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The Federal Aviation Administration has several tools in its arsenal to manage traffic flows. However, it
is very difficult to assess with certainty the impact of traffic flow management procedures such as
Time-Based Flow Management (TBFM) or Traffic Management Initiatives (TMI) on airport perfor-
mance because operational data are not readily available to analysts. This study uses the case of Fort
Lauderdale—Hollywood International Airport (FLL) where traffic flow management procedures have
been implemented to manage a reduction of airport capacity due to runway constructions. Based on
an Autoregressive Conditional Duration (ACD) model, the analysis shows that the use of traffic flow
management procedures contributed to reducing the volatility of interarrival duration whether sep-
aration relies on time-metering (TBFM) or distance between aircraft (TMI). The lessons learned from
this case study may have important implications for airports whose available capacity is severely
constrained.

Traffic management initiatives

Published by Elsevier Ltd.

1. Introduction

The autoregressive conditional duration (ACD) model was
originally developed by Engle and Russell (1998) to analyze time
durations of traded stocks and to understand irregularly spaced
transaction data. According to Washington et al. (2010:224),
“duration models are concerned with the time elapsed until the
occurrence of an event or the duration of an event.” ACD represents
a particular class of dependent point processes since the condi-
tional mean duration changes as a function of past durations over
time.

In this article, ACD is applied to interarrival durations between
aircraft at the final fix to test the hypothesis of whether traffic flow
management procedures such as traffic management initiatives
(TMI) and the increased use of time-based flow management
(TBFM) have had a significant impact on interarrival durations

* This article does not represent the official opinion of the Federal Aviation
Administration.
E-mail address: tony.diana@faa.gov.

http://dx.doi.org/10.1016/j.jairtraman.2014.11.002
0969-6997/Published by Elsevier Ltd.

when comparing the peak travel months of December
2009—January 2010 (Period 1) with December 2012—January 2013
(Period 2) at Fort Lauderdale—Hollywood International Airport
(FLL). These time periods reflect pre- and post-runway construc-
tion. In fact, runway 9L | 27R has been closed from April 2012
through the time of this writing for widening and extension. It is
expected to be operational in September 2014 and renamed as 10 R
| 28 L. In May 2013, runway 13 | 31 was decommissioned. Despite
runway closure and construction, FLL has been the busiest single
runway airport in the U.S. with an average of 768 daily operations in
Period 2 compared with 807 in Period1.! The runway configuration
chart is provided in the Appendix for reference.

FLL provides an interesting case study with important opera-
tional and policy implications for the efficiency of the National
Airspace System (NAS). Although airports are different based on
runway configurations and traffic volume, it is important for avia-
tion practitioners to understand how the experience of FLL with
TBFM and TMI can be applied to other airports whose capacity can

! Source: OPSNET (http://aspm.faa.gov).


Delta:1_given name
mailto:tony.diana@faa.gov
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jairtraman.2014.11.002&domain=pdf
http://aspm.faa.gov
www.sciencedirect.com/science/journal/09696997
http://www.elsevier.com/locate/jairtraman
http://dx.doi.org/10.1016/j.jairtraman.2014.11.002
http://dx.doi.org/10.1016/j.jairtraman.2014.11.002
http://dx.doi.org/10.1016/j.jairtraman.2014.11.002

220 T. Diana / Journal of Air Transport Management 42 (2015) 219—225

be severely constrained. At many facilities, the use of TBFM is
usually sporadic and related operational data are not readily
available. However, interviews of the airport operators and FLL
tower management have revealed that TBFM has consistently
helped the airport cope with sustained demand in the face of a
drastic reduction in available airport capacity.’ The airport lost
31.2% of its average daily capacity® between the two periods during
the hours of 07:00 to 21:59 local. Modeling the pace of interarrival
durations is of great significance to airline and airport operators:
The former are interested in maintaining schedule adherence,
predictable operations and reduced fuel burn. The latter are con-
cerned with balancing demand with available airport capacity in
order to minimize delays. Finally, as part of the Next Generation Air
Transportation System (NextGen) portfolios of capabilities, TBFM is
intended to improve the management of traffic flows from the en-
route domain to the runway and to tactically adjust capacity and
demand imbalances. NextGen represents a set of initiatives
designed to transition the existing ground-based, air-traffic-
controlled system into a satellite-based, air-traffic-managed
airspace.

2. Traffic flow management tools

Air traffic controllers can regulate traffic flows either with TBFM
or TML In the former case, air traffic controller separates aircraft
using time-based metering. In the latter case, aircraft are separated
mainly on the basis of distance such as miles-in-trail.

The Federal Aviation Administration (FAA) defines TBFM as “the
technology and methods of balancing demand and capacity uti-
lizing time”.* TBFM is a technique designed to control aircraft flows
by scheduling the time at which each plane should cross a pre-
determined meter reference element (MRE) such as an outer meter
arc, a meter fix/arc, a final approach fix, and/or a runway threshold.
A fix is essentially a geographical position that serves as point of
reference in the course of a flight. TBFM has been primarily
designed (1) to improve traffic flows into the Terminal Radar
Approach Control (TRACON) facilities, (2) to minimize delays in the
TRACON, (3) to smooth arrival throughput, (4) to help a facility
manage its available capacity more effectively, and (5) to reduce a
facility's dependence on miles in trail (MIT). The meter arc is a
semicircle, equidistant from a meter fix, to help determine a meter
time.

According to the FAA, “Traffic Management Initiatives (TMIs)
are techniques used to manage demand with capacity in the
NAS [National Airspace System]”.> TMIs include procedures
such ground delays, miles-in-trail, minutes-in-trail, altitude
capping, airspace flow programs, and closed routes, among
other tactics.

2 “Less Delay to Sun n' Fun with NextGen at Fort Lauderdale”, NextGen Perfor-
mance Snapshots, Federal Aviation Administration, June 2014, retrieved at http://
www.faa.gov/nextgen/snapshots/stories/?slide=33.

3 The available airport capacity is measured as the sum of airport arrival and
departure rates. Source: ASPM (https://aspm.faa.gov).

4 Retrieved from the Federal Aviation Administration, Air Traffic Organization
Policy Notice, NJ07210.797, December 29, 2011, http://www.faa.gov/
documentLibrary/media/Notice/N7210.797.pdf.

5 See FAA Order JO 7210.3X of February 9, 2012 available at http://www.faa.gov/
air_traffic/publications/atpubs/fac/1706.html.

3. Methodology
3.1. Model assumptions

The time interval between arrivals represents the variable under
investigation. ACD models are appropriate when durations be-
tween arrivals have the following characteristics:

e They are not fixed intervals

e They are likely to vary as a function of diurnal patterns such as
peak hours

e They may be affected by stochastic events such as thunder-
storms, and

e They are serially autocorrelated since interarrival durations at
period i—1 may affect those at period i.

Interarrival durations also feature temporal dependences
likely to vary with fleet mix and wake vortex separation re-
quirements. The spacing of aircraft, like financial transactions in
the Engle and Russell model, conveys some meaningful infor-
mation about en-route and terminal area congestion, available
airport capacity, preferences for tactical tools (TBFM and TMI)
versus strategic tools (ground stops), and the use of arrival
metering, among others.

3.2. Data samples and variables

According to unstructured interviews of FLL facility staff and
subject-matter experts, traffic flow management procedures help
cope with sustained demand as the available airport capacity was
drastically curtailed. The intent of traffic flow management pro-
cedures is to smooth the delivery of aircraft to the runways. As the
use of TBFM and/or TMI increases, interarrival durations is likely to
feature less volatility in Period 2.

The number of sampled interarrival durations was 17,873 and
14,902 respectively in Period 1 and Period 2. A series of arrival-
based duration data were used to model the time intervals be-
tween arrivals (interarrival durations) at the final fix. The model
relies on the duration in minutes between two AZ messages from
07:00 to 21:59 (local). An AZ message determines the time of an
aircraft arrival in the Traffic Flow Management System (TFMS). AZ
messages for the selected flights originated from the Aviation
System Performance Metrics (ASPM) data warehouse.® The mes-
sages sent by aircraft are used to construct the flight trajectory.
Interarrival durations with less than 2 min and greater than
45 min were rejected. The minimum separation between two
aircraft was set to 2 min based on wake vortex minimum time of
separation.” A duration of 45 min between two aircraft would
indicate that incoming traffic may have been impacted by ground
stops at FLL.

6 The website is http://aspm.faa.gov.

7 Aircraft Wake Turbulence, Advisory Circular 90-23G, Federal Aviation Admin-
istration, February 10, 2014, retrieved at http://www.faa.gov/documentLibrary/
media/Advisory_Circular/AC_90-23G.pdf.
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Table 1
The model estimates.

Time period Estimates and t-value
) a 6
December 2009—]January 2010 0.6222 0.1039 0.8476
(11.22) (20.22) (106.05)
December 2013—January 2014 1.3273 0.1616 0.6876
(12.88) (19.86) (41.00)

All coefficients significant at 95% confidence level (pr < 0.0001).

3.3. The weibull autoregressive conditional duration or WACD(1,1)
model

The objective of ACD models is the modeling of irregularly
spaced and autoregressive times between events, especially for
high frequency data. The ACD models take into account the in-
tensity of interarrival duration and express the conditional expec-
tation of interarrival durations as an autoregressive relationship of
past interarrival durations. According to Hautsch (2004: 80), “the
basic idea of the ACD model is to (dynamically) parameterize the
conditional duration mean rather than the intensity function itself.”
In this study, a Weibull ACD(r,s) model was selected:

r S
Wim o+ D axig D 6% 1)

W; depends on r past durations and q past expected durations.
represents a constant term, o; the autoregressive coefficient for
interarrival duration and §; the autoregressive conditional estimate
for interarrival duration. The conditional mean duration is a func-
tion of lagged durations and their conditional expectations. In the
present case, r and s are equal to 1. The autoregressive form in
Equation (1) describes periods of clustered interarrival durations
such that shorter (longer) interarrival durations are followed by
longer (shorter) interarrival durations. If x; is the time duration
between arrivals i—1 and i at the final fix, then the conditional
expectations for times is

lI[l‘ = E[xl.‘xif‘lv Xi2y-ens xi—n} (2)

The probability density function (pdf) for the scaled times is x;/
W;. The scaled times are assumed to be independent and identically
distributed (i.i.d.) with x; = Wie;. The random variables ¢; are i.i.d.
with unit mean [E(e;) = 1]. The residuals & = x;/W; are called
standardized durations.

We assume that g; has a Weibull distribution with a density
characterized by the y parameter. The Weibull distribution was
selected because it is flexible: The Generalized Gamma and expo-
nential distributions are special cases of the Weibull distribution
that allows monotonically decreasing hazard functions. The con-
ditional density of the interarrival times is defined as follows

Foaws) = [(v/x)yiexp(-yy) withy; = [xr (1+v71) /wi]’
(3)

The estimates and t-values for the WACD(1,1) models were
derived using the MODEL procedure in SAS©.

8 The hazard function of the Weibull distribution is expressed as h(y|a) = «
[-T(1 + 1/a)]* y*~! with y > 0.

4. Findings and analysis

First, it is important to determine whether the selection of a
Weibull distribution is appropriate in the present case. Based on
Engle and Russell (1998), the test for the variance of the residual ;
is computed as.

N(T)
V8

The dispersion values for Period 1 (869.13) and Period 2
(525.61) suggests that there is excess dispersion and that the
distribution of ¢; is not likely to be exponential. This supports the
choice of the Weibull distribution for ¢; It is also significant to
remark that variance of the residual almost declined by half in
Period 2 compared with Period 1, which suggests less volatility in
the interarrival duration and, therefore, a better allocation of the
arriving aircraft to the runway. Since the Weibull shape param-
eter was respectively 1.2829 and 1.5074 in Period 1 and Period 2,
we conclude that the conditional hazard function is monoto-
nously increasing in the two periods. The persistence factor was
higher in the Period 1 (0.9515) compared with Period 2 (0.8492),
which implies more variability in interarrival durations in
Period 1.

Second, Table 1 compares the constant, the estimates for the
autoregressive coefficient for interarrival duration («), the autore-
gressive conditional estimate for interarrival duration (8) and and t-
values to test the hypothesis that the estimates equal zero, for the
two periods under consideration.

The t-values indicate that all the estimates are significant at a
95% confidence level. The model estimates can be used to
compute the expected adjusted interarrival duration: It was
12.83 min [0.6222/(1—0.1039—0.8476)] in Period 1 and 8.80 min
in Period 2, a change of 4.03 min. The expected adjusted inter-
arrival duration values confirm less volatility in Period 2 than in
Period 1 and, therefore, less clustering of interarrival duration as
intended by the use of traffic flow management initiative. It is also
important to note that the decline in volatility occurred as the
total volume of operations® decreased 7.2% in Period 2 (46,444)
compared with Period 1 (50,070). However, while the number of
air carrier operations increased 2.1%, air taxi and general aviation
operations declined respectively by 33.2% and 20.7% in a Period 2
over Period 1 comparison. One of the main challenges at FLL is the
significance of unscheduled general aviation traffic from the
Caribbean region.

Moreover, the sum of « and £ coefficients suggests the persis-
tence of interarrival durations is weaker in Period 2 (0.8492) than in
Period 1 (0.9515) and that the impact of new arrivals is dying off
more quickly in Period 2. Arrivals are more spaced in time in Period
2, which results in a smoother delivery of aircraft to the runway as
intended.

Third, Table 2 and Table 3 provide the autocorrelation (AC),
partial autocorrelation (PAC) and Q-statistics with the probability
to evaluate the model's goodness of fit. Autocorrelation measures
the correlation between observations at different times. The auto-
correlation coefficients organized as a function of separation in
time provides the sample autocorrelation function that serves to

V=

(Gei — 1) (4)

9 OPSNET is the source of information (https://aspm.faa.gov).
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Table 2
The autocorrelation, partial correlation and Q-Stat respectively for period 1.

Sample: 117873
Included observations: 17873

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

1 0.280 0.280 1396.7 0.000
2 0.247 0.184 2491.2 0.000
3 0.251 0.161 3621.0 0.000
4 0236 0.120 4615.0 0.000
5 0.228 0.100 5543.9 0.000
6 0233 0.099 6517.3 0.000
7 0.209 0.061 7298.3 0.000
8 0.193 0.042 7961.6 0.000
9 0.178 0.028 8529.7 0.000
10 0.179 0.035 9102.4 0.000
11 0.169 0.026 9613.6 0.000
12 0.151 0.009 10021. 0.000
13
14
15
16
17
18
19

==OEOOa(

0.135 -0.001 10348. 0.000

0.132 0.007 10662. 0.000

0.130 0.011 10962. 0.000

0.108 -0.009 11172. 0.000

0.097 -0.010 11342. 0.000

0.077 -0.024 11449. 0.000

0.078 -0.007 11558. 0.000
20 0.084 0.008 11686. 0.000
21 0.077 0.005 11793. 0.000
22 0.061 -0.009 11859. 0.000
23 0.050 -0.012 11904. 0.000
24 0.045 -0.009 11940. 0.000
25 0.052 0.007 11988. 0.000
26 0.038 -0.007 12014. 0.000
27 0.027 -0.014 12027. 0.000
28 0.021 -0.011 12035. 0.000
29 0.017 -0.009 12041. 0.000
30 0.021 0.001 12048. 0.000
31 0.017 -0.001 12054. 0.000
32 0.028 0.017 12068. 0.000
33 0.013 -0.002 12071. 0.000
34 0.018 0.008 12076. 0.000
35 0.020 0.008 12083. 0.000
36 0.010 -0.003 12085. 0.000

measure whether the series is random or not. For a random series,
lagged values are not correlated and the autocorrelation coefficient
is equal to zero. Partial autocorrelation plots are often used to
determine the order of the autoregressive model. Partial autocor-
relations measure the degree of association between various lags
when the effects of other lags are removed. The Ljung—Box Q-sta-
tistic is used to test the hypothesis of whether any observed cor-
relations among observations in a time series are random. One of
the key assumptions for using an ACD model is that interarrival
durations are serially autocorrelated.

If there were no serial correlation in the residuals, the auto-
correlations and partial autocorrelations at all lags would be close
to zero and the Q-statistics would be insignificant with large p-
values. In Period 1 and 2, the Ljung—Box Q-statistics are significant
at a 95% confidence level at all the lags. This indicates the presence
of significant serial correlation in the residuals makes it appropriate
to use the ACD model.

[llustration 1 provides a comparison of the conditional expec-
tation of duration over 50 observations between the two time
periods.

Table 3
The autocorrelation, partial correlation and Q-Stat respectively for period 2.

Sample: 1 14902
Included observations: 14902

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

0.233 0.233 807.43 0.000
0.206 0.160 1438.0 0.000
0.168 0.098 1857.8 0.000
0.150 0.074 2191.8 0.000
0.134 0.057 2461.2 0.000
0.095 0.016 2596.8 0.000
0.082 0.014 2697.2 0.000
0.049 -0.012 2733.4 0.000
0.038 -0.008 2755.1 0.000
1l 10 0.048 0.016 2789.2 0.000
11 0.024 -0.007 2797.8 0.000
1l 12 0.044 0.023 2826.1 0.000
13 0.017 -0.008 2830.2 0.000
14 0.032 0.016 2846.0 0.000
l 15 0.042 0.025 2872.3 0.000
16 0.037 0.014 2893.1 0.000
17 0.037 0.012 2914.0 0.000
18 0.026 -0.000 2924.2 0.000
19 0.018 -0.008 2929.1 0.000
20 0.021 0.002 29359 0.000
21 0.025 0.008 2945.1 0.000
22 0.020 0.002 2951.0 0.000
23 0.024 0.011 2959.8 0.000
24 0.015 -0.001 2963.4 0.000
25 0.017 0.004 2967.6 0.000
26 -0.007 -0.022 2968.3 0.000
27 0.005 -0.001 2968.7 0.000
28 -0.005 -0.010 2969.1 0.000
29 -0.011 -0.012 2970.9 0.000
30 -0.006 -0.002 2971.4 0.000
31 -0.007 -0.001 2972.0 0.000
32 -0.006 -0.001 29725 0.000
33 -0.006 -0.001 2973.0 0.000
34 -0.018 -0.014 2977.7 0.000
35 -0.015 -0.008 2981.2 0.000
36 -0.025 -0.016 2990.3 0.000

SO OO OOE

WOWNOON B WN =

The graphic representation of the conditional expectation of
duration shows less volatility in the interarrival duration in Period 2
than in Period 1 over a sample of 50 observations.

5. Conclusions and implications

Measuring the impact of traffic flow management techniques on
airport performance and identifying the periods of traffic flow
management use in surveillance data both represent a challenge for
analysts. In the case of TBFM, for instance, there is a lack of readily-
available data to track actual operational usage due to verbal in-
structions. Moreover, there are no publically-available data sources
where information on usage and duration of TBFM and TMI oper-
ations is available.

To test the hypothesis that traffic flow management techniques
have been used, analysts can resort to financial time series methods
such as ACD to measure changes in traffic flow volatility. This article
demonstrated that ACD is appropriate to evaluate the effect of air
traffic flow management when the wait times between two aircraft
crossing a point in space vary at random. The distribution of the
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Conditional Expectation of Duration ()
Dec. 2009-Jan. 2010 (1) Compared with Dec. 2013-Jan. 2014 (2)

10 -

Conditional Expectation of Duration
(4]

———-ui(1)

25 29 33 37 41 45 49
Observations

T T T T T T

wi(2)

Illustration 1. Conditional expectation of duration.

interarrival durations is conditional on separation requirements
based on wake vortex incidence, metering at a point in space and/or
in-trail distance.

The Weibull ACD model revealed that the interarrival duration
volatility decreased from December 2013—]January 2014 (Period 2)
compared with December 2009—January 2010 (Period 1) as air
traffic flow management techniques were implemented to manage
airport capacity. As the volatility of interarrival durations declined,
airborne delays decreased from an average of 3.22 min in Period
1-2.55 min in Period2'’. During the same time period, taxi-out
times did not significantly increased: 16.70 min in Period 2
compared with 16.30 in Period1."

The use of traffic flow management tools such as TBFM has
significant implications on the efficiency of the NAS. First, although
conditions vary from one airport to another, the case of FLL pro-
vides an example of how an airport can utilize TBFM to manage
severely constrained capacity in the face of sustained demand. It
takes decades to build a new runway, often as a result of sur-

10 Source: ASPM data.
1 1bid.

rounding airport community opposition. Therefore, TBFM allows a
better utilization of existing resources within the enroute, terminal
and airport domains. Second, TBFM represents a means of regu-
lating the flow of traffic within the TRACON and allocating aircraft
to the runway in a more predictable fashion, thus improving the
transition from the enroute to the terminal environment. TBFM is
more dynamic than TMI and can be extended to adjacent centers.
Finally, the use of TBFM represents a key component in the success
of NextGen, an effort to utilize satellite-based navigation to tran-
sition the existing radar-based air traffic control to a more air-
traffic-managed system. It is, however, important to consider the
use of TBFM as component that needs to be integrated into other
capabilities such as optimized profile descent and integrated de-
partures/arrivals capabilities.

Appendices

Fort Lauderdale—Hollywood Internal Airport Runway Configu-
ration (Source: FAA).
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Abbreviation Term

ACD Autoregressive Conditional Duration

ASPM Aviation System Performance Metrics

FAA Federal Aviation Administration

FLL Fort Lauderdale—Hollywood International Airport
MIT Miles in Trail

MRE Meter Reference Element

NAS National Airspace System

NextGen Next Generation Air Transportation System
TBFM Time-Based Flow Management

TMI Traffic Management Initiatives

TRACON Terminal Radar Approach Control

WACD Weibull Autoregressive Conditional Duration
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