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ABSTRACT

Title of Thesis: A Policy-based Framework for Privacy-respecting Deep Packet

Inspection in TLS Implementations

Arya Renjan, MS Computer Engineering, May 2019

Thesis directed by: Dr. Karuna Pande Joshi
Assistant Professor
Department of Information Systems

Deep Packet Inspection (DPI) is instrumental in investigating the presence of mali-

cious activity in network traffic, and most existing DPI tools work on unencrypted pay-

loads. As the internet is moving towards fully encrypted data-transfer, there is a critical

requirement for privacy-aware techniques to efficiently decrypt network payloads. With the

introduction of TLS 1.3 standard that only supports protocols with Perfect Forward Secrecy

(PFS), many existing techniques for decryption to do further DPI analysis will become in-

effective. We have developed an ABAC (Attribute Based Access Control) framework that

efficiently supports existing DPI tools while respecting user’s privacy requirements and or-

ganizational policies. It gives the user the ability to accept or decline access decision based

on his privileges. Our solution evaluates various observed and derived meta-characteristics

of network connections against user access privileges using policies described with se-

mantic technologies. Network meta-characteristics like IP intelligence is one of the many

attributes that can be used in defining access control policies. We also present Dynamic

Attribute based Reputation (DAbR), a Euclidean distance based technique, to generate rep-

utation scores for IP addresses by assimilating meta-data from known bad IP addresses.

This approach is based on our observation that many bad IP’s share similar attributes and

the requirement for a lightweight technique for reputation scoring. DAbR generates repu-

tation scores for IP addresses on a 0-10 scale which represents its trustworthiness based on



known bad IP address attributes. To evaluate DAbR, we calculated reputation scores on a

dataset of 87k IP addresses and used them to classify IP addresses as good/bad based on

a threshold. An F-1 score of 78% in this classification task demonstrates our technique’s

performance. The reputation scores when used in conjunction with the policy enforcement

module, can provide high performance and non privacy-invasive malicious traffic filtering.

In this thesis, we also describe our framework and demonstrate the efficacy of our technique

with the help of use-case scenarios to identify network connections that are candidates for

Deep Packet Inspection. Since our overall ABAC technique makes selective identification

of connections based on policies, both processing and memory load at the gateway will be

reduced significantly.
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Chapter 1

INTRODUCTION

With the unprecedented growth of the Internet, security and privacy have become crit-

ical concerns to its users. Web traffic encryption is a widely adopted technique to protect

users’ privacy. Adoption of security protocols like SSL (Secure Socket Layer) and TLS

(Transport Layer Security) to provide secure network connections is also on the rise. Pop-

ular web browsers like Chrome and Firefox have made the requirement for encrypted con-

nections a priority. Since 2018, Chrome deems a website as ‘not secure’ if it uses HTTP.

As of 2019, around 80% of web traffic through Google Chrome is encrypted [1], and more

than 50% of Alexa top one million websites are HTTPS [2]. However, it is reported that

the number of attacks using encryption to conceal its malicious attack vectors [3] is also

increasing at a fast rate. Zscaler [4], a cloud-based information security company, reports

that there is a 30% increase in the encrypted malicious traffic and many new attack pay-

loads are being delivered over encrypted communication channels. Gartner [5] expects that

at least half of attacks caused by malware in 2019 will use some encryption. Hence, it is

imperative to analyze encrypted data streams to detect potential security threats.

TLS version 1.2 was released in August 2008, and it supports many legacy cryp-

tographic protocols like SHA1 and MD5 which are now considered insecure. They are

susceptible to several known attacks like SLOTH [6], POODLE [7], etc. Its latest version,
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TLS 1.3 (released in 2018), addressed these issues by removing support for many such

legacy protocols. Another significant change in TLS 1.3 makes Perfect Forward Secrecy

(PFS) mandatory [8] unlike its predecessors, where it was optional. With PFS enabled, the

session key (negotiated between the client and the server during TLS handshake) for data

encryption is never transmitted across the network. Instead, it uses protocols like ephemeral

Diffie-Hellman key exchange to generate the same session key in the client and the server.

As a result, even a compromise of the server’s private key will not affect the confidentiality

of the previous sessions that used it.

It is evident that PFS improves the security and privacy of its users, but it has some ad-

verse effects on several existing security solutions [9]. Many security solutions use TLS 1.2

features to decrypt sessions and use DPI (Deep Packet Inspection) tools like SolarWinds 1,

Paessler Packet Sniffing 2, etc. for further analysis. For example, if RSA authentication is

used, a unique pre-master secret (used for generating the master secret) is first encrypted

with the server’s public key and is sent to the server. The server’s private key may not

available to these security solutions also. However, they circumvent this by inserting a

root certificate to their clients and use them during the handshake. Using this pre-master

secret and other random numbers that can be extracted from the session traffic, the DPI

tools decrypt the entire session and use it for malware detection, internet censoring, and so

forth. With PFS, such solutions will not work because the actual session keys never leave

the client or server machine and passive decryption becomes difficult.

One existing solution to overcome this problem is to use active proxying in which the

gateway encrypts and decrypts every connection between all clients and servers. Consid-

ering the velocity and veracity of traffic through the gateway, this will become a big-data

problem and will be highly resource intensive. Another solution is to use techniques like

1https://www.solarwinds.com/topics/deep-packet-inspection
2https://www.paessler.com/manuals/prtg/packet_sniffer_header_sensor
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Cisco ETA (Encrypted Traffic Analysis)3 that tries to identify malware without decryption.

Anderson et al. [10] present a study on using TLS meta-characteristics for malware detec-

tion. Yet another competing technique is from ExtraHop Networks [8] where all session

keys are retrieved from every clients for decryption. Decryption of such web traffic for

inspection is not only expensive in cost and time, they also invade users’ privacy. There-

fore, there is a requirement for a system that injests network attributes and user privileges

to generate decisions to be taken by the gateway on that network session.

In this research, we describe an ABAC (Attribute-Based Access Control) policy

framework in which the various observed and derived attributes of the network connec-

tions are evaluated using policies defined with semantic technologies. It enables the sup-

port for existing DPI tools and respects the privacy of its users by giving them an option to

choose in accordance with organizational policies. Since our solution selectively identifies

connections based on policies for DPI analysis, the processing load and memory load at

the gateway will be reduced significantly. This analysis could be taken offline as well. We

demonstrate the flexibility and efficacy of our technique by describing handpicked use-case

scenarios.

For generating access policy decisions, our system uses various direct and derived

meta-features of network traffic. Network intelligence related information is an important

attribute that could be used to define access control policies. However, due to the increasing

encrypted traffic and more malicious websites moving to encrypted network to conceal

their identity, there is a critical requirement to use unencrypted features of web traffic for

identifying and filtering attacks. IP address is one such feature which could be utilized

for filtering out malicious traffic in encrypted traffic. IP address based web traffic filtering

is widely used as the first line of defense in many Intrusion Detection Systems (IDS) like

3https://www.cisco.com/c/en/us/solutions/enterprise-networks/
enterprise-network-security/eta.html



Snort. Lists of bad or blacklisted IP addresses for such filtering are available from a plethora

of sources like FireHOL4, Cisco Talos5, Spamhaus6, etc. A major shortcoming of using

such lists for filtering attacks is that many of them are based on known malicious incidents.

However, attackers often take control of newer targets and use them for spreading malware

or initiating attacks. Such cases are overlooked by these filtering systems.

This research also proposes a simple and computationally fast reputation scoring tech-

nique, DAbR (Dynamic Attribute-based Reputation), for scoring unknown IP addresses

which are not present in existing bad IP address lists. This helps to generate a score for un-

known IP addresses indicating thesir possible maliciousness nature. We envision that this

IP reputation system works in conjunction with the policy framework to generate access

decisions. The dynamically calculated IP reputation scores from DAbR module is inputted

to the ABAC module discussed earlier as its attributes. DAbR generates an offline model

for bad IP addresses by ingesting blacklists and their various meta-characteristics. When

a real time IP address arrives, our proposed system tags a reputation score with it, by cal-

culating the similarity of its meta-characteristics to the generated model. We purposefully

chose simpler, but effective model generation and reputation scoring steps in DAbR to ac-

commodate fast and high volume traffic, so that it can be easily integrated with the policy

module to generate fast access decisions.

The rest of this paper is organized as follows: Chapter 2 describes a brief literature

review, and Chapter 3 presents an overview of this work. Chapter 4 discusses the architec-

ture of our policy-based system. In Chapter 5, we discuss our DAbR which constitutes a

part of our overall system. Chapter 6 demonstrates the usefulness of our technique with the

help of use-case scenarios followed by the conclusions and future work in Chapter 7.

4http://iplists.firehol.org/
5https://www.talosintelligence.com/reputation_center
6https://www.spamhaus.org/

4
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Chapter 2

RELATED WORK

Policy-based access control is a much-researched topic that finds applications in a

plethora of fields. In addition to the classical access control models like discretionary

(DAC), mandatory (MAC) and role-based (RBAC) models, the attribute-based access con-

trol (ABAC) model also gained traction in recent years. In [11], Jin et al. investigate

formal connections between these three classical models and ABAC models. ABAC tech-

niques are used in several fields like cloud computing [12], web services [13], Internet-of-

Things [14], [15], and grid computing [16].

Access control policies are also widely used in the field of network security to re-

duce the risk of unauthorized access. Some research in this field is discussed here. Berger

et al. [17] propose a framework for dynamic ABAC configuration in firewalls where the

temporary binding between a user and IP address is used to create policies to access re-

sources over the internet. In another research, Burmester et al. [18] present an extended

ABAC model called real-Time Attribute-Based Access Control model (T-ABAC), that can

guarantee real-time availability for high priority IP packets. In [19], Basile et al. discuss

an ontology-based policy translation approach that mimics IT administrators, to identify

device configurations based on network topology and security policies.

The policy management techniques discussed above use Attribute-Based Access Con-
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trol for traffic filtering, suspicious activities identification, and so forth. In this paper, we

propose a system that uses ABAC to selectively identify network connections for Deep

Packet Inspection (DPI) in encrypted traffic while respecting the user’s privacy require-

ments and organizational policies. In another related research, Hu et al. [20] patented a

policy enabled Deep Packet Inspection framework for telecommunications network. In

contrast, our system extracts several direct and extended attributes and use ABAC using se-

mantic technologies with a goal of specifically supporting DPI in perfect forward secrecy

implementations like the new TLS 1.3 standard.

This literature review also discusses the existing work related to reputation scoring, as

this is another main contribution in our research. Reputation scoring is studied and used

in a variety of fields like search engine query [21], e-commerce [22], social network rank-

ings for enterprise profitability calculation [23], network trust-worthiness [24] etc. Page

et al. [21] devised “PageRank” algorithm that uses reputation scoring to rank the search

results based on the backlinks from each webpage. Katkar et al. [22] developed a Trust

Reputation System (TRS) for e-commerce applications and used data mining to perform a

semantic analysis of feedback, for calculating the reputation score. In the field of online

and social media reputation, Marrakhi et al. [23] devised a technique IRMS (Intelligent

Reputation Measuring System) to rank a brand’s presence in the social media. Their scor-

ing is based on the number of citations of the brand, its reach, impact, and influence in

social media.

Reputation scoring is also discussed in the field of networking [24] to ensure trust-

worthiness of the participating nodes. Zhou et al. [25] devised a “Gossip” based reputation

aggregation in peer-to-peer networks called ‘GossipTrust’ in which, each node receives

reputation vectors from other nodes in the network and selectively integrates vectors to

determine the trustworthiness of participating nodes. Mui et al. [26] used a bayesian prob-

abilistic approach for formulating ratings in distributed networks. In the field of wireless



sensor networks, Kim et al. [27] used a fuzzy logic based approach to score trust levels of

each node, based on multiple degrees of trustworthiness in each node pair.

In network security, reputation scoring finds application in detecting malicious activ-

ities on Internet. Esquivel et al. [28] used reputation scoring of IP addresses for e-mail

spam filtering by checking the SPF (Sender Policy Framework) resource records of SMTP

senders. They were able to identify legitimate servers, spam servers and end hosts among

the SMTP senders using their technique. In another research, Anderson et al. [10] used the

meta-characteristics of TLS (Transport Layer Security) connections for TLS based malware

detection. Studies have been done to detect malicious websites/domains using reputation

scoring. Hegli et al. [29] used Maximum Entropy Discrimination (MED) classifier for rep-

utation scoring of websites, based on data regarding domain registration, service hosting,

IP address, domain creation date, popularity rank, number of hosts, etc. Chiba et al. [30]

developed and evaluated a method to detect malicious websites using SVM based analysis

of the octet-based, extended octet-based and bit string-based features of IP addresses. An-

other related work is from Antonakakis et al. [31] where they developed “Notos” reputation

system that uses the unique DNS characteristics to filter out malicious domains based on

their previous involvement with malicious or legitimate internet services. They used clus-

tering analysis of network-based features, zone-based features and evidence-based features

for each domain for reputation scoring. In many of these existing techniques, the scoring

is done offline and hence can employ processing-intensive techniques. However, in this

research, we focus on developing a lightweight technique which uses the similarity of an

IP address to the existing bad IP’s to determine reputation scores.

7
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Chapter 3

OVERVIEW

The primary focus of this thesis is to enable efficient passive monitoring on encrypted

traffic that also respects user’s privacy requirements for implementations like TLS 1.3

where perfect forward secrecy is enforced. Consider a hypothetical situation of orga-

nizational network which has various types of users like high-privileged employee, low

privileged employee, guests etc. Here, the organizational policies may define that all em-

ployees should be able to access confidential information whereas guest users must not.

If a guest user is trying to access them, the system should block the connection. Instead,

if a high-privileged employee or low privileged employee is accessing them, the gateway

could inspect the connection to check if the user is trying to perform activities against the

organizational policies, instead of blocking the connection. The organization may also typ-

ically assign more level of trustworthiness to the high-privileged employees. So, before

inspecting their connections the gateway may also request permission from them to avoid

false alarms.

In order to deep-inspect the connections for encrypted sessions, the gateway has to

decrypt the packets. Existing techniques for deep-inspection may be harder to work in

TLS 1.3 encrypted sessions owing to their default ‘Perfect Forward Secrecy’ feature. Our

system uses ABAC policy framework to identify candidates for deep packet inspection on
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TLS 1.3 encrypted connections as well as other security protocol versions like TLS 1.2.

3.1 Threat Model

We envision our system to work inside the gateway of an organizational network. Our

system has three broad categories of users; organization administrators who create/update

policies, internal entities who should comply with the organization’s policies in order to

access the resources, and external entities which are accessing the internal entities (or the

external entities being used by the internal users). In our threat model, we consider the

organization administrators to be trusted. The internal entities and external entities are not

trusted by default. However, there may be some internal entities who are added as trusted

by organizations administrators. However, we assume that the internal entity operating

systems are trusted and we can run/manage some trusted user agents in the system.

We classify two categories of threat actors in our system. The first set of actors include

all the malicious entities who are external to the organizations. Some of the expected threats

from them include injection of threat vectors like malware, trojans, etc. into the system

to perform various malicious activities like data exfiltration, denial-of-service (as source

and destination), resource stealing (e.g. crypto-jacking), cyber-espionage, and so forth.

The second category of threat actors is from the internal entities which may be results of

intentional actions from its users (internal threats) or unintentional activities as a result of

an already existing malware, software bug in the user’s system.

Our proposed system detects these threats using two primary techniques. Firstly, it

uses techniques like DAbR, white-lists, and blacklists to identify malicious, and dis-reputed

sources. Secondly, it allows for efficient deep packet inspection which enables detecting

various known attack vectors. Since we consider the internal entity operating system to be

trusted, administrators will be able to run user agents them that allows secure communica-
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tion between the gateway component. We scope ourselves out of those threats as a result

of bugs in the operating system and untrusted operating system in the internal entities.

FIG. 3.1: System Overview

Figure 3.1 shows the overview of our system that uses network attributes and user

privileges to generate access decisions via policy based approach. The network attributes

like IP addresses are also given to the DAbR reputation scoring system to generate numeric

reputation scores which are further used as attributes to generate access decisions. The

policy based architecture is discussed in detail in Chapter 4 and DAbR in Chapter 5. DAbR

helps to assign reputation scores for IP addresses by identifying its possible maliciousness

even though it has never appeared in any existing blacklists. Integrating this in the policy

based architecture helps to generate better access decisions whether to block, allow or

inspect connections made to those IP addresses.
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3.2 Thesis Statement

This research is aligned on the following statement:

A semantically-rich policy framework on network traffic meta-features and user privi-

leges will allow us to enable privacy-respecting Deep Packet Inspection in Perfect Forward

Secrecy enabled security protocols like TLS 1.3.

Here, a semantically rich policy framework implies the ABAC policy framework. The

policies are defined in terms of network traffic meta-features (both direct and derived at-

tributes). Direct attributes include network features that are directly accessed from real

time network traffic, like source and destination IP addresses, SNI, Protocol etc. Derived

attributes include the network intelligence information which is obtained from direct at-

tributes using techniques like DAbR.
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Chapter 4

SYSTEM ARCHITECTURE

The architecture of our system that enables efficient policy respecting packet inspec-

tion on encrypted traffic by factoring in the user access privileges and network traffic meta-

features is discussed in this chapter. For this purpose, we envision a multi-agent system as

presented in Figure 4.1. Unlike active monitoring techniques that are resource intensive,

in our architecture, the client-user agents interact with the monitoring component based

on organizational policies for achieving its goal. In this paper, we use an extended ABAC

(Attribute Based Access Control) with a knowledge graph and reasoner to infer policy de-

cisions. The three key modules in our architecture are Network Monitoring Engine, Client

Agents, and Policy Engine.

The Attribute Extraction module in the Network Monitoring Engine resides at the

edge node of the organizational boundary (typically external gateways). It extracts various

attributes (observable attributes like IP address, protocol, etc. and extended attributes like

IP intelligence) for every connection and requests the Policy Engine to make access control

decisions. The policy engine uses organizational policies to make various access control

decisions as described in section 4.1.2. The decisions are then sent to the Policy Enforce-

ment module of the Network Monitoring Engine for further processing and enforcement.

The Policy Enforcement module also interacts with the client-user agents and supports ef-
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FIG. 4.1: System Architecture

ficient DPI only for selected connections, thus providing required levels of security and

privacy to its users. The detailed description of each of these key components ensues in the

subsequent sections.

4.1 Network Monitoring Engine

The Network Monitoring Engine monitors the traffic across the network boundary

and enforces the decisions taken by the Policy Engine. It has two main modules: The first

module is the Attribute Extraction module that fetches network attributes and security in-

telligence from traffic in real-time. The second sub-module is Policy Enforcement module

which enforces the access decisions generated by the policy engine.
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4.1.1 Attribute Extraction Module

The attribute extraction module performs real-time traffic monitoring of every con-

nection traversing the gateway and extracts their attributes simultaneously. In the Attribute

Extraction module, the system extracts various network and flow attributes of each con-

nection. Network attributes are those attributes which give information on the network

parameters of traffic like source and destination IP address, protocol, Server Name Indi-

cation(SNI) of the external user, etc. In addition to network attributes, the module also

extracts flow attributes that provide information on traffic flow like time, packet size, count

of packets, etc.

The attribute extraction module then uses this information to derive more attributes

related to the connection. It takes inputs like external IP address and SNI to gather in-

formation about the IP intelligence, domain category, etc. in real-time. For extracting

attributes on network intelligence, we can use reputation scoring services that give infor-

mation on the malicious characteristics of external users. This reputation scores may be

boolean values indicating the presence of external IP in blacklists, or numeric probability

scores corresponding to its possible maliciousness. In addition to security intelligence, this

module also gathers information regarding the category of service the user is trying to ac-

cess. For example, facebook.com is a ‘social networking’ website, youtube.com delivers

‘media and video streaming’, etc. All these attributes are then sent to the policy engine for

generating policy decisions.

4.1.2 Policy Enforcement Module

This module enforces the access decisions generated by the policy engine. The major

access decisions made by the policy engine and their respective enforcement actions are

discussed below:
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1. AllowConnection: If a connection is as per the organizational policies, it will be

allowed without any restrictions. This access decision will be used in scenarios where

the user is trying to access legitimate websites like google.com or stackoverflow.com.

2. BlockConnection: This decision is generated if a connection is against the organiza-

tion’s policies. Network connections to known malicious hosts is a typical example

of blocked connections. In such cases, the policy enforcement module will block the

connection, thus avoiding any potential spurious network activity.

3. MandatoryInspection: This decision is used to give certain privileges to specific sets

of users, but with some restrictions. Consider the case of a software company which

does not want its developers to upload proprietary source code or resources to exter-

nal file servers. Since blocking all connection to file servers is too restrictive, a more

appropriate access decision will be to perform mandatory deep packet inspection and

allow the connection. MandatoryInspection access decision informs the Policy En-

forcement module to perform deep inspection of data packets. In such a case, it will

start capturing the data packets and will interact with the client-agents in user-clients

to retrieve the required session key. Once the session key is retrieved, the packets are

decrypted and are transferred to the Deep Packet Inspection module to inspect further

for suspicious content. If the client-agents fails to deliver the keys, the connection

will be blocked.

4. OptionalInspection: This access decision will allow flexibility to privileged users

who are more responsible or are experts. Consider a case where the security team

wants to download malware samples from some known malicious external source.

If the contents of the connections are deep inspected, it will raise false alarms and

hence they can choose not to allow inspection. However, if they want to download

some resources which are not malicious but from a suspicious source, they can opt for
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inspection, giving flexibility to the users. If this access decision is received, Policy

enforcement module interacts with the client user-agent and requests permission. If

the user responds with the key, it will decrypt the contents with the session key and

send them to perform deep packet inspection. However, if the response from the user

is negative, the enforcement module will take action as if the access decision was

AllowConnection.

4.2 Client Agents

Each user-client in the internal network will run a client-agent module. It has two main

functions. Interaction with the Network Monitoring Engine and retrieving the required ses-

sion keys from its user-client. The first task of the client agent is to extract session keys for

different connections. Many applications provide inbuilt facilities to extract session keys

from TLS connections they make with external clients. For example, Chrome and Mozilla

web browsers have an option, when enabled, extracts and stores specific session keys. The

user client agent will maintain this list of session keys and responds to requests from the

Policy Enforcement module as required. The client user-agents can receive two types of

requests from the Policy enforcement module. If the request contains a MandatoryInspec-

tion decision, it will retrieve the key and return it to the user. On the other hand, if it is an

OptionalInspection decision, the agent will ask the user for a decision. The existence of

this module enables the user with the ability to choose.

4.3 Policy Engine

This module is the core of our system and is responsible for making decisions by

using a knowledge graph and ABAC policies specified for the organization. It accepts

attributes extracted by the Attribute Extraction module and use them in conjunction with
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policies to generate access decisions. The policy engine can generate four access deci-

sions: AllowConnection, BlockConnection, MandatoryInspection, and OptionalInspection

as described in Section 4.1.2. The policy engine uses an extended ABAC (Attribute Based

Access control) model using semantic technologies to make a policy decision per connec-

tion. In ABAC, the different attributes of each entity are used to define policies for access

control. There are two major modules in the policy engine, knowledge graph server and

policy management module which are described in the following sections.

4.3.1 Knowledge Graph Server

Knowledge graph server houses the knowledge-graph that encapsulates the domain

knowledge, ABAC access control policies defined using semantic web technologies, and

a reasoner that infers the access decisions. A major contribution in this paper is the de-

velopment of a knowledge graph that abstract the attributes and knowledge to make policy

decisions. Figure 4.2 presents a relevant part of the knowledge graph designed for this

purpose.

FIG. 4.2: Relevant part of the knowledge graph used
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Of the many classes in the knowledge graph, Entity class plays an important role

while developing policies. The Entity class has several object and data properties like IP

addresses, associated roles, reputation scores, etc. depending on the different user cate-

gories. In our knowledge graph design, we define many types of users and are categorized

hierarchically by their roles and functions. The first level of sub-classes consists of Inter-

nalEntity (users who are part of the organizational network) and ExternalEntity (users who

are external to the network). The ExternalEntity class is further classified into sub-classes

BlackListedEntity, WhiteListedEntity, GreyListedEntity, etc. This hierarchical arrangement

helps our knowledge graph to incorporate various external attributes like IP addresses, in-

telligence about external users like their presence in blacklists, reputation scores, etc. and

use them to define policies for decision making. Other classes include Flow class that

define the information about the flow and messages for which we need to make access de-

cisions, Protocol which may be extracted from the messages, Service class that define the

type of resource or application the connection is trying to access, Category, Time, etc.

Another major component in the Knowledge Graph server consists of ABAC poli-

cies which are implemented using semantic technologies. We can define policies using

SWRL1 (Semantic Web Rule Language) or using other policy specification frameworks

like Rein [32]. The advantage of using semantic technologies for specifying the policies

is their ability to reason over the knowledge graph and infer complex relationships. For

example, they give the administrators the ability to define simple rules like if the external

IP is an IP address corresponding to a BlackListedUser, then issue BlockConnection for all

requesting users. The reasoner will automatically infer which users should get access to it,

what kind of services to that IP address need to be blocked, etc. Detailed examples of their

usefulness are described in Chapter 6. However, different policies may result in conflicting

1https://www.w3.org/Submission/SWRL/
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access control decisions for the same connection. We address this issue by prioritizing the

access decision in the order OptionalInspection, BlockConnection, MandatoryInspection,

and AllowConnection. For example, if the policies result in two decisions BlockConnection

and AllowConnection, the priority decision BlockConnection will be the final decision.

4.3.2 Policy Management Module

This module is used to create, modify, and delete access policies on the entities defined

in the knowledge graph. Additionally, system administrators use the policy management

module to add more knowledge to the knowledge graph by adding new instances to it,

updating the knowledge graph, etc. For example, this module can be used to add new user

clients, define his/her privileges, create new classes, etc. The policy management module

can also periodically update the knowledge graph with the latest blacklists and whitelists

of IP addresses to keep in par with the dynamic nature of network intelligence.

4.4 System Implementation

This section describes the tools and API’s used in the development of our prototype

implementation. In our prototype, the Network Monitoring Engine is implemented using

mitmproxy2 and python scripts. mitmproxy is an open source HTTPS proxy that supports

a python API to manipulate different connections flowing through it. We developed sepa-

rate python scripts on top of mitmproxy to implement the functions of attribute extraction

module and policy enforcement module. In addition to extracting flow and network related

attributes as described in section 4.1.1, our prototype interfaces this module to the reputa-

tion scoring engine DAbR [33] described in Chapter 5. DAbR will extract several attributes

about the external IP addresses and generates a reputation score. All these information are

2https://mitmproxy.org/
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then sent to the policy engine.

The policy enforcement module is also implemented in python using the API’s from

the mitmproxy. If the access decision is BlockConnection, the user is redirected to a generic

error page, and when the access decision is AllowConnection, the connection details are just

logged. If the access decision is MandatoryInspection or OptionalInspection, the script will

interact with the respective client-agents over secure sockets to retrieve sessions keys. Once

the session keys are retrieved, the scripts use tshark to decrypt the encrypted packets and

forward them to DPI tools.

Our prototype uses the RDF triple store, Apache Fuseki3, as the knowledge graph

server. The policy rules can then be defined using SWRL rules. Fuseki is configured with

a generic reasoner and standard OWL ruleset to provide inferencing. The policy engine

uses the SPARQLWrapper4 API to insert information about different live flows into Fuseki

and query it to generate access control decisions. This wrapper is also used by the policy

management module to add and manipulate more knowledge into the knowledge graph

server.

3https://jena.apache.org/documentation/fuseki2/
4https://rdflib.github.io/sparqlwrapper/
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Chapter 5

DABR ARCHITECTURE FOR IP REPUTATION

SCORING

Reputation scoring is an effective technique to identify attacks from known attack

sources like botnets, spammers, virus infected systems, etc. However, most traditional IP

reputation services rely on manually updated lists of bad/malicious IP addresses and cannot

detect attackers using IP’s which are not yet reported as bad or malicious. In this part of

our research, we associate any IP address with a reputation score which is indicative of

its malicious behavior. This reputation score of IP address is used to define access control

policies in ABAC architecture discussed in Chapter 4.

In the literature, Elkhannoubi et al. [34] point out several interesting observations

regarding malicious IP addresses and factors which potentially helps their proliferation.

Their research points towards different social, economic, and political factors which affect

malware spread. Our preliminary analysis of bad IP address lists and their attributes (eg.

IP address origin country, ASN, ISP, etc.) also showed that many bad IP’s share similar

attributes. Hence in this research, we develop DAbR, a lightweight technique (compu-

tationally fast) for IP reputation scoring, by extracting and assimilating the similarity of

IP address attributes from existing bad lists. Each DAbR score (the calculated reputation

score) is a measure of trustworthiness of that IP address calculated from its attributes and
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FIG. 5.1: DAbR Architecture

their presence in existing bad IP address lists. DAbR creates a vector space for bad IP

addresses and when a new IP address is available, it is projected to this vector space for

calculating its DAbR score.

5.1 System Architecture

The general architecture of DAbR is described in Figure 5.1. It operates in broadly

2 phases: a model generation phase that generates a model for bad IP addresses and a

reputation scoring phase which uses the generated model for scoring new and unobserved

IP addresses. Sections 5.1.1 and 5.1.2 delve into their specifics.

5.1.1 Model Generation Phase

This is an offline phase which generates a model for bad IP addresses based on existing

bad IP address attributes. It uses a lightweight technique for model generation to accom-
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FIG. 5.2: A Sample IP Vector Space

modate the ever-changing threat landscape. This phase should be repeated and the model

should be updated whenever the known lists of bad IP addresses are altered significantly.

The main inputs to this phase are the lists of known bad IP addresses and their cor-

responding attributes from intelligence sources. As shown in Figure 5.1, this phase has 3

major tasks, each performed by a separate module in our implementation. The first task

is attribute extraction which gathers intelligence about each IP address in the ingested list

of bad IP addresses. Let AttributeList = {attr1, attr2, ..., attri, ..., attrn} be the list of

n attributes we extract for each IP address. Current DAbR implementation extracts the

following attributes about each IP address.

1. Autonomous System Number (ASN)

2. Internet Service Provider (ISP)
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3. Country where the IP is registered

4. Usertype (residential or commercial user)

5. Country where the IP is located

6. Subdivision in the country where the IP is located

7. City in the country where the IP is located

We represent each IP address X = 〈x1, x2, x3, .., xi, .., xn〉 as a vector of these n attributes,

where xi corresponds to the value of ith attribute in the AttributeList. Most of the IP

address attributes, xi’s, are nominal in nature and does not have a linear relationship be-

tween them. For example, the attribute ‘CountryLocation’ takes values like ‘countrya’,

‘countryb’, etc. If we represent these values in a one-dimensional space, their relative po-

sitioning does not provide any valuable information due to their nominal nature. Hence,

our second task in the model generation phase is to project such nominal values to a new

n dimensional space such that their relative positioning is directly related to their reputa-

tion. We use normalized frequency to generate such a reputation scale for each nominal IP

address attribute. Let UXi = uxi,1, uxi,2, .., uxi,j, .., uxi,m be the m unique nominal values

possible for an attribute attri. The NormalizedFrequency(NF ) for each unique attribute

uxi,j is defined as described in Eq: 5.1.

NF (uxi,j) = Nuxi,j
/Ntotal

where,

Nuxi,j
: number of IP addresses having uxi,j

as an attribute value

Ntotal: total number of IP addresses

(5.1)
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The normalized frequency, NF (uxi,j), always lies in the range [0, 1] and their relative

positioning has the following semantics: the attributes which occur more frequently in the

input list have a higher value of normalized frequency (closer to 1) compared to the ones

that occurred less frequently (closer to 0). This implies that higher the value of uxi,j , the

more frequently it is present among the attributes of bad IP addresses. Conversely, if the

value is closer to 0, we have not seen this attribute frequently among that list of known bad

IP attributes. We hypothesize that larger the value of NF (uxi,j), the larger is its tendency

to indicate a malicious activity.

Algorithm 1 Model Generation Phase
Input:

BlackListedIPList
Output:

ReputationModel

1: badIPVectorArray = getAttributes(BlackListedIPList)
2: for i in badIPVectorArray do
3: allUniqueAttributes = getUniqueAttributes[i]
4: for j in allUniqueAttributes do
5: NF = GetNormalizedFrequency[j] using Eq: 5.1
6: append NF to ReputationModel
7: return ReputationModel

The final task in this phase is model generation. A DAbR ReputationModel is an

aggregation of the normalized frequencies for all nominal attributes present among the

bad IP attributes. This module now generates NF (uxi,j) for each nominal attribute attri ∈

AttributeList and packs them into the model. The generated ReputationModel is used by

the reputation scoring phase for real-time scoring of unknown IP addresses. An algorithmic

representation of this phase is presented in Algorithm 1.
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5.1.2 Reputation Scoring Phase

The objective of the reputation scoring phase is to associate a numeric reputation

score with an IP address based on the generated model. Whenever an IP address is avail-

able, DAbR associates a reputation to it in 3 steps as shown in Figure 5.1. First, DAbR

looks up external IP intelligence sources and collects attributes about the IP address. It

is represented as a vector X ′ = 〈x′
1, x

′
2, x

′
3, ..., x

′
n〉 where x′

i corresponds to the value of

attri ∈ AttributeList. The second step is offline model lookup in which X ′ is projected to

the new n dimensional space and generate a new vector NX ′ = 〈nx′
1, nx

′
2, ..., nx

′
i, ..., nx

′
n〉

using the ReputationModel generated in the Model Generation Phase. Each nxi is the

normalized frequency of x′
i corresponding to attri from ReputationModel. If the value x′

i

is not present in the ReputationModel, the value is taken as 0 because we have never seen

that attribute among the reported bad IP address attributes.

This new vector NX ′ is a point on the new n dimensional vector space. Since we use

the normalized frequency value, the new vector space has the property that closer the point

is to the origin, the lesser we have seen it in the bad IP address; or conversely, farther

the point is from the origin, the vector is more likely similar to some of the known bad

IP address. We use this property in the scoring module to generate a reputation score for

each IP address. The ‘DAbRScore’ or the reputation score generated by DAbR for an

IP address is the inverse of the euclidean distance of NX ′ from the origin in the new n

dimensional space. It is calculated using Eq: 5.2. The operation of this module is presented

in Algorithm 2.
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ED =
√

ux2
1,j + ux2

2,j + .....+ ux2
n,j

DAbRScore = (1.0− (ED/EDmax)) ∗ 10

where,

ED : Euclidean Distance from origin

EDmax: Maximum value of ED computed

(5.2)

Algorithm 2 Reputation Scoring Phase
Input:

ReputationModel, liveIPList
Output:

DAbRScoreList

1: liveIPVectorArray = getAttributes(liveIPList)
2: for i in liveIPVectorArray do
3: DAbRVector = generateEuclideanVector[i]
4: DAbRScore = getScore(DAbRVector) using Eq: 5.2
5: append DAbRScore to DAbRScoreList
6: return DAbRScoreList

5.2 Reputation Score Interpretation

The DAbR score of an IP address, defined in Eq: 5.2, will always be a value in the

range 0 - 10. DAbR scores closer to 0 implies very low reputation and those closer to

10 implies very good reputation. Mathematically, the score is inversely proportional to the

euclidean distance of IP vector from origin in the new vector space. The vector components

are the normalized frequencies of occurrences of their respective attributes in the bad IP

attribute list. Hence higher values indicate higher similarity toward IP addresses in bad



lists. If we map all bad IP addresses (from the bad list used for model generation) into the

vector space, they will not be closer to the origin. Similarly, if the euclidean distance of the

IP vector is very small (closer to origin), we will get a higher reputation score.

5.2.1 Example Scenario

Consider an example scenario with 1000 bad IP addresses and 3 attributes - Country,

ASN, and, ISP. Let’s assume that 500 IP’s have Country as CountryX and 250 of these

500 IP’s have ISP as ISPX . Now when we generate the model, CountryX will get a

very high NormalizedFrequency value of 0.5 (500/1000 = 0.5) and ISPX will get a

NormalizedFrequency value of 0.25 (250/1000 = 0.25). Figure 5.2 depicts a representative

figure of the new 3-dimensional state space generated by the Model Generation phase. If

we map all the IP’s with country CountryX and ISP ISPX from the training set, they

will be positioned farther from the origin as shown. All those points will get very low

reputation scores by default using the Eq: 5.2. When a new IP address is available for

finding reputation, its attributes are fetched from the sources. Let’s assume the new IP

address is from country CountryX and ISP ISPX . Now when this IP address is mapped

to the euclidean space, it will be positioned farther from the origin and it will get a lower

reputation. On the other hand, if the IP has attributes which are not at all present in any

of the bad IP attributes, it will be placed at the origin, because our threat intelligence has

not found any malicious activities corresponding to them. DAbR will give a very high

reputation score for such IP addresses.

28
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Chapter 6

USE-CASE SCENARIOS AND EVALUATION

Our framework helps to enable efficient deep packet inspection using various organi-

zational policies. To demonstrate its capabilities, we created a virtual corporate network

with several employees and user roles. We populated our knowledge graph using Policy

Management module of the Policy Engine. First, we added information about the em-

ployees in our virtual corporation. In our setup, all the managerial employees are mapped

as instances of SuperUserEntity class, developers as instances of InterimPrivilegedEntity

class, and contract employees as instances of LeastPrivilegedEntity class. We used the list

of known IP blacklists from hpHosts1 and some whitelists from IP addresses correspond-

ing to top domains from OpenDNS2 as the instances of BlackListedEntity, and WhiteList-

edEntity classes respectively. The information about the different flows and messages are

inserted into knowledge graph during runtime.

6.1 Access Control Policies

We defined several access control policies to our use-case scenario using SWRL rules.

Some of them are presented below:

1https://www.hosts-file.net/
2https://github.com/opendns/public-domain-lists



30

Flow (?flow) ˆ hasSourceIPAddress (?flow, ?srcIP) ˆ hasIPAddress

(?srcUser, ?srcIP) ˆ GuestEntity (?srcUser) ˆ

hasServiceRequest (?flow, ?service) ˆ hasServiceName

(?service, ‘‘FileTransfer’’) ˆ AccessDecision (?decision) ˆ

hasAccessDecisionName (?decision, ‘‘MandatoryInspection’’) ->

hasAccessDecision (?flow, ?decision)

The policy defined above using SWRL suggests that Guest users should be monitored

if they are making any “FileTransfer” requests. A variety of attributes may decide if a

message is requesting a “FileTransfer” service, such as, the protocol being FTP/SFTP,

connections using well-defined port number 21, or SNI/IP address pointing to a well-known

file-server, etc. In our proposed architecture, the administrators can specify simple policies

as presented above and the reasoner will automatically infer whether the connection is

requesting a “FileTransfer” using the knowledge graph. Hence, if a guest user tries to

access, say, a known file-server, it first infers the connection as a “FileTransfer” request.

Since the connection initiated from a guest user, the policy engine will generate the access

decision as MandatoryInspection. The policy enforcement module will then contact the

user client agents, extract the specific session key from internal user, and send the traffic

for further inspection.

Flow (?flow) ˆ hasSourceIPAddress(?flow, ?srcIP) ˆ

hasIPAddress(?srcUser, ?srcIP) ˆ

hasDestinationIPAddress(?flow, ?destIP) ˆ

hasIPAddress(?destUser, ?destIP) ˆ SuperUserEntity (?srcUser)

ˆ GreyListedEntity(?destUser) ˆ hasReputationScore(?destUser,

‘‘low’’) ˆ AccessDecision(?decision) ˆ

hasAccessDecisionName(?decision, "OptionalInspection") ->
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hasAccessDecision(?flow, ?decision)

The policy presented above gives additional privileges to users who belong to the Su-

perUserEntity class even though the external resource is not completely trustworthy. As

per the above policy, if a SuperUserEntity is trying to access an external user with low

reputation score, the policy engine will decide to perform OptionalInspection. The as-

sumption is that the SuperUserEntity users can determine if the connection is spurious or

not, for instance, the security team who wants to download malware samples for analysis.

In our implementation, if such a request comes from the security team, the above policy

will generate an OptionalInspection because the requesting user is inferred as a SuperUser-

Entity. In this scenario, the policy enforcement module will request the user client agent

for the session keys and depending on the response from the user, the connection will pro-

ceed further. For other users, however, the decision may be different depending on other

attributes.

Flow(?flow) ˆ InterimPrivilegedEntity(?srcUser) ˆ

ConfidentialResource(?destUser) ˆ hasSourceIPAddress(?flow,

?srcIP) ˆ hasIPAddress(?srcUser, ?srcIP) ˆ

hasDestinationIPAddress(?flow, ?destIP) ˆ

hasIPAddress(?destUser, ?destIP) ˆ AccessDecision(?decision)

ˆ hasAccessDecisionName(?decision, "MandatoryInspection") ->

hasAccessDecision(?flow, ?decision)

The above policy specifies another scenario where an InterimPrivilegedEntity is trying

to access a ConfidentialResource. According to this policy, the access decision should be

MandatoryInspection. A software developer trying to access user credentials stored in a

secure server is one such use-case. This scenario mandates extra inspections because of the
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sensitive contents in the resource.The policy engine now generates MandatoryInspection

that will trigger the policy enforcement to retrieve the session keys and further inspection.

6.2 Evaluation of DAbR

DAbR associates a reputation score for unknown IP addresses using a model generated

from known bad IP address lists. In this section, we evaluate the performance of DAbR

using real datasets. We created a dataset of about 87k IP addresses to evaluate DAbR.

Sections 6.2.1 and 6.2.2 discuss the new dataset, its characteristics, and DAbR’s evaluation

using this dataset.

6.2.1 Data Collection

As discussed in Section III, the proposed technique is performed in two phases; a

model generation phase and a reputation scoring phase. Bad IP addresses and their at-

tributes are required for model generation. We also require another combined set of bad

and good IP addresses for evaluating DAbR.

For bad IP addresses, we used known sources like Talos IP blacklist feeds3. To im-

prove the total number of IP addresses, we also downloaded around 100k blacklisted do-

mains from services like hpHosts4 (hpHosts is a hosts file for Windows that allows protec-

tion against access to spammer, scammer, pornographic, spoofed and malicious websites.)

and converted them to IP addresses. Unlike bad IP addresses available directly from in-

telligent sources, the good IP addresses are harder to collect. We downloaded a list of

top domains from services like OpenDNS5 and top one million ranked websites as ranked

by Alexa6. We also performed a preliminary analysis to verify if these domains are men-

3http://talosintel.com/feeds/ip-filter.blf
4https://www.hosts-file.net/
5https://github.com/opendns/public-domain-lists
6http://stuffgate.com/stuff/website
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tioned among the blacklisted domains collected from hpHosts. These cleaned domains are

then converted to IP addresses to get good IP addresses. In total, we gathered around 100k

blacklisted IP addresses and 20k good IP addresses. We collected less number of non-black

listed IP addresses because they are not being used for model generation and are only used

for evaluation.

The next step is the collection of attributes corresponding to each IP address. We used

services like Maxmind GeoIP7 (Maxmind is an IP Intelligence tool that provides various

network and geographical features of user requested IP addresses) databases for collecting

various attributes. The collected attributes include Autonomous System Number (ASN),

Internet Service Provider (ISP), IP registration country, usertype (residential/commercial

user), IP location country, subdivision, and cityname. We faced many challenges during

data collection and cleaning. First, attributes were not directly available for many bad IP

addresses. Some of these IP addresses were not in service also. Second, the intelligence

sources provided limited information about many IP addresses owing to the fact that some

providers do not use standard formats for publishing their information. After the attribute

collection and data cleaning, the final dataset consisted of 70635 bad IP addresses, 17101

good IP addresses, and attributes associated with each of these collected IP addresses.

6.2.2 Results

We evaluate DAbR using the newly generated dataset of bad and good IP addresses.

For this, we convert the reputation scoring task to a classification task using a threshold.

The classification task is to identify a given IP address as a bad IP address or a good IP

address. First, a DAbR score is calculated using Eq: 5.2 for each input IP address after

generating a model described in section 5.1.1. If the score falls below a specific threshold,

7https://www.maxmind.com/en/home
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ReputationScorethr, it is detected as bad. Otherwise, it is detected as good.

FIG. 6.1: ROC Curve

We used a modified 4 fold cross validation for evaluation. In each fold of a traditional

4 cross validation, 3 out of 4 parts of the input data is used for model generation and the

remaining part is used for testing. However, DAbR uses only bad IP address’s attributes

for model generation. Hence in our evaluations, for each of the 4 folds in the 4 cross

validation, we use 3 out 4 parts of the input bad IP dataset for model generation. For

reputation scoring, we used a union of the remaining one part of the bad IP dataset and the

complete set of good IP’s. The Receiver Operating Characteristic (ROC) curve, Figure 6.1,

is plotted using the average of true positive rates and false positive rates across the 4 folds

in cross validation. In this figure, we plotted the performance of DAbR by varying the

ReputationScorethr from 0 to 10. Two ROC curves are depicted in Figure 6.1. The solid

line represents the ROC curve, when we consider True Positive as “Good IP detected as
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ReputationScorethr Precision Recall Accuracy F-1 Score

0.0 0.491 1 0.491 0.659
2.0 0.516 0.999 0.538 0.680
4.0 0.740 0.816 0.768 0.776
6.0 0.802 0.554 0.713 0.655
8.0 0.733 0.113 0.543 0.196

Table 6.1: Evaluation metrics for thresholds 0.0 - 8.0

ReputationScorethr Precision Recall Accuracy F-1 Score

4.4 0.740 0.815 0.768 0.776
4.5 0.741 0.815 0.768 0.776
4.6 0.749 0.810 0.773 0.779
4.7 0.752 0.809 0.775 0.779
4.8 0.754 0.807 0.776 0.780
4.9 0.756 0.793 0.773 0.774
5.0 0.795 0.721 0.771 0.756

Table 6.2: Evaluation metrics for thresholds 4.4 - 5.0

Good” and False Positive as “Bad IP detected as Good”. The dotted lines represent the

ROC curve when True Positive is “Bad IP detected as Bad” and False Positive is “Good

IP detected as Bad”. The ROC curve shows that the classification task performs well with

a True Positive rate of around 80% along with a False Positive rate of below 20%. Other

classic performance metrics for a classification task like F-1 score, accuracy, precision, and

recall are also reported. Table 6.1 reports these metrics for ReputationScorethr from 0.0 to

8.0. Classification metrics for more granular values of ReputationScorethr from 4.4 to 5.0

is reported in Table 6.2, where we achieve maximum F-1 scores. As seen from the tables

6.1 and 6.2, the maximum value of F-1 score = 78.034% is seen at a threshold of 4.8. At

this threshold for reputation scoring, the average true positive rate is about 76.5% and the

average false positive rate is about 22%. Also, Precision = 75.45%, Recall= 80.79% and

accuracy of detection is 77.6% at threshold of 4.8. The confusion matrix at this threshold is
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Actual
Value

Detection outcome

Good IP Bad IP Total

Good IP
55268 13136

68404

Bad IP
17979 52656

70635

Total 73247 65792

Table 6.3: Confusion Matrix

presented in Table 6.3. In this confusion matrix, the total number of IP’s is the cumulative

sum across all the 4 folds in our cross validation.

In a large enterprise with a very large number of connections, a 20% false positive rate

is high. However, it should be noted that DAbR is not a classification technique. The main

task of DAbR is to quickly associate a numeric value corresponding to every incoming IP

address, otherwise considered normal. The numeric value indicates how similar or dissim-

ilar the IP address is to the existing blacklisted IP addresses. As DAbR is designed to work

in conjunction with a policy enforcement module, instead of detecting it as either Good or

Bad, it delegates the response action to the enforcement module. In existing systems, 100%

of incoming packets need to be sent for further investigation. With the introduction of TLS

1.3 and wider adoption of encryption, techniques like deep packet inspection will be highly

costly and privacy-invasive because it could involve actual decryption. The DAbR score

enables to reduce this cost by avoiding such inspections for a large share of packets accord-

ing to a predefined policy. This would be a very substantial performance improvement and

allows penalizing only suspicious connections rather than everyone connected.
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Chapter 7

CONCLUSION

In this thesis, we proposed an ABAC (Attribute-Based Access Control) policy frame-

work that supports existing Deep Packet Inspection tools in ‘Perfect Forward Secrecy’ im-

plementation like TLS 1.3. Our framework also respects user’s privacy requirements and

organizational policies. In our framework, various observed and derived attributes of the

network connections are evaluated against user access privileges defined using semantic

technologies. We implemented a prototype system for our framework and demonstrated

the efficacy of our technique with the help of meaningful use-case scenarios. We devel-

oped DAbR, a lightweight reputation scoring system for IP addresses which associate a nu-

meric reputation score for each IP address in network traffic. DAbR may also be integrated

with a policy enforcement module that filter malicious network traffic in a more efficient

and limited privacy-invasive way. The DAbR score is representative of the IP address’s

trustworthiness based on the existence of its attributes in known malicious attributes. To

evaluate DAbR, we aggregated a dataset of 87k IP addresses and their attributes. We used

a threshold on DAbR score to classify good/bad IP addresses and observed a classification

F-1 score of 78% with selected attributes. The results demonstrate DAbR score’s useful-

ness in separating network traffic into different classes. IP’s with bad reputation scores

should be sent for detailed evaluation while traffic corresponding to good reputation can



pass through without penalization.

7.1 Future Work

Security intelligence is a highly dynamic domain, and new intelligence is being pushed

by a variety of structured and semi-structured sources daily. In the future, we plan to ingest

knowledge from such sources to automatically generate policies and adapt to the modified

landscape. An easy extension to our system is to allow policies which can use decisions

from the DPI techniques it supports. An example is when the DPI technique identifying a

malicious connection and blocking the connection once this decision is made. Yet another

direction we can do with minimal efforts is to integrate information from other known

knowledge-graphs similar to CKG1 and and UCO [35] (Unified CyberSecurity Ontology).

Since, our policy system is driven by W3 standard semantic technologies such integration

requires minimal efforts from the software coding perspective.

1http://eb4.cs.umbc.edu:9090/
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Appendix A

CODE

A.1 Network Monitoring Engine

from query_sparql import *

from gateway_keyRequest import *

from sparql import *

import time

import datetime

import os

import json

from mitmproxy import http

monitoring_conns = {}

def inspection(DestIP, monitoring_conns, curr_key, SourceIP, acc):

filter_cmd = "tcpdump -r test.pcap -w outTemp_"+ DestIP +

".pcap host " + DestIP

os.system(filter_cmd)

time.sleep(3)
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create_json_cmd = "tshark -r outTemp_" + DestIP + ".pcap -T

json > outTemp_" + DestIP + ".json"

os.system(create_json_cmd)

time.sleep(3)

with open ("outTemp_" + DestIP + ".json" ) as json_file:

data = json.load(json_file)

for each_packet in data:

try:

random_str =

each_packet["_source"]["layers"]["ssl"]["ssl.record]\\

["ssl.handshake"]["ssl.handshake.random"]

packet_dest =

each_packet["_source"][’layers’][’ip’][’ip.dst’]

if packet_dest == DestIP:

crandom = random_str.replace(":", "")

if not (crandom in

monitoring_conns[curr_key][’ClientRandom’]):

outfil = "output_folder/" + curr_key + ".ssl"

if not monitoring_conns[curr_key][’IsFirst’]:

create_connection(SourceIP, DestIP, ’MAND’,

crandom, outfil, monitoring_conns, curr_key)

else:

create_connection(SourceIP, DestIP, acc, crandom,

outfil, monitoring_conns, curr_key) #acc =

’MAND’ for mandatoryinspection ; OPTL for

optional
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monitoring_conns[curr_key][’IsFirst’] = False

monitoring_conns[curr_key][’ClientRandom’].append(crandom)

except:

continue

def request(flow: http.HTTPFlow):

cr = flow.client_conn.connection.client_random()

crandom = str(cr.hex())

ts= time.time()

ts_str =

datetime.datetime.fromtimestamp(ts).strftime(’%Y-%m-%d_%H:%M:%S’)

sni = flow.server_conn.sni

DestIP = flow.server_conn.ip_address[0]

ipv6src = flow.client_conn.ip_address[0]

ipv6src_s = ipv6src.split(":")

SourceIP = ipv6src_s[len(ipv6src_s) - 1]

#flow.server_conn.source_address[0]

Flowid = "Flowgit" + ts_str

Message = "Message" + ts_str

protocol = "HTTP"

inp = {"Flow":Flowid, "Message":Message, "SourceIP":SourceIP,

"DestIP":DestIP, "Protocol":protocol}

print (inp)

curr_key = SourceIP + "_"+ DestIP + "_" + protocol

outfil = "output_folder/" + curr_key + ".ssl"

curr_access_decision = ’’
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# Getting Access Decision

if True:

all_mon_conns = monitoring_conns.keys()

if curr_key in all_mon_conns:

# If the key is found in the monitoring set

curr_acccess_decision =

monitoring_conns[curr_key][’AccessDecision’]

else:

# Starting to see if we need to monitor new connection

query = GenerateQuery(1, inp)

InsertIndividualVariable(query)

curr_access_decision = Query(Flowid)

if curr_access_decision:

print ("Current Access Decision is " + curr_access_decision)

else:

print ("Current Access Decision is None")

monitoring_conns[curr_key] = {}

#curr_access_decision = ’AllowConnection’

monitoring_conns[curr_key][’AccessDecision’] =

curr_access_decision

monitoring_conns[curr_key][’ClientRandom’] = []

monitoring_conns[curr_key][’IsFirst’] = True

monitoring_conns[curr_key][’OPTLResult’] = False

monitoring_conns[curr_key][’OPTLResultSet’] = False

# Depending on access decision we will decide to monitor or not
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if curr_access_decision == "MandatoryInspection":

print ("Got Mandatory Inspection")

if not (crandom in

monitoring_conns[curr_key][’ClientRandom’]):

create_connection(SourceIP, DestIP, ’MAND’, crandom,

outfil, monitoring_conns, curr_key)

monitoring_conns[curr_key][’ClientRandom’].append(crandom)

else:

print ("Session Key already Exist")

if curr_access_decision == "BlockConnection":

flow.response = http.HTTPResponse.make(418, b"The current

action you have done is against the organizational

policies. Please review it!. ",)

if curr_access_decision == "OptionalInspection":

print ("Got Optional Inspection")

if monitoring_conns[curr_key][’OPTLResultSet’]:

if monitoring_conns[curr_key][’OPTLResult’]:

if not (crandom in

monitoring_conns[curr_key][’ClientRandom’]):

create_connection(SourceIP, DestIP, ’MAND’, crandom,

outfil, monitoring_conns, curr_key)

monitoring_conns[curr_key][’ClientRandom’].append(crandom)

# If it is a new random and the user already said monitor

else:

print ("Optional but key exist")
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else:

print ("Optional but user said no")

else:

print ("Optional but need to ask user")

create_connection(SourceIP, DestIP, ’OPTL’, crandom,

outfil, monitoring_conns, curr_key)

if monitoring_conns[curr_key][’OPTLResult’]:

print ("abc.py: User asked to monitor")

else:

print ("abc.py: User asked NOT to monitor")

if curr_access_decision == "AllowConnection":

print ("Got AllowConnection")

A.2 Client User

import csv

import socket

import sys

from ast import literal_eval as make_tuple

IP_address = "10.0.2.15"

byte_count = 1024

def send_key_optional(conn, random, destIP):

print ("\n\nYou have made a connection to "+ destIP )

inp = input("Proceed with inspecting the connection? (Y/N): ")



45

if inp.upper() == ’Y’:

send_key(conn, random)

elif inp.upper() == ’N’:

conn.sendall(bytes("\00", ’ascii’))

def send_key_mandatory(conn, random):

send_key(conn, random)

def send_key(conn, random):

filename = ’sslkeylogfile.log’

f = open(filename,’r’)

for line in f:

if random in line:

conn.send(line.encode(’ascii’))

print(’Sent ’,repr(line))

f.close()

print (’Done sending’)

def recv_connection(sock):

# Wait for a connection

print ( ’Waiting for a connection’)

conn, client_address = sock.accept()

print ( ’Got connection from ’ , client_address)

# Receive the data in small chunks and retransmit it

data = conn.recv(byte_count)

print(’Data received’, repr(data))

data1 = data.decode(’ascii’).split(",")
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destIP = data1[1]

access_decision = data1[2]

random = data1[3]

if access_decision == ’MAND’:

send_key_mandatory(conn, random)

elif access_decision == ’OPTL’:

send_key_optional(conn, random, destIP)

conn.close()

def create_connection():

# Create a TCP/IP socket

sock = socket.socket()#socket.AF_INET, socket.SOCK_STREAM)

# Bind the socket to the port

server_address = (IP_address, 10000)

print ( ’starting up on %s port %s’ %server_address)

sock.bind(server_address)

# Listen for incoming connections

sock.listen(5)

while True:

recv_connection(sock)

create_connection()

A.3 DAbR

import sys
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#from sets import Set

import csv

import pickle

no_of_attr = 7

def create_vector(categories, data, ip, no_of_attr):

ret_data = []

for i in range(no_of_attr):

try:

ret_data.append(categories[i][data[ip][i]])

except:

ret_data.append(0.0)

return ret_data

def conver_categorical_to_score(data, item_no):

keys = data.keys()

item = set()

for i in keys:

item.add(data[i][item_no])

ret = {}

for i in item:

ret[i] = 0

for i in keys:

ret[data[i][item_no]] += 1

ret_score = {}

for i in item:

ret_score[i] = float(ret[i])/float(len(data))
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return ret_score

def CreateModel (data, no_of_attr, isReturn):

normFreq = []

for i in range(no_of_attr):

normFreq.append(conver_categorical_to_score(data, i))

ips = data.keys()

vec_dict = {}

for i in ips:

vec_dict[i] = create_vector(normFreq, data, i, no_of_attr)

#returns dictionary of vectors for each training IP address

largest=0.0

for ip, attr in vec_dict.items():

sum_sq = 0

for i in range(no_of_attr):

sum_sq = sum_sq + attr[i] * attr[i]

dist = sum_sq ** (1/2.0)

if dist > largest:

largest = dist

model = {}

model["normFreq"] = normFreq

model["largest"] = largest

model["vectors"] = vec_dict

if isReturn:

return model

with open("DAbR_data/DAbR_model.pkl", ’wb’) as f:
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pickle.dump(model, f)

def get_DAbRScore(realVector, no_of_attr, largest):

sq_sum = 0

for i in range(no_of_attr):

sq_sum = sq_sum + (realVector[i] * realVector[i])

DAbRScore = 10 - ( (sq_sum ** (1/2.0)) * 10 / largest)

return DAbRScore

def readModel():

with open("DAbR_data/DAbR_model.pkl", ’rb’) as f:

model = pickle.load(f)

return model

def getReputationScore(IP, real_IP_data, model, no_of_attr):

normFreq = model["normFreq"]

largest = model["largest"]

realVector = create_vector(normFreq, real_IP_data, IP,

no_of_attr)

DAbRScore = get_DAbRScore(realVector, no_of_attr, largest)

return DAbRScore

def get_realIP_data(IP, train_data, real_data):

train_IP = train_data.keys()

real_IP = real_data.keys()

IP_dict = {}

if IP in train_IP:
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IP_dict[IP] = train_data[IP]

elif IP in real_IP:

IP_dict[IP] = real_data[IP]

else:

attr_list = []

for i in range(no_of_attr):

attr_list.append("null")

IP_dict[IP] = attr_list

return IP_dict

def create_data_list(filename):

con = []

fil = open(filename, ’r’, encoding = "ISO-8859-1")

for i in fil:

con.append(i.strip(’\n’).strip(’\r’))

dat1=[]

for l in csv.reader(con, quotechar=’"’, delimiter=’,’,

quoting=csv.QUOTE_ALL, skipinitialspace=True):

dat1.append(l)

dat =dat1[1:]

return dat

def create_data_dictionary(X_train):

data ={}

for i in X_train:

app = []
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for j in range(1, len(i)):

app.append(i[j])

data[i[0]] = app

no_of_attr = len(app)

return data, no_of_attr

isnewModel = False

def DAbR_pipeline(IP):

black_data, no_of_attr =

create_data_dictionary(create_data_list(sys.argv[1]))

if isnewModel:

CreateModel(black_data, no_of_attr, False)

white_data, no_of_attr =

create_data_dictionary(create_data_list(sys.argv[2]))

model = readModel()

real_IP_data = get_realIP_data(IP, black_data, white_data)

DAbRScore = getReputationScore(IP, real_IP_data, model,

no_of_attr)

print (DAbRScore)

if __name__== "__main__":

main()
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