 uW/channel in [6]). These new 
designs show competitive power efficiency compared to other audio front end designs that compute 
spectrogram features from regular samples of a single audio source. 
 
Importance of field: In the early 2000s, cochlea circuits were developed for audio bionic applications 
[7] and models of biological auditory localization circuits [8]. With increasing prevalence of voice-
controlled devices in everyday life, neuromorphic and bio-inspired solutions can potentially be 
interesting because of the need for low-latency and energy-efficient design solutions in audio edge 
application domains.  
 
Current and Future Challenges 
Big research issues: Neuromorphic bio-inspired features such as the sparse sampling (e.g. the non-
sampling during silent pauses), the event-driven form of brain computing, the natural temporal 
encoding carried by the asynchronous events (pulses, or sets of pulses within a specified time 
window), can enable more energy-efficient solutions for hardware-friendly models that solve an 
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auditory task. The timing information from the asynchronous events of the spiking silicon cochleas is 
ideal for extracting interaural time differences (ITD), which is useful for spatial audition at lower 
latencies  [9][10]. Speech recognition examples that use spiking cochlea inputs include the reservoir 
networks of spiking neurons applied to digit recognition [11].   

 

 
 

 
With the advent of deep learning, deep networks have been used successfully for many audio 
benchmarks. Even though training of these networks requires global supervised methods and large 
datasets, they can be applied on features from spiking cochlea events for always-on low-level audio 
tasks such as voice activity detection (VAD) and key word spotting (KWS). These modules can then 
activate the more energy-expensive audio tasks such as speech recognition which require running 
larger networks on the cloud. The energy savings of these neuromorphic solutions come from the 
event-driven way of processing, i.e., the processing is triggered by asynchronous information carried 
by the frequency-selective events rather than on regular time-stepped spectrogram frames; compute 
savings come naturally with silent pauses and non-changing inputs. Hardware versions of this 
combination include a complete system using an FPGA RNN processing cochlea spikes for a continuous 
digit recognition task [12]  and TrueNorth spiking network platform processing audio features [13]. 
ASIC implementations that include both sensor and network show extremely low-power consumption, 
e.g. the < 1 uW ASIC VAD chip [14].  
 
Mapping spiking neural network (SNN) algorithms trained for a task to SNN hardware platforms 
require additional considerations such as the variability of the network parameters from transistor 
mismatch and the timing jitter noise of the transmitted spikes from the transmission of asynchronous 
spikes in real-time on a specified SNN hardware platform.  While more work is needed on local spike-
based learning rules [15] to configure SNNs to reach similar accuracy compared to DNN solutions on 

Figure 1.  (A) Top shows the 64-channel cochlea output spike rasters for a speech sample in (Bot). (B) Architecture for an example audio 
keyword spotting task. Figure shows the combination of the Dynamic Audio Sensor (DAS) front-end which includes local filter channels. 
Spike outputs are generated using asynchronous delta modulation (ADM) [6]. Features generated from the events can be used to drive 
deep neural networks [12][14]. Spike events can also drive directly spiking neural networks. 
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a specific task, conversion techniques that map trained ANNs to spiking networks [16] and new DNN 
training methods will help to advance the field [17].  
 
Advances in Science and Technology to Meet Challenges 
 
For edge applications, maintaining high audio task accuracy is of more importance than high energy-
efficiency. Advances are needed in neuromorphic audition systems if they are to be competitive for 
these domains, e.g the additional benefits of spike events for efficient models or local learning.  
 
Audio spectrogram features are dominant features used in conventional audio applications.  Studies 
such as [11][18] show that the accuracy on a simple speech recognition task using spiking cochlea 
features while showing lower numbers than spectrogram features for clean conditions, can maintain 
lower accuracy loss over decreasing signal-to-noise conditions. These ideas need further investigation 
for larger datasets and tasks. Features extracted from the spikes, e.g. the exponential features [19] 
could help to determine the utility of dynamic information. The real-time extracted azimuth 
information allows the source separation from a mixture of two speakers, for e.g. for using the 
streamed source spikes for speaker identification and keyword spotting with deep network algorithms 
[19]. Future work in signal and feature encoding methods that allow robust models under operation 
in changing and wide dynamic range (> 60 dB) auditory scenes. 
 
More extensive work is needed to develop training or spike-based learning methods to configure for 
high-accuracy networks on specified audio tasks. Training directly on spiking networks instead of using 
conversion ANN to SNN methods would capitalize better on implicit SNN encoding capabilities. The 
approximation of rate codes to analog activations of ANNs is not ideal. Temporal coding methods 
would be more energy efficient but need extension to more complex datasets. Combination of the 
auditory systems together with other modalities for a robotic platform would also be interesting for 
future developments. 
 
Technology: Technology advances include the continual support of analog integrated circuit designs 
as technology nodes scale down for digital transistors. Of importance for low-power devices are 
transistors with low leakage current (for low standby power) and fabrication processes that still allow 
low transistor mismatch without requiring large transistor dimensions. The standby power 
consumption of the ASIC is an important metric for always-on audio devices. Other challenges include 
algorithms that are hardware aware for e.g. to the variability of the network parameters after the ASIC 
fabrication, and approaches to reduce memory access or to create predictable memory access 
patterns to reduce energy loss from the unpredictable memory accesses of SNNs. The emerging large-
scale availability of high-density local memory is also an interesting component of future research for 
the ASIC development. 
 
Concluding Remarks 
Progress in neuromorphic audition critically depends on advances in both silicon technology and 
algorithmic development. Recent  ASIC prototypes that combine binary networks and MFCC features 
report competitive low-power numbers ( < 1 uW) for KWS [20]. Evaluation of these solutions with 
ASICs that use a spiking cochlea front-end will continually be needed to determine the latency-
accuracy-power tradeoff between these solutions for audio edge applications. Other considerations 
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are the system-level power of a complete audio system including microphones (current commercial 
audio assistants are ~1W), that continue to benefit from the ultra-low power numbers of the audio 
ASICs. Also needed are event-driven algorithms to address more complex tasks beyond KWS and VAD 
while maintaining the energy efficiency and low latency benefits, and whether we can capitalize on 
the new emerging high-density memory technologies to reduce the power dissipation from 
unpredictable memory accesses of events/spikes. The combination of the Dynamic Audio Sensor with 
other spiking sensors e.g the Dynamic Vision Sensor, will be interesting for robotic platforms. Hybrid 
solutions that bring knowledge from auditory science, signal processing, and machine learning will 
enrich future artificial neuromorphic technology solutions for audio application domains.  
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4.6 – Assessment of Multivariate Time-Series Signals for Low Power Embedded 
Applications – A Hardware Perspective 
Arnab Neelim Mazumder, Morteza Hosseini, Tinoosh Mohsenin, University of 
Maryland, Baltimore County, Catonsville, USA 
 
Status 
Contemporary research in machine learning has seen a wealth of novel approaches ranging from 
traditional hand-engineered techniques to modern automated deep learning frameworks introduced 
to solve common problems such as multivariate time-series analysis. Time-series classification is a 
broad field of research with niches extending up to electronic health evaluation, physical activity 
monitoring, speech recognition, cybersecurity, etc. Exploration of this domain has led to unique 
commercial off the shelf device implementations in the form of fitness monitoring devices, sleep 
tracking gadgets, and EEG based brain trauma marker identifying devices. Even with this deluge of 
work over the years, the necessity of evolving the research direction with day-to-day needs relating 
to this sphere is still pivotal. The current scenario of using automated devices for a variety of health-
related applications requires that these devices become more sensitive, specific, user-friendly, and 
lastly accurate for their intended tasks. This relates to further advancements in the region of algorithm 
construction and constraint-based design of implementable hardware architectures. The current crop 
of research in this area investigates deep neural network (DNNs) architectures for the purpose of 
feature extraction, object detection, classification, etc. DNN models utilize the capacity of 
convolutional neural networks (CNNs) to extract spatial features for time-series assessment which was 
previously exhaustively calculated via different hand-engineered feature extraction techniques 
coupled with simple classification algorithms. Along with this, recurrent neural networks (RNNs) and 
their advanced equivalents in the form of long short term memory networks (LSTMs) and gated 
recurrent unit (GRU) has also been integrated into the deep learning architectures to handle time-
series signals. The idea behind this integration stems from the fact that RNNs and LSTMs are modeled 
in such a way that they can keep track of previous instances of the input data in order to make a 
prediction, which makes these architectures very effective for pattern and dependency detection 
within the time-series data. The other aspect of developing these diverse DNN models is to make them 
readily implementable in terms of hardware accelerators and therein lies the issue of hardware 
constrained efficient designs. As a consequence, the computation and model size specifications of 
different hardware-oriented approaches will result in the advancement of application-oriented 
software designs which will, in turn, increase the reliability and efficiency of these embedded devices. 
 
Current and Future Challenges 
There are several challenges associated with managing time-series signals for classification or 
recognition tasks. One of the foremost issues of time-series classification is to make these signals 
interpretable by the DNNs as these signals contain multiple variables relaying information about 
concurrent actions and it is difficult to process these signals in their raw form. Authors in [1] proposed 
a solution to this problem by transforming these multimodal signals into windowed images based on 
their sampling frequencies. Another obstacle that is related to time-series analysis pertains to skewed 
or imbalanced information belonging to multimodal variables as the data collection procedure with 
different sensors might not always be the same. As a way around, a common practice is to use 
weighted sampling of the input features during the training of the DNN models so as to balance the  
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impact of all features. Pruning outliers in the dataset by eliminating unnecessary sensor data can 
alleviate this problem as demonstrated by the authors in [2], however, it is not always feasible to 
delete multimodal information as the sensor data for multiple variables might be correlated. In 
addition to this, many of the software frameworks dedicated to time-series classification do not 
consider the large computation overhead of the DNNs. This has a significant impact when these 
frameworks are replicated on to resource-limited and low power embedded platforms where the use 
of off-the-chip-memories becomes essential. As a result, the performance remains limited by the 
memory bandwidth while the power consumption stays high due to the rapid accessing of off-the-
chip-memories. The extent of these complications has introduced shallow networks [3], approaches 
to quantizing model parameters [4] along with ternary [5] and binary [6] models that focus on reducing 
the memory overhead for efficient resource-constrained hardware accelerator implementation. 
Authors in [7] provide an example of a fixed-point CNN classifier involving 4-bit fixed point arithmetic 
that suggest negligible accuracy degradation and authors in [8] present fast BNN inference 
accelerators to meet the FPGA on-chip memory requirements. Reducing memory footprints in 
hardware accelerators is also tied up to cost-effective designing of memory units. On top of this, 
managing and limiting frequent accesses of these memory units also contribute to latency, power, and 
energy efficiency as a whole. Thus, a critical challenge in terms of hardware design is to maintain high 
frequency and energy efficiency with low energy consumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  The deep learning framework takes in windowed images of the raw multimodal time-series signals as input to the convolutional 
layers. Correspondingly, feature extraction is achieved in convolutional layers which results in a two-dimensional feature map. The pooling 
layers contribute to reducing the feature map size while keeping the spatial features intact. This two-dimensional pooled feature map is 
reshaped to have one-dimensional form so that it can be forwarded to the next fully connected layers. Finally, the last fully connected 
layer will have neurons equal to the number of outputs as desired by the application. Furthermore, with regards to multi-input model, 
supplementary information coming from a separate model can be concatenated with the one-dimensional feature map to bolster the 
inference accuracy. 
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Advances in Science and Technology to Meet Challenges 
Deep learning frameworks have been widely successful for classifying time-series signals. However, 
the challenges mentioned in the previous section make this task ever more difficult. To further boost 
the performance of deep learning methods for time-series data, some form of digital signal processing 
is commonly required. To this extent, a common practice is to convert these raw waveforms into 
windowed overlapping time-series frames. A sliding window of some specific size along with a 
stepping size is passed through all variables, creating a set of images of shape as desired by the user. 
Since most time-series signals contain label information at precise time intervals, it is fairly easy to 
determine the label of the images. Another facet of dealing with time-series signals require feature 
extraction relevant to the application that is being targeted. With classical machine learning 
algorithms, this was achieved using several mathematical and analytical processes to determine the 
correlation between variables. In contrast, one of the strengths of using CNNs or RNNs in deep learning 
ensures that the relevant features are being extracted in image or time-space. A general practice while 
these models for time-series classification is to deploy CNN or RNN layers in conjunction with pooling 
layers as illustrated in Fig.1. The pooling layers reduce the feature map size so that the cost of 
computation for the following fully connected layers is minimized. Additionally, the feasibility of 
hardware deployment of these deep learning algorithms depends on the computational complexity 
and size of these architectures. It is imperative that these frameworks are reduced in size via 
quantization, pruning, or by making the networks shallow in the first place so that they fit on 
embedded devices with small memories. Hence, there comes a point where the designer has to find 
the sweet spot between the accuracy of the model and the practicality of its size being suitable for 
low power embedded platforms while also ensuring that the energy efficiency of the target device is 
also satisfactory. Fig. 2 shows a comparison among different models with a variety of applications for 
their model size, classification/detection accuracy, and energy efficiency which establishes that 
depending on the application, deep learning models can fit on low power embedded devices with 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             
    

Figure 2.  This figure illustrates the trend of energy efficiency against model size of different deep learning architectures deployed on the 
low power Artix–7 100t FPGA platform which has a memory of 1.65 Mb. The applications focused here are EEG detection [10], human 
activity recognition [1], stress detection [1], tongue drive systems [1] along with cough and dyspnea detection as part of respiratory 
symptoms recognition [9]. Depending on the model size, the frameworks can be tiny or large whereas the energy efficiency is dictated by 
the performance of the design. In the same vein, the plot also shows the software accuracy for the different models ranging from 86% up 
to 98% which further justifies that these architectures are specific enough for low power embedded deployment. 
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standard performance.  Also, a modification to these frameworks can take in additional information 
in the form of vectors from a separate model to enhance the overall accuracy of the model as 
demonstrated in Fig.1. 
 
Concluding Remarks 
Human-related time-series data analysis encompasses a wide range of tasks including speech 
recognition, keyword spotting, health monitoring, and human activity recognition to name a few. 
Challenges in processing such time-variant data range from pre-processing the raw signals and 
removing noise and outliers to interpreting long and short dependencies that exist within the nature 
of the data. Windowing the continuous stream of data into overlapping frames to be processed using 
a simple DNN or CNN is a common practice for real-world applications in which the long dependencies 
in data are negligible. On the other hand, novel approaches such as RNNs and LSTMs can improve the 
overall confidence of analysis for time-series data with long dependencies. When implementing all 
these methods on resource-bound hardware in which power, energy, memory footprint, and 
application latency are all limited, it is of utmost importance to design deep learning algorithms with 
small model size and low computation that meet all the application requirements and hardware 
limitations. In conclusion, there must be a trade-off between performance and implementation 
feasibility to justify the use of low power embedded devices to replicate deep learning applications of 
time-series assessment.  
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4.7 - Wearable Electromyography Processing 
Elisa Donati, Institute of Neuroinformatics, University of Zurich and ETH Zurich, 
Switzerland 
 
Status 
Electromyography (EMG) is a neurophysiological technique for recording muscle movements. It is 
based on the principle that whenever a muscle contracts, a burst of electric activity is propagated 
through the close tissue. The source of the electrical signal in EMG is the summation of action 
potentials of motor units (MUs) [1]. A MU is composed of muscle fibers innervated by axonal branches 
of a motorneuron, that is intermingled with fibers of other MUs. The recorded electric activity is 
linearly correlated to the strength of the contraction and the number of recruited MUs. EMG signals 
can be acquired both invasively, using needle electrodes, and superficially, by placing electrodes on 
the skin - called surface EMG (sEMG). 
EMG signals have been and are relevant in several clinical and biomedical applications. In particular, 
they are extensively employed in myoelectric prosthetics control for classifying muscle movements. 
Wearable solutions for this application already exist, but they have a large margin for improvement, 
from increasing the granularity of movement classification to reducing computational resources 
needed and consequently power consumption. 
Like any other signal, EMG is susceptible to various types of noises and interferences, such as signal 
acquisition noise, and electrode displacement. Hence, a pre-processing phase is the first step to 
perform proper signal analysis, which involves filtering, amplification, compression, and feature 
extraction both in time and frequency domains [2].  
The mainstream approach for movement classification is machine learning (ML), which delivers 
algorithms with very high accuracy [3], although the high variability in test conditions and their high 
computational load limit their deployment to controlled environments. These drawbacks can be 
partially solved by using deep learning techniques that allow for better generalization to unseen 
conditions but remain computationally expensive, requiring bulky power-hungry hardware, that 
hinder wearable solutions [4]. 
Neuromorphic technologies offer a solution to this problem by processing data with low latency and 
low-power consumption mimicking the key computational principles of the brain [5]. Compared to 
state-of-the-art ML approaches, neuromorphic EMG processing shows a reduction of up to three 
orders of magnitude in terms of power consumption and latency [6,7,8], with limited loss in accuracy 
(5-7%) [9,10]. 
New approaches have been proposed that directly extract the motorneurons activity from EMG 
signals as spike trains [11]. They represent a more natural and intuitive interface with muscles but 
currently limit themselves by processing spikes with traditional ML techniques and do not consider 
the possibility of using more appropriate frameworks such as spiking neural networks (SNNs).  
 
Current and Future Challenges 
Although the performance of myoelectric prosthetics increased conspicuously in the last decade [12], 
they still can not be used in daily life. The fine-grained control is in fact limited by the number of 
electrodes. This issue can be overcome by using High-Density EMG (HD-EMG), which typically uses 
hundreds of electrodes, allowing to monitor larger areas and effectively increasing the precision of 
the measurements [13]. However, HD-EMG uses more computational resources, in terms of power 
and time required to classify movements and to generate motor commands.  
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Current technologies are not able to process such an amount of data in-situ and with low latency 
simultaneously. For this reason, the EMG signals are transmitted, for example via Bluetooth, to a 
remote system that is quite bulky and heavy, making a wearable solution impractical.  
Neuromorphic technologies represent a solution to all the described limitations by processing data in 
parallel, with low latency, and taking advantage of the low-power nature of analog computing and 
spiking communication, as the biological system they are inspired from. Although recent results show 
promising advances, the current challenge of neuromorphic technology is to fill the gap with state-of-
the-art ML approaches, in terms of accuracy. One of the main reasons behind this gap is the different 
amount of resources invested in the respective research fields. In addition, current research that 
focuses on adopting ML methods and implementing them in neuromorphic hardware faces challenges 
governed by the unsuitability of such substrates which are primarily targeted for SNNs. 
To get the most from neuromorphic computing we need a change of paradigm, where the 
neuromorphic technology can directly interface with motorneurons' spiking activity, instead of 
continuous sEMG signals. This represents a matching condition between inputs and outputs that 
optimize the information transfer between the muscle activity and the processing and control unit. 
The spike trains of motorneurons can be extracted from sEMG signals by means of decomposition 
algorithms. In particular, the spatial distribution of MUs action potentials can be assessed with 
activation maps obtained from HD-EMG signals [11]. Nevertheless, current implementations are still 
computationally expensive, and only recently it was possible for their deployment in real-time. After 
the decomposition, the spike trains are translated and processed using ML methods instead of better-
suited SNNs [14]. 
Designing neuromorphic systems able to extract and process motorneurons activity from EMG signals 
will pave the way to a new class of wearable devices that can be miniaturized and directly interface 
with the electrodes. 
 
Advances in Science and Technology to Meet Challenges 
A concrete roadmap towards neuromorphic wearable devices, see Figure 1; could be constructed with 
short and long term objectives. In the short term, we should advance neuromorphic computation to 
bridge the gap with ML methods for EMG classification and optimize decomposition algorithms to 
make them run real-time on embedded systems. In the long term, the decomposition algorithm 
should be ported into a neuromorphic chip to implement a fully spiking pipeline while the 
technological breakthroughs in surface smart electrodes could potentially be able to record directly 
motorneurons' spike trains. 
Bridge-the-Gap. The first step is to understand the requirements to improve the accuracy of EMG 
movements classification. The front-end, which includes pre-processing and spike conversion, has the 
largest margin for improvement. Signal-to-spike conversion produces spike trains required by 
neuromorphic devices. The most common signal-to-spike converter is the delta-sigma [6] which is 
widely applied in biomedical applications, thanks to its lower circuit complexity compared to multi-bit 
ADCs. However, the delta-modulator generates a high sampling rate and larger data size that can 
easily push the neurons' firing rate into saturation, making them insensitive to further input variations. 
Furthermore, SNNs for EMG classification should be optimized and learning algorithms could make 
them adaptable to different patients. 
Embedded Decomposition sEMG decomposition into spike trains is generally based on shape-based 
algorithms, also called template matching [15] or blind source separation algorithms [16]. The 
decomposition of the complex sEMG is a computationally expensive procedure in a multidimensional 
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constraint space. To run these algorithms on embedded platforms and in real-time it is imperative to 
i. reduce the complexity and ii. optimize it for the selected digital embedded architecture (e.g., PULP 
platform [17]) and exploit its hardware capabilities. The extracted spike trains are then sent to a 
neuromorphic chip, creating a hybrid digital-analog framework for spike encoding low-power 
computation. 
Spike-based EMG decomposition To build a fully spiking pipeline that can be integrated into a single 
neuromorphic chip, the MUs identification algorithm needs to be translated into a spiking version. 
Embedding the entire process into a single chip that can be miniaturized and connected directly to the 
electrodes will allow online processing, which is optimal for real-time closed-loop applications and less 
vulnerable to interferences either caused by humans or the environment. 
Smart electrodes Another long-term game-changer would be the technological breakthroughs that 
will allow the single electrode to be able to record directly the activity of a single MU, removing the 
needs for decomposition algorithms. 
 

 

 
Concluding Remarks 
The need of improving myoelectric prosthetic control to increase the life quality of the patient poses 
new challenges for implementing real-time, compact, and low-power EMG processing systems. A 
wearable device based on neuromorphic technology can enable in-situ EMG signal processing and 
decomposition, without information transfer and external computation. In particular, mixed-signal 
SNNs implemented on neuromorphic processors can be integrated directly with the sensors to extract 
temporal data-streams in real-time with low-power consumption.  
This roadmap presents the specific case of prosthetic control, nevertheless, the development of this 
technology could reveal useful to more applications where continuous monitoring is required. In 
clinical settings, continuous monitoring of EMG signals can be utilized to detect degenerative diseases 
of motorneurons [18] even for very large time spans such as weeks or months. In rehabilitation, EMG 
can be used as feedback to adapt the patient training accordingly to its muscular status, after a stroke 
or neurological impairments [19].   

Figure 1. A concrete Roadmap towards neuromorphic Wearable Devices 
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With the current rate of technological and computational improvements the proposed objectives 
could be realistically achieved within a decade. If successfully executed, this roadmap will bring 
technology that will improve the quality of life for amputees and patients with motorneuron diseases. 
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4.8 – Collaborative Autonomous Systems 
Silvia Tolu, Roberto Galeazzi, Technical University of Denmark (DTU) 
 
Status 
Collaborative autonomous systems (CAS) (see Figure 1) are entities that can cooperate among 
themselves and with humans, with variable level of human intervention (depending on the level of 
autonomy) in performing complex tasks in unknown environments. Their behaviour is driven by the 
availability of perception, communication, cognitive and motor skills and improved computational 
capabilities (on/off-board systems). The high level of autonomy enables the execution of dependable 
actions under changing internal or external conditions. Therefore, CAS are expected to be able to: 1. 
perceive and understand their own condition and the environment they operate in; 2. dependably 
interact with the physical world despite of sudden changes; 3. intelligently evolve through learning 
and adaptation to unforeseen operational conditions; 4. self-decide their actions based on their 
understanding of the environment. 
Currently, CAS (e.g., collaborative robots - cobots) show limited performances when accomplishing 
physical interaction tasks in complex scenarios [1]. Recent studies have demonstrated that 
autonomous robots can outperform the task they are programmed for, but they are limited in the 
ability to adapt to unexpected situations [2] and to different levels of human-robot cooperation [1]. 
These limitations are mainly due to the lack of generalization capabilities, i.e., cobots cannot transfer 
knowledge across multiple situations (environments, tasks, and interactions). One of the most viable 
pathways to solve this issue is to build intelligent autonomous cobots by incorporating Artificial 
Intelligence (AI)-based methods into the control systems [3]. These bio-inspired controllers [4] allow 
taking a different perspective from the classical control approaches, which require a deeper 
understanding of the mechanics of the interactions and of the intrinsic limitations of the systems 
beforehand. Main current research directions [5] are focused on the understanding of the biological 
working principles of the central nervous system (CNS) in order to build innovative neuromorphic 
computing algorithms and hardware that will bring significant advances in this field; In particular, they 
will provide computational efficiency and powerful control strategies for robust and adaptive 
behaviours. 
In the next decades, there will be significant developments in CAS related to self-capabilities such as 
self-inspection, -configuration, -adaptation, -healing, -optimization, -protection, and -assembly. This 
will be a great enabler of systems acting in real-world unstructured scenarios, such as in remote 
applications (deep sea or space), in hazard situations (disasters), in healthcare interventions (assistive, 
rehabilitation, or diagnosis), and in proximity to people. 
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Current and Future Challenges 
Several fundamental challenges demand to be addressed to enable the deployment of heterogenous 
autonomous systems able to collaborate towards the achievement of common mission objectives. 
These challenges span across different research topics including mission planning and execution for 
multi-agent systems under uncertainty. Future mission planners [6] should integrate several factors 
to determine the optimal allocation of agents to the fulfilment of the mission tasks. These factors, 
among many, include energy availability and depletion rates, physical capabilities of the agents, 
probability of failures, and amount of collaboration needed. The mission execution demands the 
development of a revolutionary control paradigm that enables true collaboration among CAS with 
different functionalities. Cooperative control [7] has been so far limited to consensus and 
synchronization to enable the coordinated dynamic evolution of mostly homogeneous multi-agent 
systems to perform the same type of actions. The execution of tasks in uncertain environments calls 
for robust learning/adaptation methods to enable baseline control systems to ensure robust 
cooperation and coordination of heterogeneous multi-agent robots in various real applications [7]. 
Another big question is how to endow CAS with a high-level of fault tolerance capabilities in order to 
ensure dependability under a wide variety of operational conditions [8]. Despite the large research 
effort pursued by the community over the past four decades, condition monitoring and fault tolerant 
control are lacking efficiency due to the ever-increasing complexity of the systems. 
Future work will aim to provide insights about how a CAS will show robust, compliant, and intelligent 
physical interactions with the environment, human beings, or other systems. In this regard, there is 
the need for a fundamental cross-disciplinary research into the human-machine interaction [9] with 
the autonomous technology, i.e., to understand how different personality profiles and 
extrinsic/intrinsic motivations lead to different interaction modes with autonomous systems. Further, 
measurement tools of interaction effects between humans and CAS are required for the design and 
analysis of human interactive systems [10]. When allowing users to interact with a CAS, the research 
and design challenge of the technological components is to create and coordinate primitive robotic 
behaviours for the user-desired behaviour to emerge as the result of such a coordination. It is crucial 
to understand how to create the primitives on a high-abstraction level that allows an understanding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           
      

Figure 1. Overall idea of a Collaborative Autonomous Control System. The supervisor manages the entire 
system, observes and analyses the whole situation and provides information to each agent to improve their 
autonomous actions and optimize the operations. 

 



Roadmap on Neuromorphic Computing and Engineering 

and positive feedback from the human-system interaction within a limited time for everybody 
including non-expert users. 
 
Advances in Science and Technology to Meet Challenges 
In this section, we discuss the foremost advances in science and technology that will address the main 
aforementioned challenges. 
Mission Planning - Novel AI-based heuristic methods will be developed to equip mission planners with 
key functionalities that will increase the value for the human operators. These include: the close-loop 
decomposition of missions to achieve an adaptive task allocation by leveraging information gathered 
at mission execution; automated survivability prediction to assess the likelihood of vehicle loss based 
on faults and failures occurred in past missions; automated reliability assessment to forecast the 
probability of mission failure based on past missions’ information; automated learning from previous 
missions’ performance to tune the future missions’ parameters; inclusion of services to extend the 
mission endurance [11, 12]. 
Fault-tolerant and Cooperative Control - Paradigms based on cooperation will be created to fulfil the 
advances in multi-agent systems [8]. Cooperation among agents offers the possibility of achieving 
fault-tolerance towards sensors and actuators faults through the design of diagnostic solutions that 
leverage shared proprioceptive and exteroceptive information. Prescribe-time fault tolerant 
cooperative control solutions for safety critical cyber-physical systems will be achieved; these will 
provide the basis for efficient fault-tolerant algorithms able to trade-off between fast convergence 
and acceptable fault-tolerance performance. 
Robust, Compliant and Intelligent Physical Interactions - New physical mechanisms will be designed 
to provide passive properties to the system, to increase the physical interaction performances, and 
include advanced control aspects for achieving simultaneous robustness and compliance. The 
advances in Neuro-robotics and Neuromorphic Computing will influence the development of the next 
generation of intelligent agents [13]. New types of sensors and actuators will be introduced to 
enhance the cognitive and learning functionalities of the systems and deal with safety and robustness 
concerns. Advanced bio-inspired platforms, e.g., brain-on-the-chip devices, will be designed for 
processing complex brain-inspired computing techniques that will support autonomy, more 
connectivity, increased decentralization, and high-performance computing. Indeed, neuromorphic 
technologies will be able to process complex unstructured data and learn to self-respond to external 
unknown stimuli enabling their use in critical edge applications, for example in autonomous 
navigation, human-machine interactions and smart healthcare markets. 
Finally, innovative applications could be generated through the development of self-reconfigurable 
modular CAS, systems able to adapt their morphology and functionality to varied environments 
including unforeseen conditions [14]. This will require self-learning capabilities to develop new 
knowledge and to decide upon the previous accumulated experience.  
 
Concluding Remarks 
This paper has presented the future perspectives of collaborative autonomous systems and the main 
challenges and research issues that need to be addressed toward their realization. Further to these 
scientific and technological challenges, there are ethical, social, and legal issues when realising CAS, 
though these are beyond the scope of this article.  
CAS working alongside humans have already been deployed and they support humans’ work ensuring 
high productivity, speed and accuracy [15]; they also relieve us of many heavy and time-consuming 
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tasks and reduce the overall risk of collisions. CAS provide an economically viable entry-point to 
automation of processes, i.e., accelerated testing scenarios on products, environmental impacts. 
Fusion of fundamental and applied research in both technical and natural sciences will facilitate the 
development of new theoretical frameworks for the design of intelligent CAS. Multiple disciplines will 
be merged to pursue a systematic innovation within cyber-physical systems with variable level of 
autonomy and cooperation; the use of AI and Internet of Everything technologies future proofs the 
system to address changing market demands and expectations in several technological areas. 
Applications will be many and varied including, and not limited to, manufacturing, health care, 
inspection and maintenance, precision farming, autonomous marine operations, and education. 
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5.1 - The ethics of developing neuromorphic technology 

Martin Ejsing Christensen, The Danish Council on Ethics, Denmark 
Sune Holm, Department of Food and Resource Economics, University of Copenhagen, Denmark 

Like the development of other forms of artificial intelligence, the development of neuromorphic technology 
may raise a number of ethical questions as illustrated in Figure 1.  [1], [2]. 

One issue concerns privacy and surveillance. The development of most forms of artificial intelligence 
depends upon access to data, and as far as these data can be seen as private or personally identifiable, it 
raises a question about when it is (ethically) defensible to use such data. On the one hand, some argue that 
persons have a right to be let alone and exercise full control over information about themselves, so that 
any use of such data presupposes fully informed consent. On the other hand, others recognize the 
importance of privacy but argue that it may sometimes be outweighed by the fact that reliable applications 
for the good of everyone presuppose access to high quality representative data [3].  

Another issue concerns opacity. Many forms of artificial intelligence support decision making based on 
complex patterns extracted from huge data sets. Often, however, it will be impossible not only for the 

person who makes the final decision but also for the developer to know what the system’s 
recommendations are based on and it is in this sense that it is said to be opaque. For some such opacity 
does not matter as long as there are independent ways of verifying that the system delivers an accurate 
result, but others argue that it is important that the system is explainable [4]. In this way, a tension is often 
created between accuracy and transparency, and what the right trade-off is may often depend upon the 
concrete context. 

Opacity is closely connected with the question of bias since opacity may hide certain biases. There are 
different forms of bias but in general, bias arises when automated AI decision support systems are based 

Figur 1 Some of the most salient ethical issues raised by the development of neuromorphic technology 



on data that is not representative of all the individuals that the system supports decisions in relation to [5]. 
There are different opinions as to when the existence of bias in automated decision support systems poses 
a serious problem. Some argue that ‘traditional’ unsupported human decision-making is biased, too, and 
that the existence of bias in automated AI decision support systems only pose a serious problem if the bias 
is more significant than the pre-existing human bias. Others argue that features such as opacity or the lack 
of suitable institutional checks and balances may tend to make the existence of bias in automated decision 
support systems more problematic than ‘ordinary’ human bias [6].  A separate problem is created by the 
fact that it sometimes will be easier to identify and quantify bias in AI systems than in humans, making a 
direct comparison more difficult.    

The development of forms of artificial intelligence based on neuromorphic technology also raises questions 
about manipulation of human behavior, online as well as offline. One context in which such questions arise 
is advertising and political campaigning, where AI generated deep knowledge about individuals’ 
preferences and beliefs, which may be used to influence them in a way that escapes the individuals’ own 
awareness. Similar issues may also arise in connection with other forms of artificial intelligence such as 
chatbots and care or sex robots that simulate certain forms of human behavior without being ‘the real 
deal’. Even if persons develop some form of emotional attachment to such systems, some argue that there 
is something deeply problematic and deceptive about such systems [7], while others point out that there is 
nothing intrinsically wrong with such systems as long as they help satisfy human desires [8]. 

A distinct set of issues are raised by the possibility of developing AI systems that do not just support human 
decision making but operate in a more or less autonomous way such as ‘self-driving’ cars and autonomous 
weapons. One question that such systems raise concerns the way in which they should be programmed in 
order to make sure that they make ethically justifiable decisions (in most foreseeable situations). Another 
question concerns how responsibility and risk should be distributed in the complex social system they are a 
part of. 

As mentioned in the beginning of this section, the ethical questions raised by the development of 
neuromorphic technology is not unique to this technology but related to the development of artificial 
intelligence as such. The successful development of neuromorphic technology may make some of the issues 
more pressing, but the existing forms of artificial intelligence already raise many of the questions described 
so far. Besides these questions, however, the development of neuromorphic technology (as well as other 
forms of artificial intelligence) may also raise a number of questions that are more speculative either 
because it is unclear whether the development will take place, when it will happen or what the precise 
consequences will be.  

One such issue has to do with automation and unemployment. Artificial intelligence systems have already 
replaced humans in certain job functions (e.g., customer service), but it has been suggested that most job 
functions will be affected by the development of artificial intelligence at one point [9]. Because such a 
development has the potential to disrupt the social order (e.g., through mass unemployment) it raises an 
important ethical (and political) question as to how artificial intelligence systems should be introduced into 
society [10]. 

Another more speculative issue relates to artificial moral agents and so-called robot rights. If the 
development of neuromorphic (and other) forms of artificial intelligence leads to the creation of systems 
that possess some or all the traits that make us ascribe rights and responsibilities to humans, it may thus 
raise a question about whether such rights and responsibilities should be ascribed to artificially intelligent 
systems [11], [12].  



Thirdly, some have also pointed out that the development of neuromorphic (and other) forms of artificial 
intelligence may create issues related to the so-called singularity. The idea is that the technological 
development may lead to the creation of general forms of artificial intelligence that surpass the human 
level of intelligence and then begin to control the further development of artificial intelligence in ways that 
may not be in the interests of the human species and perhaps even threaten its very existence. Whether 
such a scenario is likely has been questioned [13], but some argue that even a slight risk should be taken 
serious given the potentially devastating consequences [14].  

No matter what one thinks is the right answer to the ethical questions raised by the development of 
neuromorphic technology, it is, finally, worth noticing that it still leaves an important practical question: 
how best to make sure that the actual development and implementation of neuromorphic technology will 
take place in an ethically defensible way. For some questions, governmental regulation may be the best 
means. For others, the best solution may be to trust the community of developers to make the right, value-
based decisions when designing systems, while some questions, perhaps, should be left to the enlightened 
citizenry. In the end, however, it will probably be up to an inquiry into the concrete situation to decide 
when one or the other approach – or combination of approaches – provides the best means of securing an 
ethically defensible development of neuromorphic technology. 
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