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ABSTRACT

Medical images are difficult to comprehend for a person without expertise. The limited number of practitioners across the
globe often face the issue of physical and mental fatigue due to the high number of cases, inducing human-errors during the
diagnosis. In such scenarios, having an additional opinion can be helpful in boosting the confidence of the decision-maker.
Thus, it becomes crucial to have a reliable Visual Question Answering (VQA) system to provide a ‘second opinion’ on medical
cases. However, most of the VQA systems that work today cater to real-world problems and are not specifically tailored for
handling medical images. Moreover, the VQA system for medical images needs to consider a limited amount of training data
available in this domain. In this paper, we develop MedFuseNet , an attention-based multimodal deep learning model, for VQA
on medical images taking the associated challenges into account. Our MedFuseNet aims at maximizing the learning with
minimal complexity by breaking the problem statement into simpler tasks and predicting the answer. We tackle two types of
answer prediction - categorization and generation. We conducted an extensive set of quantitative and qualitative analyses to
evaluate the performance of MedFuseNet . Our experiments demonstrates that MedFuseNet outperforms the state-of-the-art
VQA methods, and that visualization of the captured attentions showcases the intepretability of our model’s predicted results.

1 Introduction

According to World Health Organization (WHO)1, over 45% of the countries across the globe have less than one physician
available per 1000 population. This burdens each medical practitioner to examine a large number of medical reports, which
increases the likelihood of human error due to fatigue2. Computer-Aided Diagnosis (CAD) systems3 have proven to reduce
human-generated medical errors. Moreover, CAD systems can also help provide deeper insights into the case, which might not
be comprehensible to a naked eye, and thus are very useful for providing a second opinion to the doctor. The push towards
digital delivery of medical reports to patients and doctors via CAD enhanced online portals has resulted in better communication
of information to the patients. These portals can provide good interfaces to the patients for reliable and trustworthy information
directly from doctors or healthcare providers compared to the vast amount of misleading information available online. Moreover,
these portals augmented with automated intelligent systems such as a visual question answering system can help divert a lot of
patient communication traffic from hospitals and doctors, thus reducing their stress. The primary focus of this paper is the
development of an automated visual question answering system for the medical domain.

The advancements in the field of deep learning have demonstrated tremendous success in achieving state-of-the-art results
in various problems in the fields of computer vision, natural language processing, information retrieval, to name a few. This
was primarily due to the recent enhancements in the computational power of the machines and the development of new learning
and optimization methods for neural networks. Several application domains have also benefited enormously due to these recent
advances. In particular, the medical domain has seen a significant boost in the use of deep learning techniques for gathering
more meaningful insights about various complex data sources ranging from radiology scans to medical records. Significant
improvements in the performance metrics have been recorded for tasks related to image understanding, such as segmentation of
tumors present in brain4, skin5, and others6. There has also been much compelling research done in natural language processing
tasks (NLP) and medical records, such as the predictive analysis using clinical records of patients7, 8. A more interesting
problem is the one with both vision and NLP components - Visual Question Answering (VQA). VQA aims to answer a natural
language question associated with an image. In the medical domain, an image corresponds to a radiology scan of a patient
accompanied by a clinically relevant question-answer pair, where the answer might belong to a pre-defined limited set or can be
a sequence of words.

Apart from being a problem related to both Computer Vision and NLP (i.e., multimodal components), VQA for the medical
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Figure 1. Sample radiology scans and the corresponding question-answer pairs from the MED-VQA and PathVQA dataset.
The first three (a,b,c) belong to the MED-VQA dataset and the last one (d) belongs to the PathVQA dataset.

domain have its own new challenges9. The main challenge is the limited availability of labeled medical data due to the patient’s
privacy concerns. Moreover, the labeling or annotation of the available medical data is in itself a challenge due to the limited
number (and availability) of practitioners/experts. As a result, the number of VQA datasets available in the medical domain and
the number of VQA data samples in them are quite less compared to the VQA datasets for the other real-world domains. In fact,
the medical VQA datasets have data points in the order of hundreds to a few thousands10, while the popular VQA datasets
have hundreds of times more data points11. Thus, the limited data poses a challenge in using the existing deep learning-based
VQA approaches for VQA in the medical domain. As VQA deals with multimodal data inputs (natural language question
and an associated image), it is important to maximize the information from these two modalities. In the medical domain, the
medical data is implicitly complicated due to the high amount of information packed in a single clinical report or a radiology
scan. The scan or report could be for any anatomical region, and there could be noise or artifacts induced during scanning or
while documenting clinical reports. Thus, a good VQA system for the medical domain should handle these data availability and
heterogeneity challenges. Another challenge for VQA is the generation of the answer i.e., the model should output a meaningful
sequence of words, which we refer to as the answer generation task. Furthermore, in the medical domain, the transparency and
trustworthiness of the model’s predictions are needed, and therefore, VQA results should be interpretable. Thus, there is a need
to develop novel approaches for VQA in the medical domain, which can judiciously use the available limited annotated medical
data to minimize the answer prediction and answer generation errors, and at the same time, provide interpretable results.

Figure 2. A high-level model design for the task of VQA. The model has four major components - image feature extraction,
question feature extraction, feature fusion amalgamated with the attention mechanism, followed by answer categorization or
generation depending on the task.

To address the above challenges, we propose MedFuseNet, an attention based multimodal deep learning model which
learns representations by optimal fusion of the multimodal inputs using attention mechanism. Our MedFuseNet has four major
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components - image feature extraction, question feature extraction, a feature fusion module, and an answer prediction module.
In addition, we employ attention modules to focus on the most relevant part of the medical images and questions. The answer
prediction module has two submodules for answer categorization and answer generation tasks. For answer categorization
task, MedFuseNet selects an answer from the set of possible answers while for answer generation task our model produces a
meaningful sequence of words that answers the input question by utilizing a a full-fledged generative decoder. The high-level
illustration of our model is shown in Figure 2. We conducted experiments on the MED-VQA 2019 dataset and PathVQA
datasets, and show superior performance when compared to multiple VQA approaches including state-of-the-art attention-based
VQA models. Sample question-answer pairs from these datasets is shown in Figure 1. The major contributions of this paper are
as follows:

• We propose MedFuseNet, an attention based multimodal deep learning model for answer categorization and answer
generation tasks in medical domain VQA. We show that a LSTM-based generative decoder along with heuristics can
improve our model performance for the answer generation task.

• We demonstrate state-of-the-art results on two real-world medical VQA datasets. In addition, we conducted an exhaustive
ablation study to investigate the importance of each component in our proposed model.

• We study the interpretability of our MedFuseNet by visualizing various attention mechanisms used in the model. This
provides a deeper insight into understanding the VQA capability of our model.

The rest of the paper is organized as follows. Section 2 explores the existing methods for learning features from the
multi-modal inputs, their fusion, and the existing models for VQA pertaining to real-world and medical VQA. The Section 3
presents the entire MedFuseNet framework, and the approach to tackling the VQA problem for the medical domain. This is
followed by the comprehensive discussions of the experiments and the results in Section 4. Section 5 presents the conclusions
and the scope of future work.

2 Related Works
In this section, we first provide an overview of related works for VQA tasks for real-world and medical domains, and then
discuss the related works on components of VQA approaches.

2.1 Visual Question Answering
VQA for real-world domains has been a well-explored problem using various datasets such as DAQUAR12, VQA13, VQA
2.014, and CLEVR15. There are mainly two lines of works in VQA: approaches that use attention mechanism, and approaches
that do not use attention mechanism. Early works such as16, 17 used simple concatenation of image-based and question-based
features to obtain a representation of these multmodal inputs. These works obtained good results on VQA for natural images
without using attention mechanism. Recent works such as11, 18–21 used attention mechanism or attention modules to focus on
the important parts of the image relevant to the question model, thus finding the correct and accurate answers. All these works
were designed for VQA in natural images and trained on large datasets.

Researchers started exploring VQA in the medical domain recently with small medical VQA datasets such as RAD-VQA22,
Indian Diabetic Retinopathy Image Dataset (IDRiD)23; and the ImageCLEF MED-VQA 2019 dataset10 released at ImageCLEF
competitions has accelerated more research on this topic. The majority of works on VQA in the medical domain tried the VQA
task as a classification problem24–26, i.e. build models for VQA answer categorization task. However, there have been limited
research conducted on the answer generation task for medical VQA. Work in27 presented an approach to tackle both answer
generation and answer categorization tasks. This work used a transformer model to generate a sequence of words for answer
generation task. Work in28 presented a different perspective on solving VQA for the medical domain by presenting a model that
is more aware of the input question. However, all these works do not present a robust way to handle multimodal inputs for
medical VQA tasks, and do not perform comparison of popular and state-of-the-art VQA models. Moreover, these works do not
provide an interpretation of the VQA results which is important in medical domain. In our work, we address the limitations of
the previous works by proposing a novel MedFuseNet and conduct experiments on two medical VQA datasets - MED-VQA10

(a radiology based VQA dataset) and PathVQA29 (a pathology based VQA dataset).

2.2 VQA Components
As a typical VQA model contains image feature extraction, question feature extraction and a feature fusion component, we
briefly discuss the related works for each of these components/modules.
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2.2.1 Image Representation Learning
The superior performance of the Convolutional Neural Networks (CNN) in computer vision tasks has established CNN models
as a reliable tool for robust feature representation from images. Generally speaking, the intermediate layer just before the
output layer is used as the feature vector and popular models like VGGNet30, AlexNet31, DenseNet32, ResNet33 trained on
large-scale image datasets such as ImageNet34 are used for image representation learning. That is, the features obtained from
the intermediate layers of these pre-trained deep learning models provide a rich feature representation of the input image.

2.2.2 Textual Representation Learning
For textual data, there have been various strategies to represent the features. Word2Vec35, GloVe36, FastText37 are some of the
word embedding algorithms that have been successful in obtaining a robust representation of the text at a word level. Sequential
networks such as Recurrent Neural Networks (RNNs) (38), Long-Short Term Memory (LSTM) networks39 have been then used
to learn richer representations from these embeddings. BERT40 and XLNet41 have become the state-of-the-art models for many
NLP tasks, and, hence, have been used for question feature extraction in VQA tasks.

2.2.3 Feature Fusion Techniques
The most intuitive way of combining the feature vectors is through the element-wise multiplication of vectors. However, due to
the limited interaction of the elements of the two participating vectors, the outer product or the bilinear product of the two
vectors is a better strategy to capture a robust and complete interaction of all the elements. Various fusion techniques relevant to
VQA have been devised over time to maximize vector interactions and to reduce computational cost. These include Multimodal
Compact Bilinear Pooling (MCB)20, Multimodal Low-rank Bilinear Pooling (MLB)42, Multimodal Tucker Fusion (MUTAN)43,
Multimodal Factorized Bilinear Pooling (MFB)44. All these approaches are build on similar idea of making the bilinear pooling
of two vectors computationally feasible.

Our work leverages the recent advances of the above components, and we propose a novel multimodal attention model
(described in detail in the next section) for medical VQA tasks.

3 Our Proposed MedFuseNet Model
In this section, we will first define the problem statements for VQA answer categorization and answer generation tasks for
medical domain, and then discuss our proposed MedFuseNet model and it’s components in detail.

3.1 Problem Definitions
Using the notations mentioned in Table 1, we define the medical VQA answer categorization and generation tasks as follows:

Definition 1. Answer Categorization task. Given a medical image v, an associated natural language question q, the aim of
this task is to produce the answer ã from a possible set of answers A , where the ground truth answer is represented by a. This
can be formulated as follows

ã = argmax
a∈A

P(a|v,q;Θ) (1)

where Θ is the set of model parameters, v is the input radiology scan, and q is the natural language question associated
with the image in Equation (1).

Definition 2. Answer Generation task. Given a medical image v, a natural language question associated with the image
q, the aim of this task is to generate a sequence of words ã = [ã1, . . . , ãi], where the ground truth answer is represented by
a = [a1, . . . ,a j], where ã1, . . . , ãi and a1, . . . ,a j belong to the answer word vocabulary WA . This can be represented as

[ã1, . . . , ãi] = argmax
a1,...,a j∈WA

P(a1, . . . ,a j|v,q;Θ) (2)

where Θ is the set of model parameters, v is the input radiology scan, and q is the natural language question associated
with the image. We define the VQA answer generation task as generating a sequence of words from the answer word vocabulary
WA as shown in Equation (2).

For the answer categorization task, we use a softmax cross-entropy loss function to find the error in the answer prediction of
the model, and this loss is given by:

L (a, ã) = ∑
i
−p(ai) log(p(ãi)) (3)

where p(ãi) is the probability of ãi being the answer, and p(ai) is the probability of ai being the ground-truth answer. For the
answer generation task, we use the cross-entropy loss defined in Equation (3) to calculate the error in predicting each word of
the generated answer from the word vocabulary WA .
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3.2 Overview of the MedFuseNet Model
Our MedFuseNet is an attention based multimodal deep learning model which learns representations by optimal fusion of the
inputs using attention mechanism. MedFuseNet consists of four main components - Image feature extraction, question feature
extraction, feature fusion, and answer prediction. The image feature extraction component takes medical image v as input and
will output an image feature vector v̂. Similarly, the question feature extraction component will generate the feature vector q̂ for
the input question q. The feature vectors are then combined to form z. The combined vector z and attention modules are used to
predict the answer depending on the VQA task - answer categorization or answer generation.

Table 1. Notations used in this paper.

Notation Description
v input image
v̂ image feature vector
v̂e attended image feature vector
q input question
q̂ question feature vector
q̂e attended question feature vector
z combined feature vector
di attention output for the ith step of the decoder
hi LSTM output for the ith step of the decoder
g number of attention glimpses
a actual answer
ã predicted answer

[a1, . . . ,a j] actual answer sequence
[ã1, . . . , ãi] predicted answer sequence

Θ model parameters
L Loss function
A possible set of answers

WA vocabulary of words in answers
◦ inner product operation

Nb batch size
Ev Image Attention Mechanism
Eq Question Attention Mechanism
Ed Decoder Attention Mechanism

3.3 Components of MedFuseNet Model
Here, we will describe in detail the different components of our MedFuseNet.

3.3.1 Image Feature Extraction
The feature learning from images has been an active research area for decades. An intermediate layer of a CNN captures
the features of the image at varying levels of abstraction. While the shallow layers represent a more elementary level of
features, the deeper layers encapsulate a more generalized version of the features. Exploiting this interpretation, generally, the
penultimate layer just before the output layer of CNN is used to extract a feature vector for an input image. As described in
section 2.2.1, VGGNet-1630, DenseNet-12132 , and ResNet-152 models33 can be used for image feature extraction. Since the
medical images are complex compared to the real-world images, models like DenseNet-121 and ResNet-152 which have skip
connections, provide more robust feature representations through deeper convolutional layers. Due to the superior performance
of ResNet-152 over the other two, our MedFuseNet model uses it as the image feature extraction module to learn representations
of medical images. In our experiments and ablation studies described in section 4, we have used all these models - VGGNet-16,
DenseNet-121, and ResNet-152 models for learning medical image feature representations. Please note that the intermediate
output from the last convolutional block of each of these model was used as the feature representation of the medical image,
and these models were pre-trained on the ImageNet dataset.

3.3.2 Question Feature Extraction
As discussed earlier in Section 2.2.2, word embeddings form the primary method for expressing the underlying context
of natural language. However, they are insufficient and do not capture the context properly. While modeling the feature

5/20



representation of the natural text, it is necessary that we appropriately capture the positional semantics of each word and not
just the word-level semantics. The state-of-the-art NLP models such as BERT and XLNet can capture positional and word-level
semantics and are thus better at representing the features of the input question. The primary idea behind these models is to learn
an exhaustive textual representation of the question. Our MedFuseNet uses BERT for the question feature extraction. Please
note that in our experiments and ablation studies described in section 4, we have used both BERT and XLNet for question
feature extraction, and we noticed that BERT generally obtains better results than XLNet. The pre-trained versions of both
these models were used for the question feature extraction of the question.

3.3.3 Feature Fusion Techniques
An intuitive way to combine multiple feature vectors is by concatenation. However, concatenation does not capture feature
interactions. Another common way of combining the multiple feature vectors is through the inner product or the element-wise
multiplication of the vectors. However, due to the limited interaction of the elements of the two vectors in the inner product, it
is considered a primitive strategy for feature fusion. The outer product or the bilinear product of the two vectors is a better
strategy as it captures a robust and complete set of interactions of all the feature vector elements. A simple bilinear model for
two vectors v ∈ Rm and q ∈ Rn is shown in Equation (4).

zi = vTWiq (4)

where Wi ∈ Rm×n and zi ∈ Ro. Thus, the model needs to learn the parameter matrix W = [W1, . . . ,Wo] ∈ Rm×n×o which is
typically computationally expensive for large values of m,n, and o. For example, if m = 1024,n = 1024,o = 512, then the
number of parameters in the projection matrix W will be ∼ 530 million parameters, and computationally expensive and
infeasible to learn it. Recently, various works such as Multimodal Compact Bilinear (MCB) Pooling20, Multimodal Tucker
Decomposition (MUTAN)45, and Multimodal Factorized Bilinear Pooling (MFB)44 have been proposed to address this problem.
Each of these techniques simplify the process of Bilinear Pooling by presenting a way to decompose the outer product projection
matrix W . Due to the simplicity of the MFB algorithm, ease of implementation and high convergence rate, our MedFuseNet
uses it over other approaches for multimodal feature fusion. In addition, to avoid our MedFuseNet model from converging
to a local minima, the output of the MFB module is normalized using power normalization and L-2 normalization44. Our
experiments and ablation studies described in section 4 also support that MFB fusion strategy typically performs better than
MCB and MUTAN fusion strategies.

3.3.4 Attention Mechanisms
A typical model for VQA first extracts the feature vectors from multiple modalities (image and question text), and then
combines the vectors using any one of the above-stated fusion techniques, and then predicts the answer from the fused vector.
However, questions that are very specific to the input image require a more specific context of the image. This is where attention
mechanisms prove to be useful as they help to focus on the most relevant parts of the input. Our model, MedFuseNet, uses two
types of attention mechanisms namely Image Attention and Image-Question Co-Attention - to capture the context in medical
images that are relevant to answer the question. Below, we describe these attention mechanisms and the role played by them in
the training of our MedFuseNet.

Image Attention: The image attention mechanism aims at spanning the attention of the MedFuseNet model to the most
relevant part of the image on the basis of the input question. This establishes a correlation between the multimodal input and
helps the model converge fast. The image attention mechanism combines the feature fusion technique with the attention maps
to come up with the attended image feature vector as explained in lines 20-30 of Algorithm 1. Firstly, the image features v̂
and question features q̂ are combined using the fusion technique (line 21). The attention maps are then computed from this
combined feature vector (lines 22-23). The input image features v̂ are then overlaid with the attention glimpses (lines 24-28) to
get the attended image feature vector v̂e. The pictorial representation of the algorithm is shown in Figure 3.

Image-Question Co-Attention: The image attention mechanism focuses on the significant parts of the image, however, it
takes the entire question into consideration. A co-attention mechanism exploits the intuition that the key parts of the question
can be solely computed for the question which can further be used to enhance the image attention. So, our MedFuseNet model
first computes the attended question feature vector q̂e using the Question attention mechanism Eq as shown in Figure 3. It then
uses this attended vector as an input to the image attention mechanism as described in Algorithm 1 from lines 8-18, instead of
question feature vector q̂.

3.4 MedFuseNet Model for Medical VQA Tasks
As described in the various components of our MedFuseNet model, our model aims at maximizing the performance for answer
prediction and minimizing the model complexity. The three main components of our model include a) pre-trained ResNet-152
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for image feature extraction, b) pre-trained BERT for question feature extraction, and c) MFB for feature fusion. Moreover,
MedFuseNet uses attention techniques so that the model focuses only on the most relevant parts of the image and the question
while predicting the answer. The pictorial representation of the model is shown in Figure 3.

Algorithm 1: MedFuseNet Training Algorithm
Input: Image v, Question q, Answer a, Batch size Nb
Output: Trained model parameters Θ

1 Extract the image features (v̂), from image (v)
2 Extract the question features (q̂) from question (q)
3 for a few iterations do
4 for batch of size Nb in {v̂, q̂, a} do
5 Perform Question Attention Eq(q) on q̂ to get attended question features (q̂e)
6 Perform Image Attention Ev(v̂, q̂e,MFB,2) on v̂ to get attended image features (v̂e)
7 Combine q̂e and v̂e using MFB(q̂e, v̂e, 5000, 3) to get intermediate vector (z)
8 Find the predicted answer (ã) depending on the task as defined in Eq. (1) and Eq. (2)
9 Calculate the loss L for a and â using Eq. (3)

10 Update the model parameters Θ with the loss L

11 end
12 end
13 return trained model parameters Θ

14 Procedure MFB(v̂, q̂,do,k)
15 v′ = Fully−Connected(v̂,m,do)
16 q′ = Fully−Connected(q̂,n,do)
17 Compute and store inner product (◦) of vector v′ and vector q′ in vector z
18 Perform SumPooling of vector z with a window size of k
19 Normalize vector z using L2-normalization
20 return z
21 Procedure Image Attention(v̂, q̂,F ,g)
22 Combine v̂ and q̂ using F (q̂e, v̂e) to get intermediate vector f
23 fconv = ReLU(Conv2d( f ,do,512))
24 fAttMaps = Softmax(Conv2d( fconv,512,g))
25 Initialize ve as an empty list to store the attention glimpses
26 for i← 1 to g do
27 Find the attended image feature ei for ith glimpse as follows:
28 ei = fAttMaps[i]◦ v̂
29 Add ei to the list ve

30 end
31 Sum over all the attention glimpses in ve to get attended image feature vector (v̂e)
32 return v̂e

Our MedFuseNet model tackles all the challenges specific to the VQA in medical domain as stated in Section 1. The
following characteristics helps in boosting the performance of MedFuseNet for medical VQA:

• ResNet and BERT models are pretrained on very large datasets, and they provide a much better generalization for the
features by the virtue of transfer learning.

• Due to the simplistic implementation of MFB, it reduces the complexity of calculating the outer product to a large
extent, while conserving the information from the fusion of the two modalities. This reduces the computation of model
parameters and works well for the limited MED-VQA datasets.

• The attention and co-attention mechanisms help in reducing the attention span of the model to the significant parts of the
input, thus, reducing the search space for the model.

3.4.1 Answer Categorization
As shown in Algorithm 1 (lines 1-12), the MedFuseNet first extracts the feature vectors v̂ and q̂ respectively for input image v
and question q. This is followed by the computation of the attended question features q̂e using question attention mechanism
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Eq(q). Then, it uses the Image Attention mechanism Ev as explained in Algorithm 1 (lines 20-30) to get the attended image
features v̂e. v̂e and q̂e are then combined using MFB (lines 13-19) to get vector z. For answer categorization VQA task, a
classification model is then built over z to find the loss and update the model parameters Θ.

Figure 3. Our end-to-end framework for Medical Visual Question Answering for answer categorization. It takes the medical
image and the associated question as the inputs, followed by the feature extraction. The question features are further processed
using the question attention mechanism. The attended question features and the image features are then passed through the
image attention mechanism to get the attended image features. These attended vectors are finally combined using MFB to build
the answer classification module.

3.4.2 Answer Generation
As described in definition 2, the problem of answer generation is not a straightforward task as we need to generate a meaningful
sequence of words from the answer word vocabulary WA to predict the answer. Hence, we propose and develop a more
sophisticated model for the answer prediction task. Our answer prediction module shown in Figure 4 consists of a LSTM-based
decoder model which uses the fused feature vector for answer prediction. Our decoder model is inspired by the work presented
in46. The novel characteristics of our answer generation decoder module are as follows:

• Teacher Forcing: Due to the inherent complexity of the task of sequence generation, the decoder is susceptible to a
slower convergence rate. Moreover, the limited amount of data in the medical domain may cause more hindrance to
the model convergence rate. Thus, to increase the learning rate of the model, we use Teacher Forcing47. That is (as
shown in Figure 4), we pass to the decoder the ground-truth word for the ith time-step to predict the next word at (i+1)th

time-step.

• Attention Mechanism: To make each LSTM step prediction more accurate, we also incorporate the attention mechanism
in the decoder. We use the output of the i−1th time-step to span the focus of the model on those parts of the image feature
vector v̂e that have already been answered. This helps the model to guide its search for the ith word in the generated
answer more precisely.

• Beam Search: During inference, we use Beam Search heuristic48 to avoid the model from greedily generating the
answer by choosing the best word at each decoding step.

Before generating the answer sequence using the decoder, we fuse the input image v and and question q to get the attended
image features v̂e as described in the procedure Image Attention of the Algorithm 1. This obtained vector v̂e is passed to the
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Figure 4. The architecture used for the answer generation task. This module takes the image and the question as the input. It
generates the feature vectors for both and produces the combined vector after fusing them using MFB as a part of the
image-question co-attention mechanism. This is followed by an LSTM-based decoder to generate the answer. The two major
characteristics of this decoder are - the attention mechanism and teacher forcing. The attention mechanism helps the model in
focusing on various parts of the image while generating a word, and the teacher enforcing helps the model converge faster.

decoder to generate the answer. As shown in Algorithm 2, v̂e is first used to initialize the states of the LSTM (line 1). Following
this, for the ith step of the decoder, we concatenate the output di−1 of the attention mechanism Ed for (i−1)th step with the ith

word in the ground truth answer, that is ai, as shown in line 3 in Algorithm 2. This concatenated vector is then fed to the LSTM
cell to get hi which is also ãi, the ith word in the predicted answer (lines 4-5 in Algorithm 2). The vectors hi and v̂e are then
fed to the attention mechanism (lines 6-7 in Algorithm 2). The pictorial representation of the end-to-end model for answer
generation is shown in Figure 4.

Algorithm 2: Decoder Algorithm for Answer Generation
Input: Attended Image Features v̂e, Answer a1, . . . ,an
Output: Generated Answer ã = [ã1, . . . , ãn]

1 Initialize the decoder LSTM states using image features (v̂e)
2 Initialize generated answer ã as an empty list
3 Initialize d0 as image features (v̂e)
4 for each step i in [a1, . . . ,an] do
5 Concatenate ai and di−1, the output of Decoder Attention Ed for (i−1)th step
6 Feed this concatenated vector to the ith decoder step
7 Add hi, which is also ãi, to list ã
8 Feed v̂e and hi to decoder attention Ed to get di

9 end
10 return Generated Answer ã

4 Experiments
We conducted several experiments on two real-world medical VQA datasets to compare the performance of our proposed model
with the state-of-the-art and many popular VQA approaches. Our experiments help us to answer the following key questions:

• How does MedFuseNet, our proposed model, perform w.r.t. the state-of-the-art VQA models for the answer categorization
and answer generation tasks?

• Can we visualize and explain the results of our proposed model?

• What is the impact of different attention mechanisms on model performance?

• How good are the answers generated by the proposed model in terms of BLUE scores?
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To answer the above questions, we first describe the datasets used for the answer categorization and answer generation tasks,
and then describe in detail the dataset processing, implementation, evaluation metrics, and baseline models for comparison.

4.1 Datasets for Answer Categorization Task
4.1.1 MED-VQA
This dataset was released at the ImageCLEF 2019 MED-VQA challenge10, and it contains 4200 medical images and medical
questions associated with each image. Examples are shown in Figure 1 and the data distribution is shown in Table 2. Each
question belongs to one of the three categories - Modality, Plane, and Organ. In total, there are 3,825 image-question-answer
triplets for each category. The three question categories are as follows:

• Modality: This category pertains to the modality of the input medical image, and the question-answer pairs belong to 36
classes.

• Plane: This category pertains to the plane in which the medical image was taken/scanned, and the question-answer pairs
with planes come from 16 classes/categories.

• Organ System: This category describes the organ system captured in the medical image, and the question-answer pairs
belong to 10 unique organ systems.

The maximum question length for the three question categories combined is 13 words and the average question length is
around 8 words. The combined vocabulary of the questions contains about 100 words.

Table 2. Train, validation, and test splits for the yes-no type question-answer pairs in MED-VQA dataset.

Split Modality Plane Organ

Train 3200 3200 3200
Validation 500 500 500

Test 125 125 125

4.1.2 PathVQA
This is the VQA dataset29 on pathology images prepared using a novel pipeline from the captions of the images in the medical
textbooks. The dataset has 9,000+ medical images and 47,000+ question-answer (QA) pairs. We use only the ‘yes/no’ type
question-answer pairs for the answer categorization experiments in this paper. The dataset is divided into train, validation, and
test splits. All the three splits have a fairly well distributed yes-no types question answers with almost a 1:1 proportion. The
details of the dataset is presented in Table 3.

Table 3. Train, validation, and test splits for the yes-no type question-answer pairs in PathVQA dataset.

Split Medical Images ‘Yes’ type QA Pairs ‘No’ type QA Pairs

Train 4271 9305 9163
Validation 1176 2359 2335

Test 942 1874 1853

4.2 Datasets for Answer Generation Task
4.2.1 MED-VQA
Other than the three categories mentioned in Section 4.1.1, there is one additional class of question in the ImageCLEF 2019
MED-VQA challenge10 dataset - ‘abnormality’. The answers for this question category are open-ended, and they describe the
abnormality present in the medical image/scan. Answering these types of questions is typically more useful to the healthcare
providers as it can help them in getting a second opinion on some critical cases. We consider the question-answer pairs for the
abnormality question category as the dataset for our answer generation task for the MED-VQA dataset. In total, we have 3,817
question-answer pairs for abnormality question category. The combined word vocabulary of the answers is 2109 words, out
of which 756 words have an occurrence of one in the entire dataset. This poses a greater challenge to the model the answer
generation for this skewed dataset. The average length of an answer is 2.63 words and the average length of a question is ∼ 7
words.

10/20



4.2.2 PathVQA
As discussed in Section 4.1.2, PathVQA is a dataset about the question-answers related to pathology images. Apart from the
yes-no type question-answers, it also has a great proportion of open-ended answer type questions. For the set of experiments
related to the answer generation task, we subsample a dataset from open-ended answer type questions of the PathVQA dataset.
To assure that the data is not skewed enough, we sample only those answers which have a frequency of at least 5 in the entire
dataset. This gives us a total of 6,770 question-answer pairs with 4,192 unique cases. The vocabulary size of the answers is
about 480 words. The average number of words in an answer is 2.76 words. The average question length is ∼ 6 words.

4.2.3 Dataset preprocessing
For all the datasets described above, the medical images were resized to be of the same dimension of 224×224×3. This was
done as most of the well-accepted pre-trained models take the input in this dimension. For each question, we first tokenized
using the NLTK library in python49. Then, the question vocabulary was prepared and the tokens in the vocabulary were
enumerated, which was used to convert the question to a list of numbers. The questions were also padded to make them all of
the same lengths.

4.3 VQA Baseline Models for Comparison
We establish the superior performance of MedFuseNet by comparing it with the five baselines for the answer categorization
task. Three of the baselines are attention-based VQA models, while the other two are popular VQA models.

• VIS + LSTM50, 51 - This is a relatively simpler model that uses vanilla LSTM for question feature extraction, and a CNN
model for image feature extraction. The LSTM of the question feature was initialized using the image features. The last
output of LSTM was used to predict the answer by using a dense-layer.

• Deeper LSTM + Norm. CNN (d-LSTM + n-I)52 - This model again uses a VGG16 for image feature extraction and
a 2-layer LSTM model for question features. The two feature vectors are then combined using a simple element-wise
multiplication to get the output vector.

• Stacked Attention Networks (SAN)18 - SAN is an attention-based VQA model, and it uses multiple attention layers to
refine the search space of the two feature vectors. It uses VGG16 based image features and CNN to extract the features of the
question text. It then stacks attention layers over image vector and then applies an array of attention vectors on the question
to obtain the final combined feature vector.

• Hierarchical Co-attention (HiCAt)19 - This is another attention-based VQA model. The image features are CNN-based
while the question features are obtained by performing 1-D convolution over a word-embedding to get a hierarchy of the
text. Two attention schemes are used in this work: parallel attention and alternating co-attention. In parallel attention, the
model captures the attention of both vectors simultaneously while in the latter one, attention is alternated between the feature
vectors of the two inputs.

• Bilinear Attention Networks (BAN)21 - BAN is a state-of-the-art VQA method that combines the attention mechanism
with the feature fusion technique to maximize the model performance. It uses a modified version of MFB model for feature
fusion wherein the attention mechanisms come into action during feature combination. It uses FasterRCNN features with the
aim of using localized feature fusion instead of using a global feature vector.

For the task of answer generation, there are no appropriate baselines that are suitable for comparison. Hence, we use BAN as
one of the baseline comparison models and plug-in a decoder into the model architecture to make it compatible for the answer
generation task. This decoder is a simple LSTM-based model. We also incorporate teacher forcing method in this decoder to
help the model converge faster.

4.4 Evaluation Metrics
For evaluating the performance of the model in all the datasets discussed in Sections 4.1 and 4.2, we use stratified 5-fold
cross-validation after combining the training, the validation, and the testing splits. This helps in understanding the generalization
capability of the proposed model.

4.4.1 Answer Categorization Task
We use three metrics to evaluate the performance of the model - Accuracy, Area Under Curve - Receiver Operator Characteristics
(AUC-ROC), and Area Under Curve - Precision-Recall Curve (AUC-PRC)53 for the task of answer categorization. Accuracy is
the primary metric used for any classification/categorization task and it quantifies the performance of the model in distinguishing
between various classes. However, accuracy scores can be misleading for the data with imbalanced classes, as in the case of the
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MED-VQA dataset. So, we also calculate the AUC-ROC and AUC-PRC. AUC-ROC is defined by the area under the Receiver
Operating Characteristics (ROC) Curve. A ROC curve describes the ability of the model to separate between various classes by
plotting False Positive Rate (FPR) on X-axis and True Positive Rate (TPR) on the y-axis. Higher the area under the curve,
better is the performance of the model. Similarly, AUC-PRC is the area under the curve with Precision on Y-axis and Recall on
X-axis. Higher the value AUC-PRC, better is the performance. These metrics help us gauge the performance of the model with
respect to the answer prediction considering the class imbalance as well. For the PathVQA dataset, we use only the accuracy as
a metric to evaluate the performance of the models as the classes are fairly balanced with an equal proportion of yes and no
type answers.

4.4.2 Answer Generation Task
To evaluate the answer generation capability of our model, we use generated sequence evaluation metrics such as Bilingual
Evaluation Understudy (BLEU) score54. BLEU score calculates the similarity of the reference (ground truth answer) and the
hypothesis (predicted answer) at an n-gram level. Thus, it is a very useful metric for comparing two sequences or sentences.
Specifically, we use BLEU-1, BLEU-2, and BLEU-3 scores to compare the sequences at 1-gram, 2-gram, and 3-gram levels,
respectively. Apart from the BLEU score, we also compute the F-1 score of the generated answer. In terms of sequence
generation, the F-1 score gives an idea about the performance of the model in generating the correct words. We use the NLTK
library in Python for calculating these metric scores.

4.5 Implementation Details
We have implemented all the components of MedFuseNet using PyTorch55. The image feature extraction was developed using
pre-trained models available in Keras56. Embedding-as-a-Service57 was used for extracting the features for question from the
pre-trained BERT and XLNet models. The size of each question was made uniform with 20 tokens. The size of the combined
feature vector is set to be 16,000 for MCB, 5000 for MFB and MUTAN. These feature sizes were chosen as suggested by the
authors of the respective works. The number of LSTM steps were fixed as 1024. For attention modules, 2 attention glimpses
were used. We used the ADAM optimizer58 with β1 = 0.9 and β2 = 0.999 with a learning rate of 0.001. Cross-Entropy Loss
was used to calculate the error between the predicted and the actual answer. The model was trained for 100 epochs with a
batch-size of 32. We used the Scikit-Learn package59 to calculate the performance metrics. The codes for implementing fusion
techniques were obtained from MCB60, VQA PyTorch61, OpenVQA62 github repos.

The implementation of the decoder part of our MedFuseNet is done in PyTorch. The code for the same is adapted from
Image-Captioning-Pytorch63. We used the ADAM optimizer with a learning rate of 10e−4 and Cross-Entropy Loss Function to
calculate the sequence generation loss. The model was trained for 30 epochs with a batch-size of 32. The BLEU-scores were
evaluated using the NLTK Module64 .

For the first three baselines, the code was adapted from SAN-VQA65. For HiCAt, the code was adapted from HiCAt66. The
code for BAN was adapted from ban-vqa67. The FasterRCNN features for BAN were extracted using the code available in
FasterRCNN-Visual Genome68. In order to ensure reproducibility of our work, we have publicly released the source code of
the proposed MedFuseNet model in PyTorch at this URL: https://github.com/dhruvsharma15/MEDVQA.

4.6 Experimental Results
4.6.1 Comparisons for Answer Categorization Task
We quantitatively evaluate the performance of MedFuseNet and compare it with the baseline models described in Section 4.3
for the tasks of answer categorization and answer generation.

The performance values of each model for answer categorization task with the MED-VQA dataset are summarized in Table
4. Comparing the accuracy scores for all three question categories, we can clearly see that MedFuseNet outperforms the BAN
model. MedFuseNet achieves accuracy scores of 0.840 for category 1 (Modality), 0.780 for category 2 (Plane), and 0.746
for category 3 (Organ). Whereas the BAN model is more competitive to MedFuseNet model for category 3, while the BAN
model under-performs our model for category 1 by 2 percent and category 2 by 1.4 percent. In terms of AUC-ROC, BAN
model outperforms MedFuseNet with a scores of 0.961 for category 1, 0.929 for category 2, while MedFuseNet leads with a
score of 0.800 for category 3. For AUC-PRC scores, MedFuseNet outperforms all the baselines. This superior performance
of MedFuseNet demonstrates that baseline VQA models (like VIS + LSTM and Deeper LSTM + normalized CNN) may be
insufficient to capture the underlying patterns in image question pairs. On the other hand, the attention mechanisms present in
SAN and Hierarchical Co-Attention model might make the architecture more complex which requires more data to learn the
parameters, and then leads to poor AUC-PRC scores. The AUC-PRC scores in Table 4 clearly indicate that simpler models
like VIS + LSTM outperform the attention-based models. Although, BAN proves out to be a strong contender, MedFuseNet
quantitatively outperforms all the baselines and BAN model, as it is designed to handle limited amount of data in the medical
domain. Another observation worth noting is the difference in the AUC-ROC and AUC-PRC scores of our MedFuseNet as
shown in Table 4. This indicates that our MedFuseNet is comparably better in detecting true negatives, due to comparably
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high AUC-ROC score, than detecting true positives, because of the low AUC-PRC score, which can be attributed to the high
class-imbalance.

Table 4. Comparison of MedFuseNet with the baseline models on MED-VQA answer classification dataset.

Methods Accuracy AUC-ROC AUC-PRC
Modality Plane Organ Modality Plane Organ Modality Plane Organ

VIS + LSTM50 0.704(0.012) 0.701(0.017) 0.652(0.020) 0.899(0.012) 0.851(0.011) 0.775(0.015) 0.478(0.024) 0.453(0.022) 0.456(0.025)
d-LSTM + n-CNN52 0.723(0.014) 0.719(0.018) 0.672(0.022) 0.909(0.010) 0.862(0.014) 0.777(0.017) 0.474(0.025) 0.459(0.023) 0.450(0.027)
SAN18 0.669(0.013) 0.729(0.015) 0.669(0.023) 0.926(0.011) 0.870(0.011) 0.783(0.015) 0.459(0.025) 0.415(0.023) 0.406(0.026)
HiCAt19 0.760(0.010) 0.740(0.015) 0.668(0.018) 0.929(0.011) 0.869(0.010) 0.797(0.014) 0.468(0.023) 0.431(0.025) 0.430(0.028)
BAN21 0.820(0.011) 0.766(0.016) 0.750(0.014) 0.961(0.010) 0.929(0.009) 0.800(0.016) 0.600(0.024) 0.521(0.022) 0.456(0.025)
MedFuseNet 0.840(0.010) 0.780(0.017) 0.746(0.015) 0.942(0.010) 0.901(0.010) 0.800(0.013) 0.618(0.023) 0.526(0.024) 0.510(0.023)

For the PathVQA dataset with yes-no type answers, the accuracy scores of the baselines and MedFuseNet are presented in
Table 5. Since the PathVQA dataset is balanced for yes and no type answers, we only use the accuracy score as the metric to
compare the performance of different VQA models. As shown on Table 5, our MedFuseNet outperforms all the other VQA
approaches and obtains an accuracy score of 0.636. Amongst other baseline methods, we can observe that the performance
of SAN18 and Hierarchical Co-Attention Networks19 is competitive, while that of BAN21 is relatively lower. This could be
attributed to the fact that the answer categorization task for PathVQA might not be inherently complex to justify the need for
more complex models. Moreover, the performance of the BAN is highly dependant on the bounding boxes extracted from
the pre-trained FasterRCNN model. These bounding boxes might not always be informative since the FasterRCNN model is
pre-trained using real-world images dataset like Visual Genome69 (and not fined-tuned for medical images). Thus, using BAN
for pathological image categorization might provide misleading results.

Table 5. Comparison of MedFuseNet with the baseline models on PathVQA yes-no answer type dataset.

Methods Accuracy

VIS + LSTM50 0.603(0.025)
d-LSTM + n-CNN52 0.607(0.021)

SAN18 0.627(0.023)
HiCAt19 0.629(0.018)
BAN21 0.604(0.021)

MedFuseNet 0.636(0.020)

4.6.2 Comparisons for Answer Generation Task
The performance comparisons for the answer generation task on the MED-VQA abnormality category data and the open-ended
answer types questions in PathVQA dataset is summarized in Table 6. For the MED-VQA dataset, we observe that MedFuseNet
with the decoder performs better than the BAN model (with Decoder) for the metrics of BLEU-1 and BLEU-3 scores, while
BAN (with Decoder) has better performance in terms of BLEU-2 and F-1 scores. This shows that two models compare favorably
on this dataset. As there are 2-3 words on an average in the answer of the MED-VQA dataset, we do not have a clear winner
since MedFuseNet is marginally better at a 3-gram level while BAN (with Decoder) performs better at answer generation
evaluation at the 2-gram level. For the open-ended question-answer pairs of the PathVQA dataset, our MedFuseNet with the
decoder significantly outperforms the state-of-the-art BAN model with decoder. Our MedFuseNet obtains a BLEU-1 score of
0.605, BLEU-2 score of 0.303, BLEU-3 score of 0.073, and an F-1 score of 0.381 for on this dataset.

Table 6. Comparison of MedFuseNet with the baseline models on answer generation dataset.

Dataset Method BELU-1 BLEU-2 BLEU-3 F-1

MED-VQA BAN + Decoder 0.266(0.015) 0.083(0.008) 0.013(0.002) 0.274(0.012)
MedFuseNet + Decoder 0.276(0.019) 0.076(0.005) 0.016(0.002) 0.229(0.012)

PathVQA BAN + Decoder 0.542(0.023) 0.216(0.023) 0.054(0.008) 0.378(0.009)
MedFuseNet + Decoder 0.605(0.021) 0.303(0.027) 0.073(0.007) 0.381(0.009)

These experiments on the two real-world datasets show that our MedFuseNet with a decoder works well for the answer
generation task. It should be noted that our contribution is the integration of decoder to our MedFuseNet model, and that this
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decoder is flexible and can be incorporated into any other VQA model such as BAN as shown in our comparison experiments.

Table 7. Performance metric scores for the ablation study experiments on MED-VQA dataset.

Accuracy

Question Category Image Feature
MCB MUTAN MFB

BERT XLNet BERT XLNet BERT XLNet

Category 1
Modality

VGG16 0.718(0.019) 0.697(0.018) 0.751(0.016) 0.686(0.019) 0.805(0.012) 0.680(0.019)
DenseNet121 0.704(0.015) 0.675(0.019) 0.768(0.014) 0.688(0.021) 0.813(0.014) 0.675(0.020)
ResNet152 0.731(0.014) 0.663(0.017) 0.783(0.018) 0.716(0.017) 0.840(0.011) 0.701(0.018)

Category 2
Plane

VGG16 0.706(0.018) 0.697(0.016) 0.750(0.017) 0.605(0.022) 0.749(0.014) 0.629(0.019)
DenseNet121 0.719(0.016) 0.643(0.018) 0.754(0.016) 0.643(0.017) 0.757(0.011) 0.655(0.021)
ResNet152 0.712(0.015) 0.659(0.019) 0.763(0.015) 0.693(0.019) 0.780(0.010) 0.735(0.016)

Category 3
Organ System

VGG16 0.718(0.018) 0.625(0.015) 0.785(0.012) 0.683(0.016) 0.798(0.011) 0.692(0.019)
DenseNet121 0.753(0.013) 0.630(0.018) 0.774(0.015) 0.696(0.018) 0.774(0.012) 0.720(0.016)
ResNet152 0.669(0.016) 0.672(0.013) 0.705(0.016) 0.649(0.019) 0.746(0.010) 0.682(0.015)

AUC-ROC

Question Category Image Feature
MCB MUTAN MFB

BERT XLNet BERT XLNet BERT XLNet

Category 1
Modality

VGG16 0.845(0.011) 0.697(0.016) 0.896(0.010) 0.710(0.015) 0.954(0.011) 0.738(0.015)
DenseNet121 0.854(0.013) 0.675(0.018) 0.898(0.010) 0.659(0.014) 0.934(0.010) 0.703(0.016)
ResNet152 0.861(0.012) 0.703(0.018) 0.906(0.011) 0.740(0.017) 0.942(0.013) 0.700(0.014)

Category 2
Plane

VGG16 0.833(0.012) 0.697(0.018) 0.866(0.011) 0.718(0.017) 0.899(0.013) 0.729(0.014)
DenseNet121 0.832(0.013) 0.743(0.017) 0.867(0.012) 0.801(0.013) 0.894(0.012) 0.839(0.015)
ResNet152 0.840(0.010) 0.685(0.017) 0.881(0.010) 0.849(0.014) 0.921(0.012) 0.891(0.013)

Category 3
Organ System

VGG16 0.655(0.015) 0.619(0.019) 0.689(0.014) 0.622(0.017) 0.691(0.014) 0.730(0.016)
DenseNet121 0.667(0.013) 0.700(0.016) 0.691(0.013) 0.626(0.018) 0.690(0.013) 0.650(0.014)
ResNet152 0.803(0.010) 0.674(0.018) 0.854(0.012) 0.795(0.014) 0.800(0.010) 0.790(0.015)

AUC-PRC

Question Category Image Feature
MCB MUTAN MFB

BERT XLNet BERT XLNet BERT XLNet

Category 1
Modality

VGG16 0.322(0.019) 0.312(0.017) 0.379(0.017) 0.373(0.020) 0.590(0.016) 0.352(0.019)
DenseNet121 0.287(0.021) 0.310(0.019) 0.407(0.016) 0.390(0.019) 0.572(0.018) 0.219(0.021)
ResNet152 0.361(0.021) 0.208(0.018) 0.469(0.017) 0.343(0.019) 0.618(0.016) 0.224(0.018)

Category 2
Plane

VGG16 0.252(0.018) 0.368(0.018) 0.331(0.019) 0.370(0.021) 0.439(0.017) 0.288(0.020)
DenseNet121 0.269(0.017) 0.279(0.021) 0.347(0.018) 0.335(0.021) 0.437(0.019) 0.351(0.019)
ResNet152 0.248(0.020) 0.293(0.021) 0.365(0.017) 0.321(0.020) 0.526(0.016) 0.435(0.017)

Category 3
Organ System

VGG16 0.341(0.016) 0.348(0.020) 0.393(0.018) 0.289(0.019) 0.443(0.019) 0.351(0.016)
DenseNet121 0.364(0.018) 0.420(0.018) 0.377(0.016) 0.289(0.021) 0.433(0.021) 0.330(0.018)
ResNet152 0.428(0.017) 0.322(0.017) 0.473(0.019) 0.396(0.018) 0.510(0.016) 0.352(0.018)

4.6.3 Ablation Study
To justify the importance of each component in MedFuseNet, we conducted an ablation study where we compare the performance
of MedFuseNet against the various possible combinations of Image Features, Question Features, and Fusion Techniques - for
all the answer categorization task. We conduct ablation studies on 3 types of image features - VGG16, DenseNet121, and
ResNet152; 2 types of question features - BERT and XLNet; and 3 types of fusion techniques - MCB, MUTAN, and MFB,
along with the attention mechanisms. In total, there are 18 types of possible combinations that are tested and studied. The
evaluation metric scores obtained for each possible combinations and for different question categories are summarized in Table
7. In terms of accuracy, MedFuseNet (BERT + ResNet + MFB) performs the best for question category 1 (Modality) with an
accuracy of 0.840 and for category 2 (Plane) with an accuracy of 0.780. Another close model for these two categories is BERT
+ DenseNet + MFB with 0.813 accuracy score for Modality and 0.757 for Plane. These scores suggest that image features are
more generic for models with skip connections. Moreover, this asserts the power of MFB as a fusion model. For category 3
(Organ), the XLNet + ResNet + MFB combination achieves the best accuracy score of 0.844.

In terms of AUC-ROC scores, BERT + VGG16 + MFB performs the best with a score of 0.954, and is marginally ahead of
our MedFuseNet with a score of 0.942 for Modality. For category 2 (Plane), our MedFuseNet again has the highest AUC-ROC
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Table 8. Accuracy scores for the ablation study experiments of PathVQA yes-no answer type dataset.

Image Feature MCB MUTAN MFB
BERT XLNet BERT XLNet BERT XLNet

VGG16 0.614(0.014) 0.502(0.012) 0.637(0.014) 0.513(0.013) 0.645(0.012) 0.507(0.014)
DenseNet121 0.609(0.013) 0.503(0.014) 0.624(0.012) 0.514(0.013) 0.636(0.013) 0.507(0.012)
ResNet152 0.611(0.015) 0.505(0.014) 0.620(0.013) 0.505(0.012) 0.621(0.013) 0.503(0.015)

score of 0.921. Our MedFuseNet also performs well on category 3 questions with an AUC-ROC score of 0.800. The highest
AUC-ROC score for category 3 is from BERT + ResNet + MUTAN with a value of 0.854. These figures demonstrate that our
MedFuseNet performs well with the inherent class imbalance in the data.

The trend for accuracy scores continues for AUC-PRC scores as well. MedFuseNet has the highest AUC-PRC for category
1 and category 2 with values of 0.618 and 0.526 respectively. In category 3, the highest AUC-PRC is for BERT + XLNet +
MFB with 0.578 followed by MedFuseNet with a score of 0.510. This quantitative analysis establishes that our MedFuseNet
is superior compared to all the other combinations with consistently performing and achieving the maximum scores for the
majority of the metrics.

The results of a similar ablation study on the PathVQA yes-no type dataset is shown in Table 8. We observe that the
combination of BERT + VGG16 + MFB performs best with an accuracy score of 0.645. This is followed by BERT + VGG16 +
MUTAN and BERT + DenseNet121 + MFB with accuracy scores of 0.637 and 0.636, respectively. The combination of BERT +
ResNet152 + MFB has an accuracy score of 0.621. This ablation study again strengthens the claim that the PathVQA dataset
for yes-no type answers is not very complex, which is also supported by the results of the baseline methods. Thus, simpler
models like VGG16 and BERT tend to perform better for the answer categorization task for the PathVQA dataset.

4.7 Attention Visualization
Here, we perform the qualitative analysis of MedFuseNet and compare its results to the ones from SAN, and Hierarchical
Co-Attention models. Since VIS+LSTM and Deeper-LSTM + Norm. CNN do not have any attention modules, we do not
perform a qualitative analysis for these models. We visualized the image attention maps for each model to study and understand
the performance of the model. These interpretable results are summarized in Table 9. We have considered four cases, where
each image belongs to a different organ system. This helps us interpret how well the model is learning the underlying nuances
of the medical images. As mentioned in Section 4.5, we use two attention glimpses. For the first scan of the ankle, SAN can be
seen to have a distributed attention span with a certain focus on the upper part of the ankle, while Hierarchical Co-Attention
focuses on two different parts of the ankle. Our MedFuseNet has its attention maps spanned over the ankle joints and the
lower bone. In the knee scan, SAN again fails to focus on the appropriate location in the image and has distributed attention.
Hierarchical Co-Attention spans its attention to the posterior ligament. On the other hand, our MedFuseNet has a distributed
attention span over the cartilage and the lower shin bone, also known as the tibia. These visualizations support the fact that
MedFuseNet is able to attend to the crucial discriminatory parts of the organ. The third example case is a radiology scan of the
skull. Our MedFuseNet again has attention maps catered to both halves of the skull. The fourth case we visualized is a CT scan
of the spine and contents, and we see that from the attention maps of MedFuseNet is able to focus on different parts of the
scan, thus justifying the prediction. Therefore, observing the visualization of the attention maps can provide us interesting
interpretable insights on where the VQA models are focusing while trying to answer the questions related to the medical scans.
Through the above qualitative analysis we have shown that our MedFuseNet is able to focus on the major distinguishing parts
of the medical image which helps it to correctly answer questions in for the medical VQA tasks.

In Figure 5, we analyze the co-attention schema of the MedFuseNet model by laying the image and question attention maps
for a particular case over the input image and question. For the first category, we can see that model spans its attention over
keywords like “method” in the question which shows that the model is learning to be aware of the modality. Similarly, Figure
5(b) shows how the model focuses on the keyword “plane” in the category 2 question. Through the image attention maps, we
can infer that model has an evenly distributed attention to find the plane for the image. For category 3, again the question
attention highlights the words like “organ” and “system”, thus, supporting the fact that the model knows where to span the
textual attention. The image attention for category 3 also has a distributed attention span over multiple regions of the image.

In Figure 6, we visualize the attention maps obtained from MedFuseNet while generating each word in the answer. As
described in Section 3.4.2, for each time step ti, the attention maps of the previous time step ti−1 are also fed into the LSTM.
Figure 6 demonstrates the attention map that fed with each word to the model for three cases. The first case (a) is of sarcoidosis
in the genitourinary organ system. Our MedFuseNet generates an extra word ”medullary” which is related to the medulla
oblongata, located in the stem of the spinal cord near the skull. For the other two cases, our model predicts the answer correctly
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Table 9. Image Attention visualization for SAN, Hie. Co-Att, and MedFuseNet.

Method musculoskeletal -
ankle knee skull and contents spine and contents

Original

SAN18

HiCAt19

MedFuseNet

Figure 5. Co-Attention Maps for a sample case to display the attention span of MedFuseNet with the input image and the
corresponding question attention. Figure (a) displays the image attention map and the corresponding question attention map for
category 1 - modality, figure (b) for category 2 - plane, and figure (c) for category 3 - organ.
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Figure 6. The attention maps produced by MedFuseNet while generating the words in the answer. There are three cases (a)
sarcoidosis in the genitourinary system, (b) anoxic brain injury, and (c) salter-harris fracture in the bone.

along with the punctuation of comma (,). The second case (b) is of a brain injury. In this case, we can observe how our model is
attending different parts of the brain to discover the cause of injury. The third case (c) is of salter and harris fracture, a fracture
specifically caused at the joint of two bones. As we can see in the attention maps, our model is specifically attending at the
joint portion of the scan multiple times while generating the words ”salter-harris” and ”salter”. This shows that the model is
slowly and steadily learning to identify this special type of fracture and also localize it in the medical image. Thus, attention
visualization of our MedFuseNet helps us to understand the model performance for the answer generation task.

5 Conclusion
Visual Questions Answering systems for medical images can be extremely helpful in providing the doctors with a second-
opinion. In this paper, we presented MedFuseNet - an attention-based multimodal deep learning model, for VQA on medical
images. MedFuseNet is specifically tailored for handling medical images and it aims to learn the essential components of a
medical image and effectively answer questions related to it. A rigorous quantitative and qualitative analysis of MedFuseNet’s
performance was done on two real-world medical VQA datasets for two medical VQA tasks - answer categorization and
answer generation tasks. Ablation study was conducted to investigate the role of image features, question features, and fusion
techniques on the model performance for the two VQA tasks. For our future work, we will focus on improving and intergrating
the decoder with our MedFuseNet for better answer generation task. We are also working on annotating a large VQA medical
domain dataset for a diverse sets of scans, organs, and diseases.
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56. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to
Build Intelligent Systems (O’Reilly Media, 2019).

19/20

1608.06993
1512.03385
1301.3781
10.3115/v1/D14-1162
1607.04606
10.1162/neco.1997.9.8.1735
10.1162/neco.1997.9.8.1735
1810.04805
1906.08237
1610.04325
1705.06676
1708.01471
1711.10781


57. Srivastava, A. embedding-as-service. https://github.com/amansrivastava17/embedding-as-service (2019).

58. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).

59. Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. machine Learn. research 12, 2825–2830 (2011).

60. https://github.com/gdlg/pytorch compact bilinear pooling.

61. https://github.com/Cadene/vqa.pytorch.

62. https://github.com/MILVLG/openvqa.

63. https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning.

64. https://www.nltk.org/ modules/nltk/translate/bleu score.html.

65. https://github.com/Shivanshu-Gupta/Visual-Question-Answering.

66. https://github.com/karunraju/VQA.

67. https://github.com/jnhwkim/ban-vqa.

68. http://github.com/shilrley6/Faster-R-CNN-with-model-pretrained-on-Visual-Genome.

69. Krishna, R. et al. Visual genome: Connecting language and vision using crowdsourced dense image annotations. Int. J.
Comput. Vis. 123, 32–73 (2017).

Author contributions statement
D.S and C.R conceived the experiment(s), D.S conducted the experiment(s). All authors analysed the results. D.S prepared the
manuscript. S.P and C.R edited and revised the manuscript. All authors reviewed the manuscript.

Additional information
Competing interests No. The authors declare that they have no competing interests as defined by Nature Research, or other
interests that might be perceived to influence the results and/or discussion reported in this paper.

Acknowledgements
This work was supported in part by the US National Science Foundation grant IIS-1838730, IIS–1948399, and Amazon AWS
credits.

20/20

https://github.com/amansrivastava17/embedding-as-service
https://github.com/gdlg/pytorch_compact_bilinear_pooling
https://github.com/Cadene/vqa.pytorch
https://github.com/MILVLG/openvqa
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning
https://www.nltk.org/_modules/nltk/translate/bleu_score.html
https://github.com/Shivanshu-Gupta/Visual-Question-Answering
https://github.com/karunraju/VQA
https://github.com/jnhwkim/ban-vqa
http://github.com/shilrley6/Faster-R-CNN-with-model-pretrained-on-Visual-Genome

	sheet1.pdf
	NSR21
	Introduction
	Related Works
	Visual Question Answering
	VQA Components
	Image Representation Learning
	Textual Representation Learning
	Feature Fusion Techniques


	Our Proposed MedFuseNet Model
	Problem Definitions
	Overview of the MedFuseNet Model
	Components of MedFuseNet Model
	Image Feature Extraction
	Question Feature Extraction
	Feature Fusion Techniques
	Attention Mechanisms

	MedFuseNet Model for Medical VQA Tasks
	Answer Categorization
	Answer Generation


	Experiments
	Datasets for Answer Categorization Task
	MED-VQA
	PathVQA

	Datasets for Answer Generation Task
	MED-VQA
	PathVQA
	Dataset preprocessing

	VQA Baseline Models for Comparison
	Evaluation Metrics
	Answer Categorization Task
	Answer Generation Task

	Implementation Details
	Experimental Results
	Comparisons for Answer Categorization Task
	Comparisons for Answer Generation Task
	Ablation Study

	Attention Visualization

	Conclusion
	References




