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Analytically parameterized solutions for robust quantum control using smooth pulses
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Achieving high-fidelity control of quantum systems is essential for realization of a practical quan-
tum computer. Composite pulse sequences which suppress different types of errors can be nested
to suppress a wide variety of errors but the result is often not optimal, especially in the presence
of constraints such as bandwidth limitations. Robust smooth pulse shaping provides flexibility, but
obtaining such analytical pulse shapes is a non-trivial problem, and choosing the appropriate pa-
rameters typically requires a numerical search in a high-dimensional space. In this work, we extend
a previous analytical treatment of robust smooth pulses to allow the determination of pulse param-
eters without numerical search. We also show that the problem can be reduced to a set of coupled
ordinary differential equations which allows for a more streamlined numerical treatment.

I. INTRODUCTION

The main difficulty hampering the efforts to build a
large scale, practical quantum computer is decoherence.
Quantum error correction codes provide a promising path
toward fault-tolerant quantum computers. However, a
typical surface code requires access to quantum gates
with a fidelity above 99%, and significantly higher fideli-
ties are desirable to reduce overhead. Achieving high gate
fidelities in a noisy device requires carefully designed ro-
bust control fields.

Robust composite pulse sequences [I], which generalize
Hahn echo [2] and Carr-Purcell-Meiboom-Gill (CPMG)
B, 4 sequences to implement non-trivial unitaries, are
effective for suppressing slow noise or calibration errors
which remain constant during the gate time. Various
pulse sequences have been developed to suppress either
pulse length errors or off-resonance errors [I]. However,
in some systems, such as spin qubits in silicon [5HI] or
GaAs [10, [II], noise is present in some combination of
the two forms, which requires nesting these sequences
[12] or using specialized pulses [I3HI5]. Such methods are
often designed with square pulses in mind, although they
can be modified to use smooth ramping profiles [14} [16].
However, the finite bandwidth of a physical control field
may be more naturally accommodated by robust smooth
pulses [T7H20]. These smooth pulses have an analytical
form, but with free parameters that must be chosen to
produce the desired unitary while satisfying robustness
constraints, and this usually requires a numerical search
in parameter space.

In this paper, based on the approach of Ref. [I§], we
derive a completely analytical family of robust smooth
pulses which eliminates the requirement of numerical pa-
rameter fitting. We also cast the problem of finding a
robust smooth pulse which implements a particular uni-
tary into a set of coupled ordinary differential equations
(ODEs), which can be solved by using standard numeri-
cal solvers. We provide explicit examples of robust pulse
shapes along with their filter functions.

* utkan@Qumbc.edu

Although our focus here will be on a two-level sys-
tem, the physical context is not necessarily limited to
one-qubit problems. Indeed, these solutions can be
used to implement robust gates in SU(2) C SU(4) or
SU(2)xSU(2) C SU(4) subgroups, targeting local rota-
tions or non-local controlled-phase gates in a silicon dou-
ble quantum dot setup [I6] or in superconducting qubits
with fixed coupling [21].

The structure of this paper is as follows. In Sec. [[T} we
present a brief summary of the analytical formalism of
Barnes et al. [I8] on which this work is built. In Sec.
we show how to choose symmetric auxilliary functions
and their parameters without resorting to a numerical
search, and we present the resulting pulse shapes and fil-
ter functions. In Sec.[[V] we show how to efficiently gen-
erate robust pulse shapes by introducing auxilliary ODEs
and incorporating the desired rotation angles and robust-
ness constraints as local boundary conditions rather than
nonlocal integral relations. We then conclude in Sec. [V]

II. BACKGROUND

We first review robust smooth pulses for a one-qubit
system, adapted from Ref. [I8] to our use cases. We
consider the two-level Hamiltonian

H = Q(t)o, + o, (1)

where Q(t) represents the driving field, and B=pB+6831is
the energy splitting with non-Markovian fluctuations § 3.
This Hamiltonian appears in various systems including
solid state spin qubits. In the absence of noise, the time
evolution operator U(ts;0) at t = ¢; can be parametrized
in terms of an auxilliary function ® in the following way

[18]:
Ulty) = Xe_(xp)—e xnZoaxs Xe_(xp+er ) (2)

where X, (Z,) denotes a rotation around the x— (z—)
axis of the Bloch sphere by angle v and £ is related to
the control field 2 through the relationships

Ex(xy) =P(xs)F (3)

senl@' () avcsee (/14 /() sin(2x ) ).
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sinhv(y) =%’ () sin(2x), (4)
Q(t) =Qx(t)) = Sinéx)ax[tanhv(x) sin(2x)],  (5)

and y is a function of time through the relationship
X
Bt = h/ dx cosh v(x). (6)
0

We have used the notation x; = x(t;). Note that by
choosing the free function ® appropriately, one can gen-
erate a desired evolution operator and solve for the cor-
responding control field. The initial condition U(0) = 1
implies ®(0) = ®'(0) = 0.

The time-evolution becomes robust against quasistatic
noise in 8 when the following conditions are satisfied [18]:

Xf ‘
sin(4xr) + 8/ dy sin?(2y)eZP0)=®0l = (7)
0

Xf

; dxsin?(2x)®'(x) =0.  (8)

The real and imaginary parts of the left hand side of
Eq. are proportional to first order variations dgx(t¢)
and dgx(tr), respectively, and the left hand side of Eq.
is d,¢ () 18]

The second condition is automatically satisfied for any
driving pulse that is antisymmetric: When ®(y) is an
even function, Eq. is odd in Xy, so for any choice of
®(x) on the interval [0, xs], or correspondingly, Q(¢) on
[0,4], one can construct a rotation robust against dg&(ts)
by extending the evolution to the interval [—t;,t;] with
Q(t) at negative times defined by enforcing antisymme-
try. One can show that the resulting robust rotation on
the Bloch sphere is by an angle § = 4xy around an axis
cos(¢p)Z + sin(¢)g where [18]

1
\/1 + [®(xy) Sin(QXf)]Q.

When the bandwidth on the control field (¢) is limited
such that it cannot be turned on or off quickly (when
compared to the timescale 7i/€(t)), one can furthermore
require that Q(t) also vanishes, which can be viewed as
an additional condition on ®”(x ) [18].

The first of the robustness conditions, the complex-
valued Eq. @, however, cannot be as trivially satisfied.
When targeting an arbitrary rotation, it is possible to
find solutions by starting with an ansatz for the auxil-
liary function ®(x, a) with sufficient degrees of freedom
encapsulated as a, and use a numerical search to find a;
which would satisfy the robustness conditions while at
the same time producing the desired rotation [I§]. For
the special case of x; = nn/4, analytical solutions were
given in [I8]. In the next section, we show how to satisfy
Eq. analytically for an arbitrary unitary.

cos ¢ =

9)

IIT. ANALYTICAL SOLUTIONS TO THE
ONE-QUBIT ROBUSTNESS CONDITIONS

Within this section, we assume that Eq. will be
satisfied by doubling the interval to [—xy, x¢] and using
symmetry as discussed above. Thus, we only need to
focus on satisfying Eq. . This will ensure that the
strength of the leading order noise term in the time-
evolution operator vanishes at the final time, which is
parametrized as xy. We notice that this needs to hold
only at the final time, and not necessarily at other times,
so we introduce a complex valued function e(x) which
has the same functional form as the robustness condition
as

. X . —
tan(2x)e(x) = sin(4y)e ) 4 8/ dy sin?(2y)e? (0,
0
(10)
In terms of €(x), the robustness condition translates into

a boundary condition at the final time: e(x;) = 0. By
making a variable transformation

X . —
Elx) = / dy sin2(2>2)62’®(’<), (11)
0
Eq. can be expressed in a simpler form
E'(x) + 4tan(2x)E(x) =¢(x)/2 (12)
which has the solution

£00 = eos’(2x) [yl = R0
o 2 cos?(2Y)

(13)

where we have defined new variables R(x) and a(y) re-
lated to the amplitude and phase of the integral. By
differentiating both sides of Eq. 7 using Eq. 7 and
dividing by sin®(2), we obtain

_ R0 + RO () — o’ 00)] (14)

et (x)
2
sin®(2x)

For a given «a(x), solving the real and imaginary parts of
Eq. for R(x) and ®(x), respectively, gives

R(x) = / ¥ iy cos(a(x)) sin(20)°. (15)
¥00- 1 [a'm N Si“(“(?i?ii“ 2v)

At this point, we have reparametrized the solution of
the Schrédinger equation in terms of a function «a(x) in-
stead of ®(x), and showed how it would be related to
®(x) of the original parameterization. The advantage
of this reparametrization is that the robustness condi-
tions simplify into local boundary conditions for «(x) as
opposed to nonlocal robustness conditions on ®(y), as



we will show shortly. Furthermore, the problem is an-
alytically solvable when «(x) is chosen in such a way
that cos a(x) sin?(2x) is integrable. A better alternative,
however, is to consider R(x) as the independent variable,
which in turn defines a(y) through its derivative.

Before going into the robustness conditions, though,
we note that the condition ®(0) = 0 simply corresponds
to a vanishing integration constant in Eq. However,
the condition ®'(0) = 0 requires special care: since the
denominator vanishes in the limit y — 0 (and possibly
at other points, depending on the choice for a(x)), we
impose sin(a(x)) = 0 at these points to avoid any singu-
larities. This is a stronger condition than requiring that
the strength of the control pulse |[Q(x)| remains finite,
but leads to a simpler set of constraints.

Finally, we can state the robustness condition, e(xs) =
0, in terms of a(x) and R(x) by noting that

Re (00200 ¢(y) ) =2[4R(x) tan(2x) + cos(a(x)) sin®(2)];

Im (em(X)_Q@(X)e(X)) =2sin(a(x)) sin?(2x). (16)

At x = xy, for a generic value xy (recalling that it is one
of the Euler angles of the final rotation and hence should
not be restricted), these relations reduce to

n

8

obv)=nr Rl = Tl sinay), (1)
where n is any integer.

At this point, we remark that even when we treat R(x)
as the parametrizing function of the problem, it can-
not be chosen arbitrarily, because Eq. [I3] implies that its
derivative must be a function within [—1, 1] at all times.
Furthermore, the robustness condition Eq. for a(x)
translates into a boundary condition on R’(x)/ sin?(2x).

The relation between the phase, a(x), and the ampli-
tude R(x) can be slightly simplified by introducing a new
variable u(x) = 4x — sin(4x) and define B(u(x)) = a(x),
such that R(u) = fou du cos f(u). Using u = u(x) instead
of x as the “independent” parameter is not essential and
working with R(x) is equally possible and will be used
in Section [[V]when finding solutions numerically, but we
find it convenient when looking for analytical solutions.

Under this reparameterization, ®’(x) simplifies to

w00 = |- 1R/§§')<u)2+ 17_35;(U)2 - (18)

And the problem of finding a robust unitary reduces to
picking a function R(u) which satisfies the following or-
dinary relations:

R (u) € [—1,1] (19)
by construction, and

R'(u=wus)==%1, R(u=uys)==Esin(4dxs) (20)

for robustness, and finally Eq. [0} or equivalently

tan?p = lim —16sin®(2y)sgn[R’ (v)]R" (u),  (21)

X—7Xf

for targeting the unitary
U(@, ¢) _ e—ig(cos $0,+sin goy) (22)

where 6 = 4xy. The first boundary condition above,
R'(uw = 0), is required to ensure ®'(y — 0) (hence the
driving field) remains finite, since the denominator R (u)
in Eq. vanishes, and the remaining two follow from
robustness requirement.

Finally, Q(x) is an odd function when R(u) is also odd,
which ensures that the second of the robustness condi-
tions in Eq. [8] is satisfied when pulsing in a symmetric
time interval.

A. Examples

Q(t)
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FIG. 1. (Color online) (a) Pulse shape Q(x(¢)) (in units of
B) which implements a § = —n/2 rotation around the axis
n = (cos @, sin¢,0) with ¢ = 7/9. (b) Comparison of the
leading order filter functions for the robust gate against a
naive implementation using Unaive (t)-

As an example, consider the following even function:
2 4
R'(u) = ag + a1 cos <7ru> + as cos <7ru) . (23)
uy uy

which is trivially integrable, and R(uy) is simply given
by apus since oscillatory functions integrate to zero at
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FIG. 2. (Color online) (a) Pulse shape Q(x) (in units of

B) which implements a § = —n/4 rotation around the axis
n = (cosP,sin¢,0) with ¢ = n/4. (b) Comparison of the
leading order filter functions for the robust gate against a
naive implementation using Unaive(t)-

the final time. And by letting ag = —sin(4xs)/us and
as = 1 —ag — a1, we meet all the robustness conditions
in Eq. 20]

We can target, say, a § = 4x; = 2m — 7/2 rotation
around the axis given by ¢ = 7/9 using Eq. which
corresponds to the choice a; ~ 0.3244. From Eq. [6]
we find the total gate time is ¢t; ~ 9.84h/8. The re-
sulting pulse shape is shown in Fig. [[] Similarly, for
0 =21 —3w/4, ¢ = 7/4, we find a; = 0.4767 and obtain
ty ~ 6.38h/3 (Fig. . When using this ansatz, targeting
other unitaries may require additional 27 windings in 6.
The minimum number of additional windings required for
targeting an arbitrary unitary U(6, ¢) is shown in Fig.
Overall, these pulses require a bandwidth of ~ 1008/k
when targeting fidelities above 99.99%.

It is possible to impose additional constraints, such
as Q(ty) = 0 to soften the tail, using this form of
ansatz, although this requires adding higher harmonics
with free coefficients of the form a,, cos(2mmu/uy) lead-
ing to sharper peaks in the pulse shape.

B. Filter function

The smooth pulse is designed to cancel quasistatic
noise, i.e., noise that is constant during the gate dura-
tion ¢ € [—ty,tf]. In practice, the noise strength may
also drift during the pulse. For instance, in the context

0.5

0.0

FIG. 3. (Color online) Accessible unitaries U(6+27n, ¢) when
using the ansatz from Eq.[23] The minimum number of ad-
ditional windings to target the unitary, n, is color coded, up
to n = 10. White regions either require n > 10 or cannot be
implement with this ansatz.

of the double quantum dot setup in [16], Q(¢) corresponds
to the ESR driving amplitude and S error corresponds to
exchange error induced by charge noise, which typically
has a 1/f power spectral density (PSD). When the noise
is sufficiently weak such that the error Hamiltonian H, ()
satisfies || j;tof dtH(t)|| < 1, the average susceptibility of
a quantum gate to time-dependent noise can be charac-
terized in a perturbative manner. In this approach, the
leading order error in noise-averaged fidelity is given by

13
]-'zl—ﬁZ/

i,j=1"7°°

oo

Fy(w)

dw
5 i (W)= 5 (24)

where S(w) and F'(w) respectively characterize the noise
and control, and are related to the error and control
Hamiltonians (H. = 600, and H. = Q(t)o, + Bo, in
our case) as follows. The filter function, F(w) is given by

F(w) = [Rw)R'(w)]" (25)

where Ry (w) = —iw fttof dtRi(t)e™? and R(t) =
Ad(U(t;10)) = tr(ouU(t;to)o;UT (t;t0))/2 is the adjoint
representation of the time-evolution operator [16] 22].
Si;(w) is the power spectral density given by Fourier
transforming the correlation between the coeflicients of
0; and o; terms in the noise Hamiltonian H.. In our
particular case, only S,,(w) is non-zero and is given
by the Fourier transform of the autocorrelation function
Cilt) = (5B(1)3B(0)).

We have numerically evaluated the filter functions cor-
responding to the gates obtained by the control pulses



given in Figs[l] and 2] in a symmetric time interval from
—t¢ to ty. We compare their filter function to that of a
naive pulse

t+t
Unaive (t) = exp | —i6 ;_t ! (cos ¢y + sin ¢oy) (26)
f

which also implements the same unitary in the same
amount of time. The results are shown in Figs[I] and [2}
The robust gates suppress the low frequency noise much
better than the corresponding naive gates, although they
are more susceptible to noise at frequencies on the order
of inverse gate time, w ~ 1/t;. Thus the dynamically
corrected gates (DCGs) tend to lead to higher fidelities
when the noise power is concentrated at frequencies lower
than w ~ 1/ty.

IV. ROBUST PULSE SHAPES AS SOLUTIONS
OF COUPLED ODE SYSTEMS

In this section, we show that the problem of finding ro-
bust pulse shapes can be converted into a set of coupled
ODEs. This allows finding more general solutions, which
are not restricted to antisymmetric pulse shapes, by us-
ing standard ODE solvers in a straightforward manner.
This method still avoids any search over parameters, and
yields solutions very quickly.

We first make a change of variables to ensure that
denominator in Eq. never vanishes for y > 0. A
straightforward way of achieving this would be to ensure
that the integrand of the denominator is always positive
(or negative), which can be achieved by defining yet an-
other function, v(x), such that

Atanh(y(x)) = a(x),

In terms of vy(x), the robustness conditions then become

7(0) =0, ~(xs) = tanh™'(a(xy)/A), 7' (0)=0
(28)

/2> A>0. (27)

and we can solve for the second condition in Eq. by
considering a differential equation

G'(x) = cos(A tanh(y(x))) sin*(2x), (29)
subject to boundary condition
1 .
G(xs) = —g cos(alxs)) sin(4xys). (30)

This function must also satisfy
G0)=0 (31)

since R(0) = 0.
The rotation axis defined by the angle ¢ can be im-
posed via a boundary condition on a(xy), using Eqns.

@D and which gives:
O/(Xf) = 2tan(¢)/sin(2x ). (32)

0.100¢
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(b) 0.5 1 5 10 50 100 /ﬁ

FIG. 4. (Color online) (a) The robust pulse shape Q(x) (in
units of 3), which implements a § = 97/5 rotation around the
axis n = (cos ¢,sin ¢, 0) with ¢ = —7n/5. (b) Comparison of
the leading order filter functions for the robust gate against
a naive implementation using Unaive(t).

We can also impose the condition that the pulse Q(y)
should vanish at the end by imposing a boundary con-
dition on o(xf). We can see that by explicitly writing
out this condition Q(xs) = 0 using Eq. (5):

D" (x5) = — 49’ (xy) cot(2xs) — [®'(x )]’ sin(4xy).
(33)

Since ®'(xy) = o/(xs)/2 and "(xy) = [o"(xy) —
40’ (xf) tan(2x¢)]/2, this can be seen as the defining con-
dition on o (x ).

These two boundary conditions on the first and second
derivatives of a(x ) can readily written as corresponding
boundary conditions on the derivatives of v(x), as

’ _ a/(Xf)
V(Xf) A(l—aigéf))
V(xs) =2 alxy)o’ (xs)? a”(xr) (34)

() (- =)

As an example, we solve for the robust pulse imple-
menting a U(0 = 97/5,¢ = —n/5) using the auxiliary
equation

cOfy(t) + 9Fy(t) = 0 (35)

with the choice ¢ = 300, A = 7/2 and n = 0. The pulse
shape and the corresponding filter function are shown in



Fig.[dl Compared to the analytical pulse shapes based on
the ansatz Eq. we note that this particular auxiliary
differential equation leads to numerical solutions which
are sharper and take longer time to perform. However,
the advantage of the numerical solutions are that they
are more flexible in terms of ansatz and allow targeting
arbitrary unitaries.

V. CONCLUSION

We have shown that it is possible to obtain robust
quantum gates using smooth pulses in a completely an-
alytical fashion, which only requires finding a bounded
function satisfying certain local boundary conditions, at
initial and final times. This eliminates non-local condi-
tions which necessitate a numerical search over auxiliary
parameters [I8] [I9]. Furthermore, we have shown that
the problem can also be converted to a set of coupled
ODEs, which further eliminates the search for such a
bounded function and yields solutions very quickly us-
ing standard numerical ODE solvers. Although the pre-

sented pulse shapes tend to have narrow peaks, this is
due to the simple choices of ansatz and not a fundamental
limitation of our approach. Although our work assumes
an SU(2) algebra, we again emphasize that our results
can be applicable to two-qubit scenarios which exhibit
that structure. For instance, in 2®Si quantum double
dots [16] or superconducting qubits [21] with an always-
on coupling, the Hamiltonian decouples into two SU(2)
problems, and when the qubits can be addressed sepa-
rately, each SU(2) subspace can be controlled separately.
Our robust smooth pulses can then be used to suppress
exchange noise and eliminate crosstalk while targeting a
desired two-qubit unitary.
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