
Inferring Relations in Knowledge Graphs with Tensor Decompositions

Ankur Padia, Konstantinos Kalpakis and Tim Finin
Computer Science and Electrical Engineering

University of Maryland, Baltimore County
Baltimore, Maryland, USA

{ankurpadia, kalpakis, finin}@umbc.edu

Abstract—Multi-relational data, like knowledge graphs, are
generated from multiple data sources by extracting entities and
their relationships. We often want to include inferred, implicit
or likely relationships that are not explicitly stated, which can
be viewed as link-prediction in a graph. Tensor decomposition
models have been shown to produce state-of-the-art results in
link-prediction tasks. We describe a simple but novel extension
to an existing tensor decomposition model to predict missing
links using similarity among tensor slices, as opposed to an
existing tensor decomposition models which assumes each slice
to contribute equally in predicting links. Our extended model
performs better than the original tensor decomposition and the
non-negative tensor decomposition variant of it in an evaluation
on several datasets.

Keywords-Multi-relational Data, Link Prediction

I. INTRODUCTION

Multi-relational datasets, like the one shown in Figure 1,
are graphs in which multiple relationships can hold between
a pair of entities. Such graphs are gaining importance as
they help improve the accuracy of complex tasks such
as question answering. The sources from which they are
constructed, often text collections [1], may not make explicit
some of relationships between entities which can lessen the
performance of applications using the knowledge graphs.
Hence, developing mechanisms to infer implicit relation-
ships becomes essential.

Tensors help when represent information in multiple di-
mensions and can represent multi-relational data naturally.
Such tensors are then factorized to obtain latent represen-
tations for the entities and their relationships. Different
factorization techniques are applied to obtain ranking and
link prediction [2], [3]. However, each of the tensor de-
composition methods assumes that all relation participate
equally to predict link. We describe a simple, yet novel,
extension to the existing tensor decomposition model for
link prediction using similarity among the slices, as not all
relation contribute equally to predict links.

II. NOTATION

First, we introduce the notation used in this paper. A
calligraphic letter with underline X denotes a tensor, Xk

denotes kth frontal slice of the tensor X , bold faced letter
A denotes a matrix, ⊗ denotes Kronecker product of two

Figure 1. This simple example of a knowledge graph as multi-relation
data represents entities as nodes and relations as labeled edges. A pair of
entities and a relation form a triple, e.g.,“Albert Einstein has won a
Nobel prize”.

matrices, bold small letter a denotes a vector, and italic small
letter a denotes a scalar. Bold faced I denotes an identity
matrix, vec(A) denotes the vector form of a matrix A, ||A||F
denotes the Frobenius norm of a matrix A, ||a||1 denotes l1
norm of a vector a. Moreover, X is a tensor of dimension
Ne ×Ne ×Nr, where Ne is the number of entities and Nr

is the number of relations.

III. RELATED WORK

Link prediction with tensor decomposition can be catego-
rized into plain tensor factorization, where no constraint is
imposed on factors, and non-negative tensor factorization.
Plain decomposition methods like RESCAL [4] achieve
state-of-the-art results on multi-relational data and can be
scaled to work on large datasets, like YAGO [5], making
them good candidates for extension. However, non-negative
tensor decompositions [3] introduce additional constraints,
resulting in sparser factors that require more time to update,
which introduces a scalability issue. Our work includes a
simple, but novel, extension to the existing tensor RESCAL
decomposition method to predict links using relational sim-
ilarity, as [4] and [3] assume that all relation participate
equally. Additional we preserve the scalability of RESCAL
as there are no constraints on the obtained factors.

IV. MODEL DETAIL

In this section we describe our extension to the existing
model to predict missing links in multi-relation data by

Ankur Padia, Kostantinos Kalpakis and Tim Finin, Inferring Relations in Knowledge Graphs
with Tensor Decompositions, IEEE Int. Conf. on Big Data, Dec. 2016. http://ebiq.org/p/766

decomposition a tensor X . We solve the regularized min-
imization problem presented below.

min
A,R

∑
k

f (A,Rk) + g (A,Rk) + fsim (C,R) (1)

where,

f (A,Rk) =
1

2

(∑
k

||Xk − ARkAT ||2F

)
(2)

g (A,Rk) =
1

2

(
λA||A||2F + λr

∑
k

||Rk||2F

)
(3)

fsim (C,Rk) =
1

2
λsim

∑
i

Ck,i · ||Rk − Ri||2F (4)

∀1 ≤ i ≤ Nr, 1 ≤ k ≤ Nr

Here A is a shared Ne×p matrix where p is the dimension
of latent representation of the corresponding entity. The
frontal slice Rk is a p × p matrix that represents the
interaction of all entities with respect to the kth relationship.
C is a Nr×Nr similarity matrix where each element of the
matrix is a similarity score between two slices of the tensor.
As in [4], the objective of our model is to factor a given
tensor X into a shared matrix A, and a tensor of relatively
lower dimension, R, using similarity values present in the
matrix C and the data tensor.

In the objective function above, the first term f (A,Rk)
forces the reconstruction to be similar to the original tensor
X . The second term, g (A,Rk), is a regularization term
whose function is to avoid overfitting. The third term,
fsim (C,R), depending on the similarity value denoted by
Ci,j , forces slices of the relational tensor to decrease their
differences between one another. This simple extension is
supported by the intuition that all slices of the tensor need
not contribute equally in the reconstruction of X .

A. Slice Similarity Matrix : C

Each element of the Nr × Nr matrix C represents the
similarity between a pair of tensor slices and is computed
using Equation 5 as given below.

C(i, j) =
|S(Xi) ∩ S(Xj)|

max(|S(Xi)|, |S(Xj)|)
(5)

∀1 ≤ i, j ≤ Nr

Here C(i, j) represents the similarity score between frontal
slice Xi and Xj . For binary valued tensors, S(Xi) is the
union of the row and column indices with non-zero values
in the frontal slice Xi and |S(Xi)| gives the cardinality of
the set. The numerator, |S(Xi) ∩ S(Xj)|, computes the
common entities present across a pair of frontal slices. The
denominator, max(|S(Xi)|, |S(Xj)|), is used normalize the
score between zero and one. The maximum function helps
to avoid cases when set of indices of one slice is subset of
the indices of another.

B. Computing Factor Matrices : A and Rk

The factors of the tensor decomposition are computed using
the Alternate Least Squares (ALS) method [6], which pro-
vides faster updates than other updating algorithms. In the
ALS method, an unknown is differentiated while treating
other unknowns as constants, hence the matrix A is updated
while the frontal slices of R are treated as constant. Taking
the gradient of Equation 1 with respect to A and setting it
equal to zero, we obtain the update rule for A.

A←

[
Nr∑
k=1

XkART
k +XT

k ARk

]
[

Nr∑
k=1

RkA
TART

k +RT
k A

TARk + λAI

]−1

(6)

Adapting the ASALAN method [6], the unknown matrix
Rk can be found by solving following variant of Equation
1, which is a ridge regression problem shown below.

min
Rk

||vec(Xk)− (A⊗A)vec(Rk)||+ λr||vec(Rk)||

+λsim

∑
i

||vec(Rk −Ri)|| (7)

Once solved for Rk, the update rule for Rk is

Rk ←

(
(A⊗A)T (A⊗A) + λrI+ (λsim

Nr∑
i

C(k, i))I

)−1

((A⊗A)vec(Xk)) (8)

As the updates are iterative there is no assurance of
convergence, but we found empirically that the convergence
of our model takes time that is similar to that of RESCAL,
typically requiring 40 to 50 iterations.

V. EXPERIMENTAL EVALUATION

We compared the performance on link-prediction of our
RESCAL+ approach with the original RESCAL model [4]
and its non-negative variant NN-RES [3] on a real-world
dataset, DBpedia-Person [7] using five-fold cross validation.
In each fold, we randomly selected ten entries from each
tensor slice to generate a test set of positive and negative
examples. In order to measure performance, we used two
measures: a precision-recall curve and an average of the
diagonal entries in the confusion matrix as dataset was
imbalanced.

Dataset : We used a real-world dataset, DBpedia-Person,
which is a subset of relations for DBpedia entities of type
Person. It contains about 10,000 triples and has 140 relations
and 4397 entities. We replaced object values with corre-
sponding fixed tag for attribute relations, as such relations
can take any arbitrary literal value including strings, dates
and numbers. For example, “Albert Einstein birthDate
1885-10-07 (xsd:date)” is processed to produce “Albert
Einstein birthDate date”. If a relation has an object
that is an entity, it is left unchanged. After processing, a
tensor of size 4397× 4397× 140 (approx 2.7B entries) was
created. Due to limited space we omit analysis on other

(a) DBpedia-Person (b) Performance of models on DBpedia-Person

Figure 2. The scatter plot on the left visualizes the slice similarity matrix C for the DBpedia-Person. Closer data points imply higher similarity between
the tensor slices. The graphs show the performance of the models on the DBpedia-Person dataset. Each model is evaluated with two accuracy measures,
a precision-recall curve (middle) and average of the diagonal of the confusion matrix (right) to absolutely measure the improvement among the models.
Measures using confusion matrix are identified with a prefix *. For example RESCAL+ denotes performance measured using precision-recall curve and
*RESCAL+ denotes performance measured using the confusion matrix.

datasets. We used grid search to fix hyperparameters and set
λr = 0.2, λsim = 0.2, and λA = 10 for our experiments.

Results: We set the dimension, p, of the frontal slices of
the unknown core relational tensor Rk equal to the number
of relations present in the dataset. We used Equation 5
to compute the matrix C. We selected a threshold η and
rounded down to zero any cij ≤ η||Ci∗||1, where Ci∗
denotes the ith row of C. Relationships that are similar
to each other form clusters and help determine the overall
similarity of relations across the dataset. In our experiments,
we set η = 0.5 and extended original RESCAL code 1 and
used original non-negative variant of RESCAL2.

Analysis: As shown in Figure 2(b)(left), the AUC results
of our RESCAL+ model on the Person dataset is approxi-
mately 5% higher than RESCAL and nearly 3% higher than
NN-RES. RESCAL+ achieves AUC of 83.74 followed by
NN-RES with AUC result of 81.25 and RESCAL with AUC
of 80.38. The models performs nearly equally well because
they can easily predict values close to zero because of higher
number of zero entries in the tensor. Hence, by default, pre-
dicting zeros will help achieve relatively similar score using
AUC across models. We used the average of the diagonal
of the confusion matrix to measure performance in addition
to the AUC metric. The confusion matrix helps by showing
the impact of false positives and false negatives, which can
highlight the improvement achieved by the models to predict
ones. As seen in Figure 2(right), performance of RESCAL+
to predict 1 is nearly 10% higher than RESCAL and nearly
5% higher than a NN-RES. The reason for RESCAL+’s
better performance can easily be seen in Figure 2(a), as the
similarity among the slices is higher for the DBpedia-Person
dataset.

1https://github.com/mnick/rescal.py
2https://gitlab.com/dekromp/non-negative-rescal

VI. CONCLUSIONS & FUTURE WORK

We described a novel approach using similarities across
slices to improve link-prediction in multi-relational data.
Our RESCAL+ approach extends the original RESCAL by
using a slice similarity matrix C. Preliminary experiments
demonstrate that RESCAL+ performs nearly as well on
standard data and significantly better on a real-world dataset
when compared to RESCAL and its non-negative variant.

VII. ACKNOWLEDGMENT

This work was supported by NSF grant 1228673 and a
gift from IBM.

REFERENCES

[1] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hr-
uschka Jr, and T. M. Mitchell, “Toward an architecture for
never-ending language learning.” in Proc. 25th AAAI, 2010.

[2] T. Franz, A. Schultz, S. Sizov, and S. Staab, “Triplerank:
Ranking semantic web data by tensor decomposition,” in Int.
Semantic Web Conf. Springer, 2009.

[3] D. Krompaß, M. Nickel, X. Jiang, and V. Tresp, “Non-negative
tensor factorization with RESCAL,” in Tensor Methods for
Machine Learning, ECML workshop, 2013.

[4] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for
collective learning on multi-relational data,” in ICML, 2011.

[5] ——, “Factorizing YAGO: scalable machine learning for
linked data,” in 21st World Wide Web Conf. ACM, 2012.

[6] B. W. Bader, R. A. Harshman, and T. G. Kolda, “Temporal
analysis of semantic graphs using asalsan,” in 7th IEEE Inter.
Conf. on Data Mining. IEEE, 2007.

[7] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,
R. Cyganiak, and S. Hellmann, “Dbpedia-a crystallization
point for the web of data,” Web Semantics: science, services
and agents on the world wide web, 2009.

https://github.com/mnick/rescal.py
https://gitlab.com/dekromp/non-negative-rescal

	Introduction
	Notation
	Related Work
	Model Detail
	Slice Similarity Matrix : C
	Computing Factor Matrices : A and Rk

	Experimental Evaluation
	Conclusions & Future work
	Acknowledgment
	References

