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Abstract This paper examines the impact of an endoge-

nous cost function variable on the inefficiency estimates

generated by stochastic frontier analysis (SFA). The spe-

cific variable of interest in this application is endogenous

quality in nursing homes. We simulate a dataset based on

the characteristics of for-profit nursing homes in California,

which we use to assess the impact on SFA-generated

inefficiency estimates of an endogenous regressor under a

variety of scenarios, including variations in the strength

and direction of the endogeneity and whether the correla-

tion is with the random noise or the inefficiency residual

component of the error term. We compare each of these

cases when quality is included and excluded from the cost

equation. We provide evidence of the impact of endoge-

neity on inefficiency estimates yielded by SFA under these

various scenarios and when the endogenous regressor is

included and excluded from the model.

Keywords Stochastic frontier analysis � Endogeneity �
Efficiency � Quality � Nursing homes

JEL Classification C13 � C15 � I12

1 Introduction

Rising expenditures for health care across the continuum of

providers has increased interest in identifying ways to

reduce inefficiency. At the same time, improving quality of

care continues to be a major concern of researchers, pro-

viders, and policy makers. Although researchers have

provided estimates of inefficiency for nursing homes (and

hospitals), there is concern that the analytical techniques

used do not necessarily provide unbiased estimates. One

concern that is raised, in particular, is that quality is not

always explicitly incorporated into health care efficiency

measurement approaches (Hussey et al. 2009).

A growing number of studies have employed stochastic

frontier analysis (SFA) to analyze cost-inefficiency of health

care organizations (Hollingsworth 2008). This technique

estimates a best-practice cost frontier and decomposes

departures from the frontier into statistical noise (i.e., assumed

to be distributed as N[0, r2]), v, and positive departures that

represent cost-inefficiency, u (Jondrow et al. 1982), where

cost-inefficiency includes both technical and allocative inef-

ficiency. Estimated firm-level cost inefficiency is the per-

centage by which observed costs exceed minimum costs

predicted for the best-practice cost frontier (Lovell 1994).

With SFA, it is assumed that u and v are uncorrelated

with cost equation variables (Greene 2011). This assumption
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is reasonable for competitive markets, where input prices are

exogenous, and excess supply markets, where output quan-

tities are demand driven, say, where occupancy rates are

sufficiently low that providers take all comers. This

assumption, however, may be less realistic if quality is

included in the cost equation and there are producer-specific

differences in the quality of the output produced. Indeed, in

competitive markets, the amount of quality a provider pro-

duces is simultaneously determined with output and depends

on costs. Consequently, it is likely to be endogenous;

therefore, including it in the model entails a violation of the

assumptions of SFA.

Since SFA decomposes the residual into two parts,

endogenous quality may be correlated with u and possibly

v as well. Researchers might try to avoid this problem by

omitting quality from the cost equation. But if quality is

cost enhancing and not included in the cost equation, a

producer that provides more quality may be incorrectly

measured as being more inefficient compared with a pro-

vider that provides less quality. This bias would be a

reflection of a missing variable in the cost equation and

could result in cost variables being correlated with u or v.

Yet if endogenous quality were included in the cost

equation it certainly would be correlated with u or v. Both

cases violate the assumption that u and v are distributed

independently of the cost variables and would result in

biased parameter estimates in the cost function. However,

the effects of this bias on the inefficiency estimates gen-

erated by SFA are unknown. Since analysts generally use

SFA for the purpose of estimating inefficiency, this is a

particularly important gap in our knowledge.

The problems associated with the use of endogenous

variables in econometric modeling have been the subject of

extensive consideration for some methods, such as ordinary

least squares (OLS) where instrumental variable approa-

ches are commonly used to estimate functions with

endogenous variables (although the importance of identi-

fying strong instruments often makes this difficult in

practice) (Greene 2011; Stock et al. 2002. However,

Greene (2011) pointed out that accounting for endogeneity

in non-linear models, such as SFA, is difficult. Indeed, no

accepted approach for estimating unbiased efficiency esti-

mates with endogenous variables, such as quality, is cur-

rently available for SFA.

Consequently, in SFA studies of health care organiza-

tions, the impact of endogenous quality on the bias of

inefficiency estimates has not been addressed. Studies of

cost inefficiency using SFA in nursing homes (and hospi-

tals—where the majority of papers studying the health care

sector have been published) have dealt with quality in a

number of ways ranging from leaving it out of the cost

equation (Anderson et al. 1999; Chirikos 1998; Li and

Rosenman 2001), to only measuring some particular aspect

of quality (e.g., a measure of nurse staffing) (Farsi and

Filippini 2004) to using a broad measure of quality (e.g.,

regulator documented deficiencies, liability settlements)

(Vitaliano and Toren 1991; Vitaliano and Toren 1996).

Rosko and Mutter (2008) and Mutter et al. (2008) exam-

ined the potential bias from omitting quality from a hos-

pital cost equation by comparing SFA results with and

without different proxy variables for quality. They con-

cluded that mean estimated cost-inefficiency is relatively

insensitive to the addition of hospital mortality rate vari-

ables in models that already include teaching status and

controls for patient burden of illness. However, Rosko and

Mutter (2008) and Mutter et al. (2008) did not address the

impact of endogeneity on inefficiency estimates.

This paper focuses on the potential impact of an

endogenous variable on cost inefficiency estimates gener-

ated by SFA. We used simulation techniques with an

endogenous variable intended to approximate the charac-

teristics of endogenous quality in the nursing home market.

Our analysis simulates the effects of a number of aspects of

endogeneity: strength of the endogeneity, whether the

correlation is with u or v, and if the correlation is positive

or negative. We also compare each of these cases with

quality included and excluded from the cost equation. We

anchor the simulation by approximating the cost and

quality characteristics of nursing homes in California. By

conducting our analysis using a cost equation that reflects

actual practice, we hope to increase the realism of our

findings.

2 Data and methods

2.1 Creating the simulated dataset

We based our simulated dataset on data from three sources.

The Medicaid cost reports from the California Office of

Statewide Health Planning and Development (OSHPD) are

annual financial reports submitted by all nursing homes to

the State. They include information about expenditures,

revenues, and staffing and are used by the State to deter-

mine Medicaid payment rates. The Minimum Data Set

(MDS) is a patient-level dataset mandated by the Centers

for Medicare & Medicaid Services (CMS) that includes

information about the socio-demographics and health sta-

tus of all nursing home residents. It is used by CMS to

calculate the Medicare payment rates for nursing homes

and the quality measures included in the web-based

Nursing Home Compare report card. The third source, the

Online Survey, Certification and Reporting (OSCAR) data,

is also maintained by CMS. It is a facility-level dataset that

includes information on deficiencies issued to nursing

homes not meeting quality standards. Data were obtained
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for 779 for-profit nursing homes in California in 2005. We

used the following variables: total annual costs, case-mix

adjusted patient days (i.e., case mix index [CMI]*days),

case-mix adjusted admissions (i.e., CMI*admissions), price

of capital (i.e., average of lease, depreciation, and interest

per bed at the county level), and price of labor (i.e., price of

nurse aides at the county level).1 We employed the stan-

dard assumption of linear homogeneity in input prices by

normalizing the financial variables in the cost equation by

the wage rate, which causes the wage rate to drop out of the

cost equation.

We considered four functional forms for the cost equa-

tion: Cobb-Douglas, translog, homothetic, and a hybrid

model taken from the literature with squared and cubed

variables (Nyman 1988). We selected a functional form

based on statistical tests. Since the hybrid and translog cost

equations are not nested, we used the Akaike information

criterion (AIC) and Bayesian information criterion (BIC) to

determine which functional form best fit the data. The

translog outperformed the Cobb Douglas and hybrid

models, but based on a likelihood ratio test, we selected the

homothetic cost function as an acceptable simplification of

the translog model.

The starting point of our simulated nursing home quality

variable, QS, was the actual number of deficiency citations

received by a nursing home minus the average number of

deficiencies for the licensing and certification region in

which the facility is located, QA. This measure adjusts for

the fact that nursing home regulatory teams vary in the

propensity to cite facilities for care problems and in many

States there is more than one regional regulatory team.

Therefore, this approach is likely to provide a better

measure of relative quality across regions, and it is com-

mon in nursing home studies (Li et al. 2010; Mukamel

et al. 2011).

Our first step in creating QS was to regress QA on the

independent variables in the cost function. The coefficients

from that regression were used as parameter values in the

quality function used to construct QS. (Note that this is

essentially what Gertler and Waldman (1992) did in their

quality-adjusted cost function paper.) Our second step was

to include a variable, INTER, that reflects the extent to

which a hypothetical, cost-neutral, quality-improving

intervention has been adopted by nursing homes. The

variable, INTER, was created by randomly sampling from

a continuous, (0.1) uniform distribution. We included it to

impart unexplained variation to QS. We assumed that the

coefficient on INTER was 0.5. The interpretation of that

coefficient is that a 100 percent adoption of an assumed

quality improvement intervention would improve quality

by 0.5 units. For ease of interpretation, we assumed that

higher QS implies higher facility-level quality. Thus, QS

was created as follows:

QS ¼ �23:80þ 0:22 � LN PKþ 2:22 � LNCMIDAY

þ 0:09 � LNCMIADMþ 0:50 � INTER ð1Þ

where LN_PK is the natural log of the price of capital,

LNCMIDAY is the natural log of case-mix adjusted patient

days, and LNCMIADM is the natural log of case-mix

adjusted admissions.

To simulate the natural log of total cost, we first com-

puted the parameters of a stochastic frontier cost function

based on the actual cost function variables to generate the

variance parameters, ru and rv, which we describe below.

We assumed that the inefficiency residual followed a half-

normal distribution. We made this assumption because the

half-normal distribution is frequently assumed in the lit-

erature and because of its tractability in this simulation.

The stochastic frontier cost function was specified as

follows:

LN TC ¼ a0 þ a1LN PKþ a2LNCMIDAY

þ a3LNCMIADMþ a4CMIDAYSQ

þ a5CMIADMSQþ a6PK SQþ a7ADMDAY

þ a8QSþ vi þ ui ð2Þ

where LN_TC is the natural log of total cost, CMIDAYSQ is

0.5*LNCMIDAY*LNCMIDAY, CMIADMSQ is 0.5*LNC-

MIADM*LNCMIADM, PK_SQ is 0.5*LN_PK*LN_PK, AD

MDAY is LNCMIDAY*LNCMIADM, vi is statistical noise

distributed as N(0, r2), ui consists of positive departures from

the best-practice cost frontier and represents inefficiency, and

ai are parameters to be estimated.

SFA yields estimates of the standard deviations of u, ru,

and v, rv, which we used to create simulated inefficiency,

uc, and random noise, vj, variables. (Those variables were

used in the creation of simulated total cost, TC_S, as we

describe below.) We created uc as follows:

uc ¼ rueðc�QSÞ Xj j ð3Þ

where |X| is the absolute value of a random variable that is

N(0, 1), and c determines the strength of the endogeneity

between QS and u (i.e., if c = 0 quality is exogenous and

higher values of c denote a stronger association between

QS and u). The device in (3) makes the expected value of

uc dependent on QS when c is nonzero.

We created vj as follows:

vj ¼ rv jQS STDþ 1� j2
� �:5

Y
� �

ð4Þ

where Y is a random variable that is N(0, 1), and QS_STD

is QS in standardized form, which gives it a mean of 0 and

a standard deviation of 1. Endogeneity between QS and v is

1 See Mukamel et al. 2011 for more information about this dataset

and variables definitions.
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determined by j (i.e., j = 0 is exogenous quality and

higher values of j denote a stronger association between

QS and v). In (4), vj is projected on QS to induce the

correlation (endogeneity) when j is nonzero; if j equals

zero, then vk is random noise, uncorrelated with QS.

We used a range of values of c in (3) and j in (4) to

assess the impact of different levels of endogeneity that

may be present in empirical data that are used to estimate

inefficiency. In conducting this analysis, we did not want to

simply select a particular strength of association that could

drive our results and influence our conclusions.

Finally, we regressed LN_TC on the actual cost function

variables to get parameter values for use in simulating

TC_S. We ran the following regression:

LN TC ¼ b0 þ b1LN PKþ b2LNCMIDAY

þ b3LNCMIADMþ b4CMIDAYSQ

þ b5CMIADMSQþ b6PK SQþ b7ADMDAY

þ ei ð5Þ

where bi are parameters to be estimated, and ei is the error

term.

Using these parameter estimates, the variables already

created, and assuming that the coefficient on QS is 0.2 (i.e.,

improvements in quality are associated with cost increa-

ses), we generated TC_S as follows2:

TC S ¼ 20:01 � 3:28 � LN PK� 1:07 � LNCMIDAY

þ 1:13 � LNCMIADMþ 0:27 � CMIDAYSQ

þ 0:11 � CMIADMSQ þ 0:59 � PK SQ

� 0:16 � ADMDAYþ 0:2 � QSþ uc þ vj ð6Þ

Our results are based on SFA with TC_S as the dependent

variable in the cost equation and LN_PK, LNCMIDAY,

LNCMIADM, CMIDAYSQ, CMIADMSQ, ADMDAY,

and QS as independent variables. By varying the values of

c and j, we are able to explore the impact of increasing the

degree of endogeneity of QS on the variable of interest,

inefficiency.

2.2 Analytic approach

We first generated inefficiency estimates for the case where

QS and u are positively related (i.e., the endogeneity is in u)

and c ranged between 0.1 and 1.0. (The relationship between

QS and u would be positive, for example, if in some nursing

homes, staff are quality leaders, who innovate and take

risks. Some of their innovations will improve quality.

Others that they may choose to adopt in order to improve

quality may not prove themselves, and there will, therefore,

be no quality returns on those investments. The imple-

mentation of the unsuccessful innovations will raise costs,

however, and the facilities will have higher inefficiency

because of the extra inputs used to produce the same amount

of outputs.) We compared mean estimated inefficiency and

the correlation of inefficiency scores between models where

c = 0 and c[ 0 with QS included and omitted from the cost

function to examine the impact of endogeneity and the

decision to include or exclude the endogenous variable on

estimates of inefficiency generated by SFA.

Second, we generated inefficiency estimates for the case

where endogeneity is in u, c ranges between 0.1 and 1.0,

and the relationship between QS and u is negative. (The

relationship between QS and u would be negative, for

example, if the innovative staff nursing homes hire to

improve quality also find cost savings in other aspects of

the facilities’ operations [e.g., outsourcing laundry ser-

vices]. High quality and high efficiency can result from

following the principles of Total Quality Management and

related approaches [Deming (1982)]).We compared mean

estimated inefficiency and the correlation of inefficiency

scores between models where c = 0 and c[ 0 with QS

included and omitted from the cost function.

Third, we generated inefficiency estimates for the case

where endogeneity is in v (and not u) and j ranges between

0.1 and 1.0. (The relationship between QS and v would be

positive, for example, if some nursing homes hired highly

skilled staff who generated higher quality care but also

commanded higher facility-specific wages. Since the model

only accounts for area-level wages, the higher nursing home

wages would be swept into the error term, and there would

be a positive relationship between QS and v.) We compared

mean estimated inefficiency and the correlation of ineffi-

ciency scores between models where j = 0 and j[ 0 with

QS included and omitted from the cost function.

Finally, as a robustness check, we added random noise

into the construction of QS to weaken the association

between QS and TC, and we again compared the impact on

mean estimated inefficiency and the correlation of ineffi-

ciency scores with various values of c.

3 Results

3.1 Positive relationship between QS and u

We ran SFA on the simulated dataset for the cases where QS

and u are unrelated (i.e., c = 0) and related (i.e., c[ 0) and

the relationship between QS and u is positive. For the models

where there was endogeneity, c ranged from 0.1 to 1.0 and

increased in increments of 0.1. (SFA did not converge when

2 The negative coefficients on the price and output variables in the

above regression are probably due to multicolinearity. We used a

Cobb-Douglas model in a robustness check and the coefficients on the

price and output variables were all positive.
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c = 0.5.) Table 1 provides descriptive statistics for estimated

inefficiency for each of those levels of endogeneity with QS

included and excluded from the cost function.

Model 1—exogenous quality with QS included in the

model—serves as our benchmark. The difference between

model 1 and model 2 gives a sense of the bias from

omitting exogenous quality from the model.

Table 1 demonstrates that as the strength of endogeneity

increases, mean estimated inefficiency departs further and

further from the estimate generated by model 1. This finding

indicates that uncorrected endogeneity can have a substantial

impact on inefficiency estimates generated by SFA. Exclud-

ing the endogenous variable from the cost function only

increases the magnitude of these departures minimally. With

the exception of c = 0, and c = 0.1, mean estimated ineffi-

ciency is lower when the quality variable is retained in the cost

function, but, for a given value of c, the differences between

mean estimated inefficiency when QS is included and when it

is excluded are small. The relationship is illustrated in Fig. 1.

The pattern of results for the correlations with the

benchmark model, which are also reported in Table 1, are

similar to what we observed for mean estimated ineffi-

ciency: inefficiency estimates from models with greater

endogeneity are further from the exogenous case, and

models that include endogenous QS are closer to model 1

than those that exclude the endogenous variable.

3.2 Negative relationship between QS and u

We next ran SFA on a simulated dataset where we changed

Eq. (3) so that the relationship between u and QS was

negative:

uc ¼ rueðc�QS��1Þ Xj j ð3BÞ

Table 2 provides descriptive statistics for estimated inef-

ficiency for the cases where QS and u are negatively related

(i.e., [c*-1] \ 0) and when QS is included or excluded

from the cost function.

In Table 2, mean estimated inefficiency is below the

benchmark model estimate of 0.16020 for low values of c
and above it for c[ 0.4. The positive difference increases

for higher values of c. The difference between mean esti-

mated inefficiency when QS is exogenous and when it is

strongly endogenous is not as large as it was when the

relationship between u and QS was positive.

For most values of c (c = 0.1, 0.2, 0.3, 0.8, 0.9, and

1.0), mean estimated inefficiency is closer to the estimates

generated by model 1 when QS is included in the model.

However, for some values of c (c = 0.4, 0.5, 0.6, and 0.7),

mean estimated inefficiency is closer when QS is excluded

from the model as shown in Fig. 2. For all values of c,

however, the difference in mean estimated inefficiency

when QS is included and when it is excluded is small.

Table 1 Inefficiency estimates by level of endogeneity when relationship between QS and u is positive

Modela Mean estimated inefficiency SD Minimum Maximum Correlation with model 1

1. c = 0.0, QS included 0.16028 0.09737 0.02786 0.50838 1.00000

2. c = 0.0, QS excluded 0.15751 0.09349 0.02856 0.53727 0.98015

3. c = 0.1, QS included 0.16969 0.10484 0.02621 0.51403 0.99301

4. c = 0.1, QS excluded 0.16848 0.10269 0.02901 0.54427 0.97130

5. c = 0.2, QS included 0.18307 0.11425 0.02457 0.52030 0.97571

6. c = 0.2, QS excluded 0.18365 0.11425 0.02836 0.55137 0.95166

7. c = 0.3, QS included 0.19996 0.12491 0.02314 0.52877 0.94932

8. c = 0.3, QS excluded 0.20227 0.12663 0.02672 0.55987 0.92396

9. c = 0.4, QS included 0.21999 0.13540 0.02209 0.54090 0.92073

10. c = 0.4, QS excluded 0.22418 0.13914 0.02541 0.57098 0.89435

11. c = 0.6, QS included 0.27258 0.15737 0.02191 0.58930 0.85762

12. c = 0.6, QS excluded 0.27895 0.16200 0.02466 0.61185 0.83115

13. c = 0.7, QS included 0.30834 0.17033 0.02309 0.62865 0.82014

14. c = 0.7, QS excluded 0.31491 0.17449 0.02558 0.64564 0.79378

15. c = 0.8, QS included 0.35135 0.18280 0.02514 0.67384 0.78584

16. c = 0.8, QS excluded 0.35811 0.18706 0.02757 0.68834 0.75835

17. c = 0.9, QS included 0.40138 0.19380 0.02806 0.71731 0.74920

18. c = 0.9, QS excluded 0.40811 0.19751 0.03065 0.73162 0.72631

19. c = 1.0, QS included 0.45213 0.19781 0.03150 0.73943 0.70711

20. c = 1.0, QS excluded 0.46064 0.20199 0.03466 0.75872 0.68991

a c is strength of endogeneity between QS and u. Higher values indicate a stronger relationship
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Table 2 also reports the correlation of inefficiency

estimates between model 1 and models 2–22. The corre-

lation between the inefficiency estimates of the model with

the exogenous variable and a model with an endogenous

variable is always higher when the endogeneity is weaker.

The correlation is also higher when the endogenous vari-

able is not dropped from the model.

3.3 Positive relationship between QS and v

We also examined the effects of endogeneity on ineffi-

ciency estimates when there is a positive relationship

between QS and v (and no relationship between QS and u).

We ran SFA on the simulated dataset for the cases where

QS and v are unrelated (i.e., j = 0) and related (i.e.,

j[ 0). For the models where there was endogeneity, j
ranged between 0.1 and 0.9 and increased in increments of

0.1. (We did not run SFA when j = 1.0 since there is no

random noise in that case.) Table 3 provides descriptive

statistics for estimated inefficiency for each of those levels

of endogeneity with QS included and excluded from the

cost function.

When the endogenous relationship is between QS and v,

mean estimated inefficiency is much less affected than

when the relationship is between QS and u. (This result was

expected since the v simulates random noise, not ineffi-

ciency.) For most values of j, the difference between mean

estimated inefficiency in model 1 and models with j[ 0 is

small. (Indeed, models 1 and 11 have the same mean

Mean Inefficiency vs. Gamma
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Fig. 1 Impact on mean inefficiency estimates of positive relationship

between QS and u

Table 2 Inefficiency estimates by level of endogeneity when relationship between QS and u is negative

Modela Mean estimated

inefficiency

SD Minimum Maximum Correlation with

model 1

1. c = 0.0, QS included 0.16020 0.09738 0.02786 0.50838 1.00000

2. c = 0.0, QS excluded 0.15751 0.09349 0.02856 0.53727 0.98042

3. c = 0.1, QS included 0.15502 0.09328 0.02829 0.50265 0.99432

4. c = 0.1, QS excluded 0.15157 0.08867 0.02812 0.53023 0.97754

5. c = 0.2, QS included 0.15423 0.09269 0.02774 0.49687 0.97853

6. c = 0.2, QS excluded 0.15055 0.08811 0.02767 0.52372 0.96459

7. c = 0.3, QS included 0.15725 0.09528 0.02731 0.49148 0.95426

8. c = 0.3, QS excluded 0.15365 0.09077 0.02729 0.51823 0.94421

9. c = 0.4, QS included 0.16325 0.09980 0.02708 0.48697 0.92518

10. c = 0.4, QS excluded 0.16009 0.09604 0.02708 0.51403 0.91625

11. c = 0.5, QS included 0.17143 0.10468 0.02713 0.48362 0.89797

12. c = 0.5, QS excluded 0.16897 0.10211 0.02716 0.51131 0.88912

13. c = 0.6, QS included 0.18155 0.10951 0.02630 0.48164 0.87030

14. c = 0.6, QS excluded 0.18007 0.10858 0.02588 0.51007 0.86231

15. c = 0.7, QS included 0.19343 0.11361 0.02523 0.48064 0.84473

16. c = 0.7, QS excluded 0.19295 0.11404 0.02492 0.51019 0.83882

17. c = 0.8, QS included 0.20719 0.11721 0.02453 0.47892 0.81918

18. c = 0.8, QS excluded 0.20794 0.11901 0.02426 0.50962 0.81314

19. c = 0.9, QS included 0.22270 0.12067 0.02428 0.47744 0.78921

20. c = 0.9, QS excluded 0.22479 0.12340 0.02392 0.50734 0.78562

21. c = 1.0, QS included 0.23949 0.12332 0.02470 0.48048 0.76292

22. c = 1.0, QS excluded 0.24276 0.12664 0.02414 0.50702 0.76044

a c is strength of endogeneity between QS and u. Higher values indicate a stronger relationship
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estimated inefficiency, although the standard deviations,

minimums, and maximums are different.) For values of

j\ 0.7, mean estimated inefficiency is closer to the model

1 estimate when QS is included in the model. Mean esti-

mated inefficiency is closer to the model 1 estimate when

QS is excluded for the highest values of j as shown in

Fig. 3.

The correlation between the estimates generated by

model 1 and those generated when there is a positive

relationship between QS and the error term are higher

when the association is between QS and v than it is when

the relationship is between QS and u. Table 3 demonstrates

that the correlation between the estimates generated by

model 1 and those generated by models when endogeneity

is characterized by a positive relationship between QS and

v are closer when QS is included than when it is excluded,

except when j = 0.9.
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Fig. 2 Impact on mean inefficiency estimates of negative relation-

ship between QS and u

Table 3 Inefficiency estimates by level of endogeneity when relationship between QS and v is positive

Modela Mean estimated

inefficiency

SD Minimum Maximum Correlation with

model 1

1. j = 0.0, QS included 0.16014 0.09743 0.02786 0.50838 1.00000

2. j = 0.0, QS excluded 0.15751 0.09349 0.02856 0.53727 0.98041

3. j = 0.1, QS included 0.16018 0.09756 0.02773 0.50612 0.99997

4. j = 0.1, QS excluded 0.15751 0.09353 0.02849 0.53689 0.97893

5. j = 0.2, QS included 0.16025 0.09800 0.02730 0.49922 0.99988

6. j = 0.2, QS excluded 0.15760 0.09397 0.02818 0.53247 0.97725

7. j = 0.3, QS included 0.16031 0.09863 0.02658 0.48730 0.99945

8. j = 0.3, QS excluded 0.15777 0.09478 0.02761 0.52376 0.97523

9. j = 0.4, QS included 0.16034 0.09945 0.02552 0.46969 0.99815

10. j = 0.4, QS excluded 0.15801 0.09596 0.02676 0.51028 0.97256

11. j = 0.5, QS included 0.16014 0.10007 0.02409 0.44536 0.99481

12. j = 0.5, QS excluded 0.15819 0.09718 0.02560 0.49123 0.96859

13. j = 0.6, QS included 0.15945 0.10027 0.02223 0.41286 0.98715

14. j = 0.6, QS excluded 0.15824 0.09845 0.02409 0.46542 0.96170

15. j = 0.7, QS included 0.15711 0.09809 0.01986 0.37010 0.97056

16. j = 0.7, QS excluded 0.15798 0.09970 0.02218 0.43101 0.94941

17. j = 0.8, QS included 0.15152 0.09227 0.01692 0.31403 0.93338

18. j = 0.8, QS excluded 0.15633 0.09895 0.01980 0.38497 0.92529

19. j = 0.9, QS included 0.13624 0.07629 0.01344 0.24002 0.86105

20. j = 0.9, QS excluded 0.15099 0.09354 0.01697 0.32187 0.87220

a j is strength of endogeneity between QS and v. Higher values indicate a stronger relationship
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Fig. 3 Impact on mean inefficiency estimates of positive relationship

between QS and v
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3.4 Positive relationship between QS and u with noise

added to the construction of QS

We wanted to investigate whether our findings were due to

the particular relationships that we had modeled. So, we

added random noise to the construction of QS as a

robustness check. The standard deviation of QS is 1.12. So,

to make 25 percent of the variation in QS pure noise, we

added a noise variable, NOISE, to Eq. (1) where NOISE

was created by randomly sampling from a normal distri-

bution with mean 0 and variance 0.10:

QS ¼ �23:80þ 0:22 � LN PKþ 2:22 � LNCMIDAY

þ 0:09 � LNCMIADMþ 0:50 � INTERþ NOISE

ð1BÞ

Table 4 provides mean estimated inefficiency estimates by

level of endogeneity with QS included and excluded from

the cost function when QS has added noise and QS and u

are positively related. (SFA did not converge when c = 0.5

or 0.6.)

The pattern of the results in Table 4 is similar, but not

identical, to that of Table 1. Mean estimated inefficiency

departs more from the exogenous case as c increases, and

with the exception of c = 0.1 and when c[ 0.8, mean

estimated inefficiency is closer to the model 1 estimate

when QS is included in the cost function. Figure 4 illus-

trates the relationship.

The correlation results when noise is added to the con-

struction of QS in Table 4 follow a pattern similar to that

presented in Table 1: inefficiency estimates from models

with greater endogeneity are further from the exogenous

case, and models that include endogenous QS are closer to

model 1 than those that exclude the endogenous variable,

but compared with Table 1 the differences between cor-

relations when including and not including QS for the same

Table 4 Inefficiency estimates by level of endogeneity when relationship between QS and u is positive and noise is added to construction of QS

Modela Mean estimated inefficiency SD Minimum Maximum Correlation with model 1

1. c = 0, QS included 0.15460 0.09549 0.02661 0.43991 1.00000

2. c = 0, QS excluded 0.13458 0.06944 0.03766 0.48223 0.91082

3. c = .1, QS included 0.16376 0.10174 0.02574 0.44056 0.99343

4. c = .1, QS excluded 0.15366 0.08539 0.03901 0.57504 0.89525

5. c = .2, QS included 0.17668 0.10955 0.02494 0.43932 0.97344

6. c = .2, QS excluded 0.17978 0.10717 0.03941 0.57091 0.87074

7. c = .3, QS included 0.19210 0.11779 0.02455 0.44026 0.93947

8. c = .3, QS excluded 0.20856 0.12891 0.03681 0.55417 0.83228

9. c = .4, QS included 0.20927 0.12577 0.02403 0.45011 0.90439

10. c = .4, QS excluded 0.23511 0.14365 0.03316 0.53815 0.79116

11. c = .7, QS included 0.28472 0.15578 0.02073 0.54900 0.80373

12. c = .7, QS excluded 0.30375 0.15581 0.02459 0.51164 0.69665

13. c = .8, QS included 0.32081 0.16683 0.02134 0.59252 0.77281

14. c = .8, QS excluded 0.32402 0.15308 0.02367 0.50610 0.66790

15. c = .9, QS included 0.36121 0.17596 0.02243 0.63044 0.74358

16. c = .9, QS excluded 0.34219 0.14762 0.02381 0.49949 0.63744

17. c = 1.0, QS included 0.40585 0.18394 0.02419 0.66705 0.71398

18. c = 1.0, QS excluded 0.34534 0.12956 0.02466 0.46382 0.59765

a c is strength of endogeneity between QS and u. Higher values indicate a stronger relationship
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Fig. 4 Impact on mean inefficiency estimates of positive relationship

between QS with noise and u
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level of endogeneity are larger, making the inclusion of QS

more important.

4 Discussion

The impact of an endogenous regressor on inefficiency

estimates generated by SFA is an important topic for both

theory and applied research that has not been addressed in

the literature. This study is a first step in trying to better

understand endogeneity’s effects on SFA inefficiency

estimates.

In our analyses, we use simulated data based on the real-

world example of the nursing home industry. As health

economists and health services researchers continue to study

the inefficiency of health care providers and to incorporate

recently developed and available measures of provider quality

into their models, it will be important to understand the impact

of endogeneity on inefficiency measurement since quality is

often endogenous in such models. Applied researchers, in

particular, need guidance on whether an endogenous variable

should be retained in an SFA cost function.

‘‘Endogeneity’’ is often discussed, tested for, and cor-

rected for in the applied literature; however, researchers are

frequently not clear on what exactly it is that they mean by

‘‘endogeneity.’’ This paper specifies specific relationships

among variables.

When the endogeneity is due to an association between

the departures from the best-practice frontier that represent

cost-inefficiency, u, and endogenous quality, QS, we find

that models with an endogenous variable yield inefficiency

estimates that are further from the estimates yielded by the

model with an exogenous variable in terms of mean and

correlation. The extent of the bias caused by the endoge-

nous variable depends on the strength of the endogeneity

(as measured by c) and its direction (positive or negative

relationship). Mean estimated inefficiency is higher when

there is a positive relationship between QS and u than when

there is a negative relationship between QS and u. This

may be because simulated u is larger when the relationship

between QS and u is positive than when it is negative.

In general, larger values of c are associated with further

departures from the estimates generated by the model with

the exogenous variable, although this is not always the

case. The correlation of the inefficiency estimates gener-

ated by a model with an exogenous variable and a model

with an endogenous variable are almost always higher

when the endogenous variable is included in the model. It

is frequently true that mean estimated inefficiency is closer

to the benchmark, exogenous quality estimate when the

endogenous variable is retained. Overall, however, this

‘‘omitted variable’’ effect does not seem to be as large as

the influence of the endogeneity itself.

We find that the impact of the association between

statistical noise, v, and QS on mean estimated inefficiency

and correlation of inefficiency estimates is small for most

values of j. Our results suggest that researchers will get

more accurate inefficiency estimates by including the

endogenous variable than excluding it if the endogeneity is

due to a relationship with v.

As a robustness check, we examined the impact on

inefficiency estimates of a positive association between u

and QS with noise included in the construction of QS. The

pattern of results was similar to what we found in the

baseline analysis; however, the impact on the correlation of

the inefficiency estimates with the benchmark estimates

was greater when the endogenous variable was excluded

when there was noise in the construction of QS.

Thus, the impact of an endogenous regressor on ineffi-

ciency estimates generated by SFA is driven by the nature

and strength of the endogeneity, which suggests that the

estimation of inefficiency using SFA would be improved if

methods for estimating c and j could be identified. An

additional topic for future research is identifying a means for

correcting for endogeneity in SFA. Without these tools,

researchers making inefficiency estimates need to rely on

their understanding of the nature of the particular market they

are studying to assess the potential size of bias. Our intuition

is that endogeneity and the bias in inefficiency estimation that

it gives rise to will be greater the larger is the variation in the

delivery of care at the facility level because of differences in

processes and resources that are unobserved to the analyst

(e.g., difference in managerial skill, implementation of

interventions designed to improve performance). Also, bias is

likely to be larger the more narrowly quality is measured (i.e.,

the more quality is fully accounted for, the less specification

error and endogeneity there will be).
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