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Abstract: Different algorithms for forecasting and tracking meteorological systems have been devel-
oped over the years. Many of them are used to study cloud propagation, precipitation and lightning
for nowcasting. Therefore, it is necessary to define carefully the parameters (e.g., intensity thresholds
and minimum size) that impact tracking of these variables. In order to represent the physical aspects
of rain propagation over the Amazon region, several methods of correction and displacement detec-
tion were studied. Different parameters were used to validate the methods based on the extrapolated
rain cell. A probability detection of 78.4% and 68.6% was achieved for 20 dBZ thresholds during the
wet and dry season, respectively. However, the POD decreases for higher reflectivity thresholds. The
results for corrections by Inner Nuclei showed that embedded convection can dictate the propagation
of rain cells. Split and merge corrections performed well; however, they applied only to a few cases.
Corrections performed better for precipitating systems with larger areas and longer duration. The
correction methods showed similar skills for both seasons. Which shows that they are able to monitor
rain cells throughout the year. The automated combination of different methods for the 20 dBZ
threshold proved to be the best choice for tracking rainfall in the Amazon region.

Keywords: tracking corrections; nowcasting; Amazon precipitating systems

1. Introduction

The atmospheric systems occurring in the Amazon are strongly connected with the
regulation of regional and global climate [1]. The seasonality of rainfall in the Amazon
region is modulated in two periods, dry and wet [2]. In particular, convective systems are
responsible for producing a large proportion of the intense precipitation throughout the
Amazon region [3,4]. In the dry seasons, these systems can propagate over large extensions,
including the central part of the Amazon Basin [5]. The dynamic and thermodynamic
structures of these systems [6] can support the formation of isolated or multi-cellular
thunderstorms. Some of those systems are composed of cloud towers of cumulonimbus
embedded within a region with more stratiform clouds [7]. Therefore, tracking these
rainfall systems is of paramount importance to measuring their impacts both globally and
locally. However, to ensure that an unsupervised tool is capable of reliable results, it is
necessary to deeply analyze the impacts of the parameters that define a realistic tracking,
which is the main objective of this study.

During the wet season, Precipitating Systems (PSs) generally have large size rain cells
with relatively low reflectivity and a longer life cycle. In contrast, during the dry season,
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PSs have greater intensity and smaller sizes [8]. These characteristics must be considered
for short-term forecasting systems because the regional properties of weather events are
crucial for a better prediction [9].

To study PSs, satellite images and meteorological radar are the most used instruments.
The information representing the physical structures of precipitation cells can be used
as a target to track their evolution and displacement [10]. Algorithms like ForTraCC
(Forecast and Tracking the Evolution of Cloud Clusters) [11] and TITAN (Thunderstorm
Identification, Tracking, Analysis, and Nowcasting) [12] utilize techniques based on the
boundary thresholds of rain cells to track their displacement and life cycle. In recent
years, several algorithms based on techniques such as contour thresholds, centroid, spatial
cross-correlation, etc., have been developed and used to identify, track, and forecast very
short-term (i.e., nowcasting) large-intensity precipitation events [13]. In a similar way to
the aforementioned algorithms, the tool created for this study also uses thresholding and
tracking via overlapping object areas.

The rain cells (targets) are usually non-rigid objects, i.e., they can eventually change
shape in a given observation [14]. Moreover, they may experience multiple merging and
splitting [15] during their lifespan. For techniques that rely on object shape to define
tracking and prediction, such changes can affect the quality of this information. Since there
is no simple unified solution, different approaches [16–21] can be applied to solve this
problem. Understanding the regional characteristics of rainfall events can help to mitigate
uncertainties related to tracking and forecasting.

In [8], it was found that during the dry season the thermodynamic environment
favors the formation of isolated convective systems with more intense precipitation rates.
In [22], it was observed that more organized convective systems (such as squall lines)
are more frequent in the wet than in the dry season. In this study, it is believed that the
frequency of occurrence of the different precipitating systems is affected by the different
environmental characteristics of each season. Therefore, investigating the characteristics of
PSs during distinct periods and identifying the best parameters to use as tracking metrics
for algorithms can help characterize the phenomena around their development over the
region [23]. Furthermore, this approach is a contribution to understanding the events with
more complex dynamics in the Amazon Basin.

The main objective of this study is to investigate the impacts of different thresholds
and different displacement vector correction methods on the tracking of precipitating
systems. As there is no reference about the tracking, the validation was carried out by
comparing the prediction of the rain cells, extrapolated as a function of the threshold and
corrected vector, and the respective observation. More details will be shown in Section 2.3.
Moreover, analyses were carried out to characterize the impact of physical differences
observed between PSs in two seasons (e.g., dry and wet). First, different methods are
applied to handle interaction classes such as mergers and splits of rain cells throughout
the life cycle of PSs. Then, the method that best fits regional characteristics is used to
analyze the patterns of the tracked systems and morphological features that most impact
the tracking of PSs over the Amazon region. The results presented in this paper are part of
a method that will be made available by INPE (the National Institute for Space Research)
and its partners. This tool can be used for analysis across different regions and with
multiple sensors.

The following section describes how the algorithm works and how the displacement
correction methods were implemented. In particular, a detailed description is given for
the validation of the correction methods by extrapolation. Section 3 presents the results of
applying this algorithm to the two intensive operational periods (IOPs) of the GoAmazon
experiment. We focus on investigating the characteristics of the tracked systems and their
impacts on the performance of the tracking method. Conclusions and future perspectives
are given in Section 3.
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2. Data and Methodology
2.1. Data

Volumetric observations from the SIPAM S-band radar (Amazon Protection System),
located in Manaus (Figure 1), were used, as in [24]. The dataset is based on measurements
carried out during 2014 and 2015 in the GoAmazon (Green Ocean Amazon) experiment [25].
For this study, the Intense Observation Period (IOP) data were selected to analyze the
characteristics of PS at different times during the year 2014. The IOPs were divided
into two periods of observation. The first of these, IOP1, corresponds to observations
between 1 February and 31 March 2014 (59 days). The second period (IOP2) corresponds
to observations from 15 August to 15 October (61 days). The CAPPI (Constant Altitude
Plane Position Indicator) product was used, based on the volumetric observations of the
S-band radar of the SIPAM (Amazon Protection System), located in Manaus (Figure 1).
The CAPPI product has a temporal resolution of 12 min, 40 altitude levels with 500 m each
and a horizontal resolution of 2 × 2 km (range of 480 km). The radar reflectivity (dBZ) data
from the 2.5 km level were used.

Figure 1. Study area and coverage of the S-Band Radar SIPAM. The contours of the image refer to the
radar reflectivities at 2.5 km height at 16:48:00 GMT of 7 February 2014.

2.2. The Algorithm

Different approaches can be used [10–12,18–20,26–28] for object tracking, especially
when the targets are non-rigid objects such as rain cells. Therefore, different techniques can
be used for the same purpose. Here, a method based on geometry overlapping techniques
to extract displacement vectors from the centroids of rain cells is applied. The algorithm
aims to identify, track, and forecast individual cells of precipitation from weather radar
data. This new algorithm considers the interaction of rain cells during their development
and propagation. Some initial physical parameters need to be established to track the
rainy systems over the Amazon region, such as minimum size and identification threshold.
This has a direct impact on the definition of some morphological characteristics of the
precipitating systems, such as the average size of the systems and the internal nuclei of
each rain cell, which also affect their average lifetime. However, there are a number of
processes that need to be carried out for the tracking to be effectively built. Further details
on each one are given below.
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Figure 2 shows the workflow of the algorithm. The processing stages have been
divided into four parts: identification, tracking, corrections, and forecast. The identification
step involves operations to identify rainy clusters (i.e., rain cells) and transform them into
vectorial objects (polygons). Then, in the tracking step, geometries of two consecutive times
are compared to extract the displacement information of the rain cell. However, corrections
may be required in the tracking step associated with unrealistic displacement vectors. These
errors occur due to sudden changes in the shape of the rain cells between two consecutive
radar images, which may be associated with cell fusions and split, and failures in radar
measurements, among other things. The last part refers to the validation of the correction
method for each rain cell (reflectivity cluster based on the CAPPI product). For this, we
use the rain cell forecast for the next time ahead, based on the corrected displacement
vector, compared to the observed rain cell. It is verified which correction method and
which tracking parameters performed better for each rain cell at each time step. This type
of validation can be called conservative or persistent [28,29], considering that the changes
in the next observation time will be small. The next sections describe in more detail some
modules of the algorithm.

Figure 2. Flowchart of the method applied for tracking and validation of the precipitating systems.

2.2.1. Identification Scope

The first scope of the algorithm aims to identify the morphological characteristics (i.e.,
shape, size, inner clusters, etc) of the rain cells. This is performed through segmentation of
the radar images, where a filtering process (thresholding) is applied to highlight regions of
interest. This is a typical process also known as image segmentation [30].

The clusters were selected based on the contour thresholds of the rain cells. In many
studies [4,8,31,32], morphological characteristics of precipitating systems are described
over the Amazon. In these studies, rain cells were observed that have radar reflectivity
thresholds from 20 (both stratiform and convective precipitation are included) to 35 dBZ
(more convective precipitation). Given this range, we selected the parameters of multi-
thresholds that represented the boundary regions of the rain cells and used these parameters
as follows: identification thresholds: 20, 30, and 35 dBZ; first inner thresholds: 30, 35, and
40 dBZ; second inner thresholds: 35, 40 and 45 dBZ.

Continuing with identification, the clustering method objective is to categorize groups
of segmented points after the thresholding process. During this process, the rain cells are
identified and labeled based on the clustering of pixels equal or larger than the predefined
threshold. The label is an identification number of the rain cell for the current observation
time. To perform this procedure, a well-known technique in machine learning was chosen.
The DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm was
applied to identify the clusters [33] or rain cells. It operates based on a distance between
points in the neighborhood. A distance radius represents a proximity relation between
neighbors and is defined by parameter Eps (Epsilon is a radius distance for neighborhood
points), which corresponds to a minimum distance between points in the neighborhood.
Another parameter of DBSCAN is a minimum number of neighbors, given by the minimum
points, which is the least amount of nearby elements between points around one cluster [33].
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Finally, the vectorization method is responsible for transforming clusterized points
(rain pixels) that are in matrix format into vector-based. That information corresponds
to the outer limits of each cell. Based on this conversion, it is possible to perform spatial
operations between geometries of each cell at consecutive times, for instance: overlap,
intersect, within, etc. This makes the process of analyzing overlaps between consecutive
images even more manageable, because parameters such as the overlapping area of rainy
events are easily adjustable.

2.2.2. Tracking

The tracking module uses information from two consecutive times and extracts the tra-
jectory of the PSs. The technique used to investigate the movement of rain cells and obtain
their displacement vector takes into account the centroid of these clusters with a certain
area of overlap at consecutive times. Overlapping cell geometries provide this association
at subsequent times. Using this overlap criteria, it is possible to classify the event according
to its classes (e.g., continuous, splits, and mergers) for the current observation time (t). Such
a process is well known and applied by several algorithms [11,12,34]. However, depending
on the applied technique for defining the geometry of rain cells, centroid positioning can
suffer variations that directly impact the computation of the velocity and position of targets
along the trajectory. To reduce these problems, the definitions applied in the previous
section tend to smooth the shapes of tracked objects because they can disregard “gaps” at
the edges and holes due to pixel-to-pixel thresholding, typical of tracking algorithms such
as ForTraCC.

Each individual cell has information such as size, expansion rate, average reflectivity,
centroid coordinates, velocity, direction, etc. This information defines the association
between rain cells at consecutive times and establishes the trajectory. Here, the similarity
criterion adopted considers the rain cells with a minimum percentage of overlap, which
in this case was defined as 10%. Based on this definition we extracted the displacement
vector ~V which goes from the centroid of a cell in time (t − 1) to the centroid of the cell in
the current time (t); this method was based on the algorithm ForTraCC [11].

As described by [11] for cloud clusters, multiple merging and splitting of rain cells
can occur during their life cycle. Such behavior may be related to the interaction of
systems, in different stages of their lifespan, along their trajectories, and even to multi-cell
systems [7]. In order to describe the situations that can occur during the development of PSs,
we characterize the transition events between two consecutive times with the interaction
classes:

• New Rain Cell (NEW): While comparing two successive times, there is no overlap of
areas between cell geometries at times t − 1 and t. In this situation, it is considered
that there was a spontaneous generation of a new system and a new life cycle is started
from a cell at time t;

• Continuous (CON): While comparing two successive times t − 1 and t, there is a
unique overlap between geometries of the two cells;

• Split (SPL): This situation occurs when two or more cells at time t overlap with the
geometry of a cell at time t − 1. In this case, a cell with the largest area at time t is
classified as SPL, and a displacement vector starting from the centroid of cell t − 1
is added to the track. The cell with the smallest area at time t − 1 has its life cycle
terminated or proceeds as a new system at the next time;

• Merge (MRG): The opposite situation to splitting (SPL), where two cells at time t − 1
overlap into just a single cell at time t. In this case, the rain cell at time t receives the
same relational entities as the cell with a larger area at time t − 1, while the other cell
ends its life cycle.

2.2.3. Correction Scope

Several factors can modify rain cell movement when analyzing their trajectory. One
of these factors that can affect a reasonable estimate of displacement trajectory is the use
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of a centroid as a target. This problem is associated with the shape of tracked objects and
processes of mergers and splits that may occur during the development of precipitating
systems. According to [15], this problem comes from an object tracking perspective with
multiple merging and splitting events for non-rigid objects.

In order to illustrate this problem, Figure 3 shows the tracking of a precipitating
system over Manaus city on 2 February 2014. It is seen that during the transition between
Figure 3a and Figure 3b the rain cell with ID 279 is classified as continuous (CON), and by
applying displacement vector extraction based on the centroid of geometries, velocities
of 8.52 and 11.33 m/s in the directions 198.36◦ and 201.36◦ were obtained, respectively.
However, in Figure 3c,d, it is possible to note that a split and a merge occur on rain cell 279.
The velocity and direction of the rain cell are unrealistic because of the sudden change in
the shape. The red lines serve only to illustrate the trajectories of the centroids at previous
times to the observed ones.

Figure 3. Observed rain cell (SIPAM RADAR reflectivity) tracking over the Amazon region during
February 2, 2014 at: (a) 12:00 GMT; (b) 12:12 GMT; (c) 12:48 GMT; and (d) 13:00 GMT. The red line
shows the trajectory in previous times. The legend of each panel gives information about the rain cell:
Identification (ID); Classes of Interactions (Class); Velocity and direction of the current vector.

Mitigating this problem is the main objective of this study, and details about the
proposed methods to reduce the uncertainties concerning the calculation of the displace-
ment vector are given below.

Correction for Rain Cell Split

As will be seen in Section 3, rain cell split can occur with a frequency larger than 10%.
The proposed vector correction method adds a new vector for a newly generated cell. This
displacement vector starts from the centroid of the intersecting area between the rain cell at
t − 1 and a cell at time t generated after a Split, instead of from the centroid related to the
rain cell in t. Figure 4 shows the visualization scheme for how the Split Correction method
(SCor) works. It is believed that this type of correction will have the most significant impact
on storm events that have deep convective cores with different directions, common in
supercells [7]. Moreover, fragmentation of rain cells are frequent in the dissipation stages
and may take advantage of this type of correction [35]. So this method solves a specific
case: new smaller cells that arise from a split.
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Figure 4. Schematic for the Split Correction method. The green polygon is the intersection geometries
for the New Split rain cell. The arrows indicate the displacement vectors used in the SCor method,
where the red arrow is the vector used for the adjustment and the blue arrow is the displacement
vector adjusted by the method.

Correction for Rain Cell Merge

Throughout a precipitating system’s life cycle, it is common for it to merge with nearby
cells. This may occur by several factors, larger systems propagating by absorbing new
systems ahead [36], faster systems that join with slower systems, etc. Moreover, depending
on the threshold applied for tracking, cell joining can also occur in multicell systems, where
nearby convective cores with different stages of maturation can be merged [7]. Considering
this feature, the Merge Correction Method (MCor) is applied to correct displacement in rain
cell merge. The method uses a simple approach, where a set of vectors between current
observation time (t) and vectors from the previous time (t − 1) can define a correction
for current displacement vector ~Vt. In Figure 5, we visualize how the MCor method
carries out correction by replacing a vector during an event of cell–cell merging. The filled
gray polygon represents the cell at current time t and its corresponding vector before the
correction (red arrow), the polygon at the previous time (t − 1) is represented without the
fill (transparent polygon). For rain cell merge, the interaction vectors between cells that
precede the merge are considered, meaning that in Figure 5, the red arrow represents the
primary vector coming from the interaction between geometries at t and t − 1 and, the blue
arrow is the correction vector made by MCor. The blue vector is the average of these red
vectors (Equation (1)).

~Vavg =
1
n

n

∑
i=1

~Vi (1)

Figure 5. Merge Correction Method scheme. The arrows indicate the displacement vectors associated
with the method, where red arrows are the vectors used for the adjustment and the blue arrow is the
displacement vector adjusted by the method.

Temporal Average Correction Based on the Life Cycle of Precipitating Systems

The displacement vector often suffers abrupt changes in the values of velocity and
direction caused by many circumstances, such as data gaps, sudden changes in the shape of
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rain cell polygons, holes in the polygons, and/or merging/splitting of systems. Assuming
that the trajectories of a system over its lifespan within a limited area should not change
abruptly, the Temporal average vector Correction (TCor) method is based on the complete
life cycle of a precipitating system. Equation (1) was also applied to define the average.
This method uses vectors related to a certain period of the precipitating system life cycle
observations to correct an unrealistic vector of the rain cell at the time of the current
observation. For this work, the number of previous observations was set to 3 previous
observation times (36 min). Figure 6 demonstrates the TCor method for correcting a
displacement vector at the current time.

Figure 6. Schematic for temporal average vector correction method. The cells of observations before t
are represented by unfilled polygons with their respective displacement vectors (black arrows).

Correction by Rain Cell Inner Cores

As previously mentioned, a problem with changing the tracked system’s shape can
appear in many different ways and abruptly. However, internal cores can represent a
solution to this problem. Because they are smaller in area and displacement, the observed
variations can better describe the system’s displacement at a given instant. In this case,
a correction method using vectors associated with the Inner Cores (ICor) of the rain cells
can be applied to correct the trajectory at the current time. This method outputs correction
vectors associated with the displacement of the cell sorted by the first threshold at time t.
Figure 7 illustrates how this method adjusts the displacement vector; the grey polygon rep-
resents the geometry of the primary threshold boundary, while smaller polygons (purple)
represent geometries of internal thresholds (more intense reflectivity thresholds) and their
respective displacement vectors. The adjusted vector (blue arrow) is the averaged vector
(Equation (1)) related to the inner cores (black arrow). It replaces the primary vector related
to the outer threshold (red arrow).

Combination

All the above methods act on a specific condition, sometimes trying to improve the
split vector, sometimes the merges, among other things. However, in the same rain cell
there are several conditions to applying different methods at the same time; in this case
we also evaluate these groups (combinations), even counting how many times they occur
(activation). In addition, there is still the fact that not all tracking problems were accounted
for, not only for the lack of knowledge of all the questions that involve the tracking of rain
cells, but for the fact that sometimes the vector to be corrected is in fact the most realistic
one. So, all the above methods were combined with the uncorrected vector, here called
“NONE”. Equation (1) was used to average the vectors for each combination shown in the
following section.
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Figure 7. Schematic for Inner Cores method. The black arrows represent the displacement vectors
for each inner cell. The average of black arrows is the blue arrow which replaces the primary
displacement vector (red arrow).

2.3. Validation by Persistence

As there is no reference of what would be the best method for tracking, the displace-
ment correction methods have been evaluated by the persistence of the spatio-temporal
extrapolation of the rain cell. That is, each method and combination will be evaluated to
determine which performs best. During this process, the cluster at time t is extrapolated
based on the velocity and direction values obtained by the method one time ahead and,
if this same cluster is also observed at time t + 1, the skill of the method for the current
instant will be measured. All pixels of the cluster are shifted forward and thus form a per-
sistent cell at t + 1. This extrapolation of the cluster has its values evaluated dichotomously
(true or false) with the observation one time ahead.

The extrapolation of the pixel values of each rain cell is displaced according to the
direction and velocity values obtained by the methods. Figure 8 shows the validation of
the extrapolation method. In order to determine the performance, the specific rain cell
in a time step was isolated, that is, without the presence of the others in the entire radar
image. Moreover, it is considered that the rain cell classified as new will not be used due to
the lack of vector information for extrapolation. The results will show how the proposed
corrections impact the forecasting results.

Finally, having established the extrapolation metrics, the evaluation performance for
each correction method will be performed using the statistical prediction parameters [37],
which are:

• Hit: When the rain pixel was predicted and observed.
• Miss: Rain pixel not predicted but observed.
• False Alarm: Predicted rain pixel that did not occur.
• Correct Negative: Rain pixels were not forecasted and also did not occur.

In addition to statistical prediction parameters, accuracy rates given by POD and FAR
will also be considered to measure the prediction ability (Skill Score) between these rates for
different corrections.
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Figure 8. Example for validation of methods using extrapolation over rain cells and comparison
between predicted and observed.

POD: This is a ratio between the number of correctly forecasted rain pixels and the
number of observed ones. If all predictions are correct, the result of this operation is 1,
and if all predictions are incorrect, the result is 0.

POD =
Hit + Miss

Miss
(2)

FAR: The ratio of false alarms against the total number of expected rain pixels is used
to calculate FAR. The perfect score for FAR is 0.

FAR =
FalseAlarm

Hit + FalseAlarm
(3)

The values used in the Skill Score function are correlated with a reference value that
will be the basis of comparison for the other vector correction and extrapolation methods.
Therefore, the function to evaluate the skill of the methods is described as follows:

SkillScore =
SkillScorepredicted − SkillScorere f erence

SkillScoreper f ectscore − SkillScorere f erence
∗ 100 (4)

3. Results

The results demonstrate aspects related to the tracking of precipitating systems during
GoAmazon Intensive Operating Periods (IOP1 and IOP2). The analyses are designed
to define the influence of thresholds on tracking and evaluate the application of these
methods and their impact on correcting errors associated with rain cell geometry in the
Amazon region.

3.1. The Minimum Size of Rain Cells

Before starting to proceed with the general evaluation of thresholds and correction
methods, it is necessary to define the minimum cluster (rain cell) size parameter. Together
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with the external contour threshold parameter, the minimum size of rain cells can strongly
affect the tracking and prediction. We initially selected reflectivity thresholds of 20, 30,
and 35 dBZ based on previous studies [4,8,31,32,38] and evaluated the percentage of rain
cells identified in the initial tracking period, i.e., the transition after the cluster identification
and its time ahead (t + 1). In order to identify the minimum cluster size which has a certain
degree of continuity, only rain cells classified on the class transition from NEW to CON
were analyzed. Figure 9 shows the percentage (%, line) of new rain cells with continuity
and the respective number of cells tracked (bar chart) for each minimum size range (4 pixels;
the last class groups all clusters larger than 100 pixels in size). It is clear in Figure 9 that
for minimum sizes smaller than 15 pixels (60 km 2) the number of rain cells increases
considerably; however, the degree of continuity is small. Tracking of these precipitating
systems is challenging because there is a small or no overlap between consecutive images,
or because they have short lifetimes, or even because of false identification of rain cells.

It is notable that for intervals larger than 45 pixels (180 km2), the transition percentage
of the rain cells does not have a pattern, which may be related to the low number of samples.
For a threshold between 15 and 25 pixels, it is noted that there is a good degree of continuity
(>40%) with a number of systems tracked that is sufficient for analyzing the effects of the
proposed corrections. Because the InnerCores correction requires the existence of better
developed internal structure, a minimum size of 25 pixels was chosen for the following
analyses. However, in situations where this correction might not be needed, using 15 pixels
would guarantee a larger number of tracked rainy systems.

Figure 9. Distribution for the number of rain cells (clusters) in transition from New to Continuous for
thresholds of 20, 30, and 35 dBZ. The lines represent the percentage of continuity and the bars the
total of rain cells observed for each interval and threshold.

3.2. Evaluation of Vector Correction Methods

In order to evaluate all methods against reflectivity thresholds, the minimum size of
rain cells was set to 25 pixels (thresholds of 20 dBZ), as described before, and the primary
inner cores have at least 15 pixels (thresholds of 30 dBZ) and the secondary (thresholds of
35 dBZ) was 10 pixels. The choice of these values is associated with the observed rainfall
characteristics [4,8,31,32,38]. The lower thresholds indicate lighter (20 dBZ) and moderate
(30 dBZ) rainfall rates, while the latter (35 dBZ) refers to a condition associated with a
probable convective initiation [39].

The evaluation of the methods is seen in Figure 10 which shows the values of av-
eraged POD (%, blue line), FAR (%, orange line), and BIAS (gray line) based on the
prediction of rain cell position at t + 1. Results for each IOP are shown in separate pan-
els, and the horizontal axis represents the combination of methods and their threshold
(Method_Combination_Reflect). The skill score (%, colored bars) and activation frequency
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(Act.%, black lines) are shown on the adjacent panels, and indicate the improvements for
the individual method (or combination) and how many times each one was used. Except for
“NONE”, where the entire population of data was used (100%), the statistics shown only
reflect the sample where each combination was applied. Moreover, the percentage of acti-
vation (number of rain cells divided by the total) where a certain combination occurred is
shown in the bottom chart (Figure 10. Because of this, the percentage of activation (number
of rain cells divided by the total) where a certain combination occurred is shown in the
bottom chart. The activation frequency lines change as a function of the applied threshold.
All tests without any corrections (called “NONE”) for each identification threshold (20, 30,
and 35 dBZ) are represented on the x-axis in bold. As expected, some methods have been
activated more than others. The reason for this is that different precipitating systems lead
to the use of different correction methods for each time step during the life cycle. Moreover,
this characteristic leads to a variety of POD, FAR, and BIAS, and should be considered
when selecting the supposed best combination method. The order of the methods along
the x-axis order was given only by the POD values of each method combination, where
the best index (POD, FAR) is on the left of the graph and the worst on the right, for each
IOP. To summarize these results, Table 1 shows the frequency of occurrence of a certain
correction method in a combination that improves or worsens the POD/FAR with respect
to the reference (“NONE”). It was divided by groups of the best (best at IOP1, best at IOP2),
on the left of NONE in Figure 10, and worse (worse at IOP1, worse at IOP2), on the right of
NONE in Figure 10, for each of the radar reflectivity thresholds.

Regarding the methods, as shown in both Figure 10 and Table 1, the ICor (i.e., in-
ner thresholds) was the most activated one for all identification thresholds. As seen in
Section 2.2.3, this method uses the internal clusters of the rain cell for vector correction. This
was applied over 70% of the time depending on the threshold, followed closely by the TCor.
On the other hand, MCor and SCor were used a few times, which shows that precipitation
systems that occur only under these conditions are not frequent. However, the results
indicate that, when observing systems with a more complex life cycle, where merges and
splits occur and internal cores are observed, the applied corrections are effective, providing
the best performance for IOP1 (POD = 76.51%, FAR = 26.22% and BIAS = 1.03) and IOP2
(POD = 68.65%, FAR = 32.15% and BIAS = 1.01) compared to NONE.

The differences between the methods for the same identification threshold are small,
Figure 10. It can be observed in Table 1 that the lack of correction (NONE), even when it
happens in a specific time step in combination with other corrections during the lifespan
of the cell, still continues to cause more errors. The skill of each correction depends on
the applied threshold, but they are generally beneficial to the tracking, particularly at
higher thresholds. Moreover, there are slight differences in the activation of each correction
between the two IOPs (Table 1); even if the precipitating systems have different physical
characteristics throughout the life cycle in each period, their frequencies are proportional.

To evaluate the gains of each method individually, the skill score was computed
comparing their results with the reference method (None) of its respective threshold. At the
bottom, Figure 10a,b showed the gain and loss of each method (color bars). It is seen that
in some methods there was a significant gain, with improvements of 75%, mostly for rain
cells that used the split correction. This can be understood by the fact that many of the
errors occur due to abrupt changes in velocity, and this correction tends to suppress large
variations of the velocity. Moreover, it should be noted that while the skill gain of the
method is high, its activation was relatively low, i.e., the method was used in few cases
during the tracking but was highly effective.

The statistical indices of each method were directly affected by the identification
threshold. Based on the POD/FAR values, it is possible to observe that the greater the
radar reflectivity, the worse the performance of the model, especially during IOP2. This
behavior may be associated with the physical characteristics of the systems tracked in
each IOP, and with the fact that higher reflectivity thresholds correspond to smaller areas
of the precipitating systems. During the wet season (IOP1), atmospheric systems in the
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Amazon region usually have lower precipitation rates [8] over larger areas, a characteristic
of stratiform rain [7]. In contrast, a more significant number of severe storm cells is observed
during IOP2, which is a dry season. Moreover, the performance of all correction methods
is worse in IOP2. This result shows that the choice of tracking threshold should not be
made arbitrarily, without understanding the characteristics of the precipitating systems
in a given region. Even with most combinations bringing improvements, the tracking for
more intense PSs (thresholds of 30 and 35 dBZ) is challenging.

Figure 10. Evaluation of all methods according to statistical index (POD/FAR/BIAS), Skill Score
and Activation Frequency of the vector correction methods for each radar intensity identification
threshold during IOP1 (a) and 2 (b).
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Table 1. Number of associations of each method related to the best and worst combinations with
respect to the algorithm without corrections in the displacement vector (None) for each thresh-
old method.

IOP1

Better
20 dBZ

Worst
20 dBZ

Better
30 dBZ

Worst
30 dBZ

Better
35 dBZ

Worst
35 dBZ

ICor 9 1 9 1 9 1
TCor 7 1 8 0 7 1
MCor 5 3 7 1 5 3
None 5 4 6 3 5 4
SCor 2 2 2 2 1 3
Total Best Worst 13 5 15 3 12 6

IOP2

Better
20 dBZ

Worst
20 dBZ

Better
30 dBZ

Worst
30 dBZ

Better
35 dBZ

Worst
35 dBZ

ICor 9 1 9 1 7 3
TCor 8 0 8 0 8 0
MCor 6 2 7 1 6 2
None 6 3 6 3 5 4
SCor 1 3 1 3 0 4
Total Best Worst 13 5 14 4 12 6

As noted in the previous analysis, the combination depended on some physical aspects
throughout the life cycles of the rain cells. It is likely that some characteristics associated
with size and lifespan may be predominant factors in the use of certain correction methods.
For instance the size can indicate a greater probability of mergers and splits, and the
occurrence of more intense internal cores. In addition, with a longer lifetime, the probability
of occurrence of merge and split increases as well, and also the use of corrections that take
into account the temporal variation throughout the life cycle. Finally, it is expected that the
tracked sizes decrease as the threshold increases, affecting the activation of a certain method.
In order to investigate what these positive and negative impacts are during tracking for
each interaction class, an analysis based on the average behavior of groups of tracked rainy
systems was performed and is discussed in the next section.

3.3. Features That Most Impact Tracking Performance

In this section, the impact of corrections throughout the complete life cycle of the
systems and depending on the different types of interactions (described in Section 2.3)
is evaluated. The precipitating system refers to a set of rain cells (clusters) at different
overlapping time steps that represent a single tracking. These precipitating systems were
labeled according to the classes: Continuous-PS represented only by rain cells categorized
as continuous (see Section 2.3); Merges-PS when only rain cells merging and continuities
are observed; and Splits-PS when split and continuous rain cells are observed. In this study,
only precipitating systems with at least three consecutive images (36 min) were analyzed.

The algorithm was applied with the same minimum size thresholds and all identi-
fication thresholds. However, it is important to make it clear that the 20 dBZ tracking is
more suitable in the Amazon region for PSs in general. Furthermore, instead of choosing a
specific combination of corrections, the algorithm applies the best-observed correction (the
one with the smallest error) to each rain cell throughout its life cycle, called Adaptive. This
choice was made in order to emphasize the impact of the physical characteristics of each
precipitating system, reducing the effects of a specific correction.

Based on the correction (combinations) using the adaptive mode, Figure 11 shows the
amount of rain cells corrected by their respective method for each threshold (bars: green
for 20 dBZ, orange for 30 dBZ, and red for 35 dBZ) and both IOPs (IOP1, Figure 11a, IOP2,
Figure 11b). As expected, the rain cell population without an effective correction method
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(NONE) is the majority (three times more than the second method). The remaining cells
corrected by the adaptive mode are sorted in a descending manner, based on the IOP1
occurrence of the most used method/combination ordering (Figure 11). Although the
number of rain cells at 20 dBZ of the TCor method is higher, the ICor method was more
effective in the corrections for more intense thresholds, mainly for 35 dBZ. Some methods
were not chosen in adaptive mode, as there was always a better one. This was the case for
the “None-Icor-MCor-TCor” combination during IOP1 for 35 dBZ. Many of the methods
smooth the displacement vector, such as TCor and SCor, and their results proved to be
the best choice for several precipitating systems. In some cases, it may happen that the
direction is correct, but the speed is not. Therefore, such methods prove to be effective
as speed limiters, and when combined with NONE, they bring the best tracking option.
The differences between the IOPs were small, which suggests that corrections can be
applied similarly for both seasons. However, the skill is different, as will be shown in the
next analysis.

Figure 11. Number of rain cells (clusters) corrected with combined methods using adaptive mode.
Distributed in descending order for IOP1 (a) and IOP2 (b).

As the adaptive mode was used, it is important to present its performance. Table 2
presents the skills achieved using the algorithm in adaptive mode. We see that the lower
intensity thresholds (20 dBZ) obtained the best POD, FAR, and BIAS indices. Moreover,
during IOP1 the precipitating systems were better tracked than in IOP2, as observed
before. This may be associated with difficulties in tracking more severe events. A slight
improvement was observed overall for the adaptive method compared to choosing a
specific combination, as can be seen in the values between Table 2 and Figure 10.

Table 2. Statistical indices by thresholds during the IOPs for the algorithm in adaptive mode.

IOP1 IOP2

20 dBZ 30 dBZ 35 dBZ 20 dBZ 30 dBZ 35 dBZ

POD 78.74% 67.96% 60.83% 68.60% 64.53% 61.11%
FAR 21.52% 32.53% 40.13% 32.30% 36.29% 39.98%
BIAS 1.0032 1.0073 1.0160 1.0132 1.0129 1.0182
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The rain cells were grouped into precipitating systems of a certain interaction class. It
is important to show the number of occurrences of them. Table 3 shows the percentages of
the precipitating systems related to a certain class of interaction. Notably, PSs classified
as continuous represent most of the cases. Merges (split) represent no more than 13.64%
(10.76%) of the precipitating systems.

Table 3. Occurrence of the precipitating system classes for each IOP and threshold.

IOP1 IOP2

Precipitating System 20 dBZ 30 dBZ 35 dBZ 20 dBZ 30 dBZ 35 dBZ

Continuous 78.85% 81.07% 77.65% 75.60% 79.12% 78.28%
Merges 12.80% 10.51% 12.20% 13.64% 12.69% 12.97%
Splits 8.34% 8.41% 10.14% 10.76% 8.25% 8.74%

In order to analyze the positive and negative impacts of the best correction chosen
throughout the life cycle of the cell, precipitating systems were also divided according
to their general skills. That is, PSs that presented FAR values below (above) 0.5 (50%),
regardless of the correction applied, showed better (worse) properties/conditions for
tracking. Figure 12 shows the FAR relative frequency histogram of each PS tracked by
their groups for the two IOPs and the threshold. It represents how the prediction of rain
cells was distributed for each threshold and PS class during both IOPs. For this analysis,
the false alarm rates of each PS class were pooled and a kernel density estimate (KDE) was
applied based on the histogram of FARs. Note that the thresholds at 20 dBZ represented by
the blue lines in Figure 12 indicate that the thresholds were closest to the best FAR (equal
to 0). In contrast, the red lines, referring to the highest intensity threshold (35 dBZ), do
not indicate a good performance, as already observed in a previous analysis. In general,
the performance was better during IOP1 than for IOP2, with larger differences for 20 dBZ
probably associated with a higher frequency of light rain cells during the wet season.

Figure 12. FAR relative frequency histogram for each detection threshold and interaction class
(continuous, merges, and splits) for IOP 1 (a) and IOP2 (b).

Two characteristics were analyzed in this study, which directly impact the tracking of
non-rigid objects: the size and lifespan of each precipitating system. Figure 13 shows the
boxplots related to the life cycle of groups with the best (≤0.5) and worst (>0.5) FAR indices.
Regarding the lifespan, it is evident in the figure that Continuous-PSs are those with the
shortest life cycle in general. Moreover, it is noted that the longer the system lifetime of
the cell, the better the performance of the corrections. Comparing the two IOPs, the group
with the best FAR indices has a longer lifetime in IOP2 than IOP1, in terms of the upper
quartile, median, and average. In other words, systems during IOP2 need to have a slightly
longer lifetime than those of IOP1 to have the same tracking performance, except for the
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Merge-PS-20 dBZ during IOP1, where the larger PSs proved to be more difficult to correct.
A reason for this later result would be that merging of rain cells in IOP1 (larger clusters
than IOP2) can suffer drastic changes.

Figure 13. Life cycle (hour) boxplots for each precipitating system class by continuous, split, and
merges at each IOP and identification threshold, divided into: (a) FAR (≤0.5) and (b) FAR > 0.5.
The circles within each boxplot represent the mean value.

When evaluating the average size of the rain cells for each precipitating system, it can
be observed in the boxplots of Figure 14 (the same as in Figure 13, except for size) that the
difference between the best-corrected individual groups (Figure 14a) leans towards present-
ing slightly larger rain cells, especially during IOP1. Moreover, it is possible to establish
that the precipitating system classes with greater rain cell interaction (Split and Merge)
obtained better results, especially during IOP1. The boxplots related to this season show
that the mean, median, and upper quartiles present PSs with larger sizes in comparison
to IOP2. This behavior becomes more evident for rain cells with lower thresholds where
according to [8] less intense reflectivities are associated with larger stratified areas over the
region. Such results demonstrate that the corrections are intrinsically dependent on the
interactions between rain cells that occur throughout the life cycle of the PSs and that the
thresholds directly impact this behavior. However, for systems with longer lifetime and
size, the corrections applied proved to be effective.

Figure 14. Size (pixels) boxplots for each precipitating system by continuous, merge, and split at each
IOP and identification threshold, divided by: (a) FAR (≤0.5) and (b) FAR > 0.5. The circles within
each boxplot represent the mean value.
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4. Conclusions

Tracking algorithms are very important tools in monitoring meteorological events,
and are especially useful for following precipitating cells. They can be used to help
understand the evolution of rainy systems, and hence advance our knowledge about this
key aspect of the climate system. In this sense, this study evaluated how to best correct the
displacement of precipitating cells and how their intensity and size can impact our ability to
track these systems in a specific region. Such a tool can be used to assess the development
of weather systems, study their characteristics over the years, and even perform nowcasting
of different weather systems with multiple data sources.

Here we reported on the use of the physical and dynamic characteristics of the pre-
cipitating systems to develop a new algorithm, which allowed the evaluation of several
factors related to the precipitating systems that occurred in the two contrasting seasons.
We proposed four different methods and their combination for correcting the displacement
vector calculated between consecutive images that accounts for splits, merges, and other
typical problems in tracking algorithms. When applying these correction methods and
investigating the impact generated on the tracking of precipitating systems, it was found
that there were improvements compared to the algorithm settings without any correction of
the displacement vectors. In general, the POD indices for less intense (20 dBZ) thresholds
were greater than 78.74% during IOP1 and 68.6% for IOP2, as shown in Table 2. These
indices show that there was a good correction of the rain cells during the two seasons.
However, the skill decreases towards higher reflectivity thresholds. The results obtained
show that less intense thresholds better represent the propagation characteristics of the
precipitating systems over the Amazon region.

Among all the methods that had the best performances, those combinations that used
correction associated with interactions between cells (i.e., split, merge, and inner cores) were
more prominent. The combinations with the corrections by internal cores were efficient for
both IOPs, the corrections by zplit were more useful on IOP1, while for IOP2 the merge
brought more improvements to the tracking. However, the number of activations of these
methods (applied to merge and splits) is small, as these systems represent less than 20% of
tracked systems. For the most activated methods, the correction by internal cores proved
to be very efficient. This indicates that the most intense cores within the cloud dictate the
displacement of the rain cell in general.

In general, most combinations brought improvements to tracking. However, some
physical aspects can directly impact the choice of method and its skill. In this sense, we
analyzed how the size of the systems and their life cycle impact the correction. Therefore,
the algorithm was adjusted to choose the best prediction among all available method
combinations in order to analyze only the physical aspects. The so-called adaptive mode
showed slightly better results than using just a specific combination. The most used
combinations were associated with corrections that limited the speed of the system, thus
correcting the main problems of using the centroid. The uncorrected vector was often
combined with corrective methods, which may be associated with the fact that it is not
always completely wrong. The analyses accounted for all tracked rain cells. Moreover,
the lack of knowledge about all possible correction hypotheses can be overcome using the
combination with the uncorrected vector. It was possible to define that the corrections
had better results when rain cells were larger and had a longer life cycle. During the dry
season (IOP2), where rainy cells tend to be more intense, it is necessary that the lifetime is
even longer to reach FAR value found during IOP1. Short-lived continuous precipitating
systems are the majority of those tracked. Therefore, it is necessary to give greater priority
in future work to such systems in order to improve monitoring in general, especially in the
initiation and shallow convection.

Based on these results, it is possible to say that the corrections analyzed improved the
tracking of precipitating systems over the Amazon region. Furthermore, the combination
of these different methods is the best approach for monitoring precipitating systems in the
Amazon region, especially if there are two or more seasons with different characteristics.
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In addition, the definition of the threshold and minimum size of the tracked systems are
factors that directly impact the skill of the algorithms and must be determined from the
common physical characteristics of all rain events in a region, a well-known aspect in
nowcasting strategies [9]. Therefore, it is suggested that for the monitoring of meteoro-
logical events, the algorithm should be adaptive to the observed features of each rain cell
throughout their lifespan and frequency. Furthermore, it is important for decision-makers
to know that depending on these characteristics, certain precipitating systems are better
monitored than others.

In future work, data from different sources will be used to improve the tracking of
the precipitating systems and increase the study coverage area (radar data is limited to
480 × 480 km). Such research will focus on the fact that no analysis in this study was done
considering that some precipitating systems may be larger than the radar coverage area,
which can bring uncertainty to the applied corrections. Moreover, it is worth mentioning
that this study uses persistence as a basis to validate its correction methods. Therefore,
there are uncertainties associated with the forecast in all verification analyses that were
not taken into account. However, the results are believed to be robust enough due to the
short time difference between consecutive images (12 min). In future works, research will
be addressed to study the sensitivity of persistence in the intercomparison between similar
tracking algorithms. In addition, studies for other regions of the globe will be carried out
to validate the aspects that most impact nowcasting for different storms depending on the
environment that surrounds them.
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