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ABSTRACT

We report the first detection of hard (>10 keV) X-ray emission simultaneous with gamma rays in a

nova eruption. Observations of the nova V5855 Sgr carried out with the NuSTAR satellite on Day 12 of

the eruption revealed faint, highly absorbed thermal X-rays. The extreme equivalent hydrogen column

density towards the X-ray emitting region (∼3 × 1024 cm−2) indicates that the shock producing the
X-rays was deeply embedded within the nova ejecta. The slope of the X-ray spectrum favors a thermal

origin for the bulk of the emission, and the constraints of the temperature in the shocked region suggest

a shock velocity compatible with the ejecta velocities inferred from optical spectroscopy. While we do

not claim the detection of non-thermal X-rays, the data do not allow us to rule out an additional,

fainter component dominating at energy above 20 keV, for which we obtained upper limits. The
inferred luminosity of the thermal X-rays is too low to be consistent with the gamma-ray luminosities

if both are powered by the same shock under standard assumptions regarding the efficiency of non-

thermal particle acceleration and the temperature distribution of the shocked gas.

Keywords: novae, cataclysmic variables – stars: individual (V5855 Sgr) – X-rays: binaries

1. INTRODUCTION

The discovery that nova eruptions are capable of pro-

ducing transient gamma-ray emission was one of the
more surprising results of the Fermi mission. The re-

sult of a thermonuclear runaway on the surface of an

accreting white dwarf, novae are the most common class

Corresponding author: Koji Mukai

Koji.Mukai@nasa.gov

of stellar explosion known, but far from the most ener-

getic. Nova eruptions typically eject 10−6 to 10−4 M⊙ of
material at velocities of a few 1000 km s−1; values pre-

viously thought to be too low to lead to efficient particle

acceleration. Yet a growing number of novae have been

detected as Fermi-LAT transients, with MeV to GeV
emission lasting for up to two weeks (Ackermann et al.

2014; Cheung et al. 2016).

Gamma-ray emission in novae is a two-stage process.

First, there must be a powerful shock capable of accel-

erating particles to GeV energies. However, the major-

http://arxiv.org/abs/1901.00030v1
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ity of shock power is expected to remain with the ther-

mal particles, which will be a source of X-ray emission

for the likely range of shock velocities (of order 1000

km s−1). Gamma-rays are then generated when either
the ambient optical photons are inverse Compton scat-

tered by accelerated electrons (the leptonic scenario),

or when the accelerated protons collide with ambient

matter and produce pions, in particular neutral pions

that decay into gamma-rays (the hadronic scenario).
In either scenario, gamma-ray emission is expected to

be accompanied by non-thermal X-ray emission as well

(Vurm & Metzger 2018). These considerations motivate

us to search for X-rays in novae concurrent with gamma-
ray detection, to better understand the physics of shocks

and particle acceleration in novae.

In some of the gamma-ray detected novae, there is

evidence that the donor star is evolved. The wind of

the donor results in a dense environment into which
the nova ejecta expand at high speed, and gamma

rays are produced in the forward shock region be-

ing driven into the companion wind. However, most

of the Fermi novae appear to be the more common
“classical” variety; the donor is typically a lower mass

main sequence star without a strong wind, and the

binary environment is thought to be “clean,” lacking

a reservoir of particles to accelerate in the forward

shock. In classical novae, the gamma rays are there-
fore believed to be accelerated in some internal shock

within the ejecta, produced as phases of mass loss

with differing velocities catch up and interact with each

other. Such internal shocks have been known to ex-
ist in novae for some time, revealed by the presence of

faint, hard (1–10 keV) X-rays as observed by Swift and

other X-ray observatories, usually weeks to months af-

ter the optical peak. The evolution of the shock X-rays

is perhaps best studied in V382 Vel (Mukai & Ishida
2001; Orio et al. 2001b), while Orio et al. (2001a) and

Mukai et al. (2008) both presented shock X-ray data

from many novae. Metzger et al. (2014) developed a

theoretical framework to explain the observed gamma-
ray (and other multiwavelength) emission from novae

that assumes internal shocks are present from early in

the eruption.

X-ray observations within one or a few weeks of opti-

cal peak generally result in non-detection, with a few
notable exceptions such as the ROSAT detection of

V838 Her 5 days after optical peak (Lloyd et al. 1992).

Consequently, no X-ray emission had been detected con-

currently with the transient gamma rays until now, mak-
ing it difficult to quantify the properties of the internal

shock or indeed to verify the internal shock picture at

all. One challenge is that any X-ray emission produced

by an internal shock shortly after the eruption begins

could be embedded deep within the ejecta, and there-

fore too highly absorbed to detected with the 0.3–10 keV

detectors on Swift and other X-ray satellites. The un-
precedented sensitivity of NuSTAR above 10 keV makes

it the ideal instrument to search for this prompt and

highly absorbed emission, and efforts have been made to

do so. The symbiotic recurrent nova V745 Sco was de-

tected with NuSTAR (Orio et al. 2015). However, this
detection is not relevant in our context, because this is

an embedded nova with an external shock between the

nova ejecta and the red giant wind, and because the

NuSTAR observation was carried out well after the pu-
tative gamma-ray emission had ended. The observed

X-rays were consistent with a thermal origin, and did

not reveal new information about the gamma-ray pro-

duction mechanism. Two more Fermi-detected novae,

V339 Del and V5668 Sgr, were not detected in NuS-
TAR observations lasting 23 and 52 ks, respectively

(Mukai et al., in prep)1.

V5855 Sgr (TCP J18102829-2729590) was first discov-

ered by K. Itagaki (CBET 4332) on 2016 Oct 20 (MJD
57681.383), which we take as the start of the eruption

(day 0). Optical photometry for V5855 Sgr is presented

in a compilation of recent novae by Munari et al. (2017),

and we show the V band data in the upper panel of

Figure 1 for reference. The nova eruption was discov-
ered during the initial rise, and its brightness increased

from the discovery magnitude of 10.7 (unfiltered) to a

peak of ∼7.5 four days later. The nova then had an

extended maximum during which the V band magni-
tude first declined by ∼0.5 mag over two days, and then

re-brightened over the subsequent week, reaching V ∼
7.5 again on by MJD 57693.5 (Day 12). After this sec-

ond maximum, the nova began a secular decline with

t2 (the time to decay by two magnitudes) of about a
week. Munari et al. (2017) note that the first rise to

maximum showed a strong wavelength dependence, con-

sistent with the early “fireball” phase when the ejecta

expand in size and drop in temperature. The second
peak is different, showing the same behavior across opti-

cal filters. The authors claim that this second light curve

peak is probably connected to the gamma-ray emission.

One possible explanation is that some of the optical

light is shock-powered; this production mechanism was
proposed to explain the strong optical-gamma-ray cor-

relation observed in the nova ASASSN-16ma (Li et al.

2017).

1 After the bulk of this work has been completed, another Fermi-
detected nova, ASASSN-18fv (Nova Carina 2018) was detected
with NuSTAR (Nelson et al. 2018).
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Figure 1. Upper panel: V band light curve of V5855 Sgr
from Munari et al. (2017). Lower panel: Fermi-LAT daily
light curve of V5855 Sgr. The light grey band indicates the
time of the NuSTAR observation.

A number of optical spectra were obtained by ama-

teur astronomers over the course of the eruption: these

can be examined at the ARAS2 Spectral database, and

we present a selection of spectra in Figure 2. In early

spectra P-Cygni profiles were observed in the Balmer
lines of hydrogen, with absorption lines extending out

to velocities of ∼500–900 km s−1 (Luckas 2016). After

day 12, the continuum became much bluer, the absorp-

tion features disappeared and the spectrum was domi-
nated by emission lines. The lines are broadened and

double-peaked, with wings extending out to ∼3000 km

s−1. The nova became too close to the Sun for opti-

cal observations in later November, so unfortunately, no

spectra are available after Day 26.
Starting on 2016 October 25 (Day 5 of the eruption),

we initiated a target-of-opportunity campaign with the

Fermi-LAT instrument. V5855 Sgr was detected as a

6-7σ source in a binned analysis covering the data range
2016-10-28 to 2016-11-01, with comparable gamma-ray

brightness to the systems previously detected by Fermi

(see Li & Chomiuk 2016, and Section 2, for more de-

tail.). Based on the gamma-ray detection with Fermi,
we triggered our pre-approved NuSTAR Cycle 2 target

of opportunity program on 2016-11-02. NuSTAR was

able to begin observing the source within 10 hours of

the initial request. In this paper, we present our analysis

of this multiwavelength, target-of-opportunity program,
focusing on what we can learn about shocks and gamma-

2 http://www.astrosurf.com/aras/Aras DataBase/Novae.htm
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Figure 2. ARAS spectra of V5855 Sgr over the first 3 weeks
of the eruption showing the evolution of the velocity struc-
ture of the Hα line. The dashed grey line indicates the max-
imum velocity (∼500 km s−1) observed in the absorption
wing of the early P Cygni profiles.

ray production in novae at early times. We take 2016

Oct 20 (MJD 57681.4) as the start of the eruption, and
assume a distance to the nova of 4.5 kpc. This distance

is the value derived from the optical magnitude 15 days

after peak (Munari et al. 2017). While the uncertainty

in the distance is likely large, most of our conclusions

depend on ratios of luminosity and so a precise distance
measurement is not necessary.

2. OBSERVATIONS AND DATA REDUCTION

As we discuss in the introduction, we initiated a
Fermi target-of-opportunity (ToO) campaign of V5855

Sgr shortly after its discovery. The pointed mode used

for such target of opportunity programs can increase

the exposure time of the target by up to a factor of

2–3 over the standard all-sky scanning mode of Fermi.
The ToO lasted for the first three weeks of the erup-

tion. We extracted the gamma-ray light curve of V5855

Sgr from the Fermi-LAT PASS 8 data using the Fermi

Science Tools (v10r0p5). Source events were accu-
mulated within a circular region of interest of radius 20

degrees and an emission model that accounts for Galac-

tic diffuse and isotropic background emission and all

nearby sources within 30 degrees from the nova listed

in the 3FGL catalog (Acero et al. 2015) were used. A
preliminary daily light curve was first produced using

the like lc script, which uses the unbinned likelihood

method to assess the source significance and flux level

for an assumed power-law photon index of Γγ = −2.3
(the slope found for nova V959 Mon; Ackermann et al.

2014). All other parameters in the emission model were

fixed, except for the normalization of the target and the

background components. This light curve then informed

http://www.astrosurf.com/aras/Aras_DataBase/Novae.htm
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Figure 3. Fermi-LAT spectrum created from data accumu-
lated between MJD 57689 and 57697 (Days 7 and 15 after
discovery).

more detailed analysis, presented in Section 3.1. Finally,

we ran the gtfindsrc task to constrain the location of

the detected gamma-ray source and the nova lies within
the 68% confidence radius of the transient gamma-ray

source, confirming their association.

NuSTAR began observing V5855 Sgr on 2016 Nov 02

(Day 13 after discovery). The observation lasted for
51ks, spread out over ∼48 hours. A small fraction of

the observation (about 8ks near the end) was impacted

by the drop-out of the NuSTAR star tracker due to the

presence of the crescent moon in the field of view, and we

excluded those data from our analysis. To further clean
the data of periods of high background due to the satel-

lite traversing the SAA, we re-ran the NuSTAR data

analysis pipeline with strict filtering of SAA passages

and removal of the “tentacle” feature (saamode=strict,
tentacle=yes), resulting in a final net exposure time of

40.04 ks. Images and source spectra were created us-

ing the nuproducts software for each of the two focal

plane modules. The software produces cleaned images in

sky coordinates, and spectra, effective area and response
matrix files for specified source and background regions

(see Section 3.1 for details of the region files chosen).

V5855 Sgr was not detected in two additional X-ray

observations carried out with the Swift satellite on 2016
October 27 and November 6. The exposure times for

the first and second observation were 3.4 and 3.9 ks,

respectively, and both were carried out in window timing

mode due to the high optical brightness of the source

(which can cause pile-up in the CCD in photon counting
mode). The limits on the 0.3-10 keV count rate were

<0.004 and <0.003 counts s−1 in the first and second

observations, respectively.

3. DATA ANALYSIS AND KEY RESULTS

3.1. Fermi-LAT detailed analysis

The gamma-ray emission of V5855 Sgr varied substan-

tially over the first month of the eruption. In the first-

pass like lc light curve, the gamma-ray emission was

found to be most prominent between MJD 57689 and
57697 (Days 7 and 15 after discovery). With the Fermi-

LAT data collected in this interval, we ran a binned

likelihood analysis in order to better characterize the

gamma-ray spectrum of the nova. In the fitting process,

we allowed the normalization of the 3FGL sources clos-
est to the nova (i.e., within 3 degrees) to vary in order

to minimize the contamination from them. The best-fit

parameters for a single power-law are Γγ = −2.26±0.12

and Fph = (2.96±0.79)×10−7 ph cm−2 s−1, with a test
statistic (TS) of 94 (i.e.,

√
TS is approximately equal

to the detection significance for the nova). A power-

law with an exponential cutoff was also tried, however,

without significant improvement. We also did an energy-

resolved analysis and the spectral energy distribution
(SED) is entirely consistent with the above results (Fig-

ure 3).

In order to facilitate comparison of the Fermi-LAT

spectrum with the theoretical models of Vurm & Metzger
(2018), we derived the monochromatic flux at 100 MeV

from the best-fit spectrum, finding Fν = 2.2 × 10−33

erg s−1 cm−2 Hz−1. This implies νFν = 5.3 × 10−11

erg s−1 cm−2. Finally, with the best-fit emission model

in place, we re-ran like lc for a daily light curve (pa-
rameters of all point sources are fixed, excepted for the

normalization of the nova). The results are shown in

the lower panel of Figure 1. The integrated flux in the

0.1–300 GeV range during the NuSTAR observation was
3.1 ± 0.9 × 10−10 erg cm−2 s−1, implying a luminosity

of 7.1 ± 2.1 × 1035 (D/4.5 kpc) erg s−1.

3.2. NuSTAR Imaging

We show the filtered FPMA image output by the

nuproducts software in the left panel of Figure 4. A
very faint X-ray source is apparent, even by eye, at the

location of the nova in the image (it is more difficult to

see in the FPMB image due to the higher background

level and the stray light in the upper right of the de-

tector). The centroid position of the detected X-rays in
both modules is offset from the co-ordinates of the op-

tical nova, by 7.1 and 4.8 arcseconds for the A and B

modules, respectively. This offset is well within the pub-

lished astrometric uncertainty of NuSTAR (Harrison et
al. 2013), and no other X-ray sources are known at this

position, so we are confident that the observed X-rays

are associated with V5855 Sgr. To make the nova emis-

sion easier to discern, we present the module A image
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Figure 4. Left: FPMA image with no spatial smoothing. A faint source is just apparent near the boresight of the telescope.
Right:The same image, smoothed using a Gaussian Kernel of width 4 pixels. The color bar has had the sinh function in
ds9 applied, to make the source more apparent. The solid black circles indicate the regions used to estimate the source and
background counts. The dashed black circle indicates the 68% positional uncertainty of the Fermi-LAT source.

smoothed by a Gaussian kernel of width 3 pixels and

shown with sinh-scaling bounded by the minimum and
maximum pixel values, in the right panel of Figure 4.

We used aperture photometry to assess the signifi-

cance of the X-rays at this position. We extracted source

counts from a circular region of radius 30 arcseconds cen-
tered on the source, and background counts from 3 circu-

lar regions, also of 30 arcseconds radius, spaced around

the source (see Figure 4, right panel). Our goal with this

choice of background region was to sample, and aver-

age out, any gradient in the background light present at
this position on the chip. We detected 202 (366) counts

in the source (background) regions in FPMA, and 223

(458) counts from the source (background) regions in

FPMB, implying 86 and 70 source counts and detection
significances of 8 and 5.7σ in the FPMA and FPMB

images, respectively.

3.3. NuSTAR spectral analysis

Although only a small number of net counts remain

after background subtraction, we attempted to model

the X-ray spectrum using simple models in XSPEC ver-

sion 12.9.0n. The source spectra were binned to have a

minimum of one count per bin, and model parameters
estimated using the modified C-statistic (Cash 1979)

implementation that models the background spectrum

bin-by-bin. The majority of the detected X-ray photons

have energies between 10 and 20 keV. The lack of signal
at low energies implies a high degree of foreground ab-

sorption, which we include in our models using the pho-

toelectric absorption model phabs in XSPEC. For all

models, an additional constant is included to account

for any calibration offset between the two focal plane

module instruments.
We first explored two simple models - an absorbed

Bremsstrahlung continuum emission from thermal

plasma (phabs*brems), and an absorbed power law

(phabs*po). We note that the power law model imple-
mented in XSPEC has the form f(E) ∝ E−α, where

f(E) is the number of photons per energy interval dE,

and that we refer to −α (and not α) as the photon index

in this paper. These models are appropriate for thermal

and non-thermal emission from shocked plasma. The
best-fit parameters and associated 1-σ uncertainties for

each model are shown in Table 1. Both the thermal

plasma and power law models result in a good fit to the

data with C-statistic/degrees of freedom of 375.6/380
and 374.9/380, respectively. The absorbing column

ahead of the X-ray emitting region is extremely high,

with N(H) = 2.2+0.8
−0.5 × 1024 and 2.9+1.0

−0.8 × 1024 cm−2

for the bremsstrahlung and power-law models, respec-

tively. The best-fit plasma temperature is 11+11
−5 keV

(1.3+1.3
−0.6 × 108 K). The unabsorbed flux in the energy

range 0.3–78.0 keV is 3.3+6.7
−1.5 × 10−12 erg s−1 cm−2 ,

implying a luminosity of 8+15
−1 × 1033 erg s−1 for our

assumed distance to the nova of 4.5 kpc. The best-fit
power law model has α of 3.6+1.3

−1.0, and the unabsorbed

flux is <5.3 × 10−11 erg s−1 cm−2, giving a luminosity

<3.8 × 1035 (D/4.5 kpc) erg s−1. For comparison to

theoretical models of non-thermal emission in novae, we

also evaluated the monochromatic power law flux EFE

at 20 keV, finding (9 ± 2) × 10−13 erg s−1 cm−2.

There is some evidence of excess signal at high energies

in the residuals of both the thermal plasma and power
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Figure 5. Left: NuSTAR spectra (FPMA in black, FPMB in red) with best fit absorbed bremsstrahlung model (line 1 of Table
1). Right:Data with best fit bremsstrahlung plus power law model (line 3, Table 1). The spectral index of the power law is fixed
at −1.0. The two components of the model are shown as dotted lines.

law model fits (See Figure 5 left). The low-energy tail

of the gamma-ray emission is expected to be detectable

at energies above 10 keV as a rising power-law compo-

nent with νFν ∝ ν or ν0.8 (Vurm & Metzger 2018), and

such a component could exist in tandem with a lower
energy thermal plasma. In order to assess the pres-

ence of this non-thermal emission, we added a power

law component to the absorbed thermal plasma model

and fixed the power law index to be either −1 or −1.2.
We then obtained the best-fit parameters of the ther-

mal plasma, and both the monochromatic flux at 20

keV and integrated flux of the power law component.

The two-component models also fit the data well (C-
statistic/degrees of freedom of 371.3/379 and 371.1/379,

for power law indices of −1.0 and −1.2, respectively),

and reduce the residuals at high energies (see Figure 5

right). In both models, the best-fit bremsstrahlung tem-

perature is substantially lower than in the single com-
ponent model; around 2 keV for both assumed power

law indices. These lower temperature models fall more

steeply in the 10–20 keV band, and so larger fluxes are

required to produce the observed count rate. We find
best-fit unabsorbed fluxes of 2.7+26.0

−2.5 × 10−10 (4.3+76.1
−4.0

× 10−10) erg s−1 cm−2 for αPL = 1.0 (1.2), implying

0.3–78 keV thermal X-ray luminosities of 6.3+59.5
−5.7 ×1035

(9.8+174.3
−9.5 ×1035) (D/4.5 kpc) erg s−1. The non-thermal

power law component only contributes a small amount
of flux in the NuSTAR band, with inferred 0.3–78 keV

fluxes of (2.1 ± 0.2) × 10−12 erg s−1 cm−2 for both

assumed power law indices.

We summarize our key results as follows: V5855 Sgr is
a nova with variable gamma-ray emission over the first

month of the eruption. The bulk of the gamma rays are

detected between days 7 and 13, and are best described

by a power-law with photon index Γ = -2.3. With our

NuSTAR observation we have detected X-ray emission

concurrently with gamma rays for the first time in a

nova. The low signal-to-noise spectrum is equally well

described by thermal plasma, power law, or plasma plus

power law models absorbed by a very high column of
N(H) > 2 ×1024 cm−2. In the next section, we discuss

the implications of these key findings on the nature of

the shocks driving the high energy emission in V5855

Sgr.

4. DISCUSSION

4.1. First simultaneous X-ray/Gamma-ray detection of
a nova

The Fermi flux during the time of the NuSTAR obser-

vation is 3.1 ± 0.9 × 10−10 erg cm−2 s−1 in the 0.1–300

GeV. V5855 Sgr is therefore the first nova for which we

have obtained a simultaneous X-ray and gamma-ray de-

tection. The high N(H) requires that the shocked gas be
interior to a large amount of nova ejecta. If the ejecta are

spherical and have been expanding at a constant veloc-

ity of ∼500 km s−1 since the discovery of the nova (the

maximum velocity observed in the absorption trough of
the P Cygni profile in early spectra), then the expelled

mass must be at least a few 10−5 M⊙ to result in such a

high attenuating column on Day 13. We note that the

conversion from N(H) to ejected mass is highly uncer-

tain for two reasons. First, it is unclear if the velocities
observed in the optical correspond physically to the in-

teracting media that are producing the X-rays; the X-

rays come from a region that is behind a medium that

was optically thick to visible photons at the time of the
NuSTAR observation on Day 13. Second, if the ejecta

are enriched in metals (as is typically observed in no-

vae) then the mass required to have the observed level

of photoelectric absorption will be lower. In the model
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Table 1. Best-fit model parameters

Model N(H) kT norma αPL F20
b Fu,0.3−78

c C cstat/dof

(1024 cm−2) (keV) (10−4) (erg cm−2 s−1) (erg cm−2 s−1)

C*phabs*brems 2.2+0.8
−0.5 11+11

−5 5+9
−3 · · · · · · 3.3+6.7

−1.5 × 10−12 1.0 ± 0.2 375.6/380

C*phabs*po 2.9+1.0
−0.8 · · · · · · 3.6+1.3

−1.0 (9 ± 2) × 10−13 <5.3 × 10−11 1.0 ± 0.2 374.9/380

C*phabs*(brems+po) 4.9+1.6
−1.7 2.2+1.7

−0.6 2200+24900
−2100 1.0 5.2+2.0

−1.8 × 10−13 2.7+26.0
−2.5 × 10−10 1.0 ± 0.2 371.3/379

C*phabs*(brems+po) 5.1+1.7
−1.6 2.1+1.2

−0.6 3500+44400
−3400 1.2 5.8+2.2

−2.0 × 10−13 4.3+76.1
−4.0 × 10−10 1.0 ± 0.2 371.1/379

aThe normalization of the brems model is defined as 3 × 10−15/4πD2
∫
nenHdV , where D is the distance to the source in cm, and ne

and nH are the densities of elections and hydrogen, respectively, in the shocked plasma.

bThe monochromatic flux EFE of the power-law component evaluated at 20 keV.

cThe unabsorbed flux of the bremsstrahlung component in the energy range 0.3–78 keV, evaluated using the cflux component in XSPEC.

fitting presented above, we assume solar abundances for
our phabs component, primarily because the statistical

quality of the spectrum is too low to be sensitive to e.g.

the Fe edge at ∼7 keV that could constrain non-solar

abundances.

4.2. The majority of X-rays are thermal

The observed spectral slope in the 10–20 keV range is

not consistent those expected from known non-thermal

emission processes in novae. Vurm & Metzger (2018)
present detailed analytic models of non-thermal emis-

sion in novae that account for the observed gamma rays

in novae. The high energy emission is produced by lep-

tons that are either accelerated directly at the shock
front, or produced by π0 decays. The spectral index in

the X-ray regime depends on the injection energy spec-

trum of the accelerated particles, Qe = dN/dγ ∝ γ−q,

where q ≈ 2. This results in a spectrum with νFν ∝ ν

(or ν0.8). Although an absorbed power law model gives
a good fit to the data, the best fit value of α = 3.6+1.3

−1.0

(or a power-law index of -3.6) implies a νFν spectrum

that is falling with frequency. In contrast, the expected

power-law index for the non-thermal emission is −1.0 or
−1.2 (Vurm & Metzger 2018). This suggests that the

bulk of the X-ray emission that NuSTAR detected from

V5855 Sgr is not associated with the low-energy tail of

the gamma-ray emission.

We also considered the Compton degradation of MeV
gamma rays produced by radioactive decay (Livio et al.

1992) as the origin for the observed X-ray emission.

This mechanism was explored by Suzuki & Shigeyama

(2010) for the putative detection of the nova V2941 Cyg3

3 This nova erupted a few months before the launch of Fermi,
so we unfortunately have no information on its GeV gamma-ray
properties.

on day 9 (but not on day 29) (Takei et al. 2009) with
the non-imaging Suzaku hard X-ray detector (HXD).

The HXD detection implied a very flat power law (α =

0.1±0.2), which was compared with Monte Carlo radia-

tive transfer calculation by Suzuki & Shigeyama (2010)
starting with the 22Na decay line at 1.27 MeV and the

positron annihilation line at 511 keV, the most promi-

nent MeV features for an ONe nova. While the spectral

shape was seen to be compatible with such an inter-

pretation, the amount of 22Na required to explain the
observed flux was found to be extremely high, at 3×10−5

M⊙. More general models by Gomez-Gomar et al.

(1998), including those appropriate for CO novae, find

flat to inverted power law whose flux decays rapidly with
time. The steep spectral slope of the power-law only

model for V5855 Sgr seems to disfavor this model. Fur-

thermore, for Compton degradation to produce observ-

able levels of hard X-rays, the Compton optical depth

must be very high. This should result in a spectrum
that rises towards higher energies within the NuSTAR

band. In contrast, our observations constrain NH to

around 2 × 1024 cm−2, or Compton optical depth of

∼1.5.
Given the lack of an obvious non-thermal process that

produces the observed spectral slope in the 10–20 keV

range, we propose that the majority of X-ray emission in

V5855 Sgr is thermal in origin. This hot plasma is pro-

duced as fast nova ejecta sweep up and shock material
from a prior slower episode of mass loss. The post-shock

temperature is given by

Tsh = 1.2
( ∆v

1000 km s−1

)2

keV, (1)

where ∆v is the difference between the fast and slow

flow velocities. The best-fit plasma model temperature

of 11+11
−5 keV therefore implies ∆v ∼ 3000+1300

−800 km/s.

The optical spectra presented in Figure 1 show Hα P
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Cygni profiles on Days 3, 4 and 5 with a characteris-

tic absorption velocity of 200–300 km s−1. By Day 12

the absorption wing has disappeared leaving a purely

emission line with much broader widths (half width at
zero intensity ∼3000 km s−1). If the P-Cygni absorption

wing indicates the velocity of the slower material, then

temperatures as high as 11–22 keV are difficult to ac-

count for with the maximum velocities observed on Day

12 and later. However, the lower end of the temperature
uncertainty range is reasonable.

While the bulk of the X-rays appear to be thermal,

our bremsstrahlung plus power law fits indicate that

the higher energy X-rays could be due to the low-energy
tail of the gamma-ray emission. In these two compo-

nent model fits, the lower best fit plasma temperature

of 2.2+1.7
−0.6 keV implies a smaller ∆v between the fast and

slow ejecta of 1350+450
−200 km s−1. This velocity differen-

tial is smaller than that observed in the optical spectra,
although we again caution that the deeply embedded lo-

cation of the thermal X-ray emitting region makes it un-

clear if the velocities observed in the optical correspond

physically to the interacting media that are producing
the X-rays.

4.3. Low thermal X-ray luminosity compared to

gamma-ray luminosity

Estimating the luminosity of any thermal X-ray emis-

sion is important for diagnosing for the properties of

the shock and for assessing the efficiency of particle
acceleration. Reasonable assumptions about particle

acceleration efficiency at shocks predict that a frac-

tion ranging from 0.001 to 0.01 of the total shock

power will end up being emitted as non-thermal gamma

rays (Metzger et al. 2014). The observed 0.1–300 GeV
gamma-ray luminosity of 7.1 ± 2.1 × 1035 (D/4.5 kpc)

erg s−1 would therefore lead us to expect the presence

of thermal X-ray emission with luminosities in the range

1037–1038 erg s−1 if all the shock power was rapidly
converted to thermal X-ray emission. However, the

X-ray luminosity inferred from the best-fit single tem-

perature plasma model is only a few 1033–1034 (D/4.5

kpc) erg s−1. Higher luminosities are found for the two-

component models, with maximum values of a few 1037

(D/4.5 kpc) erg s−1 at the extreme of the uncertainty

range. However, these models have non-thermal X-ray

luminosities that are challenging for particle acceleration

models to account for (see next section for details), and
the statistical evidence for this additional non-thermal

component is weak. We are then left searching for a way

to reconcile the observed thermal X-ray and gamma-ray

luminosities with each other.

It is possible that some Compton scattering of X-rays

by electrons in the ejecta attenuates the emission be-

yond the photoelectric absorption level estimated by the

XSPEC model. The Compton scattering cross section
has no wavelength dependence, does not change the en-

ergy of the scattered photon by much in the 10–20 keV

band, and is not included in the absorption models in

XSPEC because the effect is very small at low N(H)

and depends on geometry. If the nova ejecta were com-
pletely spherical, Compton scattering has no net effect

on the number of photons reaching us, with as many

X-rays scattered into our line of sight as those being

scattered out from it. However, if the ejecta are highly
non-spherical this balance may by impacted and Comp-

ton scattering could be important. At the N(H) found

in our models, the Compton scattering optical depth

τC is in the range 1.5–4. If the absorbing ejecta are

e.g. toroidal (as inferred for several novae from opti-
cal and radio imaging, see e.g. Chomiuk et al. 2014),

and if we view V5855 Sgr edge-on, a significant frac-

tion of the X-rays may be scattered out of the line of

sight completely. Correcting for photoelectric absorp-
tion only would therefore underestimate the intrinsic

X-ray luminosity, by a factor of a few to 10. It is in-

teresting to note that this geometric effect would imply

that a nova viewed pole-on would be brighter in hard X-

rays at early times. More observations of novae with it
NuSTAR should allow us to explore this selection effect.

Alternatively, our estimate of the intrinsic X-ray lumi-

nosity may be correct, in which case we are left with the

puzzle of how to account for the high ratio of gamma-
ray to X-ray luminosity. One possible explanation for

the low X-ray luminosity is the suppression of thermal

X-rays at turbulent, highly structured shock fronts. Re-

cent simulations by Steinberg & Metzger (2018) of inter-

acting outflows (such as those inferred to exist in novae)
show that the resulting shock fronts are susceptible to

thin-shell instabilities, leading to the formation of cor-

rugated structures at the contact surface. This results

in many shock fronts being highly oblique, less efficient
heating of gas, and a lowering of the X-ray luminosity

by a factor of 4–36 for the parameters explored in these

first simulations. This effect may, at least in part, be

responsible for lowering the X-ray emission, and could

be enhanced by the non-spherical scattering losses men-
tioned above.

4.4. Constraints on the gamma-ray emission

mechanism

Our spectral models have enabled us to estimate the

flux (or upper limit) of any non-thermal X-ray emission

in the high energy part of the NuSTAR spectra. These
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limits can be compared to the measured gamma-ray flux

at 100 MeV to explore the emission mechanism respon-

sible for the non-thermal radiation. If we assume that

we have detected non-thermal X-rays above 20 keV (as
in our two-component models), then the ratio LX/Lγ is

∼ 0.01 for the assumed power-law slopes of 1.0 and 1.2.

If we have not detected non-thermal X-rays, then this

value is a strict upper limit. This limit on the ratio is not

very constraining, and allows for gamma rays to be pro-
duced by both leptonic and hadronic processes. We note

that achieving a ratio of 0.01 is likely unphysical for both

leptonic and hadronic processes, given the high densities

expected in nova shocks (Vurm & Metzger 2018). Elec-
trons rapidly lose energy through Coulomb interactions

in the dense nova ejecta, leading to much lower non-

thermal X-ray fluxes than in the gamma-ray band.

We noted earlier that the addition of the high energy

power-law component only marginally improves the fit,
although it does reduce the residual size. We there-

fore do not claim to have a significant detection of non-

thermal X-rays. This makes the issue of low intrin-

sic thermal X-ray flux even more challenging to under-
stand. Naively, we expect evidence of a powerful shock

to show up somewhere in the emission from a gamma-

ray emitting nova. While the thin-shell instability may

help with X-ray suppression and enhanced particle ac-

celeration, the reduction is modest and cannot reduce
a 1038 erg s−1 shock to the 1033−34 (D/4.5 kpc) erg

s−1 we have detected here. Another option is to in-

crease the particle acceleration efficiency of these shocks.

Steinberg & Metzger (2018) also find that the ion accel-
eration efficiency is enhanced at corrugated shock fronts

as the magnetic field geometry is changed from a per-

pendicular direction to higher obliquity angles in local

regions, which could result in more efficient gamma-ray

production. In combination with other effects, it is pos-
sible that the observed X-ray to gamma-ray ratio could

be achieved.

5. CONCLUSIONS

We have detected hard X-rays simultaneous with

gamma-ray emission for the first time in a nova erup-

tion. From our analysis of the multiwavelength data

presented here, we can conclude the following:

• The X-ray emitting region is deeply buried within

the nova ejecta, as evidenced by the extremely
high (N(H) >2 × 1024 cm−2) absorbing column

found in the spectral fits.

• The bulk of the detected X-rays are thermal in

origin: the observed slope in the 1—20 keV energy

range is too steep to be explained by expected non-

thermal emission processes.
• The observed thermal X-ray flux, and inferred lu-

minosity, is much lower than expected given the

observed gamma-ray flux under standard assump-

tions of particle acceleration efficiency in shocks.

This may be due to geometric effects in correcting
for absorption of X-rays, or point to intrinsic sup-

pression of X-rays by some physical process such

as thin-shell instabilities at the the internal shock

front.

• We have placed constraints on non-thermal X-

rays at energies >20 keV, assuming the power law
slopes expected for particle acceleration at a shock

front. The results from V5855 Sgr are not partic-

ularly constraining, and cannot discriminate be-

tween hadronic and leptonic scenarios.
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