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Abstract

The evaluation of an information systems development method (Swatman & Swatman, 1992)
synthesised from research into:

e the object oriented approach
e mathematically formal specification languages
e socio-organisational contextual analysis.

has led us to analyse the process by which models of the problem context (loosely, require-
ments specifications) developed under this approach are validated. Our research suggests
that user acceptors find it useful to analyse the dynamics of interaction of objects within
a system. In this paper, we describe a diagrammatic notation which we call ‘event chains’
by which such analysis may be facilitated. Following our development approach (Swatman
& Swatman, 1992), we focus on and demonstrate the application of the event chain no-
tation in conjunction with the object oriented formal specification language Object-Z. We
argue, however, that the event chain notation and its underlying philosophy are valuable
independently of the mathematical formalism.

We suggest a three-part approach to the presentation of specifications:

e a managerial overview

e a behavioural perspective (event chains formalised by means of Object-Z schema
fragments—exemplified within this paper)

e a design perspective (Object-Z schemata embedded in explanatory text and supported

by MOSES (Henderson-Sellers & Edwards, 1994) diagrams).

and argue that, although there is redundancy in the presentation of the formal specification
across parts two and three, such redundancy (and, hence, the potential for conflict within
the specification) could be controlled mechanically.



1 Introduction

Swatman & Swatman (1992) describe an outline information systems development methodol-
ogy, widely applicable within the conventional information systems domain, which draws upon
research into:

the object oriented approach in which situations are modelled as systems of interacting,
encapsulated objects, each object belonging to some class

mathematically formal specification languages in particular, the object oriented specifi-
cation language Object-Z (Duke et al., 1991a) by means of which the abstract character-
istics of classes may be described precisely and unambiguously

socio-organisational contextual analysis following the work of Checkland (1981, 1989) and
Checkland & Scholes (1990) which, in the general case, denies the existence of an objective
requirements specification waiting to be discovered by the systems analyst.

The methodology (Formal Object Oriented Method—FOOM) addresses the processes of infor-
mation analysis, formal modelling, and debate and validation. FEach of these activities forms
part of a cycle which results in the iterative elicitation of the system requirements. In an action
research (Susman & Evered, 1978) study undertaken at the Western Australian Government
Department of State Services, we applied, evaluated and enhanced the methodology. In this
paper, we

e discuss difficulties within the process by which models of the problem context (loosely,
requirements specifications) developed under this approach were validated

¢ highlight the need, in the context of specification validation, for a mechanism to enable
the illustration of dynamic aspects of system behaviour, then, as the major focus of this

paper

e introduce and exemplify a diagrammatic notation designed to illustrate the interaction of
component objects in implementing system behaviour.

One of the most significant difficulties associated with using formal specification techniques in
the requirements analysis phase is that of encouraging participation and ensuring focus, clarity
and precision in the debate and validation process. In order for users to participate in this
process, they require a certain amount of training. In the case of users who are simply par-
ticipating in the requirements determination process, where the flow of information is largely
one-way (from the user to the specialist specifier), a brief introductory course of perhaps one
day’s duration would be sufficient. User acceptors®, however (those users responsible for the
acceptance of the requirements specification), have a much greater involvement in the process
and, correspondingly, require more training (Swatman, 1993). Clearly the greater the under-
standing of the specification by the user acceptors, the greater the confidence which can placed
in the validation. It is critical to this process, therefore, to present the specification in such a
way as to facilitate the best possible understanding. Unfortunately, the “traditional” techniques
used for the presentation of formal specifications are poorly suited to this task. Formal specifi-
cations are generally presented as schemata embedded within explanatory text—the structure
of the explanation is determined by the structure of the specification (which is dictated by the

1A term coined by Olle et al. (1991) to describe the representative of client during the requirements specifi-

cation validation process (inter alia)



syntax and suggested by class-based encapsulation) rather than by the behaviour of the system
as understood by the users of the system.

Our initial solution was to supplement the mathematics and text with diagrams in a style drawn
from the OO literature—we chose an early version of MOSES (Henderson-Sellers & Edwards,
1994; Henderson-Sellers et al., 1992). MOSES, in common with most existing OO notations,
concentrates on encapsulation, information hiding, the static relationships between classes or
objects and the dynamic behaviour of “isolated” objects—thus providing a useful structuring
mechanism for system designers and implementors (see Section 2.2 for a discussion of the overall
structure of a specification and its potential types of audience), indeed, for the management
of the design and implementation activities. Unfortunately, this view is not sufficient for the
validation process because it fails adequately to reflect the way in which the users perceive the
system—the notations focus on attributes and operations (in early notations, what the object
is); more recently, also related behaviour (what the object is responsible for); but not how
component objects interact to implement some system level behaviour.

We may explore the difference between these viewpoints by analogy, considering the example
of a car. Following a traditional OO approach, we might describe:

e the car as a collection of sub-objects—such as an engine, a set of wheels and so on

o the behaviour of the car?. For example, we may say that the car responds to a “go faster”
message—the input being pressure on the accelerator, the output being the new reading
on the speedometer and the associated state change being a revision in the speed of the
car object. It would also be legitimate to describe dynamic behaviour at a more primitive
level, focusing, perhaps, on the behaviour of the accelerator pedal or the fuel injection
system.

This presentation is clearly suitable for those who will design and build the car. Encapsulation
and information hiding have been applied in a manner which corresponds with the cognitive
models which the OO world has argued are appropriate for implementors. The presentation is
also suitable for a prospective driver of the car who is protected from any need to “look under
the bonnet”. There is, however, an important interest which is not well served by the cognitive
model which underlies the approach to encapsulation and information hiding adopted within
the presentation discussed. The interest is that of the person responsible for licensing the car
for use on our roads. The licensor is interested in the interplay of components within the car
as it implements some “user level” behaviour. From this perspective, we want to show that
on pressing the accelerator, fuel will be pumped into the carburettor and then passed into the
engine, resulting (assuming the car is in gear) in an increase of speed. In other words, the
licensor perceives the car to be sets of related events which combine to describe the (system
level) behaviour of the car.

The analogue of the car licensor, in the world of information systems development, is the user
acceptor. The notation reported in this paper extends MOSES by means of what we call ‘event
chains’. The approach allows us to take advantage of the benefits of the existing notation as well

2By means of a state transition approach, or a derivative technique, we may describe the way a car will change
state, accept inputs and produce outputs in response to the occurrence of events. It is most common to organise
the presentation of information about such dynamic behaviour around each class—that is, all possible dynamic
behaviour of a car will be collected and presented together—although, more recently, Jacobson et al. (1992), for
example, have suggested structuring the presentation of dynamic behaviour around the event which gives rise to

the behaviour.



as providing a means of capturing the dynamic interaction between components which causes
the observable behaviour of a system.

One notable difference in style between event chain notation and current MOSES is in the
depiction of aggregation relationships. Within event chains, aggregation is shown directly by
the encapsulation of the icon representing the component within the icon representing the “as-
sembly”. This representation style appears to be more effective in communicating the intended
message to clients—especially those who are unfamiliar with the OO paradigm. Practical prob-
lems (of exploding complexity) associated with this representational style in models of the static
aspects of systems appear to be of much less concern in event chains—indeed, our experience
suggests that over-complex event chain diagrams are likely to indicate poor partitioning of the
model (either of the event chain into links, or of the system into classes). A detailed discussion
of representation options for aggregation relationships within OO specifications is beyond the
scope of this paper. The issue is, however, a subject of our current research.

The event chain notation is used for the explanation of requirements (which are expressed in
Object-Z thus forming the definitive specification) to the user acceptors during the specification
validation process. Its development arose from the absence of an existing notation which could
be used to present system behaviour in a manner suitable for validation by a user acceptor.

Existing semi-formal OO notations concentrate, understandably enough, on encapsulation, in-
formation hiding and the static relationships between classes or objects—inheritance, aggre-
gation and association. Most of these notations® are geared purely toward design, and many
support only static representation (eg Wirfs-Brock et al. (1990)): that is the structural aspects
of objects, their relationships and attributes (Monarchi & Puhr, 1992). Whilst this approach is
appropriate for the constructors of a software system, the car analogy given above shows that
it provides an inadequate mechanism for the user validation of specifications.

Of the OO approaches which include some form of dynamic modeling, most make no attempt
to model the behaviour of the entire system, but rather provide piecemeal modeling using
techniques such as state transition diagrams for each object (Fichman & Kemerer, 1992). An
example of this is the notation of Booch (1991), which supports dynamic representation through
state and timing diagrams®. This focus on modeling the behaviour of components of the system,
rather than the behaviour of the system as a whole means that system-level behaviour cannot
easily be conveyed.

We also considered non-OO approaches which held promise, in particular Petri nets (Peterson,
1977, 1981) and Statecharts (Harel, 1987), both of which have OO extensions: OPNets (Lee &
Park, 1993) and ObjectCharts (Coleman et al., 1992). These notations proved to be unsuit-
able for the same reason many of the notations we examined were unsuitable: they focus on
formalising the properties of a system in some detailed manner (ultimately, one which is useful
to system constructors). Consequently, when dealing with complex systems they become too
complicated and inflexible as explanatory mechanisms. What we required was not a second
formalism to represent a system’s behaviour, but rather a less formal, flexible notation which
could be used as a roadmap to guide a user acceptor through the formal definition of the system
contained in the Object-7 specification.

The notations which offered the most promise were those OO notations which structure the
presentation of the system from the user’s point of view. These include “scenarios” (Rumbaugh
et al., 1991) and “use cases” (Jacobson et al., 1992), which are also used by Lorenz (1993),

®This comment relates to notations, NOT methods

*In later work, Booch (1994) replaced State Transition Diagrams with Statecharts; and Timing Diagrams with

Interaction Diagrams and Scripts.



Booch (1994) and Henderson-Sellers & Edwards (1994). Briefly, use cases and scenarios describe
a behaviourally related sequence of transactions which a user of the system (either a human
or another system) performs in dialogue with the system. Our research supports the assertion
made by the various authors of these notations: that describing the behaviour of a system in
this manner facilitates a better understanding of the system by its user acceptors, permitting a
more successful validation of the system requirements.

Although the use case/scenario approach seemed to be advantageous, these particular imple-
mentations were inadequate for our needs in certain areas. In each case the notation was either
non-graphical (or minimally so), making understanding on the part of the user acceptors more
difficult, or they were too simplistic to enable the successful explanation of complex chains
of related behaviour. In many IS applications use cases or scenarios would work well—for
example transaction processing systems, where the user executes some action and some well de-
fined change of state occurs—together, perhaps with some response. There are, however, more
complex situations where the result of the user transaction is a changed state within which a
concatenation of further state changes may occur without further interaction from the user. It
is, of course, always possible to encapsulate the chain of events leading to the next logical state
of equilibrium, but doing so would (at best) suggest that the chain of events was hard coupled.
In the case of the specification which illustrates our notation in this paper, we specifically did
not want to specify the ordering of operations resulting from many users of the system—that
is we wanted to avoid unnecessary determinism within the specification.

2 Event Chains

We required a notation which would:

e describe the behaviour of the system from the point of view of a user of the system,
whether that user is human or another system. The better the understanding of the
system specification by its users, the more successful the validation of requirements will
be. A dynamic representation technique was therefore required

e be simple but expressive—this point is related to the one above. A second formal nota-
tion is not required—the formality is captured by the Object-Z; the aim is more clearly
to convey behaviour of the system to the users. Given this requirement, some kind of
graphical representation was therefore desirable

e support and describe an OO specification

¢ be able to handle specifications of any complexity. Some sort of hierarchical decomposition
or abstraction mechanism was therefore required.

The event chain notation which we have devised is useful for systems with distributed or no-
tionally parallel aspects, rather than for traditional transaction processing systems (which is
where existing OO notations seem to have originated), though it may also be used successfully
in these simpler cases. The notation is made up of three components: event chain overview
diagrams, link diagrams and an event map:

e cach ‘event chain’ is made up of a set of events which combine to describe related behaviour
of the system as seen by its users. In this respect they are very similar to use cases or
scenarios. The event chain overview diagram shows the whole chain of events at its highest
level of abstraction



e each chain is broken down into ‘links’—each link diagram describes pictorially one event
in the event chain. Link diagrams can be thought of as icons, which serve a dual purpose.
Each link represents a state transition, and it also illustrates the associations between
classes involved with the change of state

e lastly, the ‘event map’ shows the relationship between the ‘links’ in an event chain. De-
pending on the results of the permissible state transitions, different links combine to form
the path which makes up the event chain. In effect, the event map shows the possible
combinations of links which make up the event chain. As the links in an event chain may
be quite decoupled, the event chain map provides a structuring mechanism which clearly
defines the end, or ends, of the event chain.

A number of well-known diagramming techniques may be used to present event maps—we use
state transition diagrams which may easily be used to show the relationship between the various
links (each link is one of the lines connecting states). Other notations, such as Jackson Structure
diagrams (Jackson, 1983) can also be used to construct event maps if they appear more suitable
in a given situation—for instance, if they are already familiar to the users of the system.

2.1 Notation Components

Event chain overview diagrams and link diagrams are constructed from a set of components
(summarised in Figure 1):

Class boxes Classes within a specification are represented by dome topped rectangular boxes
or “tablets” with the class name contained within the dome. Class boxes within other
class boxes indicate aggregation, ie the surrounding class “contains” the interior one.

Operation names Operation names appear within the class box of the class to which they
belong. Fach operation name is marked with a preceding dot.

Arrows Arrows indicate the transfer of information from one object/class to another. The
output may itself be any abstract date type (ADT) used within the specification, most
typically an object or the attribute(s) of an object. The arrows extend from the operation
producing the output (if applicable) to the operation receiving it (if applicable). Arrows
are always labelled. The name of the information being transferred is listed along the line.
If the output is an attribute (or attributes), rather than an object or other ADT, then
the name (names) appear in parentheses

Solid lines Solid lines are drawn from a triggering operation name to a triggered operation
name within an encapsulated object. Solid lines are not labelled.

Dashed lines Dotted lines are drawn from a (high-level) operation name to two or more op-
erations within the same or, more usually, encapsulated class boxes. The concept being
illustrated here, is that the high-level operation represents the combined effect of the
subsidiary operations occurring cooperatively and in parallel.

Grey lines, class boxes and arrows Occasionally when several operations are tightly cou-
pled there will be consequences of these operations (outputs generated, for example) not
relevant to the link diagram in question— Figures 7 and 8 in the following example illus-
trate this idea. Rather than leave out these parts of the diagram, which would obscure
understanding of the way in which the operations involved interact, irrelevant sections
are distinguished by grey, less pronounced components (ie class box outlines, arrows and



lines). Any lines involved are presented in a paler type than the rest of the diagram, as
are any operation names involved.

Event chain overview diagrams are simply high level link diagrams which show the transfer of
information between classes at the highest level. Consequently, the only notation components
involved in these diagrams will be class boxes and arrows showing the transfer of information.
Link diagrams may contain any or all of the notation components.

There are two conventions associated with the composition of link diagrams:

e It is a common feature of object oriented models that an operation on a complex object
(one with many layers of nested components) is a simple consequence of an operation
occurring on a component object or, more generally, on a component of a component of a
component ...to any nested depth. In line with Object-7Z, we call this concept “promoted
operations”. Intermediate layers of promoted operations are not shown in link diagrams
(though the nesting of components is illustrated). The class level at which the operation
performs its function is the one where the operation name appears. Any arrows or lines
(solid or dotted) involved with the operation point directly to the operation name within
the class box, or extend directly from it. Figure 5 in the following example illustrates this
convention.

e sets of objects (of the same class) are indicated by a class box with a shadow (to indicate
depth). In situations where it is necessary to distinguish between the members of the set,
the class box is shown as many times as is required to illustrate the effect of the link.
Lines of hollow dots link the various instances to indicate the potential existence of other
objects of the class. Figure 7 in the following example illustrates this concept

An example of the notation applied to a sample specification, which more clearly illustrates how
the notation may be used in practice, appears in the following section.

2.2 Specification Structure

In terms of the overall structure of a specification’s documentation, the notation is situated
within the section aimed at those users of the system by whom the requirements will be validated.
Our research suggests that the following structure is appropriate for the documentation of a
specification:

o the specification should begin with a high level overview of the functionality of the system,
supported by free form diagrams. This section is suitable for presenting to high level
management, and possibly some user participants, with an interest in the system but not
in the detail of the specification. This section may be considered an “executive summary”

e the second section, for which the notation we are presenting was required, presents the
system in such a way as to enable the validation of requirements elicited via the user
acceptors. Appropriate parts of the Object-Z specification (often, relevant fragments of
class definitions drawn from the complete specification contained in the third part of the
specification) are presented as required, to show how the specification formally models
the behaviour of the system as presented in the event chain and link diagrams. The same
class schemata or operations may well be duplicated across various event chains, or even
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Figure 1: Components of the Event Chain Notation



within the same event chain®

o the last section contains the entire Object-7Z specification, documented in the traditional
way. It also contains traditional OO diagrams (showing aggregation, association, inheri-
tance etc) to supplement the Object-Z and text. The section is aimed at designers and
implementors who are already familiar with OO and Object-Z.

3 Example: A Simulation of an Operating System

We now demonstrate, by means of an example, how the event chain notation may be used,
in conjunction with a object-oriented formal specification to present a requirements model for
validation. Although, as we mention above, the event chain approach has been validated within
the Information Systems domain through an action research study undertaken at the Western
Australian Government Department of State Services, we choose to illustrate the use of event
chains in this paper by means of a “toy” example, that of a simplified operating system. We
do this since the subject matter of this example is likely to be familiar to most readers and,
consequently, to allow readers to place themselves in a position analogous to that of a client
attempting to validate a specification.

3.1 An Informal Statement of Requirements
The operating system exhibits the following characteristics:

e the underlying hardware is comprised of multiple, independent processors
e users may request services of the operating system at any time

o user requests fall into one of two general classes: ‘online’” and ‘batch’

o requests from online users are given priority over those from batch users

e in the event of conflict between user requests of the same class, priority 1 requests are
preferred over priority 2 requests

e priority 1 requests from online users may preempt resources from batch requests

e priority 1 requests require 3 nanoseconds of processor time, priority 2 requests require
access to a processor for 4 nanoseconds

e each user is billed for each nanosecond of processor usage (3 dollars per nanosecond for
online users, 2 dollars per nanosecond for batch)

e requests preempting a processor are charged a fixed service fee (2 dollars); preempted
requests are completed for no charge

In the first section of the specification - the “executive summary” - we would describe the overall
structure of the underlying requirements model which we illustrate, informally, in Figure 2.
Briefly, the whole information system (labelled “Computerised System”) is comprised of a set

®We believe consistency can be controlled by extraction from a single source of the formal specification.
Research and development is currently ongoing into an analyst’s workbench to support the methodology, and

notation/documentation standards



Comuputerised System

User Operating System
Queues
Processor
Queue Queue
User Processor
Queue Queue
Processor
User

Figure 2: Components of an Operating System

of “Users” and an “Operating System”. FEncapsulated within the operating system is a set
of processors and a bank of queues (labelled “Queues”) which itself encapsulates a set of four
queues (each labelled “Queue”). Requests (not shown in the figure) are passed between objects
within the system. For example, a User might pass a request to the Operating System which
would pass the request to Queues which would direct the request to the appropriate Queue
where, for example, it may be stored to await an idle processor.

In the second part of the specification we present the event chains which represent, at a detailed
level, the behaviour of the system as seen by the users of the system, whether they be human
users or other systems. In the case of the operating system specification there are several event
chains which together model the behaviour of the system. For the purposes of this paper we will
consider just one, the case where a user of the system sends a request into the operating system
for processing. In this presentation, we show how the diagrams supplemented by explanatory
text are used to give insight into the formal, Object-Z specification, relevant fragments of which
are included. The complete Object-7 specification would be presented in the third part of the
specification document, though, for brevity, this has been omitted from this paper®. For readers
unfamiliar with the Object-Z language, Appendix A contains a brief tutorial.

3.2 Introducing Validation-Oriented Formality

The event chain we will examine begins with the user sending a request into the operating
system, and ends when the request has been processed. The interaction of classes at the highest

6A complete specification document for this example is available from the authors in the form of a technical

report.



level is shown in Figure 3, the event chain overview diagram. At this highest level the only
classes involved are the User and the Opsys and the only information being transferred is the
Request being passed from one class to the other.

User OpSys

Request

v

Figure 3: Submission of a Request: Overview.

This event chain as a whole is made up of a number of discrete steps, or links, which may
occur either in sequence or in parallel. As mentioned previously, alternative branches in the
connection of links are possible, allowing selection between different paths through the chain.
The links which make up this particular event chain are:

link 1; the user sends the request into the operating system, where it is added to a queue
link 2a: when a processor is free, the request is passed from the queue to the processor

link 2b: alternatively, if the request is an online, priority 1 request and there are no free
processors, it may preempt a batch request

link 3: batch requests may be preempted. If preempted, the request is returned to a queue,
and the chain loops back to a state in which link 2a is enabled (i.e. a state where the
request may be passed from the queue to an idle processor)

link 4: the request is complete, and the charge to the user is calculated.

The event chain map depicted in Figures 4(a) and 4(b) shows the relationships between these
links. The two figures show exactly the same event map, but in different formats—in Figure 4(a)
the event map is constructed as a state transition diagram, while Figure 4(b) presents the event
map as a Jackson Structure diagram (Jackson, 1983). We will now examine the links which
make up our chosen event chain more thoroughly.

Link 1: The Request Is Submitted

The first link in the chain, represented diagrammatically in Figure 5, involves a number of
classes. A user (an object of class User) sends a request to the operating system (an object of
class OpSys). The operating system stores the request in a queue (an object of class Queue)
which is itself contained within a managing object waiting of class Queues. It is at this point
that Object-Z is introduced to define the link. The first class we will consider is the Request,
which is defined below. A Request has a number of pieces of information associated with it:

o the Userld of the user sending the request (uid)
e the priority (pri) of the request, i.e. priority 1 or priority 2
o the type of the request, i.e. ONLINFE or BATCH; and
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Figure 4: Event Chain Maps

e whether the request has been preempted.

The attributes of a Request which are actually relevant to this link in the event chain are its
uid, pri and type. As the other attribute (preempted) is relevant to the preceeding links in the
event chain however, the entire state schema for a Request is presented here. The initialisation
operation reflects the fact that a request can not have been preempted when first created.

_ Request

wid : Userld

pri : PRIORITY
type : Login Type
preempted : B

_INrT
- preempted

Having introduced Requests, the next class we will examine is the User class. The only piece
of information we need to know about a User for this event chain is that each user will have a
constant Userld (uid) associated with it. The User sends out a request via the Send operation
(which ensures that the Request which is sent is initialised, and the uid of the Request is equal
to the uid of the User), as follows:



User .
.e . OpSys
. Request .
e Send a » o Accept User
Request
Queues

Figure 5: Link 1

_ User
‘ uid : Userld
__ Send
r!: Request
rlanit
rlouid = uid

Once the Request has been sent out by the user it is received by the OpSys, via the Accept User
Request operation. There a number of attributes in the state schema of an OpSys which are
used by this operation:

o waiting is of type Queues, the class which manages each Queue in the system
o online is the set of identifiers of Users which are logged in as online users

o batch is the set of identifiers of Users which are logged in as batch users

—_OPSys

waiting : Queues
online : P Userld
batch : P Userld

_ AcceptUserRequest
A(waiting)
r? : Request

(r?.uid € online A\ r?.type = ONLINE) V
(r?.uid € batch A r?.type = BATCH)

waiting.Join




The request received by the Accept User Request operation is checked to ensure that its wid
matches that of a User logged on to the system (either as an online user or a batch user), and
that the type of the request matches this user group, i.e. if the uid of the request matches that
of an online user, then the type of the request must be ONLINFE. Assuming these conditions
are satisfied, then the Accept User Request operation triggers the Join operation within waiting
(of class Queues, which consists of a set of Queue). As the Queues.Join operation is simply
a promotion of the Join operation defined within the Queue class it is not shown on the link
diagram. The state schema of Queues is relevant however, as it ensures that there will exist a
(unique) queue with the same type and priority as the request:

__ Queues

queues : P Queue

Vi: LoginType,p: PRIORITY o 3dq : queues o q.type = [
q.pri=p
Y g, q2 : queues o
(q1-type = qz.type N\ q1.pri = q2.pri) = 1 = ¢

The class definition for a Queue is presented below. Each queue has associated with it a priority
(pri) and a type (ONLINE or BATCH), which remain constant for the queue. A Queue also
consists of items, which is a sequence of Requests. The Join operation within Queue takes the
incoming Request and adds it to the end of items. The state invariant of QQueue ensures that
the request will be added to the queue only if it has the same pri and type as the queue. The
initialisation operation ensures that the Queue is created empty.

__ Queue

pri : PRIORITY
type : Login Type

items : seq Request

Y r:ranitems o r.type = type
r.pri = pri

— INIT
items = ()

__Join
A(items)

r? : Request

items’ = items ™ (r?)

The User Send and the OpSys Accept User Request occur in parallel, to ensure that the request
sent by the user is the one received by the operating system. This co-ordination of operations
between the two classes, indicated on the link diagram by the dotted lines, is handled at the
System level, via the Send operation:



System

users : P User
computer : OPSys

Send = u : users o u.Send || computer. AcceptUserRequest

3.3 Link 2a: An Idle Processor Is Seized

Figure 6 illustrates this link, in which the request is passed from a queue to an idle processor.

The passing out of the request is handled by the Leave operation within Queues. The only
attribute defined in the state schema of Queues is queues, which is a set of Queue. The

OpSys

o Seize Idle
Processor
td .

Queues \ | -

d .

- ‘ .
d ‘ .
® Leave '
.
.
L
Queue |

Request .
® Leave a ® Accept Job

Figure 6: Link 2a

state invariants ensure that there is exactly one queue within queues with each of the possible
combinations of priority and type, i.e. there will be four queues in queues:

e a priority 1, online queue
e a priority 2, online queue
e a priority 1, batch queue; and

e a priority 2, batch queue.



__ Queues

queues : P Queue
Vi: LoginType,p: PRIORITY o 3dq : queues o q.type = [
q.pri =p
Y g, q2 : queues o
(q1-type = qao.type A qu.pri = q2.pri) = ¢1 = ¢

_ Leave

A(queues)

3q,q¢" : Queue o ¢ = HighestPriority(queues)
q.Leave

queues’ = (queues — q) U ¢’

The Leave operation passes out a Request from one of the queues in queues. The Queue
selected cannot be empty (i.e. the initialisation condition cannot be true) and has the highest
priority of those queues which are not empty ( HighestPriority is a function which returns the
queue with the highest priority out of those which are not empty—for an explanation of all of
the functions used within the specification, including HighestPriority, see Appendix B). The
operation triggers the Leave operation of the Queue chosen.

The Leave operation within the Queue class simply removes a Request from the front of the
sequence (which cannot be empty), and passes it out:

__ Queue

— Leave
A(items)
r!: Request

items # ()

items = (r!) 7 items’

The Request which is passed out from Queues is received by a Processor, via the Accept Job
operation. Each Processor has two attributes associated with it: jobs, which is a set of Requests;
and timeRemaining, which is a counter of how much processing time is required to complete
a request. The number of requests in jobs must be either 1 or 0. If the number is 0 (i.e.
the processor is empty), then the timeRemaining counter must 0 or less. The Accept Job
operation receives the incoming Request and adds it to jobs, provided that jobs is empty. The
timeRemaining counter is set to the amount of time it will take to process the request ( Time
is a function which returns the amount of processing time associated with a given priority, and
is also presented in Appendix B).



_ Processor

jobs : P Request
timeRemaining : Z

#ij0bs < 1
#jobs = 0 = timeRemaining < 0

— AcceptJob
A(jobs, time Remaining )
r? : Request

jobs = @

jobs' = {r?}

timeRemaining’ = time(r?.pri)

The Queues Leave and the Processor Accept Job occur in parallel, to ensure that the request sent
by the Queues is the one received by the processor. This co-ordination of operations between
the two classes is handled at the OpSys level, via the Seize Idle Processor operation:

OPSys

waiting : Queues
procs : P Processor

Siezeldle Processor = p : procs e waiting.leave || p.AcceptJob

3.4 Link 2b: A Busy Processor Is Seized

An alternative to waiting for an idle processor is the seizing of a busy one. This link, illustrated

in Figure 7, involves the request preempting a busy processor (the request must be a priority
1, online request for this to occur).

As with the previous link, the request is passed out from Queues. In this case, however, the
operation involved is not Leave, but rather Preempt:

— Queues
Preempt = qq, q2 : queues o ¢ .type = ONLINE
qi.pri =1
¢2.lype = BATCH
1. Leave
q2.Rejoin

The request is passed out from the priority 1, online queue via its Leave operation. At the
same time, an incoming request (the one being preempted) is added back on to its queue via
the Rejoin operation. This part of the Preempt operation is not relevant to this link, so Rejoin
will not be explained here. It is relevant to link 3 however, and will be discussed then.
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Figure 7: Link 2b

The request which is passed out is received by a processor via its Preempt operation, which is
shown below. The request which is currently being processed (which must be of type BATCH )
has its Preempt operation triggered, then it is passed out. The incoming request becomes the
only member of jobs, and the timeRemaining for the processor is set to the time required for

the new request.

_ Processor

__ Preempt

A(jobs, time Remaining )
r?, batchreq! . Request
dr,r': Request o r.type = BATCH
r € jobs
r.preempt
batchreq! = r'
jobs' = {r?}

timeRemaining’ = time(r?.pri)

The purpose of the Preempt operation for a Request is to set the boolean attribute preempted

to true:




_ Request

preempted : B

__ Preempt
A(preempted)

type = BATCH
preempted’

The Queues Preempt and the Processor Preempt occur in parallel, to ensure that the request sent
by the Queues is the one received by the processor. This co-ordination of operations between the
two classes is handled at the OpSys level, via the Seize Busy Processor operation. In addition
to coordinating these parallel operations, this operation also updates the account information
for that user, to reflect the $2 preemption charge. The Seize Busy Processor operation cannot
occur if the Seize Idle Processor operation could occur instead.

— OpSys

waiting : Queues
procs : P Processor
accounts : Userld + N

__Seize BusyProcessor
A(procs, waiting, accounts)

= (pre Siezeldle Processor)

dp,p’: Processor e p € procs
waiting. Preempt

p.Preempt

[accounts’ = accounts
®{(r?.uid, accounts(r?.uid) + 2)}
procs' = procs — {p} U {p'}]

3.5 Link 3: The Request Is Preempted

This link, illustrated in Figure 8, involves the request being preempted by another request.
This can only occur if the type of the request is batch. Note that the link diagram is essentially
the same as that for link 2b. This is because all of the operations associated with preemption,
across several classes, are tightly coupled—they all occur in parallel. Indeed, the operations
involved with this link are the same as those for the previous link: Queues performs a Preempt
and a Processor performs its Preempt operation. In this case however, the request we are
concerned with is not the one being passed in to the processor, but rather the one which is
being preempted.
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Figure 8: Link 3

In this case, we are interested not in the Queue performing the Leave operation, but rather the
Queue performing the Rejoin operation (mentioned in the previous link):

__ Queue
_ Rejoin
A(items)
batchreq? : Request
type = BATCH
items’ = (batchreq?) ™ items

The operation receives a request of type batch (the request which has been preempted) and
adds it to the front of items. The priority is not specified because either batch queue could
be involved—the state invariants for a QQueue ensure that the request can only be placed back
onto the correct queue. At this point, the event chain loops back to link 2a, as the request
will again be passed from the queue to an idle processor. Note that the Preempt operation
of the Processor is the same as for the previous link. In this case, however, the request with
which we are concerned is not the one being passed in to the Processor, but rather the one
being replaced (batchreq!). Similarly, the OpSys operation responsible for coordinating these
operations is again Seize Busy Processor.



3.6 Link 4: The Request is Completed

The final link in the event chain, link 4, is depicted in Figure 9. This link involves the processor
completing the request submitted.

T OpSs

e Complete

* .
. .~

Processor

. .
.

e Record Job .
Completion e Complete

Request

(uid, amt) \

" @ Complete

Figure 9: Link 4

The Processor handling the request performs its Complete operation. For the processing of the
request to be complete, the timeRemaining of the processor must be equal to 0. The Complete
operation of the Request is triggered, then jobs is reset to being empty.

_ Processor

jobs : P Request
timeRemaining : Z

_ Complete
A(jobs)

time Remaining = 0
dr, 1" : Request o v € jobs
r.Complete

jobs' = &

The Complete operation of the Request passes out the uid of the request, as well as the amount
(amt) owing for the request. If the request has been preempted then the charge is 0, otherwise
it is equal to the processing time taken multiplied by the cost for that type of request (cost, like
time is a function, which returns the charge per nanosecond for the type of request involved—
again, for the definition of cost see Appendix B).



_ Request

_ Complete
uid! : Userid
amt! : N
wid! = wid

preempted = amt! = 0
= (preempted) = amt! = time(pri) * cost(type)

The completion of a request is handled within the OpSys via the ® Record Job Completion
operation. This operation updates the account information of the user submitting the request,
and adds the charge associated with the request to the existing total. The wid and amt involved
are received as inputs, and are equal to those which were passed out by the Request. Complete
operation triggered by the processor’s Complete operation. To ensure that the wid and the
amt passed out from the Request. Complete operation are the ones received by the ® Record Job
Completion operation, these operations occur in parallel. This is coordinated at the OpSys level
by the Complete operation.

— OpSys

accounts : Userld + N

® RecordJobCompletion = uid? : Userld; amt? : N o
accounts’ = accounts @ {(uid?, accounts(uid?) + amt?)}

Complete = p : procs e p.complete || ® RecordJobCompletion

4 Conclusion

The work reported in this paper is a result of an extensive action research project undertaken
at the Western Australian Department of State Services. The main aim of this project was
to evaluate and enhance an information systems development methodology (FOOM) originally
described in Swatman & Swatman (1992). One difficulty addressed within this project was
the validation of formal (Object-7) specifications by clients expert in neither mathematics nor
object-orientation. The diagrammatic notation described within this paper—an extension to
Henderson-Sellers and Edwards” MOSES notation which explicitly describes the manner in
which the interactive and cooperative behaviour of components supports system level observable
behaviour—was found to have a significant favourable impact on this process.

In this paper we have presented an argument that the perspective offered by the event chain
notation is valuable within the process of validating object- oriented systems requirement mod-
els. We have demonstrated, in the context of our development methodology, how we utilise
this notation to assist user acceptors to investigate and, thus, validate mathematically formal
requirements specifications written in Object-Z.

While, in our approach, the Object-Z specification is the definitive statement of requirements
to which the eventual implementation is required to conform, the event chain notation is clearly
applicable more generally. Indeed, the event chain notation may be applied as an extension



to a broad range of object- oriented requirements notations with minor modifications to the
concrete icons.

In further work, we are investigating the (semi-) automatic generation of diagrams in the MOSES
notation (with the extensions presented here) from specifications in Object-Z; and to the de-
velopment of an analyst’s workbench which supports the use of our development methodology
within the information systems domain. Once a prototype of this tool has been implemented,
we intend to conduct a series of field studies to further evaluate both FOOM generally and,
more specifically, the event chain notation.
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A A Brief Introduction to Object-Z

The specification language Z (Spivey, 1989) developed at the Oxford University has been ex-
tended at the University of Queensland (Duke et al., 1991b) with the object-oriented concepts
of Class and Instance. Here, we will introduce features of the language which are used in the
simplified operating system specification presented in the main body of this paper. A number
of textbooks introducing Z are available, including (Diller, 1990), though there are, as yet, no
textbooks concerned with Object-Z.

When specifying using Object-Z, one must first identify the components (or objects) which,
together with their interactions, comprise the system. The behaviour of each class of object
identified is then specified by means of a Class Schema:

__ StaffMember

We begin by defining constants which apply to each instance of this class. In this
case, any members of the class StaffMember will have maz Years associated with
them. mazYears will be constant for any particular StaffMember but may vary
from StaffMember to StaffMember. maz Years has been declared to be of type N,
that is, maxYears is a natural number—in the set {0,1,2,3,...}.

‘ max Years : N

The following (unnamed) box is called the State schema and, above the line,
contains variables which will represent the internal state of each instance of the
class. As each instance of the class passes through its “life” the values of these
variables and, thus the internal state of the instance, will change. Below the line
in the State schema, we describe constraints on what we consider to be valid
StaffMembers—in this case that no staff member may be on staff for longer than
the period max Years which was set when s/he joined.

name : NAMFE
department : DeptName
yearsService : N

yearsService < mazx Years

In the following box, INIT, we describe the condition which must hold for a
StaffMember to be in his/her initial state—in this case, that initially s/he has
completed no service.

INrT
liyearsS ervice = ()




Each schema below represents an operation which objects of this class may perform.
In each Operation schema variables are declared above the line and predicates,
which constrain the relationships between the variables, are set out below the line.
The object may only be manipulated by means of its operations—its state should
not be altered directly, though interrogation of the state variables is allowed.

It is sometimes useful to declare operations which are used by other operations
within the object, but which may not be invoked directly by other objects within
the system. These auxiliary operations, called Framing schemas are distinguished
from ordinary operations by the initial letter ®.

__Join

The first line lists those state variables which this operation may alter—in this
case, name and department. State variables which have not been named in the
delta list remain unchanged.

We include the initial condition schema INIT here which adds the condition
which was defined in INIT to the condition which we define here—in this case
we strengthen the precondition for this operation (only people who have no
years of service can join).

Information which is passed in from the outside world when the operation is
called have the suffix “?”.

Information which is to be passed out of the object when the operation is called
is given the suffix “1”

A(name, department )

newPerson? : NAMFE

newDepartment! : DeptName

We define the state of the StaffMember object after undergoing the join oper-
ation to have the input name and to have been assigned to some department.
Variables after the operation are distinguished from those before the opera-
tion by the decoration '—for example, name’. Operations may be more or
less deterministic as desired. In this example we set name’ deterministically,
but allow department to take any (valid) value, then report the value set in

newDepartment!, the output variable.

name’ = newPerson?

department’ = newDepartment!

In the specification of the Join operation, newPerson? was declared to be of type NAMFE
and newDepartment! of type DeptName. Only a limited number of types are predeclared in
Object-Z—typically, the well known mathematical sets such as N, the Natural Numbers. We
can, however, define new types. In the case of Name and DeptName our interest is not in the
form which these types may take but, simply, in the existence of a set of things which can
be considered to be NAMFs and a set of things which can be considered to be DeptNames.
Object-Z allows us to declare the existence of such types in the following way (though, strictly,
such type declarations should be made before they are used):

[NAME, DeptName]

In addition to its use of schema boxes, Object-Z makes use of many symbols drawn from the
world of formal logic and mathematics. The most important symbols are set out in Figure 10.
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Figure 10: Notation for Specifications in Object-7




Typically, we build up system specifications by combining schemas. For example, we can model
a very simple personnel system as follows:

— PersonnelSystem

No constants this time.
The personnel system is just a set of StaffMembers—initially an empty set.

employees : P StaffMember

_INrT
employees = @

We can now specify an operation which allows a person to join the company. We
have declared input variable newPerson? and output variable newDepartment!.
These variables are identified with the variables of the same name in the StaffMem-
ber’s Join operation when we make the statement s.Join. As a consequence, a
Join operation occurring at the system level means that the Join operation occurs
to the StaffMember called NewPerson (who is not already an employee) and the
newly Joined StaffMember becomes a member of the set which comprises the
employees recorded in the system.

__Join
A(employees)
newPerson? : NAME

newDepartment! : DeptName

Js,s": StaffMember o s & employees
s' & employees
s.Join
employees’ = employees U {s'}

To complete our rather trivial system, we define an operation which allows employ-
ees to leave the company. This operation illustrates one of the advantages of a
formal specification language over a programming language. We do not need to do
any housekeeping. When an employee leaves service, we don’t care about him/her
any more and this is mirrored in our specification. The employee leaves service
when s/he is removed from our set of employees—and that’s all we need to say.

_ Leave
A(employees)
leaver? : NAME

leaver? € employees

employees’ = employees \ {leaver?}




B Specification Functions

This appendix contains the definitions of the types and functions used within the example
operating system specification provided in Section 3.

To begin with, Userld and Procld are given types which are used to identify users and processes,
respectively:

[Userld, Procld]

Each Request and Queue within the system has a LoginType, which will be either ONLINFE or
BATCH:

LoginType ::= ONLINE | BATCH

Each Request and Queue within the system will also have a PRIORITY associated with it. As
there are only two possible priorities within the system, PRIORITY contains 1 and 2.

PRIORITY == {1,2}

There are three functions used throughout the operating system specification—time, cost and
HighestPriority. Time associates every PRIORITY with a natural number, which represents
the number of nanoseconds of processor time required by a request of that PRIORITY . Specif-
ically, a priority of 1 returns the number 3 (i.e. 3 nanoseconds) and a priority of 2 returns the
number 4 (i.e. 4 nanoseconds). Cost associates every LoginType with a natural number, which
represents the cost per nanosecond of processor time for requests submitted by users logged
in with that LoginType. Specifically, ONLINF requests cost $3 per nanosecond and BATCH
requests cost $2 per nanosecond.

time : PRIORITY — N
cost : LoginType — N

time(1) = 3 A time(2) = 4
cost(ONLINE) = 3 N\ cost(BATCH ) = 2

Lastly, HighestPriority returns the Queue in the system with the highest priority. Empty
Queues are discounted. Any ONLINE Queue has precedence over any BATCH Queues. Queues
with a PRIORITY of 1 have precedence over those with a PRIORITY of 2, within the same
type—i.e. a priority 1 BATCH Queue has precedence over a priority 2 BATCH Queue, but
not over a priority 2 ONLINE Queue.

HighestPriority : PP Queue + Queue

YV Q : P Queue, q : Queue o ¢ = HighestPriority(Q) =
q€@
- gt
((q.type = ONLINE A
By Q o (= (quinit) A
¢1-type = ONLINFE A
q.pri < q.pri)) V
(q.type = BATCH A
By Q o (= (quinit) A
(q1.type = ONLINE v
qi.pri < q.pri))))




