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Abstract—Successful implementation of the Internet of Thing
(IoT) is precursory to a thriving smart city. However, the
technical, physical, and environmental conditions can often pose
challenges in their successful deployments. The deployment is
further complicated if the time and location of implementation
are amidst a natural disaster.

In this work, we use flash flood detection as a natural hazard
testbed and describe various IoT deployment, our progression,
and first-hand experience from those implementations. We com-
pare and contrast three IoTs and their performance in real-time
execution. Next, we discuss systems architecture and their end-to-
end design and present lessons learned from these heterogeneous
deployments. Additionally, we evaluate and outline our observa-
tions, challenges, and opportunities for further improvement. We
also formulate standard evaluation metrics for their scoring and
document our deployment journey.

Index Terms—IoT, Edge and Cloud computing, Smart City,
Smart Services and Computing, Flood Detection

I. INTRODUCTION

The vision of smart cities encompasses a safe, clean,

healthy, inclusive, resilient environment that can provide eco-

nomic opportunity and high quality of life for their residents.

When the daily chores of city inhabitants are fully integrated

into successful Information and Communication Technology

(ICT), one can say that Smart living is achieved. Smart cities

and ICT address the quality of life by improving the health,

safety, and security of their citizens [1], [2].
The concept of smart living becomes more valuable when

a community is dealing with a crisis and unforeseeable sit-

uations. A city is indeed smart if it succeeds in helping the

community navigate through the information overload during

such emergencies. Smart IoTs can be those agents in the time

of crisis. Thus, IoTs and ICT systems play a vital role in

disaster management in smart cities. They enable effective

communication between the first respondents, government

agencies, and local inhabitants.
Internet of thing (IoT)s and ICT systems have been well-

integrated in the transportation industry, mainly due to the

advancements of self-driving vehicles. On the other hand,

water resource management and specifically the flash flood

monitoring is one of the areas within civil engineering that

has lagged ICT and IoT integration. Water-induced disasters

such as floods, storms, heavy rainfall, etc. are some of the

most dangerous and devastating forms of calamities. Flash

flood is a common occurrence and can happen on tranquil

streams and creeks in the neighborhood, city streets, and

highway underpasses [3]. Motivated by this, we designed

various early and intermediate stage prototypes to mitigate the

problem. Over the last two years, we have developed multiple

prototypical systems that allow us to gather real-time data and

empower decision-makers to act in advance to the disaster. Our

prototype can remotely monitor/sense the flooding situation

and deliver a functional cyber-physical system. We also believe

that our systems can be used to create a community watchdog

via social media integration in a smart city. In this work, we

present our findings from the flood detection and monitoring

systems, deployed in Ellicott City, Maryland, USA.

A. Objective

This work’s main objective is to understand and document

the complexity and challenges involved in the deployment pro-

cess of a disaster risk reduction IoT systems. The underlying

tasks in attaining this objective are:

• Design and deploy smart IoT systems for early warning

and enhancement in the decision support system.

• Assess and validate the design, implementation, and

deployment of IoT systems under harsh conditions and

heterogeneity.

• Stress-test the IoT systems for their reliability during

disastrous/extreme situations.

B. Contributions

The main contributions of this paper are as follows:

• This paper presents a detailed architecture and design

approach used in three different kinds of flash flood

detection IoTs.

• We deploy our IoTs in real-world hazardous conditions

and experiment with their robustness in a heterogeneous

environment.

• We frame each deployment into its generation to evaluate

its performance based on the underlying technology.

• We rationalize our progression from one deploy-

ment/generation to next by documenting the actionable

learning and shortcoming.

II. RELATED WORK

Ashton [4] introduced the term Internet of Things (IoT), and

it has been one of the most revolutionary technologies of the
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21st century. In recent times, IoT has become a common and

integral part of everyone’s daily lives. It has improved people’s

lifestyle in several domains through millions of sensors and

devices which perform various tasks such as to measure,

collect, store, process and transfer huge amounts of data

everyday [5], [6].

The research [7] reviews various innovative applications in

multiple domains such as health-care, smart buildings, smart

cities, transport, agriculture mining from the utility perspective

in the area of IoT and data analytics. The research [7] reviews

various innovative applications in multiple domains along

with the challenges they encountered while executing the

whole process (development and deployment) from the utility

perspective in IoT and data analytics. It is quite prominent

based on the survey [7] that these applications will continue

to improve our lives. However, there are some serious chal-

lenges, and researchers are working towards addressing these

challenges and making it more effective and efficient. The

difficulties in deployment have been well studied and can be

categorized into the following major areas [7], [8].

Performance & Scalability: It is caused by the need for

infrastructure scaling and real-time, fast analytic processing

(accurate predictive measures), especially during disasters.

Heterogeneity in Data Sources: As we integrate multiple

IoTs and sensors, we start to assimilate different types of data,

for example, social media contents, audio-visual elements,

satellite, and geospatial data. Heterogeneity in the data set

increases the possibility of richer knowledge and insights but

also deepens the complexity of the process.

Time-Space Complexity Computing: Another challenging

critical component is the velocity and veracity of real-time IoT

data collection, processing, and its overall management.

Device Reliability: Faulty sensors in the devices sending

malicious or missing data can mislead or make the machine

learning model bias resulting in less optimal results.

Individual privacy concerns: As connected IoTs integrate

into people’s lives as a society, the individual’s fundamental

privacy could be compromised. It is a challenging task to

maintain the balance of privacy concerns while providing the

appropriate individualistic solution of daily smart living.

III. GENERAL SYSTEM ARCHITECTURE

All our deployments adhere to similar technology and

architecture. They follow a three-layer IoT architecture, which

contains a Perception layer, a Network/Gateway layer, and

an Application layer. These layers are shown in Figure 1.

The communication protocols, IoTs units, target infrastructure,

are different in every generation (Gen) deployment, but their

overall data flow and working are the same. The target

structure for Gen-1, Gen-2, and Gen-3 deployments are on-

premise server, edge computing unit, and the cloud computing

infrastructure, respectively.

IV. DEPLOYMENT PROGRESSION

We describe these IoT’s and their echo system as gener-

ations of their own. We then describe and present how we

leaped into next-generation using the previous deployment as

Fig. 1. General System Architecture

our stepping stone. As we progress into the next generation,

we also experiment with different technology and underlying

computing units such as on-premise server-based computing,

edge computing, and cloud computing. The progression and

primary contributing technology used in each of these deploy-

ments are summarized in Figure 2.

Fig. 2. Deployment & Progression Plan

5
A. Gen-1 On-Prem IoT

Our first IoT deployment is based on ”On-Premise IoT

Solutions, called Smart Security P&S Unit. We purchased and

acquired the sensor along with the CPU from a European

company named Libelium. The Waspmote Plug & Sense

contains an internal SD (Secure Digital) card with up to 2

GB storage. The battery in the unit is charged through the

solar panel.

(a) IoT Description (b) Field Deployment

Fig. 3. Gen-1 Deployment

1) Method and Materials: Figure 3(a) explains the func-

tionality of Gen-1 IoT and Figure 3(b) depicts the field

deployments of the same. The Gen-1 IoT’s preceptor is a float

switch that sends a binary signal to the CPU when the rising

water level triggers and closes the circuit. Until the threshold

is reached, the float switch remains deactivated. Table I shows

a sample reading during flooding and non-flooding/regular

scenarios, including one flood triggering event denoted by
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Y in the last column. When the float switch is closed, i.e.,

flood level is reached, the CPU transmits a byte into our

on-premise server provisioned with LAMP (Linux, Apache,

MySQL, PHP). The server-side programs based on JAVA and

cron are used to detect the signal and send email notifications

based on the set thresholds.

TABLE I
SAMPLE READING FROM GEN-1 IOT

TimeStamp Temp Flood
Threshold

10/11/2017 21:18 74.6 N
10/15/2017 23:42 76 Y
10/16/2017 9:18 77 N

2) Shortcomings and Challenges: While this deployment

gave us ample learning opportunities, and we iterated multiple

times within this generation, the following are some of the

challenges and shortcomings of this deployment.

• Data Limitations: This device is only capable of sending

a binary signal when the preset flood threshold is reached.

• Limited Predictive Capability: Real-time flash flood

detection requires a predictive model which can forecast

future flood level in the area. However, the data limitation

capability of this system does not accommodate the

predictive power well. This deployment would be able

to create at most a Rule Based engine.

• Cost: Given a limited data ability for our application,

the device is also cost-prohibitive. The equipment cost

us almost two thousand dollars.

• International Device: Being an imported device con-

necting to the American network service providers is a

challenge

Among others, this deployment possessed an unforeseen

impediment for us. This is an imported device from a Spanish

company called Libelium. The Libelium unit was unable to

connect with any of the leading US telecommunication sys-

tems such as AT&T, Verizon, T-Mobile, etc. Finally, we had to

work with the vendors from Spain to get the basic functionally

to work. To mitigate the problem, the company had to develop

a special device solely for our research purposes.

3) Lessons Learned: Making Gen-1 functional has been

quite a difficult and time-consuming endeavor. First and fore-

most, this is our first cyber-physical system to be deployed

and tested outside the controlled lab setting. We had to make

sure that the device will be deployed in a secured area and

away from vandalism or theft. Although the unit is marketed

as a Plug & Play unit, it required a lot of custom coding to

make it operational. We had to study and understand various

hardware, software, and networking aspects of the unit.

TABLE II
GEN-1 IOT DEPLOYMENT SUMMARY

Gen-1 On-Prem IoT

Network Protocol 3G

Perceptor Flood Level Threshold Sensor

The application layer Custom Code (LAMP, JAVA)

Major Capability Binary Data and Email Trigger

Once we were able to operate the device, it was adequately

reliable. We deployed the system for more than three months

without any problem. The server performed the critical func-

tion of this unit, and hence the unit itself is less prone to

failure at the IoT node. Table II summarizes the findings from

our Gen-1 deployment. The main capability of this deployment

is being able to send a binary trigger to the server when the

unit would reach the preset flood threshold. As soon as the

water level rose to the float sensor level, the rising water level

closes the circuit, and IoT sends a binary signal. The signal

then triggered a series of server deployed applications such as

database inserts, SMS, and email alerts.

4) Motivation for Gen-2: Thereafter the deployment of

Gen-1 and learning from them, we move to our second-

generation (Gen-2) deployment. The main motivation for us

to delve into this iteration is to try to build an in-house lab

unit and circumvent the main challenges presented by Gen-

1. In Gen-2, we strive for a more economical solution and

look for a richer data set. We also lost a significant amount

of time in the back and forth shipment of the devices across

continents. Soon we realized that working across the globe and

timezone was not a viable solution. Subsequently, we move on

to the next options and explore building an in-house flash flood

detection system.

B. Gen-2 Edge Computing IoT

This deployment primarily explored the concept and work-

ing of edge computing. There are two separate units within

proximity, the physical unit, a riser structure, and the compu-

tational edge unit. The riser structure is a color-coded flood

gauge.

1) Method and Materials: The IoT system is shown in

Figure 4(a), where the perceptor is a camera unit continuously

taking a picture of the Riser Structure. The Field Deployment

for Gen-2 is depicted in Figure 4(b) with RaspPi Camera and

Flood Gauge marked on the Figure 4(b). In-depth analysis and

deployment detail are discussed in our previous work [9].

Edge Computing: The unit is based on scene text recog-

nition, which allows locating the area of interest with an

image. We use various image pre-processing techniques such

as background subtractions, template matching, and Region of

Interest (ROI) trimming to isolate the areas to perform infor-

mation extraction. We use the K-Means clustering technique

to separate the most dominant colors.

We then leverage digit recognition techniques to identify

the flood level in a stream. The edge computing unit is a

microcomputer (Raspberry Pi), runs on the Linux operating
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(a) IoT Description (b) Field Deployment

Fig. 4. Gen-2 Deployment

system. We installed the MySQL database to store and manage

the meta-data such as image, time, label, size, deployment

location, etc. The unit contains a pre-trained deep learning

model capable of recognizing digit and color. The edge unit

used K-Means clustering to identify the most dominant colors.

We then used digit recognition techniques to determine the

flood level in a stream. The CPU unit is a Raspberry Pi

unit loaded with a pre-trained deep learning model capable of

recognizing digit and color. At the end of each run, the unit

takes a picture, performs image pre-processing, and prepares

input for the color and digit recognition deep learning model.
2) Shortcomings and Challenges: This device is built lo-

cally, with commodities such hardware (pipes, gauges, over-

flow structures) and software (computing models, image data

storage and processing), it has its own set of challenges and

learning opportunities. Some of the major challenges and

shortcomings of this deployment are listed below.

• Stability: The major challenge in this design and deploy-

ment is the physical stability of the unit. Figure 4(b)

shows the precarious physical stability of this deploy-

ment.

• Reliability: Lose wire connections, dangling parts, and

stand-alone camera reduced the reliability of this unit.

• Safety: The units will also be hard to deploy in harsh

flooding or unforeseeable scenarios. It would be easily

swept away during flooding and misplaced.

• Accessibility: The camera is unable to capture clear

images in extreme/foggy weather and at night.

TABLE III
GEN-2 IOT DEPLOYMENT SUMMARY

Gen-2 Edge Computing IoT

Networking On Device Storage

Perceptor Camera Unit

The application layer Pre-Trained Deep Learning Model

Major Capability Real time Flood Detection on Edge

3) Lessons Learned: This work is based on the challenging

area of computer vision and provided us with good research

opportunities. However, besides the shortcoming listed above,

the main challenge of this unit is its inability to detect the

flooding condition at night. The computer vision technique

described above works on camera being able to read the

color and digit, and hence during the night, the device would

be unable to detect flood level. The unit taught us basic

knowledge about the cyber-physical device’s development that

different yet intricate components need to work in tandem to

have a successful IoT. These main components, as described,

included the hardware (physical units), the IoT sensing elec-

tronic components, and the final software components. As

seen, they are often the expertise of different engineering

groups such as mechanical/civil, electronics, and software

engineering. To that end, it would have been an uphill battle

for a single lab to produce a scalable device in this generation.

Nevertheless, we believe this unit has huge potential, and

further data exploration and research activities are currently

in progress.

4) Motivation for Gen-3: With our lessons learned from

the previous generation and experimenting with them for

some time, it is evident that the most time-consuming part

of IoT development is its reliability, physical stability, and

data granularity. We finally decided to move towards the

off the shelf IoT product solutions. During our first two

deployments, we learn that maintaining in house server and

hardware component is yet another overhead for the main

research work, i.e., to detect flash flood readily. To that end, we

decided to use Software as a Service (SaaS) technology and

opted to use a cloud provider for day to day data storage and

application management. Our main goal in moving to the next-

gen is to focus more on building a robust machine learning

solution and less on physical stability and mundane tasks.

C. Gen-3 Cloud Computing IoT

Fig. 5. Gen-3 Cloud Computing IoT

In Gen-3, we attempt to

solve our previous flood de-

tection problems by selecting

the ready to use IoT prod-

uct. The deployment, along

with sensors of this system,

is shown in Figure 5. The

units come with the percep-

tors ready to connect to the

CPU that transfer data to the

cloud. Once the raw data is in

the cloud server, we are ready

to access them and perform

machine learning actitivites.

1) Method and Materials: One of the Gen-3 deployment

setups is depicted in Figure 5, which displays two sensors

water level measuring unit, a pressure-based water sensor,

and the camera unit along with field deployment. The camera

triggers when the flooding is sensed by the water measuring

unit. Table IV shows sample reading from one of our deployed

sensors. In this deployment, we use four such units into hydro-

logically significant stream locations. They are online and

collecting real-time flood data, the Ellicott City, Maryland

streams, which was devastated by flash in the past. Figure

6 shows the water level recorded at the same time by two

different sensors located along the same tributary. It shows
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TABLE IV
SAMPLE READING FROM GEN-3 IOT

RECORD TIME Water
Level
(inch)

Temp
o F

10/10/2019 12:00 9.668 86.93
10/9/2019 1:00 5.828 60.67
10/12/2019 17:00 2.957 71.60

that the bottom graph is a feeder stream to the upper one and

hence has a higher water reading. Gen-3 is already integrated

with the social media platform Twitter to broadcast the sensor

reading regularly via the twitter handle umbc floodbot 1. One

such tweet is depicted in Figure 6.

Fig. 6. Gen3-Data Dissemination

2) Shortcomings and Challenges: The systems are up and

running online for a few months now. We have begun to

understand the functionality of the unit and its challenges. The

following are a few challenges that we have encountered so

far.

• Hardware Issues: Once ordered, it took us a few months

to get the system operational because of some internal

hardware failure and network connectivity challenges.

• Proprietary Parts: The device and its perceptor (CPU and

other units) are all proprietary to the vendor, and hence

we have limited accessibility and low modifiability to the

inner functionality of the unit.

• Stability: One recent flash flood event, washed away one

of the perceptor (pressure transducer); thus, this unit is

also susceptible to physical stability.

• Clogging Debris: The sensor unit is submerged in the

water and often gets clogged by siltation and other debris.

The debris also causes connectivity issues and data loss.

3) Lessons Learned: As of the writing of this paper, Gen-

3 units have been live for a few months. Similar to previous

deployments, this deployment gave us ample learning oppor-

tunities. As we progressed from Gen-1, Gen -2, we notice

that some of the same fundamental challenges still remain.

For example, the washing away of our sensor on Gen 3

1https://twitter.com/umbc floodbot

or vandalism, the reliability in network connectivity are all

still ongoing challenges. However, we do believe that this

deployment is one of the significant achievements for us and is

expected to bring multi-facet learning opportunities. We have

been expanding and collaborating with other vendors to deploy

more sensors in the area. The unit is fully integrated with a

camera, which allows us to see and validate the data remotely.

In addition to the current research, we have another entirely

different and noble research direction that has emerged from

this deployment. Given the easy integration of sensor reading

and social media, we are exploring various ideas to integrate

the cyber-physical system with social media. The reading from

this device and images captured are propagated as tweets using

the umbc floodbot twitter handler. On top of four sensors,

we are also recording weather data (historical and foretasted)

for the area, so it will be an interesting research work to

see if we can predict the flow patterns based on weather and

rainfall data. Similarly, ample opportunity for research lies in

the integration of computer vision into a physical phenomenon

captured by our deployed sensors.

TABLE V
GEN-3 IOT DEPLOYMENT SUMMARY

Gen-3 Cloud Computing IoT

Network Cloud Connected 3G

Perceptor hydro-static level sensor

The application layer Cloud hosted API

Major Capability Water Level, Images and Social Media Posting

V. RESULT AND DISCUSSION

We evaluate the overall success of our deployments based

on the following evaluation criteria.

A. System Evaluation

We score the systems and their success based on evaluation

criteria discussed by Fahmideh et al. and Maoling and et al.

[10], [11]. Based on their study, we have selected the four

evaluation metrics to assess the quality of our deployment

and system. Performance to measure the device capacity

from parallelism, their ability to query the unit from both

multiple user interfaces and Operating Systems. Modifiability
to measure the ability and flexibility to make changes from

both hardware and software in the deployment. Reliability to

measure the overall reliability of the system. Availability to

measure the capability of usage and execution of the software

developed during intervals of time.The results are shown in

Table VI. Gen-1 deployment was available for the duration

of execution time despite difficult communication networks.

Since the Gen-1 was primarily a plug and play device, it

had less adaptable to change for scalability and customized

needs. The performance for Gen-1 was limited as it could

not support multiple users or distributed environments. Gen-2

deployment’s availability was minimal since it was designed

and installed in a precarious state and dependent on the mercy

of environmental/weather conditions.
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The overall performance of the Gen-2 system was medium

since the data collected and analyzed using this system was

not up to the mark due to the physical instability of the system

and bad image data due to the night vision of the camera.

As yet, the Gen-3 deployment seems to be promising in

fulfilling the gaps left out by the previous Gen deployments.

Gen-3 is high in availability .We can access the data in

real-time through the API call and dashboard. The sensors

and devices are efficient and well connected to the network.

The Gen-3 system would still face extreme physical/weather

conditions but more reliable than the previous Gen systems.

Gen-3 uses fully functional, pre-built, ready to use systems

with data visualization and web interface. Thus, it does not

provide much flexibility in modifying the system, making

it less in Modifiability and more reliable than our Gen-2

deployment. The performance of the Gen-3 system is expected

to be higher than the previous Gen systems because the good

quality of data, system stability, network connectivity, and data

analysis would be superior relatively. Gen-3 has the potential

to achieve the final goal with efficiency.

TABLE VI
EVALUATION METRICS

Evaluation Report Card

IOT Performance Modifiability Reliability Availability

Gen-1 Low Low High High

Gen-2 Medium High Low Limited

Gen-3 High Low High High

B. Point of Failure Analysis

Table VII shows the information against our 3-layered

architecture. The weakest link and lesson learned from these

generations are summarized in table VII.

TABLE VII
WEAKEST LINK ANALYSIS

Point of Failure Analysis

Deployment Weakest Link Discussion

Gen-1 Perceptor
Gateway
Application

Float switch does not give granular
flood stage

Gen-2 CPU Device lacked proper enclosure for
harsh weather
Image-based solution needs night-
vision

Gen-3 Perceptor
Gateway

Data loss issues, Cloud Connectiv-
ity

C. IoT-Service Delivery Model

We observed that the proper selection of IoT Service De-

livery Model is also important in the overall success of the

IoT implementation. Gen-1 and Gen-2 were based on-premise

server for data analytic, and since we implemented all the

server-side code, the overall process is very reliable. All the

challenges that we are currently facing are mostly attributed

because IoT is an evolving field and applicable to other

projects as well. Hitherto, Gen 3 seems to be the best solution

for scalable IoT deployment. This mode of deployment could

be better used to perform more sophisticated tasks such as

utilizing machine learning and Artificial Intelligence methods

to find suitable smart solutions.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented our experience in creating

IoT solutions around three heterogeneous environments. We

have presented our learning from all of these implementations.

We have intentionally left out the discussion from the data

quality and analytically perspective. In our future work, we

will divulge more on each of the unit’s performances and

the readiness of data usage for a decision support system

and their machine learning potentials. IoTs play an important

role in informing people and, more so, during disastrous

situations. We firmly believe that the success of smart cities

lies in the success of many successful IoTs. Furthermore, it

has been our experience that the IoTs (hardware) and the

application (software) are two different and rich research area

in themselves. Looking at all three option and our experience

with cloud deployment, IoTs are the perfect candidate for

cloud-based solutions.
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