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Abstract—Contemporary smartphones are capable of generat-
ing and transmitting large amounts of data about their users.
Recent advances in collaborative context modeling combined
with a lack of adequate permission model for handling dynamic
context sharing on mobile platforms have led to the emergence
of a new class of mobile applications that can access and share
embedded sensor and context data. Most of the time such data is
used for providing tailored services to the user but it can lead to
serious breaches of privacy. We use Semantic Web technologies
to create a rich notion of context. We also discuss challenges
for context aware mobile platforms and present approaches to
manage data flow on these devices using semantically rich fine-
grained context-based policies that allow users to define their
privacy and security need using tools we provide.

I. INTRODUCTION

Smartphones or mobile devices that run advanced mobile
operating systems are transforming how we communicate with
people and connect with the world. Modern mobile operating
system platforms like Android and iOS provide applications
or “apps” through their “marketplaces”. Combining computing
ability with apps allows a “smart” phone to accomplish tasks
that would either require a personal computer or special
hardware components. For example a user can take pictures,
record a video, connect to the Internet, navigate using GPS,
prepare a presentation and accomplish many other day-to-day
tasks, on smartphones.

However, with great power that comes with substantial
computing and special hardware based sensing ability of
smartphones, comes with added risks to user data. Advanced
sensing abilities on smartphones have given rise to a new
generation of intelligent applications. Smart assistants like Siri,
Google Now and Microsoft Cortana are just a few examples
of intelligent applications that are context-aware. All such
apps exploit a user’s location context to deliver personalized
services. They do this by leveraging the user’s location at
the level of position, i.e., geospatial (latitude-longitude) co-
ordinates. Integrating this with readily available background
knowledge allows such systems to identify the location with a
known place (e.g., Baltimore), facility (e.g., the BWI airport)
or an organization (e.g., UMBC). As a result, location becomes
an important aspect of a user’s context but there are additional
contextual information that includes a user’s activity, identity
and temporal information [1]. Naturally, protecting the security
and privacy of user data now includes the critical task of pro-
tecting contextual data. In this chapter, we will discuss access

control issues that need to be focused on and discuss solutions
that have been proposed by researchers in the domain.

II. BACKGROUND

Access control generally refers to the process of determining
what actions are allowed by a given subject upon objects and
resources [2]. The security domain has seen the emergence
of various access control models over the years. The most
popular models include Discretionary Access Control (DAC),
Mandatory Access Control (MAC), Role Based Access Con-
trol (RBAC) and Attribute Based Access Control (ABAC).
DAC refers to access control mechanisms where it is at the
“discretion” of the owner of an object. On the other hand,
MAC “mandates” control based on security labels assigned to
an object. RBAC is a model that uses “roles” to determine ac-
cess control and in this model permissions are associated with
roles, and users are made members of appropriate roles. RBAC
suffers from issues of setting up initial role structure and
inflexibility in dynamic domains [3]. A pure RBAC solution
will not consider dynamic attributes like time of day, which
could be critical for determining user permissions. Essentially,
it does not take into consideration the context aspect that
we so often see, especially in the mobile domain. ABAC
models are better equipped in handling access control for
such dynamic systems. When it comes to using ABAC models
one of the standard system implementations created by [4] is
XACML. The XACML standard defines a declarative access
control policy language implemented in XML and provides
a processing model on how to evaluate access requests. The
access control mechanisms that we will discuss are modeled
on ABAC.

In this chapter, we focus on the work done in the Platys
project and various solutions suggested in it. The Platys project
has developed a high-level abstraction of context. Context in
Platys is generated by leveraging capabilities of smartphones,
discussed in the introduction. Today a significant portion of
the human population owns a smartphone and such devices
are always on their person. This allows an app on the phone
to capture key elements of context: like the user’s location and,
through localization, characteristics of the user’s environment,
etc. This leads to a deeper contextual understanding that
comes from semantics associated with the location coordinates
that are captured. By semantics of a location we mean the
notion of a Place, i.e., a location in conceptual terms. For
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example a place could be “at a study group meeting”, “out
for jogging” or “shopping for grocery at the local market” -
descriptions that combine a set of positions with user’s activity,
properties of user’s environment, and activities of people
surrounding the user or interacting with the user. Context
extraction using sensors on mobile devices has received great
attention in the field. The techniques proposed can be broadly
classified into machine learning based models [5] or context
modeling based models. Context modeling is carried out using
ontologies and rules, and reasoning to infer high level context
information from low level sensor data [6]. The Platys project
builds on previous work where strong support for context
reasoning using ontologies for explicit semantic representation
of context [7] has been developed. Platys uses Semantic Web
technologies to specify high-level, declarative policies in the
form of Jena rules, for defining information sharing constraints
using semantic context model. Apache Jena or Jena in short is
a free and open source Java framework for building Semantic
Web and Linked Data applications.

In other related work, Rein, a decentralized framework for
representing and reasoning over distributed policies [8], is an
extension of the Rei policy specification language, developed
as part of research done in the Platys core group [9]. The
Rei language is based on OWL-Lite and allows policies to be
specified as constraints over allowable and obligated actions on
resources in the environment. Rein, on the other hand, permits
policies to be represented in different policy ontologies and
requires the use of Semantic Web rules encoded in N3.

KAoS [10] is an early research work in this domain that
used the DARPA Agent Markup Language (DAML) language
and Description Logic based ontology of the environment, app
context and policy to determine access control at different
levels of abstraction.

The final policy specification language we will look at is
the Ponder policy specification language created by [11]. The
Ponder language defines security policy specification for event
triggered condition-action rules that define obligations and can
be used for auditing access events to critical resources.

III. MAIN FOCUS OF THE CHAPTER

As we go forward, we need to ask an important question that
motivates a need for strong access control: What sort of data
can be found on a user’s mobile device? These devices are
capable of collecting and/or storing extremely private data. For
example they can be used to generate a comprehensive digital
profile of its users, through social media identities on the
phone, photos, financial information, information about books
users are reading or movie/TV shows they are watching, Web
search history and users’ contacts. At times mobile devices are
used for authenticating logins into various services through
secret shared key, thus acting as a substitute user identity.
Mobile devices can also collect and store professional data
due to their use in keeping track of work emails, messages,
voicemails, calendar appointments and even accessing and
storing digital files through cloud storage services. All of these
features are available to users through apps that they may

install from various app stores. Apps are capable of providing
all these variety of services and at the same time they are
capable of transmitting stored data on these devices. As a
result, improper access controls may enable an app to steal
a user’s data.

Another reason why access control is becoming a critical
requirement on mobile devices stems from the trend of corpo-
rations like IBM and many others (BYOD adoption rate is 74%
among surveyed companies in January of 2015 as per the Tech
Pro report 1) including healthcare companies adopting Bring-
Your-Own-Device (BYOD) as a corporate policy. Naturally,
such a policy leads to a potential for data breach and thus
to a need for stronger access control on mobile devices, one
that is not necessarily available. A 2012 study of medical
professionals [12], showed that 84% use the same device
for personal and professional activities. Surprisingly 49% of
the users’ stated that their IT departments had not discussed
mobile security issues with them. Such a glaring oversight in
healthcare domain has happened due to a preference towards
convenience over security, according to the study. Through the
above-mentioned scenarios, it is evident that a mobile device
has not only become an integral part of a user’s life, but
essentially it has also become a digital representation of that
person. At the same time they are a critical part of a users’
professional world.

What are the default security mechanisms that are in place
on users’ mobile devices? On one of the most popular mobile
platforms in the world (i.e. Android), the security model
deployed takes advantage of the features provided by the
Linux kernel. In the Linux system one user cannot access
files of another user. On mobile device users are traditionally
implicit because they are an individual’s device. As a result
the UID associated with users in a Linux system are replaced
by appID(s). Thus Android has the apps isolated at a process
level and data level through the app’s private directory. Access
to components on the device, for example hardware like
Camera or other OS services or to the Internet is controlled
through permissions. Permissions are obtained at install time,
in pre-Android Marshmallow era, or at run time starting from
Android Marshmallow. Once obtained the OS enforces the
permissions.

Why care then? We already have permissions! Unfortunately
permissions defined in Android or iOS are too coarse-grained
to adequately manage access control on mobile devices. Al-
though the user may be able to use the device permission
settings to manage access to say Internet for an app, they are
not able to control what domains an app may connect to. They
can control whether an app has access to the camera or not but
they still do not have any way of stating that an app might only
access the flashlight and not the camera. Users do not have the
option to block an app from accessing ad api(s). On top of that
none of the mobile platforms have provisions for fine-grained
access control which are dependent on the context of the user.

1Tech Pro report http://www.zdnet.com/article/
research-74-percent-using-or-adopting-byod/
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For example, a user might prefer to disallow camera access
to social media apps at a work location or they might want to
disable camera completely during a certain time period of the
day.

Therefore, there is a need for fine-grained context driven
access control mechanism for apps. This requires a rich notion
of context for usage in policy execution. Context may be
represented using Semantic Web technologies which will allow
handling of various data flow scenarios from and through
users’ mobile devices. Understanding the factors that impact
users’ privacy and security is an important part of this work.
Only then it will be possible to design policies to mitigate
such issues. The challenges in achieving the goal of strong
access control on users’ mobile devices can thus broadly be
broken down into three parts listed below.

• Collaborative context modeling
• Access control policies
• Rule specification
In the following sections we delve into each of these sub

problems.

A. Collaborative context modeling

In this section we are going to present techniques used
by the Platys project for collaborative context modeling.
We have seen applications for smartphones evolve to take
advantage of features beyond localization like environmental
data for example, ambiance, nearby people and resources,
and the activities in which they are engaged. An ontology
presented by [7] represents various categories of contextual
information in pervasive computing environments, specifically,
smart meeting rooms. Further generalization of the model to a
lightweight, high-level context ontology, in form of the Place
ontology, is carried out by [13]. This ontology is used to
reason about a general notion of context, as well as to share
contextual knowledge. The vision is to generate a collective
context using various users’ devices and integrating the shared
context knowledge from them.

1) Semantic Context Model: In the Platys project, context
is modeled to include a semantic notion of a Place. Such ele-
ments of context are used in mobile devices to serve intelligent
functionality by personal agents. Personal agents are used to
proactively control activities on the phone such as switching
off during a scheduled meeting or enforcing relevant privacy
policies. User’s location captured at the level of position,
i.e., geospatial (latitude-longitude) coordinates is mapped to a
Place or geographic entity, such as a region, political division,
populated place, locality, and physical feature. Although posi-
tion and geographic place information are potentially valuable
on their own, from the standpoint of context, Place is a more
inclusive and a higher-level abstraction.

A User is associated with a Device whose Position maps
to a geographic place (GeoPlace) such as “ABC University”
and to a conceptual place (Place) such as “At Work”. Some
GeoPlaces are part of others due to spatial containment and
such relationship (part_of ) is transitive. The mapping from
Positions to GeoPlaces is many to one and the mapping from

Fig. 1: The Place ontology models the concept of place in
terms of activities that occur there

Positions to Places is many-to-many (the same Position may
map to multiple Places, even for the same User; and, many
Positions map to the same Place). Mapping from Positions
to Places is done through GeoPlaces (maps_to is a transitive
property). An Activity involves Users under certain Roles, and
occurs at a given Place and Time. Activities have a composi-
tional nature, i.e., fine-grained activities make up more general
ones. This approach reflects the pragmatic philosophy that the
meaning of a place depends mainly upon the activities that
occur there, especially the patterns of lower-level activities.
The idea applies at both the individual and collaborative level.

The Place ontology, mentioned earlier is a lightweight, high-
level ontology that models the concept of place in terms of
activities that occur at a geo-location. Description logics [14] is
adopted, specifically the Web Ontology Language OWL [15],
and associated inference mechanisms to develop the model.
OWL supports the specification and use of ontologies that
consist of terms representing individuals, classes of individ-
uals, properties, and axioms that assert constraints over them.
Figure 1 shows the core classes in the ontology and their
relationships.

2) Information sharing policies: Users require appropriate
levels of privacy control to protect the personal information
their mobile devices are collecting including the inferences
that can be drawn from the information. For example, in a
healthcare scenario, if a user has an accident, it might be
right to disclose relevant information (medical records, history,
etc.) to the paramedics on the scene and only while they
are providing their services. Semantic Web technologies are
adopted due to two primary purposes:

1) Creation of models for representing and reasoning about
a high-level notion of context

2) Specification of expressive policies to control the sharing
of contextual information

Policies involve attributes of the subject (i.e., information
recipient), target (i.e., the information) and their dynamic
context (e.g., are the parties co-present). A prototype system in



Fig. 2: Interaction among entities in a collaborative informa-
tion sharing, context-aware system

a university environment is used to demonstrate the workings
of the system. Information aggregated from sensors on an
Android phone, online sources, as well as sources internal
to the campus intranet are used to individually infer the
dynamic user activity using existing machine learning algo-
rithms. The system allows sharing of contextual information
directly between devices or through a server. Each device in
the system contains a knowledge base (KB) that aligns with
the Place ontology. The system also implements a model for
specifying and enforcing privacy through declarative policies.
The policies allow users to specify situations under which they
allow sharing of their context information as well as the level
of accuracy at which such information should be shared.

3) General Interaction Architecture: A general interaction
architecture for mobile context-aware systems which share and
integrate knowledge about their context is depicted in Figure 2.
Sensors on devices sense the local context of the user, using
mobility tracking and ambient sensing such as light, sound,
and motion. The network component opportunistically gathers
and disseminates local context information to neighboring
fixed or mobile wireless devices. Its policy engine verifies
the release policies to ensure context dependent release of
information in accordance to the user preferences. Devices
interact directly or through services on the Internet. Inferences
such as current activity can be drawn from information col-
lected by the sensors, the context information gathered, and
additional resources (e.g., the user calendar and open geo-
location KBs). The sensor’s raw data as well as the inferred
context knowledge is stored in a local knowledge base on the
device. Context-aware applications and network components
use this context knowledge to enhance their functionality. The
locally inferred context knowledge may be sent to context-
aware services located on the Internet. These services on the
Internet, verify, if needed, the statements (proof) of the clients
against the access policies. Depending on their functionality,
these services provide context information of the user to other
users.

Users’ information sharing policies provide appropriate
levels of privacy to protect the personal information their
mobile devices collect, need to be expressive, flexible, and
allow for context-dependent release of information. Semantic

Fig. 3: An excerpt of the assertions made to the KB (left) in
Turtle syntax and an example of a Jena rule used to integrate
knowledge from GeoNames (right)

Fig. 4: Property chain axioms to assert knowledge about a
user’s location. a) Device is observed at the place whose
location maps to b) User’s location is the place where her
associated device has been observed at c) Generalization of
user location based on spatial containment (part_of)

Web technologies represent a key building block for sup-
porting expressive context policy modeling, reasoning and
adaptation [16]. As a result, they are used to model a high-
level notion of context and to specify high-level, declarative
policies that describe users’ information sharing preferences
under given contextual situations.

Knowledge Base: The knowledge base (KB) on each device
aligns with the Place ontology. Using the Place ontology,
devices can share information about their context. The Android
Location APIs are used to obtain the position of the device.
Given the Position of the users’ device, assertions are made
and stored as triples into the KB (see Figure 3). Additional
online resources are used, specifically GeoNames spatial KB
(RDF version) and its associated services, to infer the user’s
GeoPlace using the following process:

• Using reverse geocoding services to find the closest
GeoNames entity to the current position

• Querying GeoNames through SPARQL to get further
information about that entity

• Applying transformation rules to the data obtained from
GeoNames (see Figure 3)

• Using OWL inference to obtain the triples corresponding
to the spatial containment of entities (transitivity of the
part of relationship)

• Using ad-hoc property chains (see Figure 4) to infer
knowledge about a user’s GeoPlace based on the places
her associated device is observed.

Activity and Place Inference: The system uses machine
learning algorithms to recognize activity (e.g., “sleeping”,
“walking”, “sitting”, “cooking”), coarse-grained geographic



Fig. 5: Left: Jena rule for expressing the policy “share detailed
contextual information with family members all the time”
Right: Android device screen with reasoning results. It shows
access levels for requester “Ron” who is a member of the
group family

place, and conceptual place (e.g., “at work”, “at home”) at
different levels of granularity.

4) Privacy Reasoning and Enforcement: In the prototype
system, the context is shared among devices by means of
queries sent directly between them or through a server. The
integration happens on individual device and is a simple
operation where the results are added to the knowledge base.
For privacy enforcement, users specify privacy policies that
regulate the disclosure of Sensor and Inferred context infor-
mation to server or Inferred context information to other users.

A user defines groups of contacts such as friends and
family which are stored in the KB too. The user also specifies
context dependent privacy policies and sharing preferences
for each group. Privacy policies are expressed as Jena rules
over the KB. The focus is not on the information exchange
protocol, but on the privacy control mechanisms. Requests are
simple messages with required information embedded in them.
Whenever a request is received, either at the server or at a
device, the privacy control module fetches static knowledge
about a user (e.g. personal information and defined groups),
the dynamic context knowledge and the user-specified privacy
preferences. Access rights obtained by performing backward
reasoning confirms conclusions by verifying conditions. Ad-
ditionally, when access is allowed and according to the user
defined sharing preferences, certain pieces of the information
might be obfuscated in order to protect user privacy. The
implementation used Jena Semantic Web framework [17].
Privacy rules are defined as Jena rules and the Jena reasoning
engine is used to perform the reasoning. AndroJena, a porting
for Jena to the Android platform [18] is used for drawing
inferences on devices.

Policies for information sharing: These policies can describe
which information a user is willing to share, with whom,
and under what conditions. Conditions are defined based on
attributes like a user’s current location, current activity or
any other dynamic attribute. Since users can have different
networks of friends, a variety of group level privacy prefer-
ences are employed. For example: “share detailed contextual
information with family members all the time” and “do not
share my sleeping activity with Teachers on weekdays from
9am to 5pm”. Figure 5 shows the representation of the first

rule as a Jena rule (left) and the results on a test screen are
provided using the results of the reasoning engine (right).

Policies for Obfuscating Shared Information: These policies
can depict what information a user is willing to disclose with
different accuracy levels. For instance, she may be willing to
reveal to her close friends the exact room and building on
which she is located, but only the vicinity or town to others.
Furthermore, a user may decide not to disclose her location to
advertisers. For these purposes generalization models maybe
used, which are discussed in detail in the Rule Specification
section. These models are simple subsumption hierarchies over
location and activity entities (e.g., City is subclass of State
which is a subclass of Country).

B. Access control policies

In this section, the two high level aspects of access control
that we will learn about, involves the information sharing
between a device and a server or another device, a device
and the apps on the device. In the previous section we have
discussed the generation of a collaborative context model and
the use of information sharing policies that control the context
data that will be shared to generate such a model. We further
examine this scenario with respect to a BYOD policy set (as
system level policy described in Rule Specifications section)
and a user policy set in a social media application scenario.

1) Inter-device information sharing: In Figure 6 we present
the major components of the system. The system consists of
client devices, server side modules and the Internet services
that provide social media requests. The client devices are
context-aware smartphones. Client devices as well as the
server side modules contains a user profile repository, a privacy
control module and content preferences. The server side also
contains content aggregator, learn & share module and privacy
control module. The content aggregator combines social media
data, photos, and videos from Internet services or other sources
like university information portals. Learn & share module
inferred a user’s dynamic context using sensor data collected
on phone, information from the content aggregator and online
sources such as user’s calendar. The inferred context is shared
with corresponding client device so that the device along
with server can handle further context sharing queries from
other clients. The requester queries are passed through the
privacy control module to constrain the information flow and
hence to protect the user privacy. The privacy control module
provides access control mechanisms and aids in controlling
information flow within the system. On the client device,
it enables privacy sensitive and resource sensitive reasoning
over sensed data along with privacy enforcement between
peer devices sharing contextual information. The interaction
between various components of the system can be described
as follows:

• The user has a client device to collect the sensor data
periodically. This data is passed to the “learn & share”
module on the server as allowed by the privacy control
module on client device. The privacy control module



Fig. 6: Server âĂŞ Client data flow architecture

decides which specific sensor data can be shared with
the server based on user-specified privacy policies.

• The “learn & share” module infers the user’s context us-
ing sensor data and information from content aggregator
and other online sources. The context consists of current
location, activity and additional surrounding information
like nearby people. The inferred knowledge is passed
to the corresponding client device so that it can handle
context access queries from other clients.

• Access requests are passed through the privacy control
module which in turn decides whether to allow or deny
access. If the requester is granted the access then it de-
termines a set of information to be shared by performing
reasoning over the context information and user’s privacy
preferences. These requests can be made by one client
device to another or from a client device to the server.

• Figure 6 shows the three different ways in which in-
formation can be shared in the system, namely: context
information sharing between the client devices, sensor
data sharing between a client device and server, and
context information sharing between a client device and
the server.

Access Control: The user’s personal information can be
shared between a client device and the server side application
or between two client devices. To constrain the information
flow, privacy enforcement can be done between peer client
devices and at server side for contextual information.

Privacy enforcement between peer client devices: Learn &
share module from server side shared the owner’s contextual
information with corresponding client device. The client de-
vice further keeps track of the context and responds to queries
made by other peer devices. Code 1 shows the sample contex-
tual information for user “Alice”. The contextual information
is to be protected and should be shared only with requesters
having sufficient privileges. The user can provide detailed
privacy policies specifying what context information can be
shared with whom, when, and under what conditions. If users

are reluctant to provide any specific policies then they can opt
for either default models of the system viz. Optimistic Model
- where the system can provide response to any query with all
possible relevant information associated with a user’s activity
such as associated place, location and the timing details, or
(ii) Pessimistic Model - where the system can refrain from
revealing activity associated information. Apart from these
default system settings the user can define her privacy rules
with various degrees of accuracy levels. She can also use the
system to obfuscate certain pieces of information to protect the
context information. This way the system can protect the users’
privacy by varying accuracy levels of activities, associated
locations and timestamps.
ex : A l i c e a f o a f : P e r s on ;
f o a f : name " A l i c e " ;
p l a t y s : has r o l e p l a t y s : S t u d e n t .
p l a t y s : S l e e p i n g a p l a t y s : A c t i v i t y ;
p l a t y s : i s pe r fo rmed by ex : A l i c e ;
p l a t y s : has p a r t i c i p a n t ex : Al i ce , ex : John ;
p l a t y s : o c c u r s a t
p l a t y s : C l a s s LH1 ;
p l a t y s : o c c u r s when "2010−11−19T14 : 1 2 : 4 2 " .
p l a t y s : C l a s s LH1 a p l a t y s : P l a c e ;
p l a t y s : has l o c a t i o n " 39 .2535 25 , −76.710706 " .

Listing 1: Code 1: Contextual information represented in N3. It
consists of activity, associated place, location, time and nearby
users

Whenever any participant in the systems tries to access any
protected resource (activity, place, location or any additional
information) the query has to be sent to the privacy control
module. This module fetches the user knowledge, dynamic
knowledge and user-specified privacy preferences to evaluate
the query. As a result it will decide whether participant is
allowed to access the protected resource or not. In the former
case, it might obfuscate certain pieces of information as per
user-specified privacy policies to protect user’s privacy. These
policies are represented as Jena rules in Code 2, Code 3
and Code 4 respectively. When a request would be made by
“Ron” who is a family member of the user then he should be
able to access the user’s detailed contextual information. If the
request came from “Bob” who is a member of the friend group
and the user’s current activity is “Sleeping” then the requester
is allowed to access a user’s activity information excluding the
associated place and location. Figure 8 shows the access level
for requester “Ron” and Figure 7 shows allowed access for
user “Bob” after performing reasoning on the device using
user information, dynamic knowledge and privacy policies
mentioned in Code 2, Code 3 and Code 4.
[ Al lowFami lyRule :

( ? r e q u e s t e r ex : memberOf ? groupFami ly )
( ? g roupFami ly f o a f : name " Family " )

−>
( ? r e q u e s t e r ex : c a n A c c e s s A c t i v i t y " True " )
( ? r e q u e s t e r ex : c a n A c c e s s A c t i v i t y P l a c e " True " )
( ? r e q u e s t e r ex : c a n A c c e s s A c t i v i t y T i m e " True " )
( ? r e q u e s t e r ex : c a n A c c e s s P l a c e L o c a t i o n " True " ) ]

Listing 2: Code 2: Policy to share detailed contextual
information with family members



Fig. 7: Android device screen with reasoning results. It has
access levels for requester “Bob” who belongs to friend group

Privacy enforcement at the server side: At the server side
learn and share module, infers the user’s dynamic context such
as current activity, associated place and location, and nearby
people. This contextual information needs to be protected
and should only be shared with requesters with sufficient
privileges. The server has information about all the system
users whereas a client device has information about its owner.
Due to this, the server can handle requests for all the users
whereas the client device can handle requests about its owner
only. The main distinction between the access requests made
by a client device to a peer device and to a server is that the
latter request contains a specific userId. This userId is used to
retrieve specific users’ information. Consider a privacy policy
as shown in Code 4, which states “allow location access to
teachers on weekdays only between 9am and 6pm”.

[ S h a r e A c t i v i t y W i t h F r i e n d s R u l e :
( ? r e q u e s t e r ex : memberOf ? g r o u p F r i e n d s )
( ? g r o u p F r i e n d s f o a f : name " F r i e n d s " )
( ? s o m e A c t i v i t y p l a t y s : i s pe r fo rmed by ex : A l i c e )
n o t E q u a l ( ? s o m e A c t i v i t y , p l a t y s : L i s t e n i n g To

L e c t u r e )
−>

( ? r e q u e s t e r ex : c a n A c c e s s A c t i v i t y " True " ) ]

Listing 3: Code 3: Policy to share activity information with
friends all the time except when a user is attending lecture

Fig. 8: Android device screen with reasoning results. It has
access levels for requester “Ron” who belongs to family
member group

The system uses the userId to retrieve the related informa-
tion and then checks whether the requester is a member of
the group by verifying the requesters’ userId. The example
explained above involves representation of a user’s personal
resources such as list of friends, group’s information, contex-
tual attributes like current location and current activity.

[ S h a r e A c t i v i t y W i t h T e a c h e r s R u l e :
( ? r e q u e s t e r ex : memberOf ? g r o u p T e a c h e r s )
( ? g r o u p T e a c h e r s f o a f : name " T e a c h e r s " )
( ? r e q u e s t e r ex : r e q u e s t T i m e ? l o c a l T i m e )
( ? l o c a l T i m e t ime : dayOfWeek ? day )
ge ( ? day , 1 ) l e ( ? day , 6 )
( ? l o c a l T i m e t ime : hour ? hour )
ge ( ? hour , 9 ) l e ( ? hour , 21)
( ? s o m e A c t i v i t y p l a t y s : i s pe r fo rmed by ex : someUser )
e q u a l ( ? s o m e A c t i v i t y , p l a t y s : S l e e p i n g )

−>
( ? r e q u e s t e r ex : c a n A c c e s s A c t i v i t y " F a l s e " ) ]

Listing 4: Code 4: Policy to not share sleeping activity with
Teachers on weekdays from 9am - 9pm

Reasoning Engine: The reasoning engine handles the re-
quester queries and performs reasoning for access control
decisions. The system uses Jena Semantic Web framework [18]
for performing the reasoning over context data. Jena inference



Fig. 9: Reasoning flow

system allows the support of various inference engines or
reasoners. These reasoners are used to infer additional facts
from the existing knowledge base coupled with ontology and
rules. In particular, Jena uses the generic rule reasoner which
is included in Jena2 as a general purpose rule-based reasoner.
It is used to implement both the RDFS and OWL reasoners. It
needs at least a rule set to define its behavior. In the system,
the reasoner uses the context ontology, static user facts like
identity and group information along with the user-specified
privacy rules to generate an inference model. This inference
model is used for responding to the requester queries. This
process is shown in the Figure 9 and works as follows:

• Create the instance of OWL reasoner specialized for con-
text ontology and then apply that to the users’ static in-
formation to generate an inference model. This inference
model consists of additional statements inferred from
static knowledge and ontology. As the user information
and ontology are not changed often, it is quite safe to save
the model on external storage and reload it for subsequent
queries rather than generating it each time.

• The requester’s contextual information is extracted from
requester query and along with user contextual informa-
tion it is added to the inference model to generate a new
model.

• The system-level polices are executed against the infer-
ence model using an instance of generic rule reasoner. It
is an optional feature and it’s used to enforce certain or-
ganization level policies. It will create a new model hav-
ing SystemPermitted and SystemProhibited statements
to enforce system policies over the users’ contextual
information. If the user is a sole owner of client device
then this step can be skipped. The detailed description of

this feature is provided in the next section.
• The user-specified privacy rules are executed against the

inference model from previous step to generate a new
inference model having requester access levels.

The system will use the new model to decide what can be
shared with requester and respond accordingly.

System Level Policies: The context-aware systems are used
by individuals to organization and from social-networking
application to military domains. In case of military domains or
organizations, the user may not be the sole owner of client de-
vice and there is a strong need of robust security mechanisms.
It can be in the form of multi-level secure systems where the
system-level policies must override user-level policies. This
highlights the need of system-level policies along with user-
specified policies. The system-level policies should be defined
by the system-administrator to ensure that sensitive resources
are always protected from illegitimate access. Consider a
system-level policy as “Do not share the user’s context if
she is inside a military building BuildingXYZ” and a user-
specified policy as “Share my context with family members all
the time”. The system- level policy states that the user context
won’t be shared with anyone if she is inside BuildingXYZ
whereas in latter policy user specifies to share her context
with family members all the time. In this case the system-
level policy should override user- specified policy and hence,
if the user is inside BuildingXYZ then her context will not be
shared to anyone including her family members.

2) Intra-device information sharing: In this use-case sce-
nario intra-device information sharing policies consider the
data flow from the device’s sensors to requester of said data.
However, the requester in this case, is an entity which resides
on the phone itself, i.e. an app. Data flow control, in this case,
will have obvious user implications. When the data is leaving
the device and is being shared with an external entity it makes
sense that the user might want to control what information is
shared. On the other hand when the data is being shared with
apps on a user’s device an implicit trust assumption should not
be the norm. The reason being, most users install apps from
a variety of developers and sometimes a variety of sources.
It may be presumed that standard app market places are
monitored by their respective owners but such a presumption
may not necessarily be true [19]. There are examples of
legitimate apps stealing user sensor data and sending them
over the internet for ad purposes (Android Flashlight App
Developer Settles FTC Charges It Deceived Consumers 2).
Under such circumstances it’s important to control what data
flows from the sensors on a mobile device to the apps.

As discussed in the introduction, Android’s security model
is based on the Linux kernel’s security features and application
sand-boxing. Android application packages execute in their
individual sand box and are built from multiple components
that provide various functionality. To understand the intra
device access control let’s take a look at a prototype system.

2FTC release https://www.ftc.gov/news-events/press-releases/2013/12/
android-flashlight-app-developer-settles-ftc-charges-it-deceived

https://www.ftc.gov/news-events/press-releases/2013/12/android-flashlight-app-developer-settles-ftc-charges-it-deceived
https://www.ftc.gov/news-events/press-releases/2013/12/android-flashlight-app-developer-settles-ftc-charges-it-deceived


Fig. 10: Architecture of the intra-device access control proto-
type Android system

In this system few of the important device services on Android
platform have been modified to serve as a way to control data
flow. Specifically the LocationManagerService, AudioService
and WifiService are modified. The altered system runs a
reasoner on top of user-context and access control policies to
determine response for an app’s request to system resources.
The system architecture of such a controlled system can be
seen in Figure 10

Access Control: A significant point of failure for such a
system, would be that apps do not expect to be blocked from
accessing the data on a mobile device. As a result, apps
would simply crash if such a block is put in place. Therefore,
as an alternative solution, obfuscation is used. As part of
the obfuscation solution a location randomization module is
created. This module is used to generate fake coordinates for
location of the device. The algorithm used for generation of
a new set of coordinates from device’s current location is
similar to the ones deployed in apps reporting nearby places
of interest.

Given a location L and a radius R location randomization
module generates L’ where L’ ε {l: l is in the bounded circle
with radius R and origin L}. This technique is used to find
points within a distance of a latitude/longitude using bounding
coordinates. The shortest geodesic distance between two given
points P1=(lat1,lon1) and P2=(lat2,lon2) on the
surface of a sphere with radius R can be calculated using the
formula:

d = arccos(
sin(lat1) * sin(lat2) +

cos(lat1) * cos(lat2) *
cos(lon1 - lon2)
)

* R

It computes the bounding coordinates of all points on the
surface of a sphere that have a great circle distance to the

point represented by this GeoLocation instance that is less or
equal to the distance argument. Once these coordinates are
obtained one maybe randomly selected and returned to the
calling app instead of a failure response. This ensures that
apps do not crash and user data is protected at the same
time. Similar obfuscations can be generated for other services
too. For example the camera component can be interrupted
to provide fake images to a requesting app or fake contacts
could be returned to an app which requests user’s contact lists.
The reasoning process remains the same as before. A set of
static user data, an ontology defining user context and user’s
dynamic context information is combined with a list of system
and user defined policies to reason over and decide whether
the data should be shared or not.

Reasoning Engine: The heart of the access control system
is the reasoning engine. Running as a system service it uses
the policies that are stored on the device. The policies may
be downloaded from a server or maybe selected by the user.
Details of such a process will be discussed in the section Rule
Specifications. As seen in the architecture diagram in Fig-
ure 10 upon a data/resource request made by an app, the
various services on the device queries the reasoning service for
an access control decision. The reasoner then uses policies on
the device and based on the current context returns a decision
asynchronously to the requesting service. The context string
is forwarded to the reasoner by the requesting service.

C. Rule specifications

Till now we have discussed context generation and pre-
sented use-cases for access control implementations. The
last and equally important aspect of managing data flow
in a smartphone requires a process to specify rules to be
implemented. For this purpose we discuss the use of sys-
tem level access control rules that might be specified by
administrators. We also discuss the use of user policies for
added protection. The two scenarios effectively take care of
BYOD use-case organizational policies and users’ personal
privacy and security policies. An initial set of default policies
may be obtained through a trusted third party. In case of a
rule conflict between system and user policies the following
resolution process is used. Access predicate of the rules can
take the following values: SystemPermitted, SystemProhibited,
UserPermitted and UserProhibited. As default deny policy is
followed to determine access control, if SystemProhibit is
present in the set of conflicting rules, the access is denied.
Additionally system policies trump User policies and therefore
if SystemPermitted and UserProhibited are present in rule set,
the access is granted. Finally, there are UserPermitted and
UserProhibited values in the access predicate of the rules, data
access is denied.

1) User policy editor: As described by [20], policies may
be enforced indefinitely or for a certain time period based
on a policy certificate validity period or a combination of
timeout or loss of contact with an assigned network. However,
the user has the option of modifying or adding rules to the
policy through the interface shown in Figure 11. The Requester



Fig. 11: Policy editor settings app

Fig. 12: Location hierarchical model

option allows choice of permitting or prohibiting access to
specific entity. This entity may be outside the user’s mobile
device like a friend or family member’s phone. It may also
be an app on the user’s own mobile device. The second
clause defines what data/resource may be shared. The third
clause defines a timing contextual constraint within which
the rule applies and finally the system has exception clauses
that may negate the rule if necessary. The generalization
and specialization options for context constraints are defined
using the Place ontology discussed in Section on Collaborative
Context Modeling.

Generalization: Generalization involves replacing a value
with a less specific but semantically consistent value in order
to protect user data privacy [21]. The system uses context-data

Fig. 13: Activity hierarchical model

generalization to allow information sharing on different levels
of granularity.

Location Generalization: In order to support location gen-
eralization, the ontology uses hierarchical model for location.
Location is a super class of Point, Room, Building, City
and State classes. The Point class is used for denoting GPS
coordinates whereas Room and other subclasses are used
to denote different levels of abstractions for location. The
transitive “Part Of” property creates a location hierarchy based
on some simple axioms like “Room is a part of Building”. The
reasoning engine uses this ontology to infer different relations
existing between instances of these subclasses (see Figure 12).

Activity Generalization: Along the lines of location gen-
eralization, let’s look at activity generalization for allowing
users to share different descriptions of their current activity to
different set of requesters. In many cases, the user is willing to
share more generalized activity rather than a precise one. For
instance, if a user is attending a confidential “project meeting”
then she might want to share it in a more generalized way as
“working” or simply as a “meeting” (see Figure 13).

Policy determination: Selecting policy that needs to be
implemented cannot always be driven by human users or
administrators. A certain level of automation is desired in
this process. Why? Studies have shown that people need to
wade through a sea of information in order to determine
the right privacy preference [22]. However, such information
might not necessarily enable them to choose the best possible
policies [23]. Allen Westin’s perspective on privacy defines
privacy as the ability for people to determine for themselves
“when, how, and to what extent, information about them is
communicated to others” [24]. However, these approaches on
information access control have been found to be flawed [25].
According to [26] information accountability is the ability to
determine whether usage of information is appropriate and the
ability to identify the violator.

Considering data being accessed by apps on a user’s mobile
device, app provenance maybe used as a way to assign
accountability. It should be noted that the notion of app prove-
nance is not restricted merely to geographical origin; of the
developer of the app. It can also refer to online repository from
where the app is downloaded to the mobile device. Availability



of such information opens up possibility of capturing a whole
new set of access controls on device; apps can be restricted
from being installed in first place based on geographical origin
or online origin. Policies can be pre-written to restrict access
to only a subset of device resources for apps, which takes
into account app origin and other contextual information of
the device user and the app itself.

Automatic policy generation/implementation can thus be
done in three stages.

• Stage 1 (App data gathering phase): Apps are searched in
android marketplace by name. Thereafter, package name,
app version, app rating, app developer information, app
permission data, app descriptions are collected. Once app
developer information is available app’s organization data
from DBpedia is retrieved and location information of
the organization is extracted. In [27] the author collected
developer information from DBpedia.

• Stage 2 (Pre-decision making phase): Triples are gener-
ated which represent facts about the app and stored on
the mobile device.

• Stage 3 (Decision phase): The reasoner upon a receipt
of an access control request uses the triples stored about
the app, the policy stored on the phone and the context
information, generates a grant or deny response.

For this purpose, take a look at the PlatMob [28], on-
tology for mobile device applications to capture application
provenance data from heterogeneous sources. PlatMob is an
extension of the Platys ontology presented earlier. The Place
ontology represents a high level context ontology by [13].
The concept of a requester of data is defined in the Platys
ontology [29], [30]. The PlatMob ontology allows modelling
of richer notion of an application’s context and developing
privacy preservation policies far more complex than that of
Android’s default all or nothing policy. PlatMob is an aggre-
gation of four domains of knowledge as shown in Figure 14.

• PlatMobile, representative application data and context on
the device the app is installed

• Platys, representative device users’ context
• PlatMobileLOD, representative application context

sourced from marketplace and linked open data cloud
• DBpedia: Country
PlatMobileLOD models data available for an app from

external sources whereas PlatMobile models on-device run-
time information about the application. PlatMobile represents
on-device resources using the following entities. AppGroup
defines an application group; can be apps accessing Internet
or apps which deals with location data or apps which does
media capture etc., Permissions defines classes of permissions
a specific app has; and is represented as a collection of String
literals which can be collected from apps AndroidManifest.xml
file, File represents the file system resource of the device; it is
further divided into ImageFile, AudioFile, VideoFile, Binary-
File, TextFile subclasses, Hardware abstracts devices hardware
resources e.g. Camera, Keyboard, Microphone and Storage,
Service is representative of system and third party services.

Fig. 14: PlatMob ontology

PlatMobileLOD represents different entities that captures app
context from external data sources like app marketplace and
linked open data sources like DBpedia. PlatMobileLOD com-
prises of AppCategory, AppContentRating, AppDescription,
AppDeveloper, AppPkgName, AppName, AppRatingCount,
AppReview, AppVersion, Origin, BlackList and Credibility
entities. PlatMobileLOD uses DBpedia Country ontology to
describe Origin and Blacklist entities, e.g.

• http://dbpedia.org/resource/Iran a platmob:BlackList .
• http://dbpedia.org/resource/Iran platmob:origin

ex:com.farsitel.bazaar .
Using the dbpedia-owl:location property, origin country in-

formation can be extracted for a developer name. Figure 15dis-
plays Google Play’s entry of a popular photography app,
Instagram. Google Play displays a list of attributes, including
but not limited to the ones listed below:

• App description
• User reviews
• User rating and rating count
• Developer information

– Developer website
– Developer email

• App version
• Download count
• User review count
• Category etc.
Complex policy generation: Using the app provenance

information it is possible to represent highly rich context-
based policies. An example scenario could be as follows.
Imagine a person with a top security clearance who might
be the target of a foreign entity for perpetrating acts of
espionage. The targeted individual has access to sensitive
information and is an avid smartphone user. The foreign entity
has considerable reach to this person and has successfully
installed a backdoor on this person’s device. The targeted user
visits a secure data facility on a regular basis due to his/her
nature of job. The malware residing on this individuals



Fig. 15: Google Play entry for Instagram Android App

compromised device does a string of activities it starts
audio/video capture at stipulated time of the day or day of the
week based on this individuals calendar schedule and only if
device screen is not active or the user is not in the middle
of any calls at that point of time; these media files are then
uploaded to remote servers when connected to Wi-Fi and not
using the data plan to avoid raising suspicion; once uploaded
the malware removes these files to cover its track. Accessing
user calendar is possible for any user land app once it is
given access at install time. And the use case delineated
here is fairly generic since all the associated activities
are straightforward. Existence of privacy policies capable
of controlling application specific resource access based
on dynamic requester app and device context can address
breach of privacy under such circumstances. PlatMob may be
used to generate privacy policies for situations outlined below:

Disable camera recording on weekdays between 9 AM - 5

PM if device user is in a meeting
OR

Disable audio / video capturing by some app A belonging to
app group Internet and with origin country O, where O is

Blacklisted between 9 AM - 6 PM if device user is at
location L

OR
Do not allow some app A to run on device between time t on

days d, when app A belongs to app group G, app A has
origin country O, app rating > R, no of downloads > N,

app category is P, app is developed by group X, device user
is at location L engaged in an activity Q, and location L

belongs to country C
For the first and second scenario above, all context informa-

tion are available from the device. However, that changes in the
third scenario. Applications rating, download count, category,
developer and app origin information is harnessed from apps
market place and DBpedia.

IV. DISCUSSION

We have discussed two prototypes one for inter-device
privacy and security implementation and the other for intra-
device privacy and security control. The first prototype uses
a client server model with the requester being able to send
requests to another device directly or through a server. The
access request is processed by the policy framework. For the
intra-device privacy and security the prototype implementation
has two major components: a privacy control module and a
device operating system. The privacy control module aims to
protect user privacy by performing reasoning over the context.
It deals with the resource to be protected, the owner of a
resource and the requester who wants to access it. More
abstractly, it accepts an RDF triple (U, C, Q), where U is the
identity of the requester, C is the requester’s context (expressed
as RDF triples in the Platys ontology), and Q is the query
pertaining to context information. Both prototypes consider
contextual information and sensor information as the resources
that changes dynamically for the user, and provide mechanisms
to specify more expressive policies to control its sharing. The
users can create policies by using Policy Editor Interface.

Context-aware systems have been studied for a long time,
though the focus has been mainly on the location and activity
inference. The research project MyCampus [31] presented a
mobile application that involved a collection of customiz-
able agents capable of semi-automatically discovering and
accessing Intranet and Internet services during the process of
assisting their users in carrying out various tasks. During the
past decade a body of work on rule-based policy frameworks
and access control systems has emerged. Rei [9] is a policy
language designed for pervasive computing applications. It has
been used to build a security framework that addresses the
issues of security for web resources, agents and services in
Semantic Web. Rein (Rei and N3) [8] is a distributed frame-
work for describing and reasoning over policies in Semantic
Web. It supports N3 rules for representing interconnections
between policies and resources. Taintdroid [32] uses a taint



tracking mechanism to detect sensitive data flow inside the
device. CRePE [33] is the first to introduce a policy based
Android extension but the user context model and the user
level CRePE assumes, is trivial when one considers the extent
of granularity of user context and user role possible in real
life circumstances.

V. FUTURE WORK AND CONCLUSION

As mobile devices become the dominant communication
and information access medium these devices will model our
interests, activities and behavior. When appropriate, aspects
of this learned information which includes context may be
shared with other devices in order to collaborate and provide
enhanced service. This development introduces a need for a
stronger flow control. However, leaving this control solely in
hand of users might not be safe. Eventually we will have
to think of systems that are capable of making suggestions
to users about how to protect their privacy and security.
Such systems could provide understandable policies to users
or even enforce generic corporate or certified policies from
trusted authorities. One way of going forward is to work on
logic based and learning based systems which are capable of
determining security vulnerabilities on devices and make such
suggestions.

Another problem lies on increasing the computing ability of
mobile devices. Executing complex inference mechanisms or
generating context models can be a compute intensive task. We
need to make sure these tasks are efficient in order to ensure
it does not consume all the resources on an already limited-
resource device. Therefore, we need to work on algorithms to
ensure efficient executions of privacy and security rules which
consume less resources for generating context.
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