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Geometric quantum speed limits quantify the tradeoff between the rate at which quantum states can change and
the resources that are expended during the evolution. Counterdiabatic driving is a unique tool from shortcuts to
adiabaticity to speed up quantum dynamics while completely suppressing nonequilibrium excitations. We show
that the quantum speed limit for counterdiabatically driven systems undergoing quantum phase transitions fully
encodes the Kibble-Zurek mechanism by correctly predicting the transition from adiabatic to impulse regimes.
Our findings are demonstrated for three scenarios, namely the transverse field Ising model, the Landau-Zener

model, and the Lipkin-Meshkov-Glick model.

DOI: 10.1103/PhysRevResearch.2.032020

A particularly promising approach to quantum computing
relies on quantum annealing [1-4]. In this paradigm, which
has been dubbed adiabatic quantum computing [5], a quantum
system is initially prepared in the ground state of a well-
controlled Hamiltonian H;. Then, the “computer” is allowed
to evolve adiabatically—infinitely slowly—toward the ground
state of the final Hamiltonian H;, which encodes the desired
solution to the computation. Like all quantum information
processing systems, adiabatic quantum devices are subject
to the inevitable noise from the environment [6] and require
quantum error correction [7]. However, in adiabatic quantum
computing the situation is even more involved than in, e.g.,
the gate-based approach, since computational errors come in
two different flavors [8]: (i) the “usual” errors that are due
to the interaction with the environment [9] and control noise
[10], and (ii) errors that originate in parasitic excitations of
the finite-time driving of any realistic system. While powerful
algorithms exist to mitigate the former [11,12], the latter are
significantly harder to control.

At least from a bird’s-eye view, so-called shortcuts to
adiabaticity [13] seem exceptionally well-suited to address
this issue [14—16]. A shortcut to adiabaticity is a finite-time,
controlled process to obtain the final state that would result
from infinitely slow, adiabatic driving. In particular, counter-
diabatic driving [17,18] is designed to keep the time-evolving
quantum state on the adiabatic manifold at all times. However,
with the exception of a few special scenarios [19,20], the
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necessary control fields to facilitate the shortcut tend to be
highly nonlocal, and thus of only limited practical use in
many-body systems [21-25]. In addition, current formulations
of shortcuts to adiabaticity are inadequate as a control tech-
nique for mitigating computational errors. Often, implement-
ing any shortcut in lattice systems at least requires knowledge
of the initial and final eigenspectrum, meaning that in order to
correct for computational errors, the correct outcome has to be
known [25], although recently there have been some efforts to
mitigate this requirement through Floquet engineering [26].

Therefore, alternative strategies and phenomenological ap-
proaches, such as linear response theory [27,28], appear in-
strumental [29]. Within the realm of phenomenology, the
Kibble-Zurek mechanism (KZM) [30,31] is arguably the most
prominent approach to nonequilibrium quantum dynamics
[32—42]. The quantum KZM can be understood as an exten-
sion of the quantum adiabatic theorem [43]. As long as the
rate of driving is smaller than the energy gap between the
ground state and the first excited state, barely any transitions
occur and the dynamics remains essentially adiabatic. How-
ever, close to the critical point of a quantum phase transition
(QPT), energy gaps close and excitations become inevitable.
The “amount” of these excitations can then be predicted
entirely from the rate at which the system is driven and from
the critical exponents of the QPT [30,37]. A rather subtle
issue relates to determining precisely when a quantum system
transitions between the adiabatic and the impulse regimes
[33.,44]. As arule of thumb, this transition is expected to occur
when the “relaxation time,” i.e., one over the energy gap,
becomes identical to one over the driving rate [30]. However,
the natural question arises whether this expectation can be
made more precise.

Recently, it was shown that signatures of the KZM may
be present in the quantum speed limit (QSL) [45] when
implementing a shortcut to adiabaticity [46]. Thus, while
counterdiabatic driving may not be adequate to mitigate all
sources of computational errors, the control fields still contain
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essential information to develop phenomenological quantum
error-correcting paradigms. Indeed, given that counterdiabatic
driving perfectly cancels the excitations that would otherwise
occur in the system due to arbitrary ramps, we ask the
following question: Can we exploit what is learned from
quantum control to quantitatively study the nonequilibrium
dynamics we are suppressing? In the following, we answer
in the affirmative, showing that quantum control provides a
useful window through which nonequilibrium dynamics can
be explored. We focus on three systems for which the control
fields are analytically known, namely the transverse field Ising
model (TFIM) [21,22,32,36,47,48], the Landau-Zener (LZ)
model [18], and the Lipkin-Meshkov-Glick (LMG) model
[23,49,50], and we examine the dynamics approaching and
crossing the QPT.

Our results provide a means to quantify the range over
which strategies to mitigate fundamentally noncorrectable
errors are required, i.e., the length of the impulse regime. To
this end, we bring together three distinct areas of research,
namely shortcuts to adiabaticity, the QSL, and the KZM. We
demonstrate that the QSL exhibits a behavior reminiscent
of the adiabatic-impulse approximation with distinct minima
occurring at the crossover between the regimes. Furthermore,
their distance (between left and right of the critical point)
is fully consistent with the prediction of the KZM, thus
establishing that the speed of the controlled dynamics reveals
details of the underlying universality class of the model.

Kibble-Zurek scaling in the quantum speed limit. We start
by briefly reviewing the conceptual building blocks and by
establishing notions and notations. Consider a time-dependent
Hamiltonian Hy(¢) with instantaneous eigenvalues {¢,(¢)} and
eigenstates {|n;)}. An arbitrary evolution of an eigenstate will,
in general, lead to nonadiabatic excitations being created.
However, we can construct a Hamiltonian, H(¢t) = Hy(t) +
Hcp(t), such that the adiabatic solution of Hy(t) is the ex-
act solution of the dynamics generated by H(¢). Therefore,
evolving according to this new Hamiltonian achieves effective
adiabatic dynamics in a finite time. The counterdiabatic term
(assuming units such that 2 = 1) is [13]

Hep(t) = 1[0 n) (ne |, |ng) (ne|]. (D

Implementing a controlled dynamics invariably incurs a
thermodynamic toll for suppressing the nonequilibrium
excitations, and there are several approaches to quantify this
energetic cost [14,51-59]. A particularly useful measure pro-
posed by Zheng et al. [60] relates the instantaneous cost to the
norm of the counterdiabatic driving field [60,61],

[|[Hep (D] o< v/ {0:1:10;m;) = 9,C. (2)

Note that the proportionality constant is dictated by the spe-
cific choice of norm employed. For simplicity, we neglect this
factor and work directly with what is essentially the geometric
tensor.

Central to our analysis will be assessing the speed of the
evolution. Within the framework of geometric quantum speed
limits, a meaningful speed can be defined for any distance
measure or metric [62]. For our purposes, we shall focus on
the norm-based approach [62,63], for which the QSL for the

controlled dynamics is given by [46]

\/ 8,%(1‘) + (azC)2

cos(L,)sin(L;)

Here, £, =arccos|{¥|v¥;)| denotes the Bures angle between
initial and evolved state at time ¢ and 9;C as given in Eq. (2).
Equation (3) captures the tradeoff between the “bare” en-
ergetic change in the system and the additional resources
necessary to achieve the controlled dynamics [46].

At this point, it is natural to question whether our choice
of the version of QSL is crucial for the analysis. Over the
past decade, a plethora of formulations has been proposed
[45], where QSLs based on the quantum Fisher information
[64,65] give the tightest bound on the actual rate of change.
However, such formulations are less useful for studying coun-
terdiabatic driving as the speed along the geodesic of the
quantum manifold [66] is agnostic to the specifics of the
nonequilibrium dynamics. In the following, we will focus on
the nonequilibrium excitations arising from driving systems
through QPTs, and thus for our purposes only formulations of
the QSL, such as in Eq. (3), that are sensitive to the full energy
spectrum will do.

Quantum as well as classical phase transitions are char-
acterized by the fact that close to the critical point both
the correlation length, &, as well as the correlation time, T,
diverge. Renormalization-group theory predicts [47,67,68]

vosL(?) = 3

§(®@=4&lg—8!I™" and (@ =1lg—8I", ¢

where g is a dimensionless parameter measuring the distance
from the critical point g., v is the spatial exponent, and z
is the dynamical critical exponent. Typically, in thermody-
namic phase transitions g denotes the relative temperature
[69], whereas in QPTs g is a relative external field [30,36].
As noted above, for slow-enough driving and far from the
critical point, T < ¢, the dynamics of the system is essentially
adiabatic. This means, in particular, that all nonequilibrium
excitations and defects equilibrate much faster than they are
created. Close to the critical point, T 2, the situation changes
dramatically, since the response “freezes out,” and defects and
excitations cannot “heal” any longer. If the external driving
is linear, g(¢t) = t/7,, and in the conventional phrasing of the
KZM [30,70], the transition from adiabatic to impulse regime
is expected to happen when the rate of driving becomes equal
to the rate of relaxation, or more formally at

w1/ (zv+1
‘C;)/(Z+). (5)

However, this rather hand-waving argument for where to situ-
ate the crossover cannot be considered entirely satisfactory. In
particular, in unitary quantum dynamics, in which no direct
“relaxation” can occur, a more rigorous treatment appears
desirable.

We therefore propose that the size of the impulse regime is
determined by the turning point of Eq. (3), and we identify 7
from the time when the speed is minimized, ?,,, cf. Fig. 1(a).
In critical systems with time dependent order parameter, g(z),
and where Eq. (1) is known, we find 9,C ~ |¢/¢| with & ~
lg — g.|*" and g, is the critical point [71]. In the case of a
linear ramp, g(¢) = t/1, we immediately obtain

by ~ .E;v/(zv-k—l) (6)

t@) =7 with %= (1

VQSL.min ™~ rq_z”/(]“”) and
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FIG. 1. (a) Speed vqgr, as given in Eq. (3) for the TFIM with
counterdiabatic driving, quenched from g(0)=0 to g(z,)=2 thus
traversing the QPT and for different total ramp durations 7, (w7, =
10%, 10!, and 10°) and for two momenta k = m /Nb (solid lines) and
k = 1997 /Nb (dashed lines), with N = 1000 spins. (b) Scaling of
the duration of the impulse regime, i.e., of the time |z, —1,]|, as a
function of z,, which shows KZM scaling 7;"/'*") = ¢//* (dashed
line) for the TFIM as zv = 1. Since g(t,) = 2, it follows that 7, =
7,/2. See the main text for further details.

which is precisely the scaling expected from the KZM. In the
following we demonstrate this universal result, Eq. (6), for
two many body systems at the opposite sides of the interaction
spectrum — the transverse field Ising model and the LMG-
model.

One-dimensional transverse-field Ising model. We begin
with the spin-1/2 nearest-neighbor Ising model in a transverse
field [47,48],

Hrrmm(g) = —w

J

N
(807 +0707,1); 7
=1
with N even and, for convenience, we assume periodic
boundary conditions, o}y =0,""*, where o*** are the Pauli
matrices. Upon the standard Jordan-Wigner and Fourier trans-
formations, Eq. (7) decouples into a collection of indepen-
dent Landau-Zener problems in momentum S?ace [32,47,48],
Hre(9) = @y ¥ He(9) Wy, with W) = (c], c_4) the mode
of Fourier-transformed fermionic operators and Hi(g) =
h; (g)a!< + h’,ﬁa}f, where aﬁ y,; are the Pauli matrices for mo-
mentum k, which takes discrete values k, = (2n — 1)t /(Nb)
withn =1,..., N/2, and b is the distance between neighbor-
ing spins. From the transformation, one finds the coefficients
h;(g) = 2wlg — cos(kb)], hy = 2wsin(kb), and the ground-
state energy for the k-momentum subspace reads (see [71] for
details)

er(g) = —2wy/ g% + 1 — 2gcos(kb) — 2wg. ®)

There is a QPT at g. =1 [47], and for ramps that
approach or cross the critical point in a finite time, 7,
we recover precisely the universal scaling laws from the
predictions of the KZM [30,32,36]. Since the solution
involves rewriting Eq. (7) into independent Landau-Zener
models in momentum space, determining the associated
counterdiabatic Hamiltonian, Eq. (1), becomes greatly
simplified as it reduces to the concatenation of two-level
controls [18,21,22,46]. We introduce the counterdiabatic
driving, which for the k-subspace is H cplg(t)] =
@k[g(t)]ay", with @k(g)zhi(g)hi{Z[hi’z(g)—i—hz’z]}_'. We can

readily determine Eq. (2) for a given subspace,
9,C = 2|®[g()]|, and the Bures angle between ground
states at go and g(r), L, = arccos|(ygs[8(1)1[¥gs(80))| =
arccos| [Ty.ocos (G[g(1)] — Ok(go)l,  with  Gi(g) =
arctan ({F(g) — (A2 (9) + i °1'2) /) [711.

We now have all the ingredients necessary to evaluate the
QSL, Eq. (3), and to begin we consider a linear ramp, g(t) =
grt/t4. For low k subspaces where &;(g) — 0 for g — g, and
are therefore critical, the solid lines in Fig. 1(a) show that the
speed exhibits a behavior reminiscent of the adiabatic-impulse
approximation. Indeed, notice that all lines fall on top of each
other far from the critical point. Thus, the quantum speed is
independent of the ramp duration, indicating the model is in
the adiabatic regime.

As the system approaches the critical point, and therefore
crosses over into the impulse regime, we see quantitative
differences emerge as we vary the ramp duration. Smaller
7, leads to increased speeds in the vicinity of the QPT,
while larger 7, reduces the effective size of the critical re-
gion. This picture is consistent with the tradeoff between
the speed and the energetic cost of implementing quantum
control [14,46,72—-74] and demonstrates that, near the critical
point, control protocols are essential for achieving finite-
time adiabatic dynamics, while if the system is manipu-
lated outside the impulse regime, where energy gaps are
typically much larger, there is no need for complex control
techniques.

With the qualitative picture established, we now inspect
the scaling properties of the instant of the time, t,,, at which
vost. features a minimum. The intuition is clear: When no
counterdiabatic control is necessary, the speed will be entirely
dependent on the behavior of the ground-state energy; cf.
Eq. (3). To adiabatically cross the QPT without any additional
control, the speed must vanish at the critical point due to
the closing energy gap. For finite-time ramps, as the system
approaches the QPT defects will become increasingly more
likely to be generated, and therefore the need for counterdia-
batic control grows. For such a process, the transition from
“effectively adiabatic” to “requires control” is reflected in the
nonzero cost, which in turn leads to increased speeds near
the QPT [46]. Therefore, the crossover from the adiabatic to
impulse regimes is delineated by the minimum of vgg;,, which
takes place at a time instant #,,. We find that the duration of
the impulse regime scales as |t, — ,,| ~ T'/? with ¢, such that
g(t.) = g., which is in perfect agreement with the expected
scaling £ ~ t¥/0+2) = ¢1/2 gjven in Eq. (5) since zv = 1 for
the TFIM [30,32]. This is shown in Fig. 1(b), where fitting
the points to a power law r(f yields 8 = 0.51(1). Nonlinear
protocols modify the KZM scaling in a nontrivial fashion.
Nevertheless, we have confirmed that for g(t) =1— (t —
t/t4)" and g(t) o (t/7,)" the speed of the controlled dynamics
still exhibits excellent agreement with £ ~ rt;”’/ (I+2v1) a5 one
expects from KZM arguments [71].

If we turn our attention to higher momentum subspaces,
we find that the critical scaling is lost. In Fig. 1(a) the
dashed lines correspond to a high momentum subspace with
k = 1997 /Nb. Such high momentum subspaces do not show
any trace of the QPT, and we find a trivial scaling with
ramp duration t, [71]. This is indeed expected since these
subspaces are not critical, and hence KZM arguments do not
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apply. The energy gap remains large throughout the evolution,
and as a result these subspaces do not contribute to the finite-
time excitations in the bare nonequilibrium dynamics, making
unnecessary the application of counterdiabatic control. This
naturally emerges in our formalism: the trivial scaling in vqgy,
in Eq. (3) accounts for the absence of criticality, i.e., for the
absence of competing energy scales between the resources to
achieve controlled dynamics and the energetic change in the
considered subspace.

Finally, it is worth noting that KZM scaling was shown to
be exhibited in the Landau-Zener problem in a seminal work
by Damski [33], and therefore one may ask if we recover
the same behavior in our setting. Due to its simplicity, we
can fully analytically treat the Landau-Zener problem, and we
find ¢, ~ ‘L'qz/ 3 instead of the distinctive rql/ 2 scaling for the
TFIM [71]. In contrast to Ref. [33], no heuristic arguments
are invoked here to determine the crossover between adiabatic
and impulse regimes. Moreover, such a rqz/ 3 scaling is further
supported from a numerical estimation of the crossover [71].
Since both the TFIM and the LZ exhibit the same KZM
critical exponents, one naturally asks where the apparent
discrepancy emerges. We find that the energy shift introduced
when diagonalizing Eq. (7), i.e., the final term in Eq. (8), is
crucial to recovering the predicted KZM scaling exponent in
the true many-body case.

Lipkin-Meshkov-Glick model. As a final example, we move
to a more complex many-body system. Originally introduced
in the context of nuclear physics [49], the LMG model has
become the paradigmatic system to study extreme long-range
interactions and their role in critical phenomena, both theoret-
ically [75-81] and experimentally [82—84]. The Hamiltonian
can be written as

w
Hivat®) = —ol.— £2 1

)
where  sets the energy scale, while g accounts for the
relative strength of the ferromagnetic spin coupling, and
Jo = vazl o /2fora € {x,y, z}. In the thermodynamic limit,
N — oo, the LMG can be diagonalized via a Holstein-
Primakoff transformation [71], which reveals a QPT at g, = 1
[75-78],

w -
HivG.err(8) = wa'a — ng(a +a')?, (10)

where [a,a’] = 1 denote the bosonic excitations. The pre-
vious effective model is valid for 0 < g < 1. Through an
additional Bogoliubov transformation, Eq. (10) can be recast
as a harmonic oscillator and therefore the corresponding
counterdiabatic Hamiltonian is exactly known [23,85]. Note
that Hymc et(g) also corresponds to a low-energy effective
description of other critical models [§6-90].

We consider again a linear ramp through the QPT accord-
ing to g(t) =t /7, fort € [0, 7,]. The speed of the controlled
evolution, as defined in Eq. (3), is given by [46,71]

Jor /4 + [0/ (VBoP

cos L, sin L,

1)

VQsL =

10 T T T T L 10° o o
JF @ WTE=10% — ] E () ;
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FIG. 2. (a) Speed vqsr, as given in Eq. (3) for the LMG model
with counterdiabatic driving, quenched from g(0) = O toward the
QPT, g(z,) = g. = 1, for different total times 7, (w7, = 10?, 10,
and 10°). The minimum value of the speed, as well as its time
location t,,/1,, is indicated with solid points. (b) Scaling of the time
|te —t,| with f. = 7, as g(7,) = g, as a function of t,, which shows
the expected KZM scaling 7;"/('**") = ¢/* (dashed line) for the
LMG as zv = 1/2. See the main text for details.

with

L; = arccos(,/ 2 /ww; /(@ + w;)) (12)
and o, = a)\/l——gz(t)

In Fig. 2(a) we show the speed for different quench rates
7,. Similar to the TFIM, the rapid increase of vggsy. close to
the QPT at g = 1 suggests the presence of the two distinc-
tive dynamical regimes predicted by the KZM. Computing
the time, #,, at which the speed features a minimum [cf.
the solid points in Fig. 2(a)], we can analyze its scaling
with the total quench time, 7,. From KZM arguments and
for a linear ramp, one expects the uncontrolled dynamics,
i.e., without counterdiabatic driving, to feature an impulse
regime during a time ¢ ~ ¢/ = /3 as zv = 1/2 for
the LMG universality class [76,77,87,89]. In Fig. 2(b) we
confirm that the speed of the controlled dynamics exhibits
the scaling |7, — 1,,| ~ 7,/?, which accounts for the duration
of the impulse regime, precisely inline with the theoretical
predictions. Indeed, a numerical fit to a power law rf in the
interval wt, € [10%, 10°] leads to B = 0.34(1).

Concluding remarks. Quantum error mitigation strategies
are typically accompanied by a large computational or en-
ergetic overhead. The KZM provides a phenomenological
framework to determine during which periods nonadiabatic
excitations arise. Thus, in practice error mitigation needs only
to be applied during these periods. In the present work, we
have shown that this phenomenological prediction is encoded
in the geometric QSL for counterdiabatic driving. Our find-
ings crucially depend on the competition of the time-averaged
energy of the bare Hamiltonian and the cost for counterdia-
batic control. It is precisely this tradeoff that contains the
signatures of the nonequilibrium behavior. Thus, it is not far-
fetched to realize that the paradigm of counterdiabatic driving
may yet prove useful for adiabatic quantum computing. While
complete control along the entire dynamics is generally un-
feasible, the KZM demonstrates that only when the system is
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in the impulse regime are control fields needed. This period,
which is the origin of all fundamentally noncorrectable errors,
is indicated by the critical behavior of the QSL.
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