

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.

mailto:scholarworks-group@umbc.edu

Automatic Construction of Coarse, High-Quality Tetrahedralizations that
Enclose and Approximate Surfaces for Animation

David A. Stuart
University of Utah

Joshua A. Levine
Clemson University

Ben Jones
University of Utah

Adam W. Bargteil
University of Utah

Figure 1: Two simulations using meshes generated with our approach. Left: A real-time simulation of a projectile squashing a monster.
Right: an offline simulation of a pile of objects.

Abstract

Embedding high-resolution surface geometry in coarse control
meshes is a standard approach to achieving high-quality computer
animation at low computational expense. In this paper we present
an effective, automatic method for generating such control meshes.
The resulting high-quality, tetrahedral meshes enclose and approx-
imate an input surface mesh, avoiding extrapolation artifacts and
ensuring that the resulting coarse volumetric meshes are adequate
collision proxies. Our approach comprises three steps: we begin
with a tetrahedral mesh built from the body-centered cubic lattice
that tessellates the bounding box of the input surface; we then per-
form a sculpting phase that carefully removes elements from the
lattice; and finally a variational vertex adjustment phase iteratively
adjusts vertex positions to more closely approximate the surface
geometry. Our approach provides explicit trade-offs between mesh
quality, resolution, and surface approximation. Our experiments
demonstrate the technique can be used to build high-quality meshes
appropriate for simulations within games.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation; I.3.5 [Computer Graphics]:
Computation Geometry and Geometric Modeling—Geometric Al-
gorithms.

Keywords: mesh generation, animation of deformable bodies, fi-
nite element methods

1 Introduction

Finite element simulations of elastic bodies are commonplace
in cinema and are being used increasingly in video games, e.g.

Pixelux’s Digital Molecular Matter (DMM) [Parker and O’Brien
2009]. One of the key differences in the requirements for game en-
vironments is the need for real-time finite element simulation. To
achieve this computational efficiency, a coarse volumetric mesh is
used to approximate an embedded, high-resolution surface mesh.
The surface mesh is only queried for the purposes of rendering, and
the coarse volumetric mesh is used for all other aspects of simu-
lation. The ideal volumetric mesh should (1) enclose the surface,
(2) closely approximate the surface, and (3) have high quality el-
ements. Enclosing the surface is critical to avoiding extrapolation
artifacts when computing the location of the surface. Close ap-
proximation of the input geometry is necessary if we are to use
the coarse volumetric mesh for collision detection, which greatly
simplifies and speeds the simulation compared with other embed-
ding techniques (e.g. [Sifakis et al. 2007; Wojtan and Turk 2008]).
Finally, high-quality elements ensure good numerical conditioning
and robustness.

In this paper, we address the problem of automatically creating such
volumetric meshes. Specifically, we seek coarse, high-quality volu-
metric meshes that both enclose an input surface and that have ver-
tices lying no farther from the surface than a specified distance. Our
solution to this problem begins with a tetrahedralization of a por-
tion of the body-centered cubic (BCC) lattice and then iteratively
moves the vertices toward a weighted average of the circumcen-
ters of incident tetrahedra while constraining the volumetric mesh
to enclose the surface. These steps move them closer to the surface
while maintaining high quality in terms of the dihedral angles of
the tetrahedral elements.

The key insight that enables our approach to be successful is that as
vertices move toward the surface, any tetrahedron that has two faces
that are on the surface of the volumetric mesh will flatten as it ap-
proaches the high resolution surface mesh, resulting in a sliver—a
very poor-quality tetrahedron with four nearly co-planar points. We
explicitly avoid creating such tetrahedra, preventing them during
the sculpting phase where we cull tetrahedra from the background
BCC lattice.

In our experiments this simple approach works extremely well.
Compared with the alternative approach of computing an offset sur-
face and running an off-the-shelf meshing program, we obtain su-
perior quality, coarser meshes with much lower human effort. The

approach allows the user to tune the resolution through specifica-
tion of the background lattice grid-spacing and provides a tradeoff
between element quality and surface approximation through spec-
ification of the maximum surface-to-vertex distance. Our meshes
are appropriate for fast finite element simulation of elastic bodies
(see Figure 1).

2 Related Work

Tetrahedral tessellation of a given volume is a classic problem in
computational geometry, inspiring an entire sub-community, with
direct and important applications to computer animation. The
general technique of embedding high-resolution geometry in low-
resolution meshes dates back at least to 1986 when Sederberg
and Parry introduced free-form deformations [Sederberg and Parry
1986]. More than a decade ago, Capell and colleagues [2002a]
demonstrated the utility of embedded techniques for computer ani-
mation and argued [Capell et al. 2002b] that a volumetric mesh that
closely fits the embedded surface mesh allows for more accurate
deformations than a regular grid like that employed by Müller and
colleagues [2004].

Since then the embedding technique has repeatedly appeared
as a practical method of deforming and fracturing surface
meshes [Molino et al. 2004; Sifakis et al. 2007; Wojtan and Turk
2008; Huang et al. 2008]. The efficacy of a coarse volumetric mesh
for this technique also became apparent during this time [Capell
et al. 2002a; Cutler et al. 2004; Müller and Gross 2004; Wojtan
and Turk 2008]. Research on this technique has reaffirmed the
perennial desirability of high-quality elements [Cutler et al. 2004;
Molino et al. 2004]. Molino and colleagues [2004], Sifakis and col-
leagues [2007], and Wojtan and Turk [2008] use meshes that do not
closely approximate the input geometry. To do so, they perform
collisions with the high-resolution geometry and adjust the mass
of partially filled elements. Nesme and colleagues [2009] went a
step further and adjusted the finite element basis functions to ac-
count for partially filled elements. We advocate a simpler and faster
approach—by ensuring that the coarse volumetric mesh is a close
match to the underlying geometry, we can use the volumetric mesh
for collision detection and do not need to adjust masses or basis
functions. This approach can lead to significant computational sav-
ings in collision detection if the coarse mesh is much coarser than
the high-resolution surface.

High-quality elements are a primary goal of most tetrahedral mesh-
ing procedures. There are many measures of element quality,
as is evident in Shewchuk’s survey, “What Is a Good Linear El-
ement” [2002]. Some are in common use among graphics re-
searchers, like the ratio of the element’s circumradius to its short-
est edge [Shewchuk 1998], and some have less cachet, such as the
condition number of the linear transformation between a unit equi-
lateral tetrahedron and the element in question [Freitag and Knupp
2002]. Different procedures often aim for quality by different mea-
sures, but there are some general approaches that can apply to many
measures at once.

For instance, a classical mesh generation approach called “advanc-
ing front” begins at the volume boundary and sequentially adds well
shaped elements based on local heuristics [Alliez et al. 2005]. Ad-
vancing front techniques are straightforward to implement, but they
lack any guarantees of element quality [Li et al. 2000]. They can
produce low-quality elements on the surface at sharp corners [Bern
and Eppstein 1992] or in the interior where two advancing fronts
meet. This approach is the basis of the popular “NETGEN” pro-
gram [Schöberl 1997], but modern methods do not employ it.

A second and more popular approach is the use of Delaunay trian-
gulations of points scattered throughout the volume. The error in

a function’s linear approximation defined piecewise on a Delaunay
triangulation is theoretically bounded [Alliez et al. 2005]. This is
the motivation for Delaunay-based algorithms like Shewchuk’s De-
launay refinement [1998], Du and Wang’s centroidal Voronoi tes-
sellations [2003], Si’s “TetGen” program [2004], and the CGAL
3D mesh generation package [cga]. In one of the earliest examples
of Delaunay refinement, Edelsbrunner and colleagues [1990] begin
with an assumed set of points to triangulate. In contrast, choosing
the best set of points is a significant corollary problem, and insert-
ing extra points can improve the refinement process [Hudson et al.
2006; Tournois et al. 2009b]. While in two-dimensional meshes the
Delaunay approach ensures a lower bound on element quality as
measured by an element’s minimum dihedral angle, this is not the
case in three-dimensional meshes [Tournois et al. 2009a]. The De-
launay approach can produce degenerate elements with extremely
poor quality, and modified approaches meant to prevent them have
severely weakened bounds on error and quality [Alliez et al. 2005].

A third approach begins with a background lattice of high-quality
elements and refines it based on the input domain. This concept
appears in generation algorithms like the “red-green” subdivision
described by Molino and colleagues [2003], the level-set technique
of Teran and colleagues [2005], “isosurface stuffing” by Labelle
and Shewchuk [2007], and “lattice cleaving” by Bronson and col-
leagues [2013]. A lattice-based algorithm ensures good shape and
placement of interior elements and at least encourages the same
traits in the surface elements it refines. However, a lattice alone
provides no approximation of the volume boundary.

Fourth, an approach employing octrees appears often in the litera-
ture. It finely discretizes the volume bounded by the input surface
with a grid. It then covers the volume with an octree, refining it
until each leaf is entirely inside or outside the discretization [Al-
liez et al. 2005]. The leaves are then triangulated. In contrast to
a lattice-based method an octree-based method produces meshes
that sample different parts of their domains at different resolutions:
there are many elements on the boundary and fewer in the interior.
It also facilitates remeshing in response to a dynamically chang-
ing domain [Acar and Hudson 2007]. The octree approach is the
foundation of the “QMG” technique given by Mitchell and Vava-
sis [2000], and it appears in older methods like those of Buratyn-
ski [1990], Perucchio and colleagues [1989], and Shephard and col-
leagues [1991].

Finally, an important fifth approach to mesh generation is physics-
based vertex optimization. This approach iteratively refines a mesh
with the same methods used for iteratively solving differential equa-
tions in a physics-based simulation—the impetus for generating a
mesh in the first place! This often involves defining an “energy”
value for a given mesh and iteratively changing the vertex posi-
tions to reduce the mesh’s energy: various energy definitions appear
in the literature, such as Centroidal Voronoi Tesselations [Du and
Wang 2003], Optimal Delaunay Triangulations [Alliez et al. 2005],
and Hodge-Optimized Triangulations [Mullen et al. 2011]. Both
Molino and colleagues [2003] and Teran and colleagues [2005] pro-
pose similar relaxation procedures using a mass-spring system or
the finite-element method.

Like these mesh generation techniques, mesh improvement tech-
niques also value element quality. Freitag and colleagues [1997]
published a widely cited discussion of improving meshes through
smoothing vertices (via Laplacian smoothing or other optimiza-
tions targeted to a specific quality measure) and local edge swaps.
Topological operations like edge swaps often appear in improve-
ment techniques. They include element subdivision, as Liu pro-
posed [1995], as well as more dramatic connectivity changes, as
in the simplification method by Cutler and colleagues [2004] and
Klingner and Shewchuk’s improvement program “Stellar” [2007].

Procedures for generating volumetric meshes more specific to the
embedding technique for simulation aim not only for high-quality
elements, but also an enclosing mesh whose surface approximates
the input surface. That is, the surface of the volumetric mesh is
everywhere exterior to the surface mesh. As more general mesh-
ing algorithms usually do not guarantee this property, an enclosing
volumetric mesh is often obtained by meshing not the input sur-
face but a different surface that is slightly offset from it everywhere
in the normal direction. Shen and colleagues [2004] suggest this
procedure as an application of their implicit surface generation al-
gorithm. This procedure ensures an erroneous approximation of the
input, since the offset surface loses the detail of the original surface.

3 Method

Our method takes as input a high-resolution surface mesh and gen-
erates a coarse, high-quality tetrahedral mesh that approximates this
surface. For clarity we denote the input surface mesh as S, the volu-
metric mesh as V , and the boundary/surface of the volumetric mesh
as ∂V .

We generate the volumetric mesh in three phases (see Figure 2).
First, we construct a tetrahedralization of the bounding box of the
input surface. Second, in the sculpting phase we carefully remove
tetrahedra that do not overlap the volume enclosed by the surface,
ensuring that in the resulting mesh there are no tetrahedra with two
faces on the surface. Third, we iteratively update vertex locations
to better approximate the input geometry while maintaining high-
quality tetrahedra.

Figure 2: A 2D illustration of our approach, which comprises three
phases: Initial tetrahedralization of the bounding box (shown in
blue), sculpting, and variational vertex adjustment. Note that the
initial mesh is a union of snowflakes (see Section 3.2)

3.1 Tetrahedralizing the Bounding Box

We generate an initial tetrahedral volumetric mesh, based on a
body-centered cubic (BCC) crystal lattice, that tessellates the space
of the surface mesh’s bounding box. The BCC lattice is known from
chemistry and is apparent in many physical crystal structures. It is a
set of points in R3 arranged in two identical cubic grids offset from
each other by half a cell-width in all three dimensions: the points in
each grid are positioned at the centers of the other grid’s cells. The
Delaunay triangulation of these points defines a set of tetrahedra,
each with two long edges between points in the same grid and four
short edges between points in opposite grids (see Figure 3).

This mesh has many desirable properties at once. It is isotropic,
as the tetrahedra are identical and aligned equally often in three or-

thogonal directions. Its elements have high quality, each having two
dihedral angles of 90◦ and four dihedral angles of 60◦ [Labelle and
Shewchuk 2007]. Its vertices are an optimal sampling of the volume
for representing trivariate functions like deformation forces [Alim
et al. 2009]. Ideally we would like to change this mesh as little
as possible to retain these properties. Subdivision and connectiv-
ity changes can compromise these properties, so we do not employ
such topology-changing operations.

The user chooses the resolution of the BCC lattice, allowing (in-
direct) control over the resolution of the final mesh. Because we
do not allow topological operations, any topology of the high-
resolution surface that is not resolved by the BCC lattice will be
lost.

3.2 Sculpting

At this point the volumetric mesh is still shaped like the bounding
box. To better approximate the shape of the surface mesh we re-
move those elements that do not occupy any of the volume bounded
by the surface mesh. We iterate over the elements, determining
whether each element occupies some of the bounded volume using
three geometric tests illustrated in Figure 4. If an element intersects
the bounded volume we do not mark it for removal.

The first test checks whether any vertex of the element is inside
the bounded volume. If so, we clearly do not want to remove the
element from the mesh. To speed this computation we build a dis-
tance field for the input surface (using the method of Bargteil and
colleagues [2006]).

However, not all elements that intersect the bounded volume will
have vertices inside the surface, as illustrated in Figure 4. Our sec-
ond test, performed for each tetrahedron that has all of its vertices
outside the surface, checks if there are any surface vertices inside
the tetrahedron. This requires computing four dot products for ev-
ery surface mesh vertex. This approach is not particularly efficient,
having cost proportional to |V ||T |, with |V | surface vertices and
|T | tetrahedra. We do perform a simple culling mechanism, first
checking that surface vertices lie inside the tetrahedra’s circum-
sphere and more advanced culling is certainly possible. However,
this test accounts for only a small fraction of our computation time.

It is still possible that the tetrahedron intersects the bounded vol-
ume, especially if the input triangle mesh is relatively coarse. Our
final test checks every edge of the element for intersection with
every triangle. Again, we cull triangles outside the element’s cir-
cumsphere.

Figure 3: The tetrahedra of the BCC lattice. The lattice is con-
structed from two grids, and the points of each grid lie at the cell
centers of the other grid. The tetrahedra are all like the one shown
at right: in both grids, two of the tetrahedron’s vertices are at the
centers of adjacent cells.

Figure 4: Three cases of an element occupying part of the volume
bounded by the surface mesh. On the left, a vertex of the element
is inside the bounded volume. In the center, a vertex of the surface
mesh is inside the element. On the right, an edge of the element
intersects two triangles of the surface mesh.

Defusing the Bombs In our initial experiments using the sculpt-
ing procedure outlined above and our variational vertex adjustment
procedure described in Section 3.3, we noted that the poorly shaped
elements had one thing in common: a pair of adjacent faces on the
surface of the tetrahedral mesh (∂V). That is, two adjacent faces
on the surface were incident to only one tetrahedron. An exam-
ple is shown in Figure 5. As we adjust these elements’ vertices
and move them toward the input surface (S) they flatten, becoming
slivers—low-quality elements with four nearly co-planar vertices.
We would like our mesh to contain no such bomb elements that
predictably turn into slivers later. We accomplish this by ensuring
that the result of the sculpting phase is a union of snowflakes—
sets of 24 elements incident to a common vertex. One is illustrated
in Figure 5. It is easy to show that a snowflake contains no bomb
elements and that any union of snowflakes preserves this property.

The mesh is initially a union of snowflakes. If the mesh contains a
bomb element after the removals described above, then it is because
we removed elements from all snowflakes that contain that element.

We fix this by adding back elements such that all bombs are part of
complete snowflakes. Specifically, for each bomb element we add
back all removed elements that are incident to one of its vertices.
This step ensures that the snowflake centered at that vertex—one
of the snowflakes that contains the bomb element—is part of the
mesh. We could choose one vertex of the bomb arbitrarily and add
back all incident elements, but this greedy approach may not be op-
timal. Instead we perform a global search that considers all possible
combinations of snowflakes, one per bomb, and choose the one that

Figure 5: Left: An initial mesh with a single bomb element. The
bomb element, in front and darkly colored, has two faces on the
surface of the mesh. The other elements, lightly colored, each have
at most one face on the surface. Right: A snowflake. Each element
in this set is incident to the vertex in the center.

results in the least number of elements. As there are four choices
for each bomb element, if there are n bomb elements, there are n4

possibilities. Given that there are generally few bomb elements, this
approach is quite tractable.

We also considered two alternative strategies to avoiding bomb ele-
ments. Before sculpting, the mesh is a union of snowflakes centered
on vertices that all lie in one of the two staggered grids of the BCC
lattice. Thus, one can restrict the choice to these snowflakes. This
approach does indeed lead to a mesh that is a union of snowflakes
and contains no bomb elements, but it contains far more elements
than our approach and results in a final mesh that is lower qual-
ity. We also attempted to remove bomb elements by subdividing
each bomb element into four elements, each incident to the bomb
element’s centroid. This also resulted in a mesh without bomb el-
ements, but the subdivided elements nonetheless became slivers.
Intuitively this is because there were no new vertices to update on
the surface of the volumetric mesh. The faces of the original bomb
element were still pressed into a sliver even though the sliver was
subdivided.

3.3 Variational Vertex Adjustment

At this point we have an enclosing volumetric mesh free of known
problem elements, but the surface of this volumetric mesh (∂V)
approximates the high-resolution surface mesh (S) rather poorly.
To improve this approximation we iteratively adjust the positions of
the volumetric mesh vertices. This decreases the distance between
the surface mesh and each vertex on the volumetric mesh’s surface
while maintaining high-quality tetrahedral elements. Note that we
adjust the positions of all mesh vertices, allowing interior vertices
to adjust to updates of surface vertices.

Vertex Updates In every iteration we update the position of each
vertex based on the incident tetrahedra. Our calculation for the
new position is based on the work of Alliez and colleagues [2005],
who showed that the Optimal Delaunay Triangulation energy of
Chen [2004] for a given mesh, formulated as

EODT =
1

n + 1

∑
i=1...N

∫
Ωi

||x− xi||2dx (1)

is minimized by vertex positions

x∗i =
1

|Ωi|
∑

Tj∈Ωi

|Tj |cj (2)

where Ωi is the set of elements incident to vertex xi, |Ωi| is the cu-
mulative volume of the elements in Ωi, and cj is the circumcenter
of Tj . Essentially, this is a volume-weighted average of the circum-
centers of incident tetrahedra.

In contrast to Alliez and colleagues we do not move the vertices
directly to these positions. Instead, we move them toward these
positions by an amount proportional to a predetermined time step.
This has the effect of iteratively drawing the surface of our volu-
metric mesh inwards while maintaining the quality of the elements
in response.

This vertex update produces superior results to alternatives we con-
sidered: the simpler approach of moving vertices along the negative
gradient of the distance field and a more complicated, two-phase
process that first moved vertices along the negative gradient to the
distance field and then applied smoothing to improve quality.

Figure 6: The four surface meshes we used as input for our tests.
From left to right, they are called “banana,” “humanoid,” “sculp-
ture,” and “dragon.”

Continuous Collision Detection With our vertex update rule,
the surface of the volumetric mesh (∂V) may intersect the surface
mesh (S). Because we desire a volumetric mesh (V) that encloses
the input surface (S), we prevent such intersections by treating
the vertices on the surface of the volumetric mesh (∂V) specially.
Specifically, we subject the triangle mesh that represents the sur-
face of the volumetric mesh (∂V) to continuous collision detection
against the (unmoving) input surface mesh (S). We use the El Topo
library [Brochu and Bridson 2009], setting the mass of vertices in
the input surface mesh (S) to the highest value available on our
machine.

Stopping Condition We continue updating vertex locations until
every vertex on the surface of the volumetric mesh (∂V) is within
some predefined distance doffset of the surface mesh (S). At the
beginning of each iteration we evaluate the distance of every ver-
tex in ∂V to the surface, S, with a query to our distance field. If
any of these values are greater than doffset we carry out the current
iteration.

We additionally experimented with alternative stopping conditions
and various multi-phase vertex adjustments, such as moving ver-
tices more slowly as they approached the surface. None of these
approaches produced improved results.

3.4 Perturbation

The results of our approach are extremely sensitive to perturbations
of the background lattice, as perturbations will lead to different
tetrahedra being removed during sculpting. We can use this fact to
our advantage—by perturbing the background lattice with random
translations and rotations we can generate several candidate meshes
and select the best one. This approach can have a dramatic affect
on final quality, albeit at additional cost. As mesh generation is
generally a pre-process this additional cost is of little consequence.
Moreover, this sampling process can be stopped at any time, return-
ing the best mesh found so far.

4 Results and Discussion

We have implemented our approach described above and tested it
on four different surface meshes, shown in Figure 6. For each sur-
face mesh we ran our program several times, each time starting with
a different background lattice resolution and ending at a different
offset distance. For each combination of these parameters we ran
the software multiple times (between 3 and 13 times depending on
the example) with offset and rotated background grids and chose
the best resulting output. Because each run takes but a few minutes
even with our unoptimized implementation, multiple runs are quite
practical and can provide significantly improved results over single
runs. When our method converges, individual runs were all less
than ten minutes for a single thread on modern hardware.

Figure 7: Our generated volumetric meshes for the banana surface
mesh. From top to bottom the meshes are sculpted from a lattice of
increasing resolution, and from left to right they are constrained by
a decreasing offset band ratio.

Figure 8: Our generated volumetric meshes for the humanoid sur-
face mesh. From top to bottom the meshes are sculpted from a lat-
tice of increasing resolution, and from left to right they are con-
strained by a decreasing offset band ratio.

In Table 1 we compare the output based on several measurements.
A single, absolute offset distance is inappropriate for a set of vol-
umetric meshes with different resolutions, so we instead compare
volumetric meshes with a common ratio between each one’s offset
distance doffset and the width h of a grid cell in its initial lattice.

To portray mesh quality we report the minimum and maximum di-
hedral angles among all elements in each volumetric mesh, because
the condition number of a finite-element computation on a given
tetrahedral mesh depends on the lowest-quality tetrahedron in the
volumetric mesh. To portray the degree to which the surface of the
volumetric mesh (∂V) approximates the surface mesh (S) we also
report the minimum, maximum, and mean distance from the surface
mesh (S) among all vertices on the surface of the volumetric mesh
(∂V). We also report the ratio of the volumetric mesh’s volume to
the surface mesh’s volume.

Our volumetric meshes for the banana surface mesh, shown in Fig-
ure 7, make clear the ability of our method to produce a set of viable
volumetric meshes whose properties predictably respond to chang-
ing parameters, providing a tradeoff between quality, efficiency, and
proximity to the input. Except for three cases, the meshes’ mini-
mum dihedral angles increase as the mesh resolution increases. In
all cases their minimum angles increase as the offset distance is in-
creased: this behavior is seen in all of our examples. The banana
example also demonstrates that our method handles cases of con-
cavity and negative curvature in the surface mesh.

The humanoid surface is a more practical test case. This surface has
features of varying size, areas of varying curvature, and segments
that are intuitively separate (those corresponding to the character’s
arms, legs, and head). Our method produces volumetric meshes
that respect these aspects, as shown in Figure 8. They are recogniz-
ably human-shaped—notably preserving the arms and head as sep-
arate segments—and they approximate different parts of the surface
equally well. However, our approach did not separate the legs.

The sculpture surface mesh is interesting because it has sharp edges
and nonzero genus. Our method handles these properties automat-
ically, as shown in Figure 9. Our sculpting strategy described in
Section 3 requires no special case for holes or interior hollows like
those of the sculpture, provided that the resolution is high enough
that they are resolved on the background grid. The surface of our
volumetric meshes can faithfully match the sharp edges of the sur-
face mesh without introducing degenerate elements.

The dragon surface mesh has myriad small features and an intuitive
shape (that of a snake) that is compressed into a different shape. Our
method handles the former aspect, generating volumetric meshes,
shown in Figure 10, that conform to the surface mesh’s concavities
to a degree that varies continuously with the resolution of our ini-
tial lattice. It does not automatically address the latter aspect. The
closely positioned but distantly connected parts of the surface mesh,
such as the dragon’s mouth, are smaller than our target resolution,
and we do not capture them. For lesser offset distances this can
lead to nonconvergence. Our collision detection prevents the ver-
tices of large elements from reaching into small gaps, leaving them
forever farther than doffset away from the surface mesh in these ar-
eas. Given a reasonable offset distance, however, we can produce a
volumetric mesh of good quality that still displays those features of
the dragon that can be sampled at the volumetric mesh’s resolution.

We also compare our approach to the alternative: computing an
offset surface and using off-the-shelf meshing software. Our under-
lying hypothesis is that by giving the mesher the freedom to choose
the offset surface we can achieve higher quality meshes. Our ex-
periments, detailed in Table 2, bear this out. Our mesher, Cetra,
outperforms the competition, and at much lower human effort.

Figure 9: Our generated volumetric meshes for the sculpture sur-
face mesh. From top to bottom the meshes are sculpted from a lat-
tice of increasing resolution, and from left to right they are con-
strained by a decreasing offset band ratio.

Figure 10: Our generated volumetric meshes for the dragon sur-
face mesh. From top to bottom the meshes are sculpted from a lat-
tice of increasing resolution, and from left to right they are con-
strained by a decreasing offset band ratio.

banana, h = 0.5 banana, h = 0.75
elements 2364 2320 2349 2291 890 891 950 911

min. angle 21◦ 26◦ 34◦ 45◦ 20◦ 25◦ 32◦ 44◦

max. angle 144◦ 143◦ 128◦ 109◦ 135◦ 147◦ 123◦ 109◦

min. dist. 0.000550 0.00197 4.11 × 10-10 0.00000161 0.00238 0.000601 0.00673 0.000457
max. dist. 0.0993 0.199 0.291 0.391 0.150 0.277 0.432 0.583
mean dist. 0.0153 0.0279 0.0685 0.093 0.0326 0.0635 0.117 0.191
vol. ratio 1.04 1.09 1.28 1.40 1.07 1.17 1.39 1.74

banana, h = 1.0 banana, h = 1.25
elements 537 511 494 538 300 317 312 330

min. angle 20◦ 27◦ 33◦ 43◦ 21◦ 27◦ 37◦ 46◦

max. angle 146◦ 139◦ 125◦ 116◦ 138◦ 135◦ 123◦ 113◦

min. dist. 0.00253 0.0000415 0.021 0.0217 0.00244 0.0106 0.0352 0.0168
max. dist. 0.199 0.390 0.584 0.772 0.248 0.488 0.739 0.964
mean dist. 0.0472 0.121 0.192 0.299 0.0858 0.157 0.280 0.404
vol. ratio 1.10 1.33 1.61 2.14 1.18 1.40 1.94 2.61

humanoid, h = 0.2 humanoid, h = 0.3
elements – 2468 2440 2406 – 927 979 945

min. angle – 16◦ 28◦ 44◦ – 20◦ 29◦ 45◦

max. angle – 160◦ 137◦ 112◦ – 147◦ 131◦ 112◦

min. dist. – 0.000405 0.000281 0.0001 – 0.00277 0.000645 0.00206
max. dist. – 0.0798 0.114 0.154448 – 0.118 0.174 0.240
mean dist. – 0.0118 0.0208 0.0420 – 0.0231 0.0431 0.0790
vol. ratio – 1.16 1.25 1.54 – 1.26 1.46 1.95

humanoid, h = 0.35 humanoid, h = 0.4
elements – 722 672 694 – 504 556 526

min. angle – 21◦ 35◦ 44◦ – 21◦ 33◦ 42◦

max. angle – 141◦ 126◦ 110◦ – 132◦ 126◦ 112◦

min. dist. – 0.000386 0.00625 0.00618 – 0.000706 0.00406 0.00520
max. dist. – 0.146 0.209 0.260 – 0.159 0.236 0.294
mean dist. – 0.0278 0.0633 0.0984 – 0.0431 0.0793 0.103
vol. ratio – 1.32 1.71 2.16 – 1.48 1.93 2.26

sculpture, h = 0.13 sculpture, h = 0.15
elements – 7972 7776 7860 – 5587 5467 5450

min. angle – 12◦ 23◦ 32◦ – 10◦ 26◦ 35◦

max. angle – 156◦ 145◦ 132◦ – 163◦ 142◦ 123◦

min. dist. – 0.00000338 0.0000269 0.0000884 – 0.000000755 0.0000377 0.0000119
max. dist. – 0.0459 0.0729 0.100 – 0.0548 0.0862 0.117
mean dist. – 0.00471 0.00929 0.0158 – 0.00537 0.0139 0.0223
vol. ratio – 1.08 1.16 1.26 – 1.09 1.22 1.35

sculpture, h = 0.11 sculpture, h = 0.25
elements – 2730 2753 2714 – 1666 1666 1615

min. angle – 10◦ 21◦ 39◦ – 14◦ 22◦ 38◦

max. angle – 161◦ 152◦ 117◦ – 151◦ 143◦ 123◦

min. dist. – 0.0000196 0.0001 0.0001 – 0.000237 0.000100 0.0000999
max. dist. – 0.0756 0.116 0.158 – 0.100 0.144 0.200
mean dist. – 0.00853 0.0195 0.0398 – 0.0180 0.0272 0.0520
vol. ratio – 1.15 1.31 1.61 – 1.28 1.41 1.75

dragon, h = 1.25 dragon, h = 1.5
elements – – 2417 2488 – – 1618 1603

min. angle – – 23◦ 39◦ – – 24◦ 40◦

max. angle – – 141◦ 114◦ – – 143◦ 114◦

min. dist. – – 0.000195 0.000728 – – 0.0186 0.0192
max. dist. – – 0.740 0.967 – – 0.865 1.17
mean dist. – – 0.157 0.282 – – 0.211 0.357
vol. ratio – – 1.56 1.98 – – 1.74 2.16

dragon, h = 1.75 dragon, h = 2.0
elements – – 1127 1141 – – 887 847

min. angle – – 26◦ 37◦ – – 29◦ 42◦

max. angle – – 140◦ 116◦ – – 138◦ 112◦

min. dist. – – 0.00429 0.0457 – – 0.000137 0.00252
max. dist. – – 1.04 1.34 – – 1.19 1.55
mean dist. – – 0.259 0.405 – – 0.334 0.526
vol. ratio – – 1.85 2.21 – – 2.07 2.59

Table 1: Measurements of volumetric mesh results. For each input and each lattice cell-width h, we created meshes using four different offset
band ratios: from left to right, they are 0.2, 0.4, 0.6, and 0.8. Dashes represent cases in which our adjustment process did not converge.

NETGEN TetGen I. Stuffing CGAL Cetra
banana

tets 1945 22154 8341 3625 478
min. ◦ 1.90◦ 2.68◦ 13.6◦ 3.57◦ 23.6◦

max. ◦ 170◦ 170◦ 161◦ 174◦ 151◦

humanoid
tets 1377 15044 22906 7663 536

min. ◦ 8.41◦ 2.78◦ 16.9◦ 0.956◦ 18.1◦

max. ◦ 167◦ 170◦ 156◦ 178◦ 151◦

sculpture
tets – 26915 14880 7363 2785

min. ◦ – 0.526◦ 16.5◦ 1.03◦ 19.8◦

max. ◦ – 175◦ 148◦ 178◦ 147◦

dragon
tets 1297 9648 45956 4696 1110

min. ◦ 8.69◦ 3.96◦ 17.4◦ 2.648◦ 22.3◦

max. ◦ 166◦ 170◦ 155◦ 176◦ 135◦

Table 2: Comparisons between our method (“Cetra”) and popular
existing systems. NETGEN was unable to produce a mesh for the
sculpture surface.

To demonstrate the effectiveness of our method in practice, we pro-
duced animations of surfaces embedded in volumetric meshes that
we created with our mesher. We deformed the meshes using an elas-
tic deformation simulator based on the finite-element method. The
first animation is a recording of a computer game running this sim-
ulator in real time. It depicts, in first-person perspective, a player
throwing projectiles at a monstrous pile of slime, which deforms
based on the trajectory that the player chooses. We see here that by
using our mesher we can simulate deformation quickly enough to
respond to unpredictable user input.

In contrast, we created the second animation under predetermined
conditions and took several time steps in the simulator to produce
each frame. This animation shows many deformable objects falling
into an invisible box, pressing against each other and the box’s
sides. The objects’ simulated contacts occur simultaneously with
their apparent contacts: there is no intersection, and neither are
there unrealistic gaps between colliding objects. Our meshes are
of high enough quality that the simulation stays stable. One ob-
ject in particular, despite undergoing extreme deformation, slides
across the frame and returns to normal without causing problems.
In addition to these animations of physics-based simulation, we an-
imated our process of variational vertex adjustment. Here we see
the tetrahedra change in quality as they better approximate the in-
put surfaces, taking the form of the inputs while maintaining high
minimum dihedral angles.

Limitations and Future Work A key limitation of our method—
that it ignores small topological features such as thin gaps between
intuitively separate segments—is a topic ripe for future investiga-
tion. One way to address this limitation, aside from increasing the
resolution to inefficient levels, is to allow a user to mark certain seg-
ments as separate. We could then duplicate elements around these
segments and disconnect the duplicates, potentially allowing the ad-
justments to separate them further. Other opportunities for future
work include investigating the cause of the lower-quality elements
in our worst volumetric meshes and devising a better prediction of
volumetric mesh quality for a given surface mesh and resolution.

Conclusion We have presented a method for tetrahedral mesh
generation that is uniquely well suited to creating coarse, enclos-
ing, high-quality volumetric meshes for animating arbitrary sur-

face meshes. Our method combines two previously known tech-
niques: using an initial BCC lattice and variational vertex adjust-
ments. However, the success of our approach hinges on a critical
insight—that tetrahedra in the initial lattice that have two adjacent
faces on the surface become slivers under vertex adjustments in the
presense of collision detection. We solve this issue by ensuring that
our initial mesh is a union of snowflakes. Moreover, our approach
compares favorably with the tedious approach of creating an offset
surface and using an off-the-shelf meshing algorithm.

Acknowledgements

The authors wish to thank the anonymous reviewers for their
helpful comments. We also thank Dan Gerszewski and Jonathan
Shewchuk for their help with our comparison experiments. This
work was supported in part by a gift from Adobe Systems Incor-
porated and National Science Foundation Awards CNS-0855167,
IIS-1249756, and IIS-1314896.

References

ACAR, U. A., AND HUDSON, B. 2007. Dynamic mesh refinement
with quad trees and off-centers. Tech. Rep. 121, Carnegie Mellon
University School of Computer Science.

ALIM, U. R., ENTEZARI, A., AND MÖLLER, T. 2009. The lattice-
Boltzmann method on optimal sampling lattices. IEEE Transac-
tions on Visualization and Computer Graphics 15, 4, 630–641.

ALLIEZ, P., COHEN-STEINER, D., YVINEC, M., AND DESBRUN,
M. 2005. Variational tetrahedral meshing. ACM Trans. Graph.
24, 3 (July), 617–625.

BARGTEIL, A. W., GOKTEKIN, T. G., O’BRIEN, J. F., AND
STRAIN, J. A. 2006. A semi-Lagrangian contouring method
for fluid simulation. ACM Transactions on Graphics 25, 1, 19–
38.

BERN, M., AND EPPSTEIN, D. 1992. Mesh generation and optimal
triangulation. Tech. Rep. 47, Xerox Palo Alto Research Center.

BROCHU, T., AND BRIDSON, R. 2009. Robust topological oper-
ations for dynamic explicit surfaces. SIAM Journal on Scientific
Computing 31, 4, 2472–2493.

BRONSON, J., LEVINE, J., AND WHITAKER, R. 2013. Lattice
cleaving: Conforming tetrahedral meshes of multimaterial do-
mains with bounded quality. In Proceedings of the 21st Interna-
tional Meshing Roundtable. 191–209.

BURATYNSKI, E. K. 1990. A fully automatic three-dimensional
mesh generator for complex geometries. International Journal
for Numerical Methods in Engineering 30, 931–952.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND
POPOVIĆ, Z. 2002. Interactive skeleton-driven dynamic de-
formations. ACM Trans. Graph. 21, 3 (July), 586–593.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND
POPOVIĆ, Z. 2002. A multiresolution framework for dynamic
deformations. In Proc. of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 41–47.

CGAL, Computational Geometry Algorithms Library.
http://www.cgal.org.

CHEN, L. 2004. Mesh smoothing schemes based on optimal De-
launay triangulations. In Proceedings of the 13th International
Meshing Roundtable, 109–120.

CUTLER, B., DORSEY, J., AND MCMILLAN, L. 2004. Simplifi-
cation and improvement of tetrahedral models for simulation. In
Proceedings of the Eurographics/ACM SIGGRAPH symposium
on Geometry processing, 93–102.

DU, Q., AND WANG, D. 2003. Tetrahedral mesh generation and
optimization based on centroidal Voronoi tessellations. Inter-
national Journal for Numerical Methods in Engineering 56, 9,
1355–1373.

EDELSBRUNNER, H., PREPARATA, F. P., AND WEST, D. B. 1990.
Tetrahedrizing point sets in three dimensions. Journal of Sym-
bolic Computation 10, 3-4, 335–347.

FREITAG, L. A., AND KNUPP, P. M. 2002. Tetrahedral mesh
improvement via optimization of the element condition number.
International Journal for Numerical Methods in Engineering 53,
6, 1377–1391.

FREITAG, L. A., AND OLLIVIER-GOOCH, C. 1997. Tetrahedral
mesh improvement using swapping and smoothing. Interna-
tional Journal for Numerical Methods in Engineering 40, 21,
3979–4002.

HUANG, J., CHEN, L., LIU, X., AND BAO, H. 2008. Efficient
mesh deformation using tetrahedron control mesh. In Proceed-
ings of the ACM symposium on Solid and physical modeling,
241–247.

HUDSON, B., MILLER, G., AND PHILLIPS, T. 2006. Sparse
Voronoi refinement. In Proceedings of the 15th International
Meshing Roundtable, 339–356.

KLINGNER, B. M., AND SHEWCHUK, J. R. 2007. Aggressive
tetrahedral mesh improvement. In Proceedings of the 16th Inter-
national Meshing Roundtable, 3–23.

LABELLE, F., AND SHEWCHUK, J. R. 2007. Isosurface stuffing:
fast tetrahedral meshes with good dihedral angles. ACM Trans.
Graph. 26, 3 (July).

LI, X.-Y., TENG, S.-H., AND ÜNGÖR, A. 2000. Biting: Ad-
vancing front meets sphere packing. International Journal for
Numerical Methods in Engineering 49, 1, 61–81.

LIU, A., AND JOE, B. 1995. Quality local refinement of tetrahedral
meshes based on 8-subtetrahedron subdivision. SIAM Journal on
Scientific Computing 16, 6, 1269–1291.

MITCHELL, S. A., AND VAVASIS, S. A. 2000. Quality mesh
generation in higher dimensions. SIAM Journal on Computing
29, 4, 1334–1370.

MOLINO, N., BRIDSON, R., TERAN, J., AND FEDKIW, R. 2003.
A crystalline, red green strategy for meshing highly deformable
objects with tetrahedra. In Proceedings of the 12th International
Meshing Roundtable, 103–114.

MOLINO, N., BAO, Z., AND FEDKIW, R. 2004. A virtual node
algorithm for changing mesh topology during simulation. ACM
Trans. Graph. 23, 3 (Aug.), 385–392.

MULLEN, P., MEMARI, P., DE GOES, F., AND DESBRUN, M.
2011. Hot: Hodge-optimized triangulations. ACM Trans. Graph.
30, 4 (July), 103:1–103:12.

MÜLLER, M., AND GROSS, M. 2004. Interactive virtual materials.
In Proccedings of Graphics Interface 2004, 239–246.

MÜLLER, M., TESCHNER, M., AND GROSS, M. 2004.
Physically-based simulation of objects represented by surface
meshes. In Proceedings of Computer Graphics International
2004, 26–33.

NESME, M., KRY, P. G., JEŘÁBKOVÁ, L., AND FAURE, F. 2009.
Preserving topology and elasticity for embedded deformable
models. ACM Trans. Graph. 28, 3 (July), 52:1–52:9.

PARKER, E. G., AND O’BRIEN, J. F. 2009. Real-time deformation
and fracture in a game environment. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
156–166.

PERUCCHIO, R., SAXENA, M., AND KELA, A. 1989. Automatic
mesh generation from solid models based on recursive spatial
decompositions. International Journal for Numerical Methods
in Engineering 28, 11, 2469–2501.

SCHÖBERL, J. 1997. NETGEN - An advancing front 2D/3D-mesh
generator based on abstract rules. Computing and Visualization
in Science 1, 1, 41–52.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form defor-
mation of solid geometric models. SIGGRAPH Comput. Graph.
20, 4 (Aug.), 151–160.

SHEN, C., O’BRIEN, J. F., AND SHEWCHUK, J. R. 2004. Inter-
polating and approximating implicit surfaces from polygon soup.
ACM Trans. Graph. 23, 3 (Aug.), 896–904.

SHEPHARD, M. S., AND GEORGES, M. K. 1991. Automatic
three-dimensional mesh generation by the finite octree tech-
nique. International Journal for Numerical Methods in Engi-
neering 32, 4, 709–749.

SHEWCHUK, J. R. 1998. Tetrahedral mesh generation by Delaunay
refinement. In Proceedings of the 14th Annual Symposium on
Computational Geometry, 86–95.

SHEWCHUK, J. R. 2002. What is a good linear element? Interpo-
lation, conditioning, and quality measures. In Proceedings of the
11th International Meshing Roundtable, 115–126.

SI, H. 2004. TetGen, a quality tetrahedral mesh generator
and three-dimensional Delaunay triangulator, v1.3 users man-
ual. Tech. Rep. 9, Weierstrass Institute for Applied Analysis and
Stochastics.

SIFAKIS, E., SHINAR, T., IRVING, G., AND FEDKIW, R. 2007.
Hybrid simulation of deformable solids. In Proceedings of the
ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation, 81–90.

TERAN, J., MOLINO, N., FEDKIW, R., AND BRIDSON, R. 2005.
Adaptive physics based tetrahedral mesh generation using level
sets. Engineering with Computers 21, 1, 2–18.

TOURNOIS, J., SRINIVASAN, R., AND ALLIEZ, P. 2009. Perturb-
ing slivers in 3D Delaunay meshes. In Proceedings of the 18th

International Meshing Roundtable, 157–173.

TOURNOIS, J., WORMSER, C., ALLIEZ, P., AND DESBRUN, M.
2009. Interleaving delaunay refinement and optimization for
practical isotropic tetrahedron mesh generation. ACM Trans.
Graph. 28, 3 (July), 75:1–75:9.

WOJTAN, C., AND TURK, G. 2008. Fast viscoelastic behavior
with thin features. ACM Trans. Graph. 27, 3 (Aug.), 47:1–47:8.

	Coverletter_basic
	Stuart-2013-ACC

